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Abstract

Given a finitely generated subgroup Γ≤ Out(F) of the outer automorphism group
of the rank r free group F = Fr, there is a corresponding free group extension
1→ F→ EΓ→ Γ→ 1. We give sufficient conditions for when the extension EΓ is hy-
perbolic. In particular, we show that if all infinite order elements of Γ are atoroidal and
the action of Γ on the free factor complex of F has a quasi-isometric orbit map, then
EΓ is hyperbolic. As an application, we produce examples of hyperbolic F–extensions
EΓ for which Γ has torsion and is not virtually cyclic. The proof of our main theorem
involves a detailed study of quasigeodesics in Outer space that make progress in the
free factor complex. This may be of independent interest.
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1 Introduction

Let F = Fr denote the free group of rank r ≥ 3 and consider its group Out(F) of outer
automorphisms. These groups fit into the short exact sequence

1−→ F i−→ Aut(F) p−→ Out(F)−→ 1,

where a ∈ F is mapped to its corresponding inner automorphism ia defined by x 7→ axa−1

for x ∈ F. Hence, for any Γ≤ Out(F) we obtain the following extension of F:

1−→ F i−→ EΓ

p−→ Γ−→ 1,

where EΓ is equal to the preimage p−1(Γ)≤ Aut(F). In fact, any extension of F induces a
homomorphism to Out(F) and thereby produces an extension of the above form (see Sec-
tion 2.5 for details). This paper will address the following question:

What conditions on Γ≤ Out(F) imply that the extension EΓ is a hyperbolic group?

This question fits in to a long history of understanding hyperbolic group extensions
that goes back to Thurston’s work on the hyperbolization of fibered 3–manifolds. From
a group-theoretic perspective, the Bestvina–Feighn combination theorem [BF1] provides
a combinatorial framework to understand the structure of more general hyperbolic group
extensions. Using this, Farb and Mosher’s influential work [FM1] initiated the systematic
study of hyperbolic extensions of surface groups (see Section 1.2). Our answer to the
question above continues this investigation in the setting of free group extensions.

1.1 Statements of results

To state our main theorem, we briefly recall the relevant definitions and refer the reader
to Section 2 for additional details. First, an outer automorphism φ ∈ Out(F) is atoroidal,
or hyperbolic, if no power of φ fixes any nontrivial conjugacy class in F. Similarly, φ ∈
Out(F) is fully irreducible if no power of φ preserves the conjugacy class of any proper
free factor of F. The (free) factor complex F for the free group F is the simplicial complex
in which each k simplex corresponds to a set [A0], . . . , [Ak] of k + 1 conjugacy classes of
proper free factors of F with properly nested representatives: A0 < · · ·< Ak. Note that there
is an obvious simplicial action Out(F)y F. We prove the following:

Theorem 1.1. Suppose that each infinite-order element of a finitely generated subgroup
Γ ≤ Out(F) is atoroidal and that some orbit map Γ→ F is a quasi-isometric embedding.
Then the free group extension EΓ is hyperbolic.
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Remark. Bestvina and Feighn have proven that the factor complex F is hyperbolic [BF2].
Hence, the hypotheses of Theorem 1.1 additionally imply that the subgroup Γ is itself hy-
perbolic and that all infinite-order elements of Γ are fully irreducible. See Section 2.8 for
details.

Theorem 1.1 provides combinatorial conditions on a subgroup Γ≤Out(F) which guar-
antee that the corresponding extension EΓ is hyperbolic. This is similar to the better un-
derstood situation of hyperbolic extensions of surface groups. For surface group exten-
sions, it follows from work of Farb–Mosher [FM1], Kent–Leininger [KL3], and Hamen-
städt [Ham1], that a subgroup H of the mapping class group induces a hyperbolic extension
of the surface group if and only if H admits a quasi-isometric embedding into the curve
complex of the surface. See Section 1.2 for details.

Remark. Unlike the surface group case (c.f., Theorem 1.2 below), the converse to Theo-
rem 1.1 does not hold: there exits subgroups Γ≤ Out(F) for which EΓ is hyperbolic but Γ

does not quasi-isometrically embed into F. For example, Brinkmann’s Theorem 2.13 below
[Bri] shows that any φ ∈Out(F) that is atoroidal but not fully irreducible generates a cyclic
subgroup of this form.

The proof of Theorem 1.1 requires several steps and is completed in Section 8 (see
Corollary 8.3). The first of these steps is to show that the assumption that the orbit map
Γ→ F is a quasi-isometric embedding implies a strong quasiconvexity property for the
orbit of Γ in Outer space X, the space of F–marked metric graphs. This follows from our
next main result, Theorem 4.1 below, which says that quasigeodesics in Outer space that
make definite progress in the factor complex are stable. For the statement, the injectivity
radius of G ∈ X is the length of the shortest loop in the marked metric graph G, and the ε–
thick part Xε is the set of points with injectivity radius at least ε . Additionally, π : X→ F

denotes the (coarse) map that associates to each marked graph G ∈ X the collection π(G)
of nontrivial free factors that arise as the fundamental group of a proper subgraph of G.

Theorem 4.1. Let γ : I→ X be a K–quasigeodesic whose projection π ◦ γ : I→ F is also
a K–quasigeodesic. Then there exist constants A,ε > 0 and K′ ≥ 1 depending only on K
(and the injectivity radius of the terminal endpoint γ(I+) when I+ < ∞) with the following
property: If ρ : J→ X is any geodesic with the same endpoints as γ , then

(i) γ(I),ρ(J)⊂ Xε ,

(ii) dHaus(γ(I),ρ(J))< A, and

(iii) π ◦ρ : J→ F is a (parameterized) K′–quasigeodesic.

In the statement of Theorem 4.1, γ and ρ are directed (quasi)geodesics with respect to
the asymmetric Lipschitz metric dX on Outer space, and dHaus denotes the Hausdorff dis-
tance with respect to the symmetrized Lipschitz distance; see Section 2 for a more detailed
discussion of this terminology. Theorem 4.1 is analogous to Hamenstädt’s stability theorem
for quasigeodesics in Teichmüller space that make definite progress in the curve complex
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[Ham2].

Theorem 1.1 allows one to easily construct hyperbolic extensions of free groups using
ping-pong arguments on hyperbolic Out(F)–graphs. For example, we can recover (Theo-
rem 9.3) the theorem of Bestvina–Feighn–Handel [BFH] which states that if f1, . . . , fk are
atoroidal, fully irreducible elements of Out(F), then for all sufficiently large N ≥ 1 the
extension EΓ is hyperbolic for Γ = 〈 f N

1 , . . . , f N
k 〉 ≤ Out(F). (In [BFH], this is proven for

k = 2.) Further, we use Theorem 1.1 to construct the first examples of hyperbolic free
group extensions EΓ for which Γ≤Out(F) has torsion and is not virtually cyclic. First, say
that f ∈ Out(F) is independent for a finite subgroup H ≤ Out(F) if f and h f h−1 have no
common powers for each h ∈ H \1. We prove the following:

Theorem 9.4. Let H be a finite subgroup of Out(F) and let f ∈ Out(F) be a hyperbolic,
fully irreducible outer automorphisms that is independent for H. Then for all sufficiently
large N ≥ 1, the subgroup

Γ = 〈H, f N〉

is isomorphic to H ∗Z and the F-by-(H ∗Z) extension EΓ is hyperbolic.

1.2 Motivation from surface group extensions and some previous results

In [FM1], Farb and Mosher introduced convex cocompact subgroups of Mod(S), the map-
ping class group of an orientable surface S. We will discus the case where S is further as-
sumed to be closed. A finitely generated subgroup Γ≤Mod(S) is convex cocompact if for
some (any) x ∈ Teich(S), the Teichmüller space of the surface S, the orbit Γ · x ⊂ Teich(S)
is quasiconvex with respect to the Teichmüller metric. (See the papers of Farb–Mosher
[FM1] and Kent–Leininger [KL3, KL4] for definitions and details). Similar to the situation
described above, a subgroup Γ≤Mod(S) gives rise to a surface group extension

1−→ π1(S)−→ EΓ −→ Γ−→ 1.

Farb and Mosher show that if EΓ is hyperbolic then Γ is convex cocompact. Moreover,
they prove that if Γ is assumed to be free, then convex cocompactness of Γ implies that
the extension EΓ is hyperbolic [FM1]. The assumption that Γ is free was later removed by
Hamenstädt in [Ham1]. Hence, the surface group extension EΓ is hyperbolic exactly when
Γ ≤Mod(S) is convex cocompact. We note that the first examples of hyperbolic surface
group extensions follow from work of Thurston, whose geometrization theorem for fibered
3–manifolds produces examples of hyperbolic surface-by-cyclic groups. Later, Mosher
[Mos1] constructed more general hyperbolic surface-by-free groups using the Bestvina–
Feighn combination theorem [BF1].

Since their introduction, there have been several additional characterizations of convex
cocompact subgroups of Mod(S). A particularly useful characterization of convex cocom-
pactness is the following theorem of Kent–Leininger and Hamenstädt. In the statement,
C(S) denotes the curve complex for the closed surface S.
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Theorem 1.2 (Kent–Leininger [KL3], Hamenstädt [Ham1]). A finitely generated subgroup
Γ≤Mod(S) is convex cocompact if and only if some (any) orbit map Γ→ C(S) is a quasi-
isometric embedding.

