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Abstract. Let Sg,p denote the genus g orientable surface with p ≥ 0
punctures, and let ω(g, p) = 3g + p − 3 > 1. We prove the existence of
infinitely long geodesic rays (v0, v1, v2, ...) in the curve graph satisfying
the following optimal intersection property: for any natural numbers i
and k, the endpoints vi, vi+k of any length k subsegment intersect at
most fi,k(ω) times, where fi,k(x) is O(xk−2). This answers a question
of Dan Margalit.

1. Introduction

Let S = Sg,p denote the orientable surface of genus g ≥ 0 with p ≥ 0
punctures and say that S has complexity ω(S) = ω(g, p) = 3g + p − 3.
Throughout the paper we assume that ω(S) > 1. The curve graph for S,
denoted C1(S), is the graph whose vertices correspond to isotopy classes of
essential, non-peripheral simple closed curves on S, and whose edges join
vertices that represent curves whose union is a 2-component multi-curve.
(See Section 2 for definitions.) Denote distance in this graph by dS (or
simply d when the surface is clear from context). The subscript 1 denotes the
fact that C1(S) is the 1-skeleton of a (3g+ p− 4)-dimensional flag simplicial
complex, in which the k-simplices correspond to (k + 1)-component multi-
curves. We denote by C0 the vertices of the graph C1.

The curve graph was introduced by Harvey in [Har81] and has since be-
come a central tool to understand the mapping class group of a surface and
hyperbolic structures on surfaces and 3-manifolds. In particular, the geom-
etry of the curve graph played a significant role in proving quasi-isometric
rigidity of mapping class groups [BKMM12, Ham05], the rank conjecture
[BM08, Ham05], and the Ending Lamination Theorem [Min10, BCM12].
These results rely on the work of Masur and Minsky [MM99, MM00] who
showed that the curve graph is hyperbolic and provided a formula to coarsely
compute word length in the mapping class group using distance in curve
graphs. Despite the importance of curve graph distance to these applica-
tions, explicit examples of curves that have exactly distance k, for k ≥ 4,
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are difficult to construct (See remark 1 of [BM12]). In this note, we con-
struct such curves that are as simple as possible in terms of their geometric
intersection number on the surface (see section 2 for details).

By an argument going back to Lickorish [Lic62] and stated explicitly
for closed surfaces by Hempel [Hem01] and more generally by Bowditch
[Bow06], the geometric intersection number strongly controls the distance
dS . Concretely, given a pair of curves α, β on Sg,p,

dS(α, β) ≤ 2 log2(i(α, β)) + 2.

A complexity-dependent version of this bound was obtained by the first
author [Aou12]. For any λ ∈ (0, 1), there exists N = N(λ) such that for all
S with ω(S) > N , if α, β ∈ C0(S),

dS(α, β) ≥ k ⇒ i(α, β) > ωλ(k−2).(1.1)

The purpose of this note is to establish a corresponding upper bound
on the minimal number of times a pair of distance k simple closed curves
intersect. We show:

Theorem 1.1. For any g, p with ω = ω(g, p) > 1, there exists an infinite
geodesic ray γ = (v0, v1, v2, ...) in C1(Sg,p) such that for any i ≤ j,

i(vi, vj) ≤ ε(εB)2j−5ω|j−i|−2 + fi,j(ω),

where fi,j(x) is O(xj−i−4), B is a universal constant and ε = 1 if g ≥ 2 and
ε = 4 otherwise.

For convenience, denote

ik,(g,p) = min{i(α, β) : α, β ∈ C0(Sg,p), dS(α, β) = k},

and write ik,g for ik,(g,0). Then Theorem 1.1 implies ik,(g,p) is bounded above
by a polynomial function of ω with degree k − 2.

We remark that Theorem 1.1 was proven in response to the following
question, formulated by Dan Margalit:

Question 1 (Margalit). Is it the case that for fixed k, the function ik,g is

O(gk−2)?

By inequality 1.1, we see that for k fixed, ik,g is not O(gk−3).

Acknowledgements. The authors would like to thank Dan Margalit for
proposing the question, and for many helpful conversations. We also thank
the referee for numerous comments that improved the clarity of the paper.
This work was initiated during the AMS Mathematics Research Communi-
ties program on geometric group theory, June 2013.
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2. Preliminaries

We briefly recall the definition of the curve graph for an annulus, and we
review the properties of subsurface projections to this graph. See [MM00]
for the general definition of subsurface projections and additional details.

