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Abstract. Given φ a pseudo-Anosov map, let `T (φ) denote the translation length of φ in
the Teichmüller space, and let `C(φ) denote the stable translation length of φ in the curve
graph. Gadre–Hironaka–Kent–Leininger showed that, as a function of Euler characteristic

χ(S), the minimal possible ratio τ(φ) = `T (φ)
`C(φ)

is log(|χ(S)|), up to uniform additive and

multiplicative constants. In this short note, we introduce a new construction of such ratio
optimizers and demonstrate their abundance in the mapping class group. Further, we
show that ratio optimizers can be found arbitrarily deep into the Johnson filtration as well
as in the point pushing subgroup.

1. Introduction

Let S = Sg,p denote the orientable surface of genus g with p punctures, and let ω(g, p) =
ω(S) = 3g + p − 4 be its complexity. Let Mod(S) denote the mapping class group of S,
Teich(S) the Teichmüller space equipped with the Teichmüller metric, and C(S) the curve
graph of S.

Consider the coarsely-defined map πg,p : Teich(S)→ C0(S), which sends a marked hyper-
bolic surface to the simple closed curve(s) of shortest length. The map πg,p was originally
studied by Masur-Minsky, who, as part of the proof of the δ-hyperbolicity of C(S), demon-
strated the existence of a constant K = K(g, p) such that πg,p is coarsely K– Lipschitz
[MM99]. Recall that a map f : X → Y between metric spaces is coarsely K–Lipschitz if
there is an L ≥ 0 such that dY (f(a), f(b)) ≤ K · dX(a, b) + L for all a, b ∈ X.

Let K(g, p) denote the optimal possible value of the Lipschitz constant for πg,p as a
function of Sg,p; that is,

K(g, p) = inf{c ∈ R : πg,p is coarsely c-Lipschitz}.
Gadre–Hironaka–Leininger–Kent showed that K(Sg,0) ∼ 1

log(g) [GHKL13]. Thus, not only

is πg,p coarsely Lipschitz, but it is coarsely contracting, and the optimal contraction factor
approaches 0 as g →∞. Following this work, Valdivia showed that for r ∈ Q a fixed rational
number, the optimal Lipschitz constant for a sequence of surfaces Sgi,pi with gi/pi = r, also
decays logarithmically in complexity (relative to constants that a priori depend on r) [Val14].

In one direction, [GHKL13] follow Masur and Minsky’s original proof, while controlling
the portions of the argument that a priori grow with the complexity of S. Conversely,
to show that a Lipschitz constant on the order of 1/ log(g) is optimal, they construct, for
each g, a pseudo-Anosov map ψ ∈ Mod(Sg) such that the ratio τ(ψ) = `T (ψ)/`C(ψ) of
its translation length in Teich(S), denoted `T (ψ), to its stable translation length in C(S),
denoted `C(ψ), is on the order of log(g).
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The purpose of this short note is to give a new construction of pseudo-Anosov maps for
which τ(ψ) is optimal, i.e. on the order of log(ω(S)). We call such pseudo-Anosovs ratio
optimizers and our construction shows their abundance in the mapping class group:

Theorem 1.1. There exists a function f(ω) = O(log(ω)), and a Teichmüller disk D ⊂
Teich(Sg,p) such that there are infinitely many conjugacy classes of primitive pseudo-Anosovs

ψ with τ(ψ) = `T (ψ)
`C(ψ)

< f(ω(g, p))), and the invariant axis of ψ is contained in D.

We will see in Corollary 3.5 that the function f(ω) can be taken to be log(2B · ω) where
B ≥ 1 is a constant not depending on ω.

In addition to establishing the abundance of ratio optimizers, our methods show that ratio
optimizers can be constructed in subgroups of mapping class groups which are well-known
not to contain pseudo-Anosov mapping classes that minimize Teichmüller space translation
length alone. In particular, we build ratio optimizers arbitrarily deep into the Johnson
filtration as well as in the point pushing subgroup for a mapping class group of a surface
with a single puncture.