From this we see that the surface group extension EΓ is hyperbolic if the orbit map
from Γ ≤Mod(S) into the curve complex is a quasi-isometric embedding. Hence, strong
geometric features of surface group extensions arise from combinatorial conditions on their
corresponding subgroups of Mod(S). With Theorem 1.1, we provide analogous conditions
under which combinatorial information about a subgroup Γ ≤ Out(F) implies geometric
information about the corresponding free group extension EΓ.

Remark. The condition that every infinite order element of Γ is atoroidal is necessary for
EΓ to be hyperbolic, but this condition is not implied by having a quasi-isometric orbit map
into the factor complex F. This contrasts the surface group situation (c.f., Theorem 1.2),
where having a quasi-isometric orbit map Γ→ C(S) automatically implies every infinite
order element of Γ is pseudo-Anosov. Indeed, there are elements of Out(F) that act with
positive translation length on F but are not atoroidal. By Bestvina–Handel [BH1], these
all arise as pseudo-Anosov mapping classes on surfaces with a single puncture. Since such
outer automorphisms each fix a conjugacy class in F (corresponding to the loop enclosing
the puncture), they cannot be contained in a subgroup Γ for which EΓ is hyperbolic.

We conclude this section with a brief review of previous examples of hyperbolic exten-
sions of free groups. In [BF1], Bestvina and Feighn produce examples of hyperbolic free-
by-cyclic groups (i.e. Γ∼= Z) using automorphisms assumed to satisfy the Bestvina–Feighn
flaring conditions. Later, Brinkmann showed that any atoroidal automorphism induces a hy-
perbolic free-by-cyclic group by showing that all such automorphisms satisfy these flaring
conditions [Bri]. This is recorded in Theorem 2.13 below.

The first examples where Γ ≤ Out(F) is not cyclic are given in [BFH]. There, Bestv-
ina, Feighn, and Handel show that if one starts with fully irreducible and atoroidal ele-
ments φ ,ψ ∈ Out(F) that do not have a common power, then there is an N ≥ 1 such that
Γ = 〈φ N ,ψN〉 is a rank 2 free group and the corresponding extension EΓ is hyperbolic. A
different proof of this fact (still using the Bestvina–Feighn combination theorem) is given
by Kapovich and Lustig, who additionally show that for large N each nonidentity element
of Γ is fully irreducible [KL2].

1.3 Outline of proof

To show that the extension EΓ is hyperbolic, we use the combination theorem of Mj–Sardar
[MS], which is recalled in Section 2.4. Their theorem states that if a metric graph bundle
satisfies a certain flaring property (terminology coming from the Bestvina–Feighn combi-
nation theorem), then the bundle is hyperbolic. Using the map between the Cayley graphs
of EΓ and Γ as our graph bundle, we show in Section 8 that this flaring property is implied
by the following conjugacy flaring property of Γ ≤ Out(F). First let S be a finite symmet-
ric generating set for Γ with associated word norm |·|S. Also fix a basis X for F. We say
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that Γ has (λ ,M)–conjugacy flaring for the given λ > 1 and positive integer M ∈ N if the
following condition is satisfied:

For all α ∈ F and g1,g2 ∈ Γ with |gi|S ≥M and |g1g2|S = |g1|S + |g2|S, we have

λ ‖α‖X ≤max
{
‖g1(α)‖X ,

∥∥g−1
2 (α)

∥∥
X

}
,

where ‖·‖X denotes conjugacy length (i.e., the shortest word length with respect to X
of any element in the given conjugacy class).

Proposition 8.1 shows that if Γ≤ Out(F) has conjugacy flaring, then EΓ has the Mj–Sardar
flaring property and, hence, EΓ is hyperbolic. Thus it suffices to show that any Γ≤ Out(F)
satisfying the hypotheses of Theorem 1.1 has conjugacy flaring. This is accomplished by
using the geometry of Outer space.

First, Theorem 4.1 is used to show that geodesic words in (Γ, |·|S) are sent via the orbit
map Γ→X to quasigeodesics that fellow travel a special class of paths in X, called folding
paths. Therefore, by the definition of distance in X (Proposition 2.5), the conjugacy length
of α ∈ F along the quasigeodesic in Γ is proportional to the conjugacy length of α along
the nearby folding path. Thus it suffices to show that the length of every conjugacy class
“flares” along any folding path that remains close to the orbit of Γ in X, meaning that the
length grows at a definite exponential rate in either the forwards or backwards (see Section 6
for details.) Proposition 6.11 proves exactly this type of flaring for folding paths that remain
close to the orbit of any group Γ that satisfies the hypotheses of Theorem 1.1.

To summarize: If the orbit map Γ→F is a quasi-isometric embedding and every infinite
order element of Γ is atoroidal then folding paths between points in the orbit Γ · R (for
R ∈ X) have the flaring property (Section 6). This, together with the fact that these folding
paths fellow travel the image of geodesics in the group Γ (Theorem 4.1), implies that Γ has
conjugacy flaring (Theorem 6.5). Finally, Proposition 8.1 shows that conjugacy flaring of Γ

implies that the hypothesis of the Mj–Sardar theorem are satisfied and that Γ is hyperbolic.
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2 Preliminaries

2.1 Paths

Throughout this paper, the notation I (or sometimes J) will be used to denote a closed,
connected interval I⊆ R. We write I± ∈ R∪{±∞} for the positive and negative endpoints
of I, respectively, and correspondingly write I = [I−,I+]. By a discrete interval, we simply
mean the integer points I∩Z of an interval I⊂ R.

A path in a topological space Y is a map γ : I→ Y . If Y is a metric space, then the
path γ is said to be a geodesic if dY (γ(a),γ(b)) = |a−b| for all a,b ∈ I (that is, if γ is an
isometric embedding of I into Y ). A discrete geodesic is similarly a map γ : (I∩Z)→ Y
of a discrete interval into Y so that dY (γ(a),γ(b)) = |a−b| for all a,b ∈ I∩Z. The space Y
is a said to be a geodesic metric space if it is a metric space and for any points y+,y− ∈ Y
there exists a finite geodesic γ : I→ Y with γ(I±) = y±.

2.2 Coarse geometry

Suppose that X and Y are metric spaces. Given a constant K ≥ 1, a map f : X → Y is said
to be a K–quasi-isometric embedding if for all a,b ∈ X we have

1
K

dX(a,b)−K ≤ dY ( f (a), f (b))≤ KdX(a,b)+K.

More generally, the map is said to be coarsely K–Lipschitz if the rightmost inequality
above holds. A K–quasi-isometry is a K–quasi-isometric embedding f : X → Y whose
image f (X) is D–dense for some D ≥ 0. (This the equivalent to the existence of a K′–
quasi-isometric embedding g : Y → X for which f ◦g and g◦ f are within bounded distance
of IdY and IdX , respectively.)

A K–quasigeodesic in a metric space Y is a K–quasi-isometric embedding γ : I→ Y
of an interval I ⊂ R into Y . Similarly, a discrete K–quasigeodesic is a K–quasi-isometric
embedding γ : (I∩Z)→ Y of a discrete interval into Y .

For A≥ 0, the A–neighborhood of a subset Z of a metric space Y will be denoted

NA(Z) :=
{

y ∈ Y | inf{d(z,y) | z ∈ Z}< A
}
.

The Hausdorff distance between two subsets Z,Z′ ⊂ Y is then defined to be

dHaus(Z,Z′) := inf
{

ε > 0 | Z ⊂Nε(Z′) and Z′ ⊂Nε(Z)
}
.

Finally, when Y is a geodesic metric space, a subset Z ⊂ Y is said to be A–quasiconvex if
every (finite) geodesic with endpoints in Z is contained NA(Z).

2.3 Gromov hyperbolicity

Given δ ≥ 0, a geodesic metric space Y is δ–hyperbolic if every geodesic triangle4 in Y
is δ–thin, meaning that each side of4 lies in the δ–neighborhood of the union of the other
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two sides. A metric space is hyperbolic if it is δ–hyperbolic for some δ ≥ 0. It is a fact
(see [BH2, Proposition III.H.1.17]) that if X is a δ–hyperbolic space then there is a constant
δ ′ = δ ′(δ ) such that every triangle4 has a δ ′–barycenter, meaning a point c ∈ X that lies
within δ ′ of each side of4.

Every hyperbolic metric space Y has a Gromov boundary ∂Y defined to be the set of
equivalence classes of admissible sequences in Y , where a sequence {yn} is admissible if
if limn,m(yn|ym)x = ∞ and two sequences {yn},{zn} are equivalent if limn,m(yn|zm)x = ∞

for some basepoint x ∈ Y (here (a|b)x denotes the Gromov product (d(a,x)+ d(b,x)−
d(a,b))/2 of a,b ∈ Y with respect to x ∈ Y ). Notice that by the triangle inequality, the
notions of “admissible” and “equivalent” do not depend on the point x ∈ Y . One says that
the admissible sequence y1,y2, . . . ∈ Y converges to the point {yn} ∈ ∂Y . In particular,
every quasigeodesic ray γ : [0,∞)→ Y converges to a well-defined endpoint at infinity
γ(∞) := {γ(n)}∞

n=1 ∈ ∂Y , and we note that any two quasigeodesic rays whose images have
finite Hausdorff distance converge to the same endpoint at infinity. We refer the reader to
[BS, Section 2.2] for additional details.