First, for the surface S = Sg,p, a simple closed curve is essential if it
does not bound a disk on S and is non-peripheral if it does not bound a
once-punctured disk on S. As is common in the literature, we call an es-
sential, non-peripheral simple closed curve simply a curve. A multi-curve
is a collection of disjoint curves on S no two of which are isotopic. The
complexity ω(S) = 3g + p − 3 is equal to the maximum number of compo-
nents of a multi-curve on S. Hence, our assumption that ω(S) > 1 ensures
that C0(S) is not discrete, and in this case it is well known that C0(S) is
connected. Surfaces for which the complexity is less than or equal to 1 are
called sporadic.

Since for ω(S) > 1, C1(S) is connected, we may define a distance dS
between vertices α, β ∈ C0(S) using the standard path metric. This distance
is the minimal number of edges crossed in any path between α and β in C1(S).
If dS(α, β) > 1, then any curve representatives of these vertices intersect,
and we say that α and β meet. For any vertices α, β ∈ C0(S), we can
define their geometric intersection number i(α, β) as the minimum number
of intersections between curves that represent the isotopy classes of α and β.
Any representatives of these curves that intersect minimally are said to be
in minimal position. As is standard in the subject, we will sometimes blur
the distinction between a curve and its isotopy class, but when dealing with
pairs of curves we will always choose representatives that are in minimal
position. If A and B are subsets of vertices, we follow [MM00] and define

dS(A,B) = diamC(S)(A ∪B).

For a closed annulus Y ⊂ S whose core curve α is essential, let Ỹ be
the cover of S corresponding to Y . Denote by Y the compactification of
Ỹ obtained in the usual way, for example by choosing a hyperbolic metric
on S. The curve graph C(Y ) is the graph whose vertices are homotopy
classes of properly embedded, simple arcs of Y with endpoints on distinct
boundary components. Edges of C(Y ) correspond to pairs of vertices that
have representatives with disjoint interiors. The projection πY from the
curve graph of S to the curve graph of Y is defined as follows: for any
β ∈ C0(S) first realize α and β with minimal intersection. If β is disjoint from

α then πY (β) = ∅. Otherwise, the complete preimage of β in Ỹ contains arcs
with well-defined endpoints on distinct components of ∂Y . Define πY (β) ⊂
C(Y ) to be this collection of arcs in Y .

If α is a curve in S, we also denote by C(α) the curve graph for the
annulus Y with core curve α and we denote its path metric by dα. Let
πα : C(S)\N1(α)→ Cα be the associated subsurface projection, where N1(·)
denotes the closed 1-neighborhood in C1(S). From [MM00], we note that
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when ω(S) > 1 the diameter of πα(β) is ≤ 1 for any curve β that meets
α. Further, πα is coarsely 1-Lipschitz along paths in C(S) \ N1(α), i.e if
γ0, γ1, . . . , γn is a path in C0 with πα(γi) 6= ∅ for each i, then dα(γ1, γn) ≤
n + 1. Here, we are using the convention that the distance between sets in
C(α) is the diameter of their union. Also recall that if Tα denotes the Dehn
twist about α then

dα(γ, TNα (γ)) ≥ N − 2.

Here, dα(β, γ) is short-hand for dα(πα(β), πα(γ)).
As a consequence of the Lipschitz condition of the projection, note that

if β, γ ∈ C0(S) both meet α and

dα(β, γ) ≥ dS(β, γ) + 2,

then any geodesic in C(S) from β to γ contains a vertex adjacent to α. In
fact, a much stronger result, known as the bounded geodesic image theo-
rem, is true. This was first proven by Masur and Minsky in [MM00], but
the version we state here is due to Webb and gives a uniform, computable
constant [Web13]. It is stated below for general subsurfaces, although we
will use it only for annuli.

Theorem 2.1 (Bounded geodesic image theorem). There is a M ≥ 0 so
that for any surface S and any geodesic g in C(S), if each vertex of g meets
the subsurface Y then diam(πY (g)) ≤M .

We end this section with the following well known fact, see [Iva92]. Let
α, β, γ ∈ C0(S), then

|i(γ, TNα (β))−N · i(α, γ)i(α, β)| ≤ i(β, γ).