For a group Γ, let Γ(k) denote the kth term of its lower central series. That is Γ(1) = [Γ,Γ]

is the commutator subgroup and Γ(k+1) = [Γ(k),Γ]. For any k ≥ 0 there is a surjective
homomorphism

Mod(S)→ Out(π1(S)/π1(S)(k)),

whose kernel, denoted Jk, is the kth term of the Johnson filtration. These subgroups were
introduced by Johnson in [Joh83]. Note that J1 is the Torelli subgroup of Mod(S) and J2
is the so-called Johnson kernel.

Theorem 1.2. There exists a uniform constant CJ ≥ 0 satisfying the following. Let S =
Sg,p, with g ≥ 2 and p = 0 or p = 1, and denote by Jk(S) the kth term of the Johnson
filtration of Mod(S). Then there exists φk ∈ Jk(S) with

τ(φk) =
`T (φ)

`C(φ)
≤ CJ logω(S).

That is, there are ratio optimizers arbitrarily deep into the Johnson filtration.

We remark that Theorem 1.2 is entirely different from the situation of minimizing `T (φ)
alone. In fact, Farb–Leininger–Margalit [FLM08] have shown that the minimal Teichmüller
space translation length among pseudo-Anosov mapping class in J1 is uniformly bounded
from above and below, independent of genus. This is in contrast to work of Penner who
shows that among all pseudo-Anosov homeomorphisms this quantity is on the order of 1/g
[Pen91].

Finally, for a surface Sg,1 with g ≥ 2, we denote the kernel of the natural map

Mod(Sg,1)→ Mod(Sg,0)

by PPg. This is the point pushing subgroup of Mod(Sg,1); it consists of mapping classes
which are isotopic to the identity after ignoring the puncture. Similar to the situation
discussed above, it is known that pseudo-Anosov mapping classes in PPg cannot mini-
mize Teichmüller space translation length [Dow11]. However, this is not an issue for ratio
optimizers:

Theorem 1.3. There exists a uniform constant CP ≥ 0 satisfying the following. Let
S = Sg,1 with g ≥ 2 and let PPg ≤ Mod(S) be the point pushing subgroup of its mapping
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class group. Then there is φ ∈ PPg with

τ(φ) =
`T (φ)

`C(φ)
≤ CP logω(S).

Acknowledgments: Both authors are partially supported by the National Science Foun-
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2. Background

2.1. Curves, filling pairs and projections. Let Sg,p denote the genus g surface with
p ≥ 0 punctures. The complexity of S is defined as ω(S) = ω(g, p) = 3g + p − 4. For all
surfaces in this paper we assume ω(S) > 0. A simple closed curve c on S is essential if it
is not homotopically trivial and if it is not homotopic into a neighborhood of a puncture.
Given two essential simple closed curves α, β their geometric intersection number, denoted
i(α, β), is defined as

i(α, β) := min
x∼α
|x ∩ β|,

where ∼ denotes homotopy. If |α ∩ β| = i(α, β), we say α and β are in minimal position.
Note that any collection of pairwise non-homotopic essential curves can be placed in pairwise
minimal position on S. Indeed, when S is equipped with any complete hyperbolic metric,
any pair of closed geodesics is in minimal position and there exists a unique geodesic in
each free homotopy class of essential curve.

A pair of essential simple closed curves α, β are in minimal position on a closed surface
Sg if and only if no complementary component of α ∪ β is a bigon, a disk whose boundary
is comprised of one arc of α and one of β [FM11].

A collection of curves Γ = {γ1, ..., γn} in pairwise minimal position is said to fill a surface
S if the complement of their union consists of a disjoint union of topological disks and
once-punctured disks. Equivalently, Γ fills S so long as every essential simple closed curve
α has positive geometric intersection number with at least one curve in Γ. Let ig,p denote
the minimum possible geometric intersection number for a filling pair α, β on Sg,p. A simple
Euler characteristic argument shows that ig,p must grow linearly in ω(g, p). In [AH15] and
[AT14] the quantities ig,p were determined.