Consequently, to each quasigeodesic γ : I→Y we may associate two well-defined end-
points γ(I+),γ(I−)∈Y ∪∂Y , where γ(I±) is understood to be a point of ∂Y when I±=±∞

and is a point of Y when I± ∈R. With this terminology, we have the following well-known
consequence of hyperbolicity; see [BH2, Theorem III.H.1.7] for a proof.

Proposition 2.1 (Stability of quasigeodesics). For any given K,δ > 0, there exists a stabil-
ity constant R0 = R0(δ ,K)> 0 with the following property: Let Y be a δ–hyperbolic space.
If γ : I→ Y and ρ : J→ Y are K–quasigeodesics with the same endpoints, then γ(I) and
γ ′(I′) have Hausdorff distance at most R0 from each other.

Thinness of triangles in a hyperbolic spaces extends to ideal triangles. That is, given
δ ≥ 0 there is a constant δ ′′ such that every geodesic triangle with vertices in X ∪ ∂X is
δ ′′–thin, and there exists a barycenter point c ∈ X that lies within δ ′′ of each side of the
triangle [Väi, Theorem 6.24].

Hyperbolic groups. Let Γ be a finitely generated group. For any finite generating set S,
we may build the corresponding Cayley graph Cay(Γ,S) and equip it with the path metric
in which all edges have length one. The group Γ is then given the subspace metric, which is
equal to the word metric for the given generating set S. Up to quasi-isometry, this metric is
independent of the choice of generating set. Since the inclusion Γ ↪→Cay(Γ,S) is a 1–quasi-
isometry, we often blur the distinction between Γ and its Cayley graph when considering
Γ as a metric space. Accordingly, the group Γ is said to be δ–hyperbolic if there is a
finite generating set whose Cayley graph is δ–hyperbolic. In this case, boundary ∂Γ of Γ

is defined to be the Gromov boundary of the Cayley graph. Equivalently ∂Γ is the set of
equivalence classes of discrete quasigeodesic rays γ : N→ Γ.
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2.4 Metric bundles

We will make use of the concept of metric graph bundles introduced by Mj and Sardar in
[MS]. Let X and B be connected graphs equipped their respective path metrics (in which
each edge has length 1), and let p : X → B be a simplicial surjection. Write V (B) for the
vertex set of the graph B. We say that X is a metric graph bundle over B if there is a
function f : N→ N so that

• For each vertex b ∈V (B), the fiber Fb = p−1(b) is a connected subgraph of X and the
induced path metric db on Fb satisfies db(x,y)≤ f (dX(x,y)) for all vertices x,y of Fb.

• For any adjacent vertices b1,b2 ∈ V (B) and any vertex x1 ∈ Fb1 , there is a vertex
x2 ∈ Fb2 that is adjacent to x1.

Suppose now that p : X → B is a metric graph bundle. By a k–qi lift of a geodesic
γ : I→ B (where k ≥ 1) we mean any k–quasigeodesic γ̃ : I→ X such that p(γ̃(n)) = γ(n)
for all n∈ I∩Z. We then say that the metric bundle p : X→B satisfies the flaring condition
if for all k ≥ 1 there exists λk > 1 and nk,Mk ∈ N such that the following holds: For any
geodesic γ : [−nk,nk]→ B and any two k–qi lifts γ̃1 and γ̃2 satisfying dγ(0)(γ̃1(0), γ̃2(0)) ≥
Mk we have

λk ·dγ(0)(γ̃1(0), γ̃2(0))≤max{dγ(nk)(γ̃1(nk), γ̃2(nk)),dγ(−nk)(γ̃1(−nk), γ̃2(−nk))}.

The following combination theorem of Mj and Sardar [MS] is the key tool that allows us
to prove hyperbolicity of group extensions. It builds on the original Bestvina–Feighn com-
bination theorem [BF1] (in the case where B is a tree) and is also related to a combination
theorem of Hamenstädt [Ham1].

Theorem 2.2 (Mj–Sardar [MS]). Suppose that a metric graph bundle p : X → B satisfies:

1. B is δ–hyperbolic, and each fiber Fb = p−1(b), for b ∈ V (B), is δ–hyperbolic with
respect to the path metric db induced by X,

2. for each b ∈V (B), the set of barycenters of ideal triangles in Fb is D–dense, and

3. the flaring condition holds.

Then X is a hyperbolic metric space.

2.5 Free group extensions

In general, an F–extension is any group E that fits into a short exact sequence of the form

1−→ F−→ E −→ Q−→ 1. (1)

We often blur the distinction between the group E and the short exact sequence itself. Every
such extension gives rise to a homomorphism χ : Q→Out(F) by sending q∈Q to the outer
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automorphism class of (α 7→ q̃α q̃−1)∈Aut(F), where q̃∈ E is any lift of q. Since different
choices of lift give automorphisms that differ by conjugation by an element of F, this gives
a well defined homomorphism to Out(F). Conversely, any homomorphism χ : Q→Out(F)
gives rise to to a F–extension Eχ via the fiber product construction:

Eχ := {(t,q) ∈ Aut(F)×Q | p(t) = χ(q)}.

Indeed, if E is the extension in (1) with corresponding homomorphism χ : Q→ Out(F),
then E ∼= Eχ . In the case of a subgroup Γ ≤ Out(F), we write EΓ for the F–extension
induced by the inclusion Γ ↪→ Out(F).

As in the introduction, there is a canonical short exact sequence

1−→ F i−→ Aut(F) p−→ Out(F)−→ 1.

This sequence is natural for F–extensions in the sense that any extension E as in (1) with
corresponding homomorphism χ : Q→ Out(F) fits into a commutative diagram

1 F E ∼= Eχ Q 1

1 F Aut(F) Out(F) 1
i p

χ̂ χ

in which χ̂ is the restriction of the projection Aut(F)×Q→ Aut(F) to Eχ . Therefore χ̂

surjects Eχ onto the the preimage of χ(Q) ≤ Out(F) in Aut(F). From this we note that
the ker(χ̂) = 1×ker(χ) ≤ Aut(F)×Q; thus χ̂ and χ have isomorphic kernels. Moreover,
we see that in the case of a subgroup Γ ≤ Out(F), the extension EΓ mentioned above is
isomorphic to the preimage EΓ = p−1(Γ)≤ Aut(F).

Note that in order for extension Eχ to be hyperbolic, it is necessary that the map χ : Q→
Out(F) have finite kernel and for its image to by purely hyperbolic; in which case the above
shows Eχ is quasi-isometric to Eχ(Q). Otherwise, it is easily seen that Eχ contains a Z⊕Z
and thus that Eχ cannot be hyperbolic. Hence, to address the question of hyperbolicity
of F–extensions, it suffices to focus on the case of extensions EΓ associated to subgroups
Γ≤Out(F). With this perspective, we only consider such extensions EΓ throughout the rest
of this paper.

2.6 Metric properties of Outer space

Outer space. Let F denote the free group of rank r = rk(F). Since F is fixed throughout
our discussion, its rank r will often be suppressed from the notation. Letting R denote the
r–petal rose (that is, a wedge of r circles) with vertex v ∈ R, we fix once and for all an
isomorphism F ∼= π1(R,v). A graph is a 1–dimensional CW complex, and a connected,
simply connected graph is a tree. A core graph is a graph all of whose vertices have
valance at least 2. Any connected graph G with nontrivial, finitely generated fundamental
group has a unique core subgraph whose inclusion into G is a homotopy equivalence. This
subgraph is called the core of G.
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Culler and Vogtmann’s [CV] outer space X of marked metric graphs will play a central
role in our discussion. A marked graph (G,g) is a core graph G together with a homotopy
equivalence g : R→G, called a marking. A metric on G is a function ` : E(G)→R>0 from
the set of edges of G to the positive real numbers; we say that an edge e ∈ E(G) of G has
length `(e). The volume of G is defined to be ∑e∈E(G) `(e). We view the metric ` as making
G into a path metric space in which each edge e has length `(e). A marked metric graph is
then defined to be the triple (G,g, `), and we say that two triples (G1,g1, `1) and (G2,g2, `2)
are equivalent if there is a graph isometry φ : G1→ G2 that preserves the markings in the
sense that φ ◦ g1 is homotopic to g2. Outer space X is the set of equivalence classes of
marked metric graphs of volume 1. We use the notation X̂ to denote unprojectivized outer
space, which is the space of marked metric graphs with no restriction on volume. When
discussing points in X or X̂ we typically suppress the marking/metric and just write the core
graph.

Conjugacy classes. The marking R→ G attached to a point G ∈ X allows us to view
any nontrivial conjugacy class α in F as a homotopy class of loops in the core graph G.
Following the notation of [BF2], we denote the unique immersed loop in this homotopy
class by α|G, which we view as an immersion of S1 into G. We use `(α|G) to denote the
length of α in G ∈ X, that is, the sum of the lengths of the edges crossed by α|G, counted
with multiplicities. Note that if X = {x1, . . . ,xr} is a free basis of F and G ∈ X is the rose
whose edges each have length 1/r and are consecutively labeled by the elements x1, . . . ,xr,
then r · `(α|G) is simply the conjugacy length ‖α‖X of α with respect to the free basis X .
That is, r · `(α|G) = ‖α‖X is the length of the shortest word in the letters x±1 , . . . ,x

±
r that

represents an element of the conjugacy class α . We often blur the distinction between an
element of F and its conjugacy class.