We refer to this as the twist inequality.
In the next section, we will briefly make use of the arc and curve graph

AC1(S), a 1-complex associated to a surface with boundary or punctures
where the vertices are properly embedded essential arcs (modulo isotopy rel
boundary) together with C0(S), and edges correspond to pairs of vertices
that can be realized disjointly on the surface. Recall that a properly embed-
ded arc a in S is essential if it is not homotopic into the boundary of (or a
puncture of) S rel ∂a. Let AC0(S) denote the vertices of AC1(S).

A non-annular subsurface Σ ⊂ S is called essential if all of its bound-
ary components are essential curves in S, and a properly embedded arc is
essential if it can not be homotoped into the boundary or a neighborhood
of a puncture. Then there is a projection map πACΣ : C0(S) → P(AC0(Σ)),
where P(·) denotes the power set, defined as follows: for a vertex v ∈ C0,
first let c be a curve that represents the isotopy class v and intersects ∂Σ
minimally. Then send v to the collection of vertices in AC0(Σ) that represent
components of the intersection of c and Σ.
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3. Minimal intersecting filling curves

Curves α, β ∈ C0(S) fill S if, after choosing minimally intersecting rep-
resentatives, S \ (α ∪ β) consists of disks and once-punctured disks. It is
immediate from the definition of distance in C0(S) that α and β fill S if and
only if dS(α, β) ≥ 3. The proof of Theorem 1.1 proceeds by beginning with
curves α3, β3 in Sg,n that fill and have intersection number bounded linearly
by ω(g, n). In all but the genus 2 case we find α3 and β3 whose intersection
number is the minimal possible.

Lemma 3.1. Given Sg,p with ω(g, p) > 1, the following holds:

(1) If g 6= 2, 0 and p = 0,

i3,(g,p) = 2g − 1.

(2) If g 6= 2, 0 and p ≥ 1,

i3,(g,p) = 2g + p− 2.

(3) If g = 0 and p ≥ 6 even,

i3,(g,p) = p− 2,

and for p odd,

i3,(g,p) = p− 1.

(4) If g = 2 and p ≤ 2,

i3,(g,p) = 4.

(5) If g = 2 and p ≥ 2 even,

i3,(g,p) = 2g + p− 2,

and for p ≥ 3 odd,

2g + p− 2 ≤ i3,(g,p) ≤ 2g + p− 1.

Proof. Before beginning a case-by-case analysis, we first observe some gen-
eral facts. Suppose that α and β are curves on S = Sg,p that are in minimal
position and fill. Let D denote the number of topological disks in S \(α∪β).
Note that if p = 0 then D ≥ 1 since there are no punctured disks in the
complement of α ∪ β. Using that fact that α ∪ β is a 4-valent graph whose
vertices are the intersection of α and β and whose complementary regions
are either disks or punctured disks, we compute that i(α, β) = 2g+p−2+D.
Hence, if p = 0 then i3,(g,p) ≥ 2g − 1 and if p ≥ 1 then i3,(g,p) ≥ 2g + p− 2.
This, plus the additional fact that when g = 0 any two curves intersect an
even number of times, gives all the lower bounds appearing in (1)− (5).
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Figure 1. Pushing αk across βj and back over creates 2
bigons; puncturing each produces a filling pair on Sg,p+2.

For (1), [AH13] produce pairs of filling curves on a closed surface of genus
g ≥ 3 that intersect 2g − 1 times by an explicit construction. For (2), first
note that when p = 0 any pair of curves that fills and intersects 2g−1 times
must have a single disk as its complementary region. This follows from the
Euler characteristic argument above. By puncturing this disk, we obtain a
filling pair on Sg,1 that intersects 2g− 1 = 2g+ 1− 2 times. When g = 1, it
is easy to find two curves intersecting exactly p times, for any p ≥ 1. The
complement of these two curves is p topological disks and puncturing these
disks gives a pair of filling curves on S1,p that intersect p = 2g+p−2 times.

Before completing case (2), we introduce a procedure that produces a
filling pair for Sg,p+2 from a filling pair for Sg,p at the expense of two addi-
tional intersection points. Let α and β be a filling pair for Sg,p; orient α and
β, and label the arcs of α (resp. β) separated by intersection points from
α1, ..., αi(α,β) (resp. β1, ..., βi(α,β)) with respect to the chosen orientation,
and a choice of initial arc. Suppose that the initial point of αk coincides
with the terminal point of βj , as seen on the left hand side of Figure 1.