Lemma 2.1 (Minimally intersecting filling pairs). Minimally intersecting filling pairs in-
tersect as follows:

(1) If g 6= 2, 0 and p = 0, ig,p = 2g − 1.
(2) If g 6= 2, 0 and p ≥ 1, ig,p = 2g + p− 2.
(3) If g = 0 and p ≥ 6 is even, then ig,p = p − 2. On the other hand if p is odd,

ig,p = p− 1.
(4) If g = 2 and p ≤ 2, ig,p = 4.
(5) If g = 2 and p ≥ 2 is even, then ig,p = 2g+p−2; and if p ≥ 3 is odd, ig,p ≤ 2g+p−1.

In our application to pseudo-Anosov mapping classes in the Johnson filtration, we also
require information about filling pairs of separating curves. Let isepg,p denote the minimum
geometric intersection number taken over all filling pairs α, β where both α, β are separating
curves. Then we have the following:

Lemma 2.2 (Separating filling pairs). There exists a constant C ≥ 0 such that if g ≥ 2 and
p = 0 or 1, there is a filling pair (α, β) on Sg,p with both α, β separating curves, satisfying
i(α, β) ≤ C · ω(g, p).
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Proof. First suppose p = 0, and define α2, β2 to be any pair of separating curves which fill
S2; similarly let α3, β3 be any pair of separating curves filling S3. These will be the seeds
of an inductive construction.

Now let ρ, γ be a pair of simple separating arcs on S2,1 (which we interpret as the genus
2 surface with one boundary component, as opposed to one puncture) having the property
that any essential arc in S2,1 intersects either ρ or γ. Then given αg, βg, we form αg+2, βg+2

as follows: excise a small open disk centered at one of the points in αg ∩ βg. After excising,

αg and βg have become arcs which we denote by α̃g, β̃g. We then glue on a copy of S2,1,

matching the endpoints of α̃g to those of γ, and similarly matching the endpoints of β̃g to
those of ρ. We obtain a pair of simple closed curves αg+2, βg+2 on Sg+2, and we claim that
these curves are both separating and that they fill.

Note first that αg+2, βg+2 are in minimal position since no complementary region is a
bigon, and therefore it suffices to prove that if κ is any essential simple closed curve on
Sg+2, κ is not disjoint from αg+2 ∪ βg+2. If κ can be isotoped into the original copy of Sg,

it must intersect either α̃g or β̃g since αg, βg fill on Sg. Therefore, we can assume that κ
projects non-trivially to the copy of S2,1; that is, that κ intersects this copy of S2,1 in at
least one arc which is not boundary parallel. This arc must intersect either ρ or γ since any
arc does so by construction. Therefore κ intersects αg+2 ∪ βg+2 and we conclude that the
new pair fills Sg+2.

That αg+2, βg+2 are both separating is immediate since both are obtained by concate-
nating a pair of separating arcs in disjoint subsurfaces. Finally, i(αg+2, βg+2) ≤ i(αg, βg) +
i(γ, ρ).

If p = 1, then by puncturing one complementary region of Sg,0 \ (αg ∪ βg), (αg, βg) is a
filling pair on Sg,1 with the desired properties. �

2.2. Annular projections and the bounded geodesic image theorem. For an annu-
lus Y ⊂ S whose core curve α is essential, let Ỹ be the cover of S associated to the conjugacy
class of the cyclic subgroup of π1(S) represented by α. Let Y be the compactification of Ỹ

obtained by choosing a hyperbolic metric on S and lifting it to Ỹ . The curve graph C(Y )
of the annulus Y is the graph whose vertices are homotopy classes of properly embedded,
simple arcs of Y whose endpoints lie on distinct boundary components. Two vertices x and
y of C(Y ) are joined by an edge of C(Y ) if and only if x and y can be represented by arcs
in Y with disjoint interiors. There is a projection πY from the vertices of the curve graph
of S to arcs of C(Y ), known as subsurface projection. Given β ∈ C0(S) realize α and β with
minimal intersection in S. If β is disjoint from α then define πY (β) = ∅. Otherwise, the

preimage of β in the cover Ỹ contains simple, properly embedded arcs with well-defined
endpoints on distinct components of ∂Y and we define πY (β) ⊂ C0(Y ) to be this collection
of arcs in Y .