The standard topology on X is defined to be the coarsest topology such that all of the
length functions `(α|· ) : X→ R+ are continuous [CV]. Though we will not discuss it,
this topology may also be obtained as a simplicial complex with missing faces, or as the
equivariant Gromov-Hausdorff topology (see [CV] and [Pau]). For ε > 0, we additionally
define the ε–thick part of X to be the subset

Xε := {G ∈ X | `(α|G)≥ ε for every nontrivial conjugacy class α in F}.

Lipschitz metric. A difference of markings from G∈X to H ∈X is any (not necessarily
cellular) map φ : G→ H that is homotopic to h◦g−1, where g and h are the markings on G
and H, respectively. The Lipschitz distance from G to H is then defined to be

dX(G,H) := inf{log(Lip(φ)) | φ ' h◦g−1},

where Lip(φ) denotes the Lipschitz constant of the difference of markings φ . While dX
is in general asymmetric (that is, dX(G,H) 6= dX(H,G)), we often regard it as a metric
since it satisfies definiteness (dX(G,H) = 0 iff G = H) and the ordered triangle inequality
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(dX(E,H)≤ dX(E,G)+dX(G,H)). Its symmetrization

dsym
X (G,H) := dX(G,H)+dX(H,G)

is therefore an honest metric on X, which we note induces the standard topology [FM2].
The preference to work with the asymmetric metric dX comes from the fact, discussed
below, that folding paths are directed geodesics, whereas the symmetrized metric on X is
not a geodesic metric.

Note that for any α ∈ F and any difference of marking φ : G→ H, by definition we
have `(α|H)≤ Lip(φ) · `(α|G). This implies that

log
(

sup
α∈F

`(α|H)

`(α|G)

)
≤ log

(
inf
φ

Lip(φ)
)
= dX(G,H). (2)

We will see below that this is, in fact, an equality; see also [FM2] and [Bes]. It follows
that for any free basis X = {x1, . . . ,xr} of F and any point G ∈ X, there is a constant K =
K(X ,G)≥ 1 such that 1

K ‖α‖X ≤ `(α|G)≤ K ‖α‖X for every conjugacy class α in F.

Coping with asymmetry. Since the Lipschitz metric dX is not symmetric, some care must
be taken when discussing distances in X. Thankfully, the difficulty is somewhat mitigated
in the thick part Xε .

Lemma 2.3 (Handel–Mosher [HM], Algom-Kfir–Bestvina [AKB]). For any ε > 0, there
exists Mε ≥ 1 so that for all G,H ∈ Xε we have

dX(H,G)≤ dsym
X (H,G) = dsym

X (G,H)≤Mε ·dX(G,H).

Nevertheless, whenever discussing neighborhoods, we always use the symmetrized dis-
tance dsym

X . That is, the A–neighborhood of a subset Z ⊂ X is defined to be

NA(Z) :=
{

G ∈ X | inf{dsym
X (G,H) | H ∈ Z}< A

}
.

In particular, if G ∈ NA(Z), then there exists some H ∈ Z so that dX(G,H) and dX(H,G)
are both less than A. Note that by [FM2], if Z ⊂ X is compact, then so is the closed
neighborhood NA(Z). The Hausdorff distance between two subsets of X is then defined
as usual using these symmetrized neighborhoods.

We will say that two paths γ : I→X and γ ′ : I′→X have the same terminal endpoint if
either I+,I′+ < ∞ and γ(I+) = γ ′(I′+), or if I+ = I′+ = ∞ and the sets γ([t,∞)) and γ ′([t ′,∞))
have finite Hausdorff distance for all t ∈ I and t ′ ∈ I′. Having the same initial endpoint is
defined similarly. Accordingly, γ and γ ′ are said to have the same endpoints if their initial
and terminal endpoints agree.

By a geodesic in X we always mean a directed geodesic, that is, a path γ : I→ X such
that dX(γ(s),γ(t)) = t − s for all s < t. Similarly a K–quasigeodesic in X means a path
γ : I→ X so that

1
K (t− s)−K ≤ dX(γ(s),γ(t))≤ K(t− s)+K
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for all s < t. Note that a K–quasigeodesic typically will not be a K–quasigeodesic when
traversed in reverse.

Convention 2.4. Our default metric on X is the Lipschitz metric and geodesics are directed
geodesics with respect to this metric. When discussing neighborhoods and Hausdorff dis-
tance, however, we make use of the symmetrized metric as discussed above.

2.7 Navigating outer space

Optimal maps. For any G,H ∈ X, there exits a (nonunique) difference of markings
φ : G→ H that realizes the infimum in the definition of dX(G,H) [FM2, Bes]. Such a
map is called optimal. Here, we describe some structure of optimal maps and refer to the
references above for details. Firstly, we say that a difference of markings φ : G→ H is
linear on edges if φ has a constant slope σ(e) on each edge e of G, meaning that φ is a
local σ(e)–homothety on e with respect to the local path metrics on G and H. In this case
Lip(φ) = maxe{σ(e)}. We define the tension subgraph 4φ to be the subgraph of G con-
sisting of maximally stretched edges, that is, the edges e of G with σ(e) = Lip(φ). Since
every difference of markings is homotopic rel vertices to a map that is linear on edges and
whose Lipschitz constant is no greater than the original, we may always suppose optimal
maps are linear on edges.

Train tracks. Let us define a segment [p,q] between points p,q ∈ G to be a locally iso-
metric immersion [0,L]→G of an interval [0,L]⊂R sending 0 7→ p and L 7→ q. A direction
at p ∈ G is a germ of nondegenerate segments [p,q] with p 6= q. A map φ : G→ H that is
linear on edges with slope σ(e) 6= 0 for all edges e of G then induces a derivative map Dφ

which sends a direction at p to a direction at φ(p). We say that two directions at p ∈ G
are in the same gate if the directions are identified by Dφ . The gates form an equivalence
relation on the set of directions in G.

An unordered pair {d,d′} of distinct directions at a vertex v of G is called a turn. The
turn {d,d′} is illegal (with respect to φ ) if d and d′ belong to the same gate and is legal
otherwise. Accordingly, the set of gates in G is also called the illegal turn structure on G
induced by φ . An illegal turn structure is moreover a train track structure if there are at
least two gates at each p ∈ G. This is equivalent to requiring that φ is locally injective on
(the interior of) each edge of G and that every vertex has at least 2 gates.

For any G,H ∈ X there is an optimal map φ : G→ H such that4φ is a core graph and
the illegal turn structure induced by the restriction of φ to4φ is a train track structure [FM2,
Bes]. Hence, the tension subgraph4φ contains an immersed loop that is legal (crosses only
legal turns). If α denotes the conjugacy class represented by a legal loop contained in4φ , it
follows that `(α|H) = Lip(φ) · `(α|G). Conversely, any difference of markings φ : G→ H
satisfying `(α|H) =Lip(φ) ·`(α|G) for some conjugacy class α is necessarily optimal. The
existence of optimal maps thus shows that the inequality in (2) is in fact an equality. We
collect these facts into the following proposition:
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Proposition 2.5 (See Francaviglia–Martino [FM2] or Algom-Kfir [AK]). For every G ∈ X

there exists a finite set CG of primitive conjugacy classes, called candidates, whose im-
mersed representatives in G cross each edge at most twice and such that for any H ∈ X

dX(G,H) = max
α∈CG

log
(
`(α|H)

`(α|G)

)
= sup

α∈F
log
(
`(α|H)

`(α|G)

)
.

Folding. For a linear difference of markings φ : G→ H, if 4φ = G and φ induces a
train track structure on G, then φ induces a unique folding path γ = γφ : [0,L]→ X with
γφ (0) = G and γφ (L) = H such that dX(γφ (s),γφ (t)) = t− s for 0≤ s≤ t ≤ L. Thus γφ is
a (directed) geodesic from G to H. The path γφ is obtained by “folding all illegal turns at
unit speed,” as follows: Fix some sufficiently small ε > 0. Then for 0 ≤ s ≤ ε , form the
quotient graph Ĝs obtained by declaring two points x,y ∈G to be equivalent if φ(x) = φ(y)
and d(x,v) = d(y,v) ≤ s for some vertex v of G. Then φ factors through the quotient map
G→ Ĝs, and Ĝs inherits a natural metric so that this quotient map is a local isometry on
each edge of G. If we let Ls = vol(Ĝs), then the rescaled graph Ḡs = (1/Ls)Ĝs lies in X

(i.e., has volume 1), and φ factors as a composition G→ Ḡs→H of two optimal maps with
Lipschitz constants Ls and L/Ls, respectively. Accordingly, we set γφ (log(Ls)) = Ḡs. This
defines γφ (t) for all sufficiently small t ≥ 0. Staring now with the optimal map Ḡε → H,
we may repeat this procedure to define γφ (t) for more values of t. While it is not obvious,
after finitely many iterations we will eventually arrive at γφ (L) = H. See [BF2, Proposition
2.2] for a justification of this claim and a more detailed construction of γφ .