Then pushing αk across βj and back produces a pair of bigons; puncturing
each of these bigons produces a filling pair intersecting i(α, β) + 2 times
on Sg,p+2. Thus if p = 2k + 1 is odd and g > 2, by (1) there exists a
filling pair whose complement is connected, and we can puncture this single
complementary region to obtain a filling pair on Sg,1. Then performing the
operation pictured above k times yields a filling pair on Sg,p intersecting
2g + p − 2 times. The Euler characteristic argument above yields a lower
bound of 2g + p− 2 for i3,(g,p), and this proves (3) in the case p is odd.

If p is even, the same argument can work if there exists a filling pair
(αg, βg) on Sg,0 intersecting 2g times, which is equivalent to the complement
of α ∪ β consisting of two topological disks. Assuming such a filling pair
exists, we obtain a filling pair on Sg,2 intersecting 2g = 2g + p− 2 times by
puncturing both disks. Then the double bigon procedure described above
produces the desired filling pair for any larger number of even punctures.

Therefore, to finish the proof of (2) it suffices to exhibit a filling pair on
Sg,0, g > 2, intersecting 2g times. Consider the polygonal decomposition of
S2,0 shown in Figure 2, originally constructed in [AH13].
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Figure 2. Gluing the polygons together with respect to the
oriented edge labeling yields S2,0, and the x-arcs concatenate
in the quotient to form a simple closed curve x which fills S2,0

with the curve y, the concatenation of the y-arcs. The 4 green
points are all identified together in S2,0.

The boundary of these polygons project to a filling pair (x, y) on S2,0

intersecting 6 times. Take S1,0, equipped with the filling pair described
above intersecting twice, and cut out a small disk centered around either
of these two intersection points to obtain S̃1, a torus with one boundary
component equipped with arcs α̃1, β̃1.

Then given S2,0 equipped with (x, y), cut out a small disk centered around

the green intersection point above in Figure 2 to obtain S̃2, a genus two sur-
face with one boundary component equipped with arcs x̃, ỹ. Then glue S̃1 to
S̃2 by identifying boundary components, while concatenating the endpoints
of α̃1 to x̃, and the endpoints of β̃1 to ỹ.

This yields a pair of simple closed curves (α3, β3) on S3,0 intersecting 2g
times, and we claim that this is a filling pair. Indeed, let γ be any simple
closed curve on S3,0 and assume γ is disjoint from both α3 and β3. Consider
the projections πAC

S̃1
(γ), πAC

S̃2
(γ) of γ to the arc and curve graph AC of the

subsurfaces S̃1, S̃2. By assumption the arc πAC
S̃2

(γ) is disjoint from the arcs

x̃, ỹ.
It then follows that this arc must be homotopic into ∂S̃2, because the

arcs x̃, ỹ are distance at least 3 in AC(S̃2). Hence γ is homotopic into S̃1;

however, this contradicts the fact that α̃, β̃ fill S̃1, and therefore γ can not
be disjoint from both α3 and β3.
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Then to obtain a filling pair (α2k+1, β2k+1) intersecting 2(2k + 1) times
on any odd genus surface, we simply iterate this procedure by choosing a
filling pair intersecting 2(2(k − 1) + 1) times on S2(k−1)+1,0, cutting out a

disk centered at any intersection point, and gluing on a copy of S̃2. Thus,
the existence of the desired pair for any even genus follows from the same
argument by the existence of such a pair on S2,0- see Figure 6 below. This
completes the proof of (2).

For (3), it suffices to give a pair of curves intersecting 4 times on each
of S0,5 and S0,6. For then we can apply the double bigon construction to
increase intersection number by two while adding two additional punctures.
Filling pairs of curves on these surfaces are shown in Figure 5.

When g = 2, there exists a filling pair intersecting 4 times [FM12]. It is
shown in [AH13] that i3,(2,0) > 3, but we give a short argument here that
was communicated to us by Dan Margalit. Recall that for S = S2,0 there is
a homeomorphism h : S → S called the hyperelliptic involution such that
h2 is the identity map, h fixes each vertex of C(S), and the quotient S/h
is a sphere with 6 marked points, which can be treated as punctures. See
[FM12] for details. If α and β are curves on S that fill and intersect 3
times, then in S/h, α and β descend to arcs a and b, respectively, whose
interiors intersect at most once. It follows that each of a and b must have
an endpoint on a common marked point. However, it is easy to see that
no such arcs can fill a sphere with 6 marked points. We conclude that
i3,(2,0) = 4. Since two curves on S2,0 that fill and intersect 4 times have 2
disks in their complement, puncturing one or two of these disks give filling
pairs that complete case (4). Case (5) comes from a final application of the
double bigon construction, starting with a minimal intersecting filling pair
on either S2,1 or S2,2, depending on the parity of p. Only in the case where
p is even does this construction achieve the lower bound calculated in the
first paragraph. �

To prove the main result, we will first exhibit the existence of a length 3
geodesic segment satisfying the property that any subsegment has endpoints
intersecting close to minimally for their respective curve graph distances.
The main theorem is then proved by carefully extending such a segment
and inducting on curve graph distance. Thus, we conclude this section with
the following lemma:

Lemma 3.2. Given Sg,p with ω(g, p) > 1, there exists a length 3 geodesic
segment (v0, v1, v2, v3) in C(Sg,p) such that:

(1) If g 6= 2, 1, then for any k, j, 0 ≤ k, j ≤ 3,

i(vk, vj) = i|k−j|,(g,p);

(2) If g = 1, p > 1, then

i(v0, v3) = i3,(1,p), i(v0, v2), i(v1, v3) ≤ 3.
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(3) If g = 2 and p is even, then the conclusion from (1) holds. If p is
odd, then

i(v0, v3) ≤ i3,(2,p) + 1, i(v0, v2) = i(v1, v3) = 1.

Proof. For (1), assume first that p = 0 and g > 2. Then by (1) of Lemma
3.1, there exists a filling pair (α, β) on Sg,p whose complement consists of a
single connected component. As in the proof of Lemma 3.1, orient both α
and β and label the arcs along α (resp. β) α1, ..., α2g−1 (resp. β1, ..., β2g−1).
Then cutting along α ∪ β produces a single polygon P with (8g − 4) sides,
whose edges are labeled from the set

A(g) :=
{
α±1 , ..., α

±
2g−1, β

±
1 , ..., β

±
2g−1

}
.

(αk, α
−1
k ) is referred to as an inverse pair; these edges project down to the

same arc of α on the surface. Note that the edges of P alternate between
belonging to α and β.

Consider the map M : A(g)→ A(g) which sends an edge e to the inverse
of the edge immediately following e along P in the clockwise direction. We
claim that M has order 4. Indeed, the map M is combinatorially an order
4 rotation about an intersection point of α ∪ β, as pictured below.

Now, suppose that every inverse pair constitutes a pair of opposite edges
of P ; that is to say, the complement of any inverse pair in the edge set of P
consists of two connected components with the same number of edges. Then
M induces a rotation of P by 2π/(4g− 1), which is not an order 4 rotation,
a contradiction.

Figure 3. M sends the arc βl to α−1
k . The arrows demon-

strate the order 4 action of M around the vertex.
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Therefore, there must be at least one inverse pair comprised of edges
which are not opposite on P . Without loss of generality, this pair is of the
form (αk, α

−1
k ). Let R be the connected component of the complement of

αk ∪ α−1
k in the edge set of P containing more than 4g − 3 edges.

Then there must exist an inverse pair of the form (βj , β
−1
j ) contained in

R, since the edges of P alternate between belonging to α and β, and thus
there must be a strictly larger number of β edges in R than in the other
component.

Then there is an arc connecting the edges (αk, α
−1
k ) which projects down

to a simple closed curve v2 disjoint from β and intersecting α exactly once.
Similarly, there is an arc connecting (βj , β

−1
j ) projecting down to a simple

closed curve v1 which is disjoint from both v1 and α, and which intersects
β exactly once. Then define v0 := α, v3 := β; this concludes the proof of (1)
in the case p = 0.

If g > 2 and p > 0 is odd, then the double bigon construction introduced
in the proof of Lemma 3.1 can be used again here to obtain a length 3
geodesic {v0, v1, v2, v3} in C1(Sg,p) satisfying the desired property.

However if p is even, we can not simply appeal to the construction for p =
0 and use the double bigon construction, because the minimally intersecting
filling pair for even p constructed in Lemma 3.1 is obtained by starting with
a pair intersecting 4 times on S2,0, gluing on genus 2 pieces as in Figure 2,
and applying the double bigon procedure as necessary to acommodate for
more punctures. We postpone this case until the end of the proof.