If α ∈ C0(S) is a curve which is the core of an annulus Y then we also use the notation C(α)
for the curve complex C(Y ) and we denote its path metric by dα. Let πα : C(S) \N1(α)→
C(α) be the corresponding subsurface projection, where N1(·) is the closed 1-neighborhood
in C1(S). Also, write dα(β, γ) for diamC(α)(πα(β)

⋃
πα(γ)).

From [MM99], we recall the following:

Lemma 2.3 (Masur–Minsky). Let S be a surface with ω(S) > 1. For α ∈ C0(S) and any
path γ = γ0, γ1, . . . , γn of curves in C(S) each intersecting α essentially, we have:

(1) diamC(α)πα(γ) ≤ 1
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(2) dα(γ0, γn) ≤ n+ 1
(3) If Tα is the Dehn twist about α, then dα(γ, TN (γ)) ≥ N − 2.

Finally, we recall the bounded geodesic image theorem of Masur–Minsky [MM00]. The
version we state here is due to Webb and gives a uniform, computable constant [Web13]. It
is stated below for arbitrary subsurfaces Y ⊂ S, but we will use it only for annuli.

Theorem 2.4 (Bounded geodesic image theorem). There exists M ≥ 0 so that for any
surface S and any geodesic g in C(S), if each vertex of g has nontrivial projection to the
subsurface Y then diam(πY (g)) ≤M .

2.3. Mangahas’ Lemma. Let CA = N1(α) and CB = N1(β) be 1-neighborhoods of the
curves α and β in C(S) and let M be as in the bounded geodesic image theorem (Theorem
2.4). The following is a special case of a combination of Lemma 5.3 of [Man13] along with
the claim used in its proof. Recall that for a word w in the free group F (a, b), the syllable
length of w, denote |w|s, is the number of powers of a or b that occur in the reduced form
for w.

Lemma 2.5 (Mangahas). Let a, b be powers of Dehn twists about curves α, β, respectively,
such that dS(α, β) ≥ 3, i.e. α and β fill S. Suppose that for all k 6= 0

dα(CB, a
k · CB) > 2M + 4 and dβ(CA, b

k · CA) > 2M + 4.

Then for any word w in 〈a, b〉, either

dS(w · α, α) ≥ |w|s or dS(w · β, β) ≥ |w|s.

We remark that if a = T l1α and b = T l2β then by Lemma 2.3 the hypotheses of Lemma 2.5

are satisfied so long as |l1|, |l2| ≥ 2M + 7.

2.4. Pseudo-Anosovs and Teichmüller disks. For curves α and β which jointly fill the
surface S and have intersection number i(α, β) = n, there is a representation Ψ : 〈Tα, Tβ〉 →
PSL2(R) given by

Ψ(Tα) =

(
1 n
0 1

)
, Ψ(Tβ) =

(
1 0
−n 1

)
.(2.1)

Thurston showed that the pseudo-Anosov mapping classes of the subgroup 〈Tα, Tβ〉 ≤
Mod(S) are exactly the ones mapping to hyperbolic matrices in PSL2(R) (i.e. matrices
with 2 distinct eigenvalues). Further, he showed that the dilatation of such a pseudo-Anosov
is equal to the largest eigenvalue of its representative matrix [Thu88]. Since the Teichmüller
space translation length of a pseudo-Anosov mapping class φ is equal to the logarithm of its
dilatation, this allows a direct computation of `T (φ) for φ ∈ 〈Tα, Tβ〉. For proofs of these
facts see [FM11].