Remark. The folding paths used this paper, as defined above, are sometimes called “greedy
folding paths” [BF2] or “fast folding lines” [FM2] in the literature. These are a special case
of the more flexible “liberal folding paths” that are sometimes considered (see the appendix
of [BF3]) and which include the original Stallings paths [Sta].

If γφ : [0,L]→ X is a folding path, as described above, we often use Gt , t ∈ [0,L], to
denote γφ (t). Observe that for all 0 ≤ s ≤ t ≤ L, the construction of γφ provides induced
optimal maps γ

φ

st : Gs→ Gt , which we refer to as folding maps. These maps compose so
that γ

φ

rt = γ
φ

st ◦ γ
φ
rs for r ≤ s ≤ t, and we additionally have γ

φ

0L = φ and γ
φ

tt = IdGt for all t.
Furthermore, for all t > s, the maps γ

φ

st : Gs→Gt (i) induce the same train track structure on
Gs (independent of t), (ii) send legal segments (segments crossing only legal turns) to legal
segments, and (iii) have associated folding paths exactly given by the restrictions γφ |[s,t].

Lastly, we note that it is also possible to construct biinfinite folding paths, by which we
mean a directed geodesic γ : R→X together with with maps γst : Gs→Gt (where Gt = γ(t))
for all s≤ t satisfying the above properties.

Standard geodesics. It is not true that any two points of G,H ∈ X may be connected by
a folding path. There is, however, a nonunique standard geodesic from G to H [FM2]. In
[BF2, Proposition 2.5], Bestvina and Feighn give a detailed construction of such a standard
geodesic, which we summarize here: First, take an optimal map φ : G→ H that is linear
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on edges and consider the tension subgraph 4φ of G. Let ΣG ⊂ X denote the simplex of
all (volume–1) length functions on the marked graph G. By shortening some of the edges
outside of 4φ (and rescaling to maintain volume 1), one may then find a point G′ ∈ ΣG

in the closed simplex together with an optimal difference of markings φ ′ : G′→ H whose
tension graph4φ ′ is all of G′ and such that

dX(G,H) = dX(G,G′)+dX(G′,H).

If γ1 denotes the linear path in ΣG from G to G′ (which when parameterized by arc length
is a directed geodesic) and γ2 = γφ ′ denotes the folding path from G′ to H induced by φ ′, it
follows from the equation above that the concatenation γ1γ2 is a directed geodesic from G
to H.

Let us introduce the following terminology. By a rescaling path we mean a linear
path I→ X in a closed simplex ΣG parameterized by arclength. While such a path can in
principle have infinite length in the negative direction (if the volume of a core subgraph
tends to 0 as t →−∞), every rescaling path has finite length in the forward direction since
a subgraph can only stretch until its volume is equal to 1. More specifically:

Lemma 2.6. If Gt , t ∈ [0,L], is a rescaling path with G0 ∈ Xε , then L≤ log(2/ε).

Proof. Let α be any candidate for G0, so the immersed loop representing α in G0 crosses
each edge at most twice. Since G0 and GL represent the same marked graphs up to collaps-
ing some edges of G0, α|GL crosses no edge more than twice. Thus we have `(α|GL)≤ 2.
On the other hand `(α|G0)≥ ε by assumption. Thus `(α|GL)

`(α|G0)
≤ 2

ε
. Since this holds for every

candidate of G, Proposition 2.5 implies that L = dX(G0,GL)≤ log(2/ε), as claimed.

In general, by a standard geodesic we mean a (directed) geodesic γ : I→ X that is
either a folding path, a rescaling path, or a concatenation γ : I→ X of a rescaling path
γ : Is→ X and a folding path γ : I f → X, where in the latter case we require Is

+ = I f
− ∈ R,

that I = Is ∪ I f , and that the concatenation is a directed geodesic. In this latter case the
folding image of the standard geodesic is denoted Imf(γ) = γ(I f ), and the scaling image is
similarly denoted Imsc(γ) = γ(Is). For notational convenience, when the standard geodesic
γ : I→ X is simply a rescaling path, we define Imsc(γ) = γ(I) and Imf(γ) = γ(I+) (recall
that I+ < ∞ for rescaling paths); when γ is simply a folding path we define Imf(γ) = γ(I)
and either Imsc(γ) = γ(I−) or Imsc(γ) = /0 depending on whether I− ∈ R or I− = −∞. In
particular, note that the Imf(γ) is nonempty for every standard geodesic.

Folding and unfolding. In Section 5 of [BF2], Bestvina and Feighn give a detailed ac-
count of what happens to an immersed path in the graph Gt under folding and unfolding.
We review the basics here, as they will be needed in Section 6. For additional details and
examples, see [BF2].

Fix a folding path γ(t) = Gt with t ∈ [a,b], and let pb be an immersed path in Gb. It is
always possible to lift (or unfold) pb to an immersed path pt in Gt with the property that
pt maps to a path in Gb whose immersed representative, rel endpoints, is pb (recall that

15



the folding path γ comes equipped with folding maps γtb : Gt → Gb). These lifts are not
necessarily unique, but Bestvina and Feighn show that we can remove segments from the
ends of pb to obtain unique lifts. This is their unfolding principle, which we state as the
following lemma:

Lemma 2.7 (Unfolding principle [BF2]). With the set up above, lifting pb to Gt is unique
between the first and last illegal turns of pb, including the germs of directions beyond these
turns.

The process of lifting (uniquely) an immersed segment pb whose endpoints are at illegal
turns is called unfolding. Note that the unfolding principle applies to an illegal turn itself.
In particular, if α is a conjugacy class of F and pb is either a subpath of α|Gt with endpoints
illegal turns or an illegal turn of α|Gb, then pb unfolds to path (or an illegal turn) pt that
is contained in α|Gt . Moreover, multiple occurrences of pb in α|Gb all unfold to pt as a
subpath of Gt . This all follows from the unfolding principle.

Similarly, we can understand the image of certain subpaths pa of α|Ga under the folding
path Gt . Note that the image of pa in Gt is not necessarily contained in the image of α|Gt ,
even after tightening (i.e. passing to the immersed representative). However, if there is
a subpath pb of α|Gb with endpoints at illegal turns which unfolds to pa in α|Ga, then
unfolding gives a unique path pt of Gt whose endpoints are at illegal turns of Gt . By the
above paragraph, these unfolded paths have the property that pt is a subsegment of α|Gt for
all t ∈ [a,b].

Projecting to standard geodesics. In [BF2, Definition 6.3] Bestvina and Feighn define
for any folding path γ : I→ X a projection Prγ : X→ γ(I) onto the image of the folding
path (one could alternately think of the projection as landing in the domain interval I). As
the definition of Prγ(H) is rather technical—in short it involves looking at the infimum of
times t for which a certain cover of γ(t) contains an immersed legal segment of length
3—we delay a careful discussion until §4.1 where a precise construction of the projection
Prγ : X→ γ(I) is given in Definition 4.9. However, although Prγ does coarsely agree with
the closest-point-projection to γ(I) in special circumstances (see Lemma 4.11), we caution
that Prγ is generally unrelated to the closest-point-projection onto γ(I).

Taking the existence of this projection for granted for the time being, we presently
extend this construction in the natural way to any standard geodesic γ : I→ X by declaring
Prγ := Prγ f : X→ Imf(γ), where I = Is∪I f and γ f = γ|I f is the folding portion of γ . (Recall
that Imf(γ) 6= /0 for every standard geodesic γ).

2.8 The free factor complex

The (free) factor complex F of F is the simplicial complex whose vertices are conjugacy
classes of nontrivial, proper free factors of F. A collection of vertices {[A0], . . . , [Ak]} de-
termines a k–simplex if, after reordering and choosing conjugacy representatives, we have
A0 < · · · < Ak. The free factor complex was first introduce by Hatcher and Vogtmann in
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[HV]. When it should cause no confusing to do so, we will usually drop the conjugacy
symbol from the notation and denote a conjugacy class of free factors by A ∈ F0.

We equip the factor complex F with its simplicial path metric. That is, we geometrically
view F as the simplicial graph F1 equipped with the path metric in which each edge has
length 1. For our purposes, the significance of the factor complex stems from the following
foundational result of Bestvina and Feighn:

Theorem 2.8 (Bestvina–Feighn [BF2]). The factor complex F is Gromov-hyperbolic.

There is a natural (coarse) projection π : X→ F defined by sending G ∈ X to the set of
free factors corresponding to proper subgraphs of G. That is,

π(G) = {π1(G′) : G′ is a proper, connected, noncontractible subgraph of G } ⊂ F0,

where π1(G′) ≤ π1(G) is identified with a free factor of F via the marking R→ G. This
projection is a key tool in the proof of Theorem 2.8 above. For G ∈ X , it is quickly verified
that diamF(π(G))≤ 4 [BF2, Lemma 3.1].

Let us define the factor distance between two points G,H ∈ X to be

dF(G,H) = diamF(π(G)∪π(H)).