When g = 1 and p > 1, note that i3,g,p = 2g + p − 2 = p, since on S1,0,
any two simple closed curves intersecting n times have the property that
the complement of their union consists of n simply connected components.
Recall also that a free homotopy class containing a simple closed represen-
tative on S1,0 is determined uniquely by a pair of coprime integers. Then
starting with the (1, 0) and (1, p) curves on S1,0, simply puncture each of
the p complementary regions to obtain a pair of curves on S1,p which fill and
intersect minimally.

The figure below shows that when p 6= 3, there exists a geodesic (v0, v1, v2, v3)
satisfying the requirements of the lemma, and such that

i(v0, v2) = i(v1, v3) = 2.

If p = 3, a similar construction to those shown in Figure 4 exists: v3

becomes the (1, 3)-curve and v0 is still the (1, 0)-curve. The curve v1 is as in
the p = 2 case, in that it connects the vertical edges of the square and weaves
between the punctures (so as to guarantee that it is not homotopic to v0).
The curve v2 is as in both cases pictured above: it bounds a twice punctured
sphere with 1 boundary component, is disjoint from v1, and intersects v0

twice. Note that i(v1, v3) = 3.
For g = 0, we have the length three geodesic in C(S0,5) and C(S0,6) as

in Figure 5. Again, applying the double bigon construction to the filling
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Figure 4. If g = 1 and p 6= 3, there exists a geodesic
{v0, v1, v2, v3} such that the end points of any length 2 sub-
segment intersect twice, and i(v0, v3) = i3,(1,p).

curves does not change the intersection number with the other curves in the
geodesic. This completes the argument for g = 0.

If g = 2, the existence of the desired geodesic segment in C1(S2,0) will
imply the existence of the corresponding segment in C1(S2,p) for p > 1 by
another application of the double bigon construction. The filling pair (α, β)
on S2,0 shown on Page 41 of [FM12] is obtained by gluing together a pair of
octagons in accordance with the gluing pattern pictured below in Figure 6.

Note that both α1 and α−1
1 are on the left octagon, and β2, β

−1
2 are both

edges of the right octagon. Therefore, let v3 be a simple closed curve whose
lift to the disjoint union of octagons pictured above is an arc connecting α1

to α−1
1 , and let v2 be a curve whose lift is an arc connecting β2 to β−1

2 . Then
(v0, v1, v2, v3 = β) is the desired geodesic segment in C(S2,0).

Finally, if p is even and g > 2, observe that in the bottom octagon of
Figure 6, there is an arc connecting the edges labeled x5 which projects
to a curve v1 disjoint from the y curve, and intersecting the x curve only
once. Furthermore, there is an arc in the upper octagon connecting the
two y5 edges which projects to a simple closed curve v2 on S2 disjoint from
the x curve, and intersecting the y curve only once. In the construction
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Figure 5. Length 3 geodesics in C1(S0,5) and C1(S0,6).

Figure 6. Gluing the octagons together by pairing together
sides with the same label produces S2,0; the β-arcs concate-
nate in order to form a simple closed curve β, which fills S2,0

with the simple closed curve α- the concatenation of the α-
arcs.

outlined in Lemma 3.1, when p is even, we glue a copy of this genus 2 piece
to some Sg,p equipped with a minimally intersecting filling pair {α, β}, such
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that Sg,p \ (α ∪ β) has two connected components which are not punctured
bigons.

After gluing, we concatenate the complement of the green vertex in the
x curve to α to obtain a simple closed curve v0 on Sg+2,p, and similarly the
complement of the green vertex in the y curve becomes a sub-arc of some
curve v3 on Sg+2,p; Sg+2,p \ (v0 ∪ v3) will still have exactly two connected
components that are not punctured bigons. Note that the curves v1, v2 are
embedded in the complement of the green vertex on S2, and therefore we
can also think of them as curves on Sg+2,p after gluing on the genus 2 piece.
The path (v0, v1, v2, v3) in C1(Sg,p+2) is the desired length 3 geodesic.

�

Since the intersection numbers determined in Lemma 3.2 are the basis
for our construction in the next sections, we make the following notation:
if {v0, v1, v2, v3} is the geodesic in C(Sg,p) determined by Lemma 3.2, then
set η3,(g,p) = i(v0, v3) and η2,(g,p) = max{i(v1, v3), i(v0, v2)}. Note that in
most cases these are the minimum possible intersection numbers given their
distance.