The representations Ψ : 〈Tα, Tβ〉 → PSL2(R) in (2.1) comes from the singular flat struc-
ture S(α, β) on S associated to the pair (α, β). This is the structure induced by the quadratic
differential q on S whose vertical foliation is equal to α and whose horizontal foliation is
equal to β as measured foliations. Alternatively, one can consider the dual square complex
to the graph α ∪ β, which induces a complex structure on S along with the quadratic dif-
ferential q obtained by taking dz2 in the interior of each square. The Dehn twists Tα and
Tβ can each be realized by an affine map with respect to the singular flat structure, and
the “derivative” map induces the representation to PSL2(R). See [FM11] for details.
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The image in T (S) of the SL2(R) orbit of a quadric differential q is known as a Te-
ichmüller disk. Given a filling pair α, β, by D(α, β) we mean the Teichmüller disk cor-
responding to the quadratic differential described above, determined by the dual square
complex to α∪β. The subgroup of Mod(S) preserving D(α, β) is known as the Veech group
V (α, β) and equals the image in Mod(S) of the affine homeomorphisms of the singular flat
surface S(α, β). In particular, we note that 〈Tα, Tβ〉 ≤ V (α, β).

3. Ratio optimizers via QI trees

Let S = Sg,p. Choose simple closed curves α, β ∈ C0(S) which fill S, that is, for which
dS(α, β) ≥ 3. For notational convenience, set i = iα,β = i(α, β). We will use later that α
and β can be chosen so that i(α, β) ≤ ig,p where ig,p is as in Section 2.1 and depends linearly
on the complexity ω(S) = ω(g, p) of S. Let M be the bounded geodesic image constant of
Theorem 2.4. Recall that M is independent of the complexity of S. Let B = 2M + 7 and
set a = TBα and b = TBβ .

va vb

e

Figure 1. The tree Tα,β as a collapse of the trivalent tree.

It is well known that the subgroup of Mod(S) generated by a, b is isomorphic to the free
group of rank 2 (see, for example, [Lei04, Theorem 6.1] [Man10, Proposition 3.3]) and we
make the identification F2 = 〈a, b〉 ≤ Mod(S). Let T = Tα,β be the Bass–Serre tree for the
splitting 〈a〉 ∗ 〈b〉. In details, T is the F2–tree obtained by taking the universal cover of the
“barbell” graph whose loops are labeled by {a, b} and collapsing the lift of each a–edge and
each b–edge. See Figure 1. Denote the image of the axis for a by va and note that this is
the unique vertex of T which is fixed by a. Similarly, denote the image of the axis for b by
vb. Note that these vertices are joined by an edge, which we call e, and e is a fundamental
domain for the action F2 y T .

We now define an equivariant map O : T → C(S). The vertex va is mapped to α,
vb is mapped to β and e is mapped to a fixed geodesic from α to β in C(S). Using the
identification F2 → 〈a, b〉 ≤ Mod(S), extend the map to all of T by equivariance. This is
well-defined since a fixes α and b fixes β. The main result of this section comes from the
following proposition:
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Proposition 3.1 (The tree quasi-isometrically embeds). With notation as above, the 〈a, b〉–
equivariant map O : Tα,β → C(S) is a (3, 7)–quasi-isometric embedding.

We remark that by examining the proof of Lemma 2.5, the constants in Proposition 3.1
can be improved upon. This, however, will not be necessary for our application.

Before turning to the proof of Proposition 3.1, we first make a few remarks on distance
in the (infinite valence) tree T . For a reduced word w in 〈a, b〉, a syllable of w is a maximal
subword of the form ak or bk. The syllable length of w, denoted |w|s, is the number of
syllables in the word w. For example, for the reduced word w = ak1bk2 . . . akl , |w|s = l. The
syllable spelling of w is exactly the normal form associated to the tree T and, hence, can
be used to compute distance in T . In particular, let x and y be two vertices of T ; there
are four cases depending on whether x and y are in the orbit of va or vb. For example,
suppose that x = va and that y ∈ F · va \ {va}. Then there is w ∈ F with y = w · x and
we can write w = al1w′al2 as a reduced syllable decomposition. Now it is easily seen that
dT (x, y) = dT (va, w

′va) = |w′|s + 1. If y ∈ F · vb then write y = w · vb with w = al1w′bl2

as a reduced syllable decomposition. Again we see that dT (x, y) = dT (va, w
′vb) = |w′|s + 1.

These elementary observations will be used in the proof of Proposition 3.1.