Corollary 3.5 of [BF2] shows that dF(G,H) ≤ 12edX(G,H) + 32. In fact, as indicated in
[BF2], this may easily be strengthened to show that π is coarsely 80–Lipschitz:

Lemma 2.9. For any G,H ∈ X we have dF(G,H)≤ 80dX(G,H)+80.

Proof. Let L = dX(G,H), and let γ : [0,L]→ X be a standard geodesic from G to H. If
k = dLe, then we may find times 0 = t0 < · · · < tk = L so that dX(γ(ti),γ(ti+1)) ≤ 1 for all
0 ≤ i < k. By Corollary 3.5 of [BF2], it follows that dF(γ(ti),γ(ti+1)) ≤ 12e+32 for each
i, and thus that dF(G,H)≤ (12e+32)k ≤ 80L+80 by the triangle inequality.

Similarly, we will use the following easy lemma:

Lemma 2.10. Suppose that there is a nontrivial conjugacy class α which has length less
than 1 on both G,H ∈ X. Then dF(G,H)≤ 10.

Proof. Such a conjugacy class would determine an immersed loop contained in a proper
core subgraph of each graph. Hence, α is simultaneously contained in free factors A and B
appearing in the diameter-4 projections of G and H, respectively. In this case, dF(A,B)≤ 2
([Tay, Section 3.2]), showing that the union π(G)∪π(H) has diameter at most 10.

In the process of showing that F is hyperbolic, Bestvina and Feighn also prove the
following very useful result; it essentially says that the projection onto a folding path is
strongly contracting when viewed from the factor complex.
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Proposition 2.11 (Bestvina–Feighn [BF2, Proposition 7.2]). There exists a universal con-
stant B (depending only on rk(F)) such that the following holds. If H,H ′ ∈ X satisfy
dX(H,H ′) ≤M and γ : I→ X is a standard geodesic with dX(H,γ(t)) ≥M for all t, then
dF(Prγ(H),Prγ(H ′))≤ B.

Remark. While Proposition 7.2 of [BF2] is only stated for the projection to a finite length
folding path, it clearly holds for our generalized projection to a finite length standard
geodesic. By considering an exhaustion by finite length subpaths, the result is also seen
to hold for infinite length standard geodesics.

2.9 Out(F) basics

We recall some of the structure of automorphisms of F and the dynamics of their actions
on X and F. The group Out(F) acts naturally on X by changing the marking: φ · (G,g, `) =
(G,g ◦ φ̂−1, `), where φ̂−1 : R→ R is any homotopy equivalence whose induced map on
F ∼= π1(R) is in the outer automorphism class φ−1 ∈ Out(F). One may easily verify that
G 7→ φ ·G defines an isometry of (X,dX). Each outer automorphism φ ∈ Out(F) permutes
the set F0 of conjugacy classes of free factors via φ · [A] = [φ(A)], and this extends to a
simplicial (and hence isometric) action of Out(F) on F. The actions of Out(F) on X and F

are equivariant with respect to the projection π : X→ F: For each G ∈ X,

π(φ ·G) = φ ·π(G)

as subsets of F.

Full irreducibility. We are primarily interested in elements φ ∈ Out(F) that are fully
irreducible, meaning that no positive power of φ fixes the conjugacy class of any free
factor of F. Hence φ is fully irreducible if and only if its action on F has no periodic
vertices. In fact, Bestvina and Feighn have shown the following:

Theorem 2.12 (Bestvina–Feighn [BF2]). An element φ ∈ Out(F) acts with positive trans-
lation length on the free factor complex F if and only if φ is fully irreducible.

Recall that the (stable) translation length of φ ∈ Out(F) acting on F is by definition

`F(φ) = lim
n→∞

dF(A,φ nA)
n

,

for any A ∈ F0. It is well known (and easily verified) that `F(φ) does not depend on the
choice of A and that `F(φ n) = n · `F(φ). Having positive translation length implies that
for any A ∈ F0, the orbit map Z→ F defined by n 7→ φ n ·A is a quasi-geodesic in F. In
Section 9 we also discuss translation lengths of elements of Out(F) acting on a different
hyperbolic complex. Regardless of the context, we call an isometry of a hyperbolic space
loxodromic if it acts with positive translation length.
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Hyperbolicity. An element φ ∈Out(F) is said to be hyperbolic or atoroidal if φ i(α) 6=α

for every nontrivial conjugacy class α in F and every i≥ 1. While neither hyperbolicity nor
full irreducibility implies the other, there are many automorphisms of F that have both
these properties. Hyperbolic elements of Out(F) are essential to our discussion because of
the following theorem of Brinkmann.

Theorem 2.13 (Brinkmann [Bri]). The outer automorphism class of Φ ∈ Aut(F) is hyper-
bolic if and only if the semidirect product FoΦ Z is a Gromov-hyperbolic group.

We say that Γ ≤ Out(F) is purely hyperbolic if every infinite order element of Γ is
hyperbolic. Before concluding this section, we observe that when Γ is purely hyperbolic
there is a uniform upper bound (depending only on rk(F)) on the number of elements of Γ

that fix any given conjugacy class. To this end, for α a conjugacy class in F set

Γα = {φ ∈ Γ : φ(α) = α}.

Lemma 2.14. There is a constant er depending only on the rank r = rk(F) such that for
any purely hyperbolic Γ≤Out(F) we have |Γα | ≤ er for each nontrivial conjugacy class α

of F.

Proof. Since Γ is purely hyperbolic, Γα is a torsion subgroup of Out(F). It is known that
any torsion element survives in the quotient Out(F)→ GLr(Z/3Z) [CV] and so Γα injects
into GLr(Z/3Z). Hence, we may take er = |GLr(Z/3Z)|.

3 Quasiconvexity and folding paths

For the main results of Section 4 we will need to know that outgoing balls in the Lipschitz
metric are quasiconvex with respect to folding paths. This is proven in Corollary 3.3 below.
We first show in Proposition 3.2 that the length of every conjugacy class is quasiconvex
along folding paths.

We begin by recalling some notation from [BF2]. For a folding path Gt , t ∈ I, define
the illegality m(Gt0) of Gt0 at time t0 to be

m(Gt0) = ∑
v

∑
Ωv

(|Ωv|−1),

where v varies over the vertices of Gt and Ωv varies over all gates of Gt0 at the vertex v (so
each Ωv is an equivalence class of directions at v). Note that if we set M = 6rk(F)− 6,
which bounds twice the number of edges of any graph in X, then 1≤ m(Gt)≤M for all t.
We often write mt for m(Gt) when the folding path is understood. For any conjugacy class
α , we additionally let kt = k(α|Gt) denote the number of illegal turns in α|Gt .

In Corollary 4.5 and Lemma 4.4 of [BF2], Bestvina and Feighn show that the function
t 7→ `(α|Gt) is piecewise exponential and that its right derivative at time t0 is given by

`(α|Gt0)−2
k(α|Gt0)

m(Gt0)
.

Using this, they prove the following estimate:
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Lemma 3.1 (Bestvina–Feighn [BF2, Lemma 4.10]). Suppose that Gt , t ∈ [0,L], is a folding
path and that α is any conjugacy class in F. Then for all t ∈ [0,L] we have

`(α|Gt)≤max{2k(α|G0), `(α|GL)}.

Proposition 3.2 (Quasiconvexity of lengths along folding paths). Let Gt , t ∈ [0,L], be a
folding path, and let α be any conjugacy class in F. Then

`(α|Gt)≤ 6rk(F) ·max{`(α|G0), `(α|GL)} .

Proof. Let l ∈ [0,L] be the supremum of times for which the piecewise exponential func-
tion t 7→ `(α|Gt) is decreasing on [0, l). Hence the right derivative of `(α|Gt) at time l is
nonnegative. If l = L, then we are done. Otherwise, by the derivative formula above we
have `(α|Gl)≥ 2 kl

ml
≥ 2 kl

6r , where r = rk(F). Hence

kl ≤ 3r · `(α|Gl)≤ 3r · `(α|G0)

by the choice of l. Applying Lemma 3.1, we see that for all t ∈ [l,L],

`(α|Gt) ≤ max{2kl, `(α|GL)}
≤ max{6r · `(α|G0), `(α|GL)}.

Since `(α|Gt)≤ `(α|G0) for all t ∈ [0, l], this completes the proof.

Corollary 3.3 (Outgoing balls are folding-path-quasiconvex). There exists a universal con-
stant A (depending only on rk(F)) such that the following holds. For any H ∈X and R > 0,
if γ : [0,L]→ X is a folding path γ(t) = Gt with dX(H,G0),dX(H,GL) ≤ R, then for all
t ∈ [0,L] we have

dX(H,Gt)≤ R+A.

Proof. Applying Proposition 3.2, for any time t ∈ [0,L] we have

dX(H,Gt) = sup
c∈F

log
(
`(c|Gt)

`(c|H)

)
≤ sup

c∈F
log
(

6rk(F) · max{`(c|G0), `(c|GL)}
`(c|H)

)
≤ log(6rk(F))+max

{
sup
c∈F

log
(
`(c|G0)

`(c|H)

)
,sup

c∈F
log
(
`(c|GL)

`(c|H)

)}
≤ log(6rk(F))+R.
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4 Stability for F–progressing quasigeodesics

In this section we explore the structure of quasigeodesics in Outer space that project to
parameterized quasigeodesics in the factor complex. We show that, as in a hyperbolic
space, such quasigeodesics are stable in the sense that they fellow travel any geodesic with
the same endpoints. More specifically, we prove the following.