4. Warm-up

To give the idea of the general argument, we present a simplified argument
to prove that i4,(g,p) is O(ω2), where ω = ω(g, p). The idea is that for small
curve graph distance we can bypass the bounded geodesic image theorem
using the simple fact that the projection from the curve graph to the curve
graph of an annulus is coarsely 1- Lipschitz.

Begin with curves α3 and β3 that have distance 3 in the curve graph and
intersect i3,(g,p) times. Let δ be a curve that has distance 2 from β3 and

distance 1 from α3. Set β4 equal to T 8
α3

(β3) and α4 equal to β3. Note that

d(α4, β4) ≤ 4 since each of these curves has distance 2 from δ = T 8
α3

(δ). If
there is a geodesic from α4 to β4 all of whose vertices intersect α3 then since
the projection to C(α3) is Lipschitz

dα3(α4, β4) ≤ 4 + 1 = 5.

This, however, contradicts our choice of Dehn twist T 8
α3

since

dα3(α4, β4) = dα3(β3, T
8
α3

(β3)) ≥ 8− 2 = 6.

We conclude that any geodesic from α4 to β4 must enter the one neigh-
borhood of α3 and so d(α4, β4) = 4. Finally, by the twist inequality

i(α4, β4) = i(β3, T
10
α3

(β3)) = 10 · i(α3, β3)2 = 10 · (i3,(g,p))2,

as required.
This process can be repeated, however at each step we require a twist

whose power grows linearly with curve graph distance. To avoid this, we
use the bounded geodesic image theorem (Theorem 2.1).
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5. Minimal intersection rays

Set B = M + 3, where M is as in Theorem 2.1. Fix a surface S =
Sg,p and begin with the length 3 geodesic (v0, v1, v2, v3) in C1(Sg,p) with
i(vi, vj) = η|j−i|,(g,p) as in Lemma 3.2 and the final paragraph of Section 3.
Set η = η3,(g,p). What’s important here is the fact that i(v0, v3) is bounded
linearly in the complexity of S, while i(v0, v2) and i(v1, v3) are uniformly
bounded, independent of complexity. From this, we construct a geodesic
ray whose vertices have optimal intersection number given their distance, in
the sense described in the introduction. We begin by defining a sequence of
geodesics γk in C1(S) whose lengths grow exponentially in k and have the
property that all but the last vertex of γk is contained in γk+1. We refer to
k as the level of γk.

Set γ0 = (v0
0, v

0
1, v

0
2, v

0
3) := (v0, v1, v2, v3) and let nk = 2k + 2. We define

γk+1 = (vk+1
i )

nk+1

i=0 from γk = (vki )nk
i=0 as follows:

vk+1
i =

{
vki 0 ≤ i ≤ nk − 1

TB
vknk

(vknk+1−i) nk − 1 ≤ i ≤ nk+1.

Since vknk−1 = TB
vknk

(vknk−1), γk+1 is a path of adjacent vertices in C0(S) of

length `(γk+1) = nk+1. For example,

γ1 = (v0
0, v

0
1, v

0
2 = TBv03

(v0
2), TBv03

(v0
1), TBv03

(v0
0))

represents a length 4 path in C1(S).
To simplify notation we note that vk0 = v0

0 for all k and so we denote this
vertex of C1(S) simply by v0. Also, for each k we define ek := vknk

. Hence,

the endpoints of γk are v0 and ek, and we orient γk from v0 to ek. If we
denote by γk◦ the initial subsegment of γk containing all but the last vertex
ek of γk, then γk◦ is an initial subsegment of γk+1 and we write

γk+1 = γk◦ ∪ TBek(γk◦ ).

Lemma 5.1. For k ≥ 0, γk is a geodesic in C1(S).

Proof. For k = 0 this is by construction. Assume that the lemma holds for
γk and recall that γk+1 = γk◦ ∪ TBvknk

(γk◦ )) has length nk+1 = 2k+1 + 2. Note

that
dek(v0, T

B
ek

(v0)) ≥ B − 2 > M,

so by Theorem 2.1 any geodesic between these vertices must pass through a
1-neighborhood of ek. Hence,

d(v0, T
B
ek

(v0)) ≥ 2`(γk)− 2 ≥ 2(2k + 2)− 2 = 2k+1 + 2 = `(γk+1).