Proof of Proposition 3.1. Recall the definition of CA, CB from the statement of Lemma 2.5.
Let x, y ∈ T and set γ = O(x) and δ = O(y). Using equivariance and the fact that
dS(α, β) = 3 we easily see that, dS(γ, δ) ≤ 3 · dT (x, y).

For the other inequality, we may assume (by equivariance) that x equals either va or vb;
since the proofs in each case are identical we assume that x = va. First, suppose that y is
in the orbit of va, i.e. that y = w · va for w ∈ F . By the definition of O and the triangle
inequality,

dS(γ, δ) = dS(α,w · α)

≥ dS(β,w · β)− 6,

and thus by Lemma 2.5, dS(γ, δ) ≥ |w|s − 6 ≥ dT (x, y)− 7.
If on the other hand y is in the obit of vb, then we choose w ∈ F so that y = w · vb. By

the triangle inequality dS(α,w · β) ≥ dS(α,w · α) − 3 and dS(α,w · β) ≥ dS(β,w · β) − 3.
Hence, we may apply Lemma 2.5 to conclude

dS(γ, δ) = dS(α,w · β)

≥ |w|s − 3

≥ dT (x, y)− 4. �

We will say that w ∈ 〈a, b〉 is cyclically reduced if it has the smallest syllable length among
any of its conjugates. The following is an immediate corollary of Proposition 3.1.

Corollary 3.2. Let w ∈ 〈a, b〉 ≤ Mod(S) which is cyclically reduced. Then

|w|s ≤ `C(w) ≤ 3|w|s.

The next lemma is elementary and is used to bound the stretch factors of pseudo-Anosovs
obtained by iterating composition.

Lemma 3.3. For any i ≥ 2, let

a =

(
1 i
0 1

)
, b =

(
1 0
−i 1

)
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and set w = aε1bδ1 . . . aεkbδk , where εi, δi ∈ {±1}. Then trace(w) ≤ (2i)|w|.

Proof. For a 2-by-2 matrix A, let |A|1 denote its l1-norm and |A|2 its l2-norm. For any such
A, |A|1 ≤ 2|A|2 . Moreover, for any matrices A and B, |AB|2 ≤ |A|2|B|2. Hence,

trace(w) ≤ |w|1
≤ 2|w|2
≤ 2

∏
i

|aεibδi |2

≤ 2(i2 + 1)k < (2i)2k. �

Theorem 3.4 (Ratio bounds). Let α, β be a filling pair of simple closed curves on S, and
set a = TBα , b = TBβ . Let w be a cyclically reduced word in a, b satisfying |w| = |w|s. Then

τ(w) =
lT (w)

lC(w)
≤ log(2B · i(α, β)).

Proof. Recall, as noted in Section 2.4, `T (w) is equal to the logarithm of largest eigenvalue
of the matrix corresponding to w. Applying Lemma 3.3 and Corollary 3.2, we compute

τ(w) ≤ log((2i)|w|)

|w|s

=
|w|
|w|s

log(2i).

Since |w| = |w|s and i = B · i(α, β), this completes the proof. �

The following corollary of Theorem 3.4 gives our construction of ratio optimizers.

Corollary 3.5 (Ratio optimizers). Let α, β be a filling pair of simple closed curves satisfying
i(α, β) = ηS. Then for w a cyclically reduced word as in Theorem 3.4,

τ(w) =
lT (w)

lC(w)
≤ log(B · ηS)

≤ log(2B · ω(S)).

4. Counting ratio optimizers in a Teichmüller Disk

In this section, we show that our construction yields infinitely many ratio optimizers
whose maximal cyclic subgroups in Mod(S) are pairwise non-conjugate. That is, we will
exhibit infinitely many ratio optimizers φ1, φ2, ... such that for each i 6= j, no power of φi
is conjugate to a power of φj . Since each of our ratio optimizers is contained in the group
generated by Tα, Tβ for α, β a minimally intersecting filling pair, it will follow that the
Teichmüller disk D(α, β) is stabilized by infinitely many primitive, pairwise non-conjugate
ratio optimizers. This will complete the proof of Theorem 1.1.