Theorem 4.1 (F–progressing quasigeodesics are stable). Let γ : I → X be a
K–quasigeodesic whose projection π ◦ γ : I→ F is also a K–quasigeodesic. Then there
exist constants A,ε > 0 and K′ ≥ 1 depending only on K (and the injectivity radius of the
terminal endpoint γ(I+) when I+ < ∞) with the following property: If ρ : J→ X is any
geodesic with the same endpoints as γ , then

(i) γ(I),ρ(J)⊂ Xε ,

(ii) dHaus(γ(I),ρ(J))< A, and

(iii) π ◦ρ : J→ F is a (parameterized) K′–quasigeodesic.

Our proof relies crucially on the projection Prγ : X→ γ(I) from Outer space to the image
of any standard geodesic γ : I→ X. As recorded in Proposition 2.11, Bestvina and Feighn
prove that this projection is strongly contracting when viewed in the factor complex, and
they use this to show that F is δ–hyperbolic [BF2]. The projection π ◦ γ of γ to the factor
complex is also shown to be a unparameterized K f –quasigeodesics, where K f depends only
on rk(F) [BF2]. As a quasigeodesic, the nearest point retraction nπ◦γ : F→ π(γ(I)) onto
the image π(γ(I)) is coarsely L0–Lipschitz for some L0 that depends only on δ and K f . The
next lemma verifies that nπ◦γ : F → π(γ(I)) agrees with the Bestvina–Feighn projection
π ◦Prγ : F→ π(γ(I)) up to uniformly bounded error.

Lemma 4.2. There is a constant D1 ≥ 0, depending only on rk(F), such that for any H ∈X
and any standard geodesic γ : I→ X we have

dF(π(Prγ(H)),nπ◦γ(π(H)))≤ D1.

Proof. To simply notation, set Ĉ = π(Prγ(H)), C = π(H), and A′ = nπ◦γ(C); both of these
points lie on the unparameterized K f –quasigeodesic π(γ(I)). Now let ρ̂ and ρ ′ be folding
paths whose images in F joint C to Ĉ and A′, respectively. We are now in the situation of
[BF2, Proposition 9.1], which states that there is a Q′ on π(ρ ′) whose distance from Ĉ is no
greater than B1, where B1 is a uniform constant.

Since π(ρ ′) is an unparameterized K f –quasigeodesic, any geodesic [C,A′] in F joining
C and A′ contains a point Q0 with dF(Q′,Q0) ≤ R0, where R0 = R0(δ ,K f ) is the constant
from Proposition 2.1. Hence, dF(Q0,Ĉ) ≤ B1 + R0. Since, no factor on π(γ) is closer
to C than A′, we must have dF(Q0,A′) ≤ B1 +R0. Hence, we conclude that dF(A′,Ĉ) ≤
2(B1 +R0). Thus the lemma holds with D1 = 2(B1 +R0).
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The proof of Theorem 4.1 with take the rest of the section and require several lemmas.
In fact, we first prove the theorem in the special case that ρ is a standard geodesic (Proposi-
tion 4.7) and complete the general proof in Section 4.1. We note that only the special case
is needed for the proof of our main result.

First, we observe that quasigeodesics that make definite progress in the factor graph
cannot become arbitrarily thin.

Lemma 4.3. Let γ : I→ X be a K–quasigeodesic whose projection π ◦ γ : I→ F is also a
K–quasigeodesic. Then there is an ε > 0 depending only on K so that γ(i) ∈Xε for all i ∈ I
with i+K(K +11) ∈ I.

Furthermore, for any i ∈ I with i+K(K+11) /∈ I (so that necessarily I+ < ∞), we have
γ(i) ∈ Xε ′ for some ε ′ > 0 depending only on K and the injectivity radius of γ(I+).

Proof. Since γ is a K–quasigeodesic in F, we have dF(γ(i),γ( j))≥ 1
K | j− i|−K. If b≥ 0

is chosen to equal K(K + 11), then γ(i) and γ(i+ b) have distance in the factor complex
at least 11. By Lemma 2.10, this implies that there is no nontrivial conjugacy class having
length less than 1 in each of γ(i),γ(i+b)∈X. If there exists α ∈ F with `(α|(γ(i)) = ε ≤ 1,
our choice of b thus forces `(α|γ(i+b))≥ 1. Hence we find that

Kb+K ≥ dX(γ(i),γ(i+b))≥ log
(
`(α|γ(i+b))
`(α|γ(i))

)
≥ log

(
1
ε

)
.

This ensures ε ≥ e−(Kb+K), and so we conclude γ(i) ∈ Xe−(Kb+K) for all i ∈ I with i+b ∈ I.
Finally suppose I+ < ∞ and that γ(I+) ∈ Xε0 . If i ∈ I fails to satisfy i+b ∈ I, then for

any nontrivial α ∈ F we similarly have

Kb+K ≥ dX(γ(i),γ(I+))≥ log
(
`(α|γ(I+))
`(α|γ(i))

)
≥ log

(
ε0

`(α|γ(i))

)
.

Thus `(α|γ(i))≥ ε0e−(Kb+K) for every nontrivial α ∈ F, which proves the claim.

Proposition 4.4. Let γ : I→X be a K–quasigeodesic whose projection π ◦γ : I→ F is also
a K–quasigeodesic, and let ρ : J→ X be a standard geodesic with the same endpoints as
γ . Then there exists a constant D0 ≥ 0 depending only on K so that

(i) For all i ∈ I there is ti ∈ J so that dX(γ(i),ρ(ti))≤ D0.

(ii) For all j ∈ J there is s j ∈ I so that dX(γ(s j),ρ( j))≤ D0.

Proof. We first prove (i). Let B be the universal constant from Proposition 2.11, and let τ ′=
R0(δ ,max{K,K f }) be the fellow-travelling constant (Proposition 2.1) for max{K,K f }–
quasigeodesics in a δ–hyperbolic space (recall that F is δ–hyperbolic). Set τ = τ ′+D1,
where D1 is the constant appearing in Lemma 4.2. Define

M = 2K2B+K, C0 =
M−K

K
= 2KB, and L0 = 2K(B+2τ +K).
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Suppose that [a,b]⊂ I is a subinterval such that dX(γ(t), Imf(ρ))≥M for all t ∈ [a,b].
Setting n = d(b−a)/C0e, we then have the sequence of points q j = γ

(
a+
(b−a

n

)
j
)

for
j = 0, . . . ,n. Notice that these points enjoy

dX(q j,q j+1)≤ K
(

b−a
n

)
+K ≤ K(C0)+K = M

for each j = 0, . . . ,n− 1. Since dX(q j, Imf(ρ)) ≥M by assumption, Proposition 2.11 now
implies that

dF
(

Prρ(q j),Prρ(q j+1)
)
≤ B

for all j = 0, . . . ,n−1.
Recall that by Lemma 4.2, π(Prρ(q j)) ∈ π(Imf(ρ)) is within distance D1 from the

closest point projection of π(q j) ∈ F to the path π(ρ(J)). (Note that π(ρ(J)) = π(Imf(ρ))
since rescaling paths have constant projection in F by construction.) Since π ◦ γ and π ◦ρ

are both (unparameterized) max{K,K f }–quasigeodesics and F is δ–hyperbolic, these paths
have Hausdorff distance at most τ ′ in F. It follows that for each j = 0, . . . ,n we also have
dF
(
π(q j),π(Prρ(q j))

)
≤ τ ′+D1 = τ . By the triangle inequality, we now have

dF(γ(a),γ(b)) ≤ dF(q0,Prρ(q0))+
n−1

∑
j=0

dF
(

Prρ(q j),Prρ(q j+1)
)
+dF(Prρ(qn),qn)

≤ nB+2τ

≤
(

b−a
C0

+1
)
B+2τ

=
b−a
2K

+B+2τ.

On the other hand, by hypothesis we also have dF(γ(a),γ(b))≥ b−a
K −K. Combining these,

we find that

b−a≤ 2K(B+2τ +K) = L0.

That is, L0 is an upper bound for the length of any subinterval of I on which γ stays at
least distance M from Imf(ρ). Said differently, for any t ∈ I, there exists 0 ≤ t ′ ≤ L0 so
that dX(γ(t + t ′), Imf(ρ)) < M. (When t + L0 ∈ I this is clear. When t + L0 /∈ I, then
we necessarily have I+ < ∞ and the assumption that γ and ρ have the same ends ensures
γ(I+) ∈ Imf(ρ).) In particular, we conclude that

dX(γ(t), Imf(ρ))≤ dX
(
γ(t),γ(t + t ′)

)
+dX

(
γ(t + t ′), Imf(ρ)

)
≤ KL0 +K +M.