Hence, γk+1 is a geodesic. �

The following theorem is our main technical result. It gives the desired
intersection number, by level. The corollary following it removes the depen-
dence on level.
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Theorem 5.2. For k ≥ 0 and γk = (vki )nk
i=0 the following inequality holds

for all 0 ≤ i ≤ j ≤ nk:

i(vi, vj) ≤ ε(εB)2k−1η|j−i|−2 + fi,j,k(η),

where fi,j,k(x) is O(x|j−i|−4), ε = 1 if g ≥ 2 and ε = 4 otherwise.

Proof. The proof is by induction on k. For k = 0, this holds by our choice
of (v0, v1, v2, v3) using Lemma 3.2. Assume that the result holds for γk and

let 1 ≤ i ≤ j ≤ nk+1. If j ≤ nk − 1 then i(vk+1
i , vk+1

j ) = i(vki , v
k
j ) and the

result holds by induction. Similarly, if nk − 1 ≤ i then vk+1
i = TBek(vkm) and

vk+1
j = TBek(vkl ) for some 1 ≤ m, l ≤ nk − 1. In this case,

i(vk+1
i , vk+1

j ) = i(TBek(vkm), TBek(vkl )) = i(vkm, v
k
l ).

Since |j − i| = |l −m|, we are done by induction.

So we may assume that 1 ≤ i ≤ nk − 2 and that vk+1
j = TBek(vkl ) for

l ≤ nk − 2. By definition of vk+1
j , we see that l = nk+1 − j. Then

i(vk+1
i , vk+1

j ) = i(vki , T
B
ek

(vkl ))

and so we must bound i(vki , T
B
ek

(vkl )). Since this expression involves only

vertices of γk, we will drop the superscript k from the notation. By the
twist inequality,

i(vi, T
B
ek

(vl)) ≤ Bi(ek, vl)i(ek, vi) + i(vi, vl),(5.1)

where ek is vnk
, the terminal vertex of γk. Applying the induction hypothesis

to γk we have the following inequalities:

i(vnk
, vl) ≤ ε(εB)2k−1ηnk−l−2 + fl,nk,k(η),

i(vnk
, vi) ≤ ε(εB)2k−1ηnk−i−2 + fi,nk,k(η),

i(vi, vl) ≤ ε(εB)2k−1η|i−l|−2 + fi,l,k(η),

where fa,b,k(x) is O(x|b−a|−4). Plugging these inequalities into Inequality
5.1, we obtain

i(vi, T
B
vnk

(vl)) ≤ ε(εB)2k+1−1η(2nk−l−i−4) + fi,j,k+1(η),

where fi,j,k+1(x) is defined to be

fi,j,k+1(x) := ε(εB)2k−1xnk−l−2fi,nk,k(x) +

ε(εB)2k−1xnk−i−2fl,nk,k(x) +

ε(εB)2k−1x|l−i|−2 + fi,l,k(x).

Since

2nk − l − i− 4 = 2k+1 − l − i = j − i− 2,
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it only remains to show that fi,j,k+1(x) is O(x|j−i|−4). To see this, we note
that fi,j,k+1(x) is O(h(x)) where

h(x) = max{x2nk−l−i−6, x|l−i|−2}.

By our assumption, l ≤ nk − 2 = 2k so that

2nk − l − i− 6 ≥ 2k+1 − l − i− 2 ≥ l − i− 2.

This implies that fi,j,k+1 is O(x2nk−l−i−6) and observing that 2nk−l−i−6 =
j − i− 4 completes the proof.

�

Now set γ = ∪kγk◦ . This is an infinite geodesic ray with endpoint v0. For
convenience, relabel the vertices of γ so that γ = (v0, v1, v2, . . .).

Corollary 5.3. Let γ be the geodesic ray in C1(Sg,p) as described above.
Then for any i ≤ j

i(vi, vj) ≤ ε(εB)2j−5η|j−i|−2 + fi,j(η),

where fi,j(x) is O(x|j−i|−4), ε = 1 if g ≥ 2 and ε = 4 otherwise.

Proof. Take k so that 2k + 2 ≤ j < 2k+1 + 2. Then vj is a vertex of γ

that first appears at the k + 1th level. That is, vj = vk+1
j ∈ γk+1. Then

2k+1 − 1 = (2k+1 + 4) − 5 ≤ 2j − 5. Now apply Theorem 5.2 to γk+1 to
conclude the proof. �
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