To begin, let w1, w2, ... be an infinite collection of distinct cyclically reduced words in
a, b, satisfying:

(1) wi 6= a±, b±

(2) |wi| = |wi|s.
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Since each wi is cyclically reduced and all words in the collection are distinct, the words
are pairwise non-conjugate. Furthermore, by property (1), each word wi has nonzero
translation length on the tree Tα,β, and therefore by Corollary 3.2, each corresponds to
a pseudo-Anosov mapping class under the map sending the free group generated by a, b to
the subgroup generated by the Dehn twists TBα , T

B
β .

We will refer to the pseudo-Anosov image of wi by O(wi). By Proposition 3.1, O(wj)
admits a uniformly quasigeodesic axis Aj . By property (2) above, we may pass to a subse-
quence such that for each k ≥ 0 the initial subword of wi of length k is eventually constant
as i→∞. Translating this fact to the tree T and possibly passing to a further subsequence,
we have the following property: the axis of wi in T shares a segment centered around the
origin of length at least i with the axis for wi−1. Thus, there exists a bi-infinite quasi-
geodesic R in C(S) and a point x ∈ R so that O(wi) admits an axis that shares a segment
of length i with R, centered about x. Furthermore, as a consequence of Corollary 3.2 these
axes do not fellow travel in C(S).

Now, let Γ1 ⊂ {O(w2),O(w3), ...} denote the set of words whose maximal cyclic sub-
groups are conjugate in Mod(S) to the maximal cyclic subgroup determined by O(w1). By
hyperbolicity of C(S), there is a constant K > 0 so that for O(wi) ∈ Γ1, there is a conjuga-
tor ci ∈ Mod(S) such that the quasigeodesic ci · Ai K-fellow travels with A1. Let l denote
the stable translation length of O(w1).

It follows that there exists a uniform constant r depending only on l, the hyperbolicity
constant for C(S), and the quasigeodesic constants determined in Proposition 3.1, so that
for any two points t, s on ci ·Ai, there exists a power of O(w1) sending t within r of s. Hence
the same is true for any two points on Ai, after replacing O(w1) with its conjugate by c−1i .

We first show that |Γ1| < ∞. Assume by contradiction that Γ1 is infinite. Then there
exists O(wi) ∈ Γ1 with i arbitrarily large. Choose such an i � 1, and let y, z denote the
endpoints of the segment of R that Ai shares. Note that by construction y, z ∈ Aj for all
j ≥ i.

Then for any j > i, c−1i cj sends Aj to Ai, and post-composing this with some power ej
of c−1i O(w1)ci sends each of y and z within r of themselves. By acylindricity of the action
of Mod(S) on C(S) [Bow08], there are at most finitely many mapping classes with this
property. Hence,

{
(c−1i O(w1)

ejci)c
−1
i cj

}
j>i

:=
{
c′j
}
j>i

is a finite collection of mapping classes. We note that c−1i cj 6= c−1i ck for any j 6= k, as the

axes Aj and Ak do not fellow travel, and the inverse of c−1i cj sends the endpoints at infinity

of Ai to those of Aj . Moreover, c′j is obtained from c−1i cj by post-composition with a map

that fixes the endpoints of Ai, and therefore c′j 6= c′k for k 6= j. Thus |Γ1| <∞.
It follows that we may pass to a subsequence so that no corresponding pseudo-Anosov

determines the same maximal cyclic subgroup up to conjugacy as O(w1). Now we simply
iterate this argument. By the exact same logic, the set Γi of all maps in our collection which
determine the same (up to conjugacy) maximal cyclic subgroup as O(wi) is finite, and thus
we can pass to a further subsequence all of whose terms determine pseudo-Anosov mapping
classes which are distinct, up to conjugacy and powers, from those already obtained.
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5. Ratio optimizers in the Johnson filtration and point pushing subgroups

Fix S = Sg,p with g ≥ 2 and p ∈ {0, 1} and let α and β be separating curves of S which
fill and intersect minimally, i.e. i(α, β) = isepg,p . Recall that by Lemma 2.2, there is a constant
C ≥ 0, independent of S, such that i(αg, βg) ≤ C · ω(g, p). Let a = TB(α) and b = TB(β).

Theorem 5.1. There is a constant CJ ≥ 0 satisfying the following. Let S = Sg,0 or Sg,1
with g ≥ 2 and denote by Jk(S) the kth term of the Johnson filtration of Mod(S). Then
there exist fk ∈ Jk(S) with

τ(fk) =
`T (fk)

`C(fk)
≤ CJ logω(S).

In other words, there are ratio optimizers arbitrarily deep into the Johnson filtration.

Proof. Set w1 = aba and w2 = bab for a and b as defined at the beginning of this section.
Set

fk = [. . . [[w1, w2], w1] . . . w∗]

which is k iterated commutators alternating between w1 and w2. Note that by construction
|fk| = |fk|s, i.e. each syllable of fk has length 1. Since by definition a, b ∈ J1 the same is
true for w1, w2. Further, as the Johnson filtration {Jk} is a central series, see [BL94] and
[Mor91], we have fk ∈ Jk.

By Corollary 3.2, `C(fk) ≥ 1
3 |fk|s = 1

3 |fk|. Moreover, using Lemma 3.3 we can directly
compute an upper bound for the dilatation, which (up to a uniform constant) is a product
of |fk| with log(ω(S)). This completes the proof. �

We now construct ratio optimizers in the point-pushing subgroup PPg < Mod(Sg,1) of the
mapping class group of a once-punctured surface. To achieve this, it suffices to construct
a pair (α, β) of curves on Sg,1 which (1) fill the surface, (2) have geometric intersection
number at most some fixed polynomial function of g, and (3) such that α and β are isotopic
after forgetting the puncture. Assuming the existence of such a pair, note that the pseudo-
Anosov TBα T

−B
β lies in PPg, and by Theorem 3.4, it will be a ratio optimizer. From this,

we will obtain:

Theorem 5.2. There exists a uniform constant CP ≥ 0 satisfying the following. Let
S = Sg,1 with g ≥ 2 and let PPg ≤ Mod(S) be the points pushing subgroup of its mapping
class group. Then there is φ ∈ PPg with

τ(φ) =
`T (φ)

`C(φ)
≤ CP logω(S).

To construct the desired filling pair, begin with a filling pair (ρ, δ) of non-separating
curves on a closed surface Sg,0 with i(ρ, δ) bounded above by some fixed linear function of
g. For example, (ρ, δ) could be a minimally intersecting filling pair on Sg,0.

Let δ1, δ2 be two parallel copies of δ, and puncture the surface Sg,0 on the interior of the

annulus bounded by δ1 and δ2 to form the surface S = Sg,1. Note that fδ := T 3
δ1
◦ T−3δ2

is

a point-pushing map in Mod(Sg,1). We claim that ρ fills with fδ(ρ), and that i(ρ, fδ(ρ)) is
bounded above by a quadratic function of g.

We first show that these two curves jointly fill Sg,1; that is we must show that if γ is
any essential simple closed curve, γ must intersect either ρ or fδ(ρ). We use the following
inequality as seen in [Iva92]:



RATIO OPTIMIZERS 11

Lemma 5.3. Let c1, ..., cm be a collection of pairwise disjoint, pairwise non-homotopic
simple closed curves on a surface S with negative Euler characteristic, let S := (s1, ...sm) ∈
Zm, and let T S denote the composition of Dehn twists cs11 ◦ ... ◦ csmm . Then for any simple
closed curves γ, ρ,

m∑
i=1

(|si − 2|)i(ρ, ci)i(ci, γ)− i(ρ, γ) ≤ i(TS(ρ), γ)

≤
m∑
i=1

|si|i(ρ, ci)i(ci, γ) + i(ρ, γ).

Now suppose i(γ, ρ) = 0. Then since ρ fills with δ on the original closed surface, it follows
that i(δj , γ) 6= 0 for j = 1, 2. Thus the left hand side of the inequality of Lemma 5.3 is
non-zero, so γ must intersect fδ(ρ).

The quadratic bound on i(ρ, fδ(ρ)) follows from the linear bound on i(ρ, δ), and another
application of Lemma 5.3. This completes the proof of Theorem 5.2.
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