This proves (i) with D0 = KL0 +K +M.
We now prove (ii). Let E0 denote the maximum value of D0 = KL0 +K +M and of

the quasiconvexity constant A provided by Corollary 3.3. Note that E0 ≥ K. For each point
i ∈ I, let

Ui = {y ∈ Imf(ρ) | dX(γ(i),y)≤ 4E0}.
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By the proof of (i), we know that there exists a point yi ∈ Ui with dX(γ(i),yi) ≤ 2E0;
in particular Ui contains the length 2E0 subinterval of Imf(ρ) starting at yi. Let Wi ⊂
Imf(ρ) denote the smallest connected interval containing Ui. It follows that each inter-
val Wi with ρ(J+) /∈Wi has length at least 2E0. By Corollary 3.3 we additionally know that
dX(γ(i),w)≤ 4E0 +A≤ 5E0 for all w ∈Wi.

Using that the projection π : X→ F is coarsely 80–Lipschitz (Lemma 2.9) we see that
diamF π ({γ(i)}∪Wi) ≤ 80(10E0). In particular, if i, j ∈ I satisfy |i− j| ≥ 2 · 80(10KE0),
then dF(γ(i),γ( j))≥ 2 ·80(10E0) ensuring that π(Wi) and π(Wj) are disjoint. In particular,
this implies Wi∩Wj = /0. On the other hand, if i, j ∈ I satisfy i < j and ( j− i)≤ 1, then

dX(γ(i),y j)≤ dX(γ(i),γ( j))+dX(γ( j),y j)≤ K(1)+K +2E0 ≤ 4E0

showing that y j ∈ Ui by definition. Thus Wi and Wj intersect whenever |i− j| ≤ 1. This
implies that the union

W = ∪i∈IWi

is a connected subinterval of Imf(ρ). We claim that in fact W = Imf(ρ).
To see this, first suppose I+ < ∞, in which case we also have J+ < ∞ and γ(I+) =

ρ(J+)∈ Imf(ρ) by assumption. In particular, ρ(J+)∈WI+ ⊂W by definition. If we instead
have I+ = J+ = ∞, then the above shows that for any t ∈ J we can find infinitely many
disjoint intervals Wi ⊂ ρ([t,∞)) that each have length at least 2E0. Thus W ∩ρ([t,∞)) is an
infinite-length interval and so covers the positive end of Imf(ρ).

Now suppose I− = J− =−∞. In this case, we claim ρ cannot have an initial rescaling
segment (i.e., that Imsc(ρ) = /0 and consequently that ρ(J) = Imf(ρ)). Indeed, if Imsc(ρ)
were nonempty then it must have infinite length in the negative direction. Since it is a
rescaling path, this implies Imsc(ρ) contains arbitrarily thin points (Lemma 2.6). However
this contradicts the fact that γ(I) is contained in some thick part Xε (by Lemma 4.3) and
that the initial rays of γ and ρ have finite Hausdorff distance. Therefore, Imf(ρ) has infinite
length in the negative direction and the same argument as above shows that W ∩ρ((−∞, t])
has infinite length for any t ∈ J. Whence W = Imf(ρ) as claimed.

Finally suppose I− 6= −∞. Let t ∈ J be such that ρ(t) = yI− ∈ UI− ⊂ Imf(ρ). Then
dX(γ(I−),ρ(t))≤ 4E0 by definition and, since ρ is a geodesic, it follows that

dX(γ(I−),ρ(s)) = dX(ρ(J−),ρ(s))≤ 4E0

for all s ∈ [J−, t]. In particular, UI− ⊂W contains the left endpoint of Imf(ρ) which proves
the desired equality W = Imf(ρ). Moreover, the above equation shows that any point y ∈
Imsc(ρ) satisfies dX(γ(I−),y) ≤ 4E0. Therefore we conclude that for every s ∈ J the point
ρ(s) ∈ Imsc(ρ)∪W satisfies dX(γ(I),ρ(s))≤ 5E0. Hence (ii) holds with D0 = 5E0.

Lemma 4.5 (Thinness prevents factor progress). Suppose that γ : [0,L]→ X is a finite-
length geodesic and that γ(t) is ε–thin for all t ∈ [0,L]. Then

dX(γ(0),γ(L))≥ log(1/ε)
dF(γ(0),γ(L))−20

20
.
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Proof. We may suppose N = dF(γ(0),γ(L)) > 11, for otherwise there is nothing to prove.
Set a0 = 0. Supposing by induction that ai ∈ [0,L) has been defined for some i≥ 0, we then
set

ai+1 = sup{t ∈ [ai,L] | dF(γ(ai),γ(t))≤ 15}.

In this way, we obtain a sequence of times 0 = a0 < · · · < an = L. Notice that provided
ai+1 < L, we necessarily have dF(γ(ai),γ(ai+1 + δ )) ≥ 16 for all δ > 0. Furthermore, for
all sufficiently small δ , the graphs γ(ai+1) and γ(ai+1+δ ) necessarily have embedded loops
representing the same conjugacy class, and so the projections π(γ(ai+1)) and π(γ(ai+1 +
δ )) must overlap. Therefore the union of π(γ(ai)) and π(γ(ai+1)) has diameter at least 12.
By Lemma 2.10, this implies that there is no nontrivial conjugacy class with length less than
1 in both graphs γ(ai) and γ(ai+1). Since by assumption `(β |γ(ai))< ε for some nontrivial
β ∈ F, it follows that `(β |γ(ai+1))≥ 1 and thus that

dX(γ(ai),γ(ai+1))≥ log
(
`(β |γ(ai+1))

`(β |γ(ai))

)
> log(1/ε) .

Therefore, since γ is a geodesic, we find that

dX(γ(a0),γ(an)) =
n−1

∑
i=0

dX(γ(ai),γ(ai+1))≥ (n−1) log(1/ε) . (3)

On the other hand, for each i > 0 we can find arbitrarily small numbers δ > 0 so
that dF(γ(ai−1),γ(ai− δ )) ≤ 15. Since δ here can be taken arbitrarily small, it follows
that γ(ai− δ ) and γ(ai) necessarily share an embedded loop. Consequently π(γ(ai)) and
π(γ(ai−δ )) overlap, and so we conclude

dF(γ(ai−1),γ(ai))≤ 20.

By the triangle inequality, it follows that

dF(γ(0),γ(L)) = dF(γ(a0),γ(an))≤ 20n. (4)

Combining equations (3) and (4) gives the claimed result.

Lemma 4.6. Let γ : I→X be a K–quasigeodesic such that π ◦γ : I→F is a K–quasigeodesic
and γ(I) ⊂ Xε . Then there exists ε ′ > 0, depending only on ε and K, so that any standard
geodesic ρ : J→ X with the same endpoints as γ is ε ′–thin, i.e. ρ(J)⊂ Xε ′ .

Proof. Let E ≥ 1 be the maximum of K and the constant D0 provided by Proposition 4.4,
and choose ε1 ≤ ε sufficiently small so that log(1/ε1) ≥ 40E2. Notice that ε1 depends only
on K and ε . The facts that γ(I)⊂ Xε and that ρ and γ have finite Hausdorff distance (since
they share the same endpoints) implies that there is some ε0 so that ρ(J)⊂ Xε0 . Choosing
ε0 < ε , we then have ρ(J),γ(I)⊂ Xε0 .
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Let us write Gt = ρ(t) for t ∈ J. Suppose now that (a′,b′) ⊂ J is subinterval such that
Gt /∈ Xε1 for all t ∈ (a′,b′) (i.e, Gt has an immersed loop of length less than ε1). Since
ρ|[a′,b′] is a geodesic, Lemma 4.5 implies that

dX(Ga′ ,Gb′)≥ log(1/ε1)
dF(Ga′ ,Gb′)−20

20
.

By Proposition 4.4, we can find points a,b ∈ I so that dX(γ(a),Ga′) ≤ E and
dX(γ(b),Gb′)) ≤ E. Together with the fact that π : X→ F is coarsely 80–Lipschitz, this
implies

dX(Ga′ ,Gb′) ≥ log(1/ε1)
dF(γ(a),γ(b))−160E−20

20

≥ log(1/ε1)
1
E |b−a|−161E−20

20
.

On the other hand, since γ(a) and G(a′) are ε0–thick, we have dX(Ga′),γ(a))≤ E ·Mε0 , for
Mε0 as in Lemma 2.3. So by the triangle inequality,

dX(Ga′ ,Gb′) ≤ dX(Ga′ ,γ(a))+dX(γ(a),γ(b))+dX(γ(b),Gb′)

≤ E ·Mε0 +E |b−a|+2E.

Combining these inequalities, and using log(1/ε1)≥ 40E2, we find that

|b−a| ≤Mε0 +2+322E2 +40E

By the triangle inequality it follows that∣∣b′−a′
∣∣ ≤ dX(Ga′ ,γ(a))+dX(γ(a),γ(b))+dX(γ(b),G(b′))

≤ E ·Mε0 +E |b−a|+E +E

≤ 2E ·Mε0 +4E +322E3 +40E2.

In particular, this shows that J cannot contain an infinite length subinterval on which ρ

is ε1–thin. Thus J′ := {t ∈ J | Gt /∈ Xε1} is a disjoint union of finite subintervals of J.
Each component of J thus has the form (c′,d′) ⊂ I′ where Gc′ ,Gd′ ∈ Xε1 but Gt /∈ Xε1

for all t ∈ (c′,d′). (Note that if I± 6= ±∞, then γ(I±) ∈ Xε1 by choice of ε1 ≤ ε .) Since
Gc′ ,Gd′ ∈ Xε1 , a repetition of the above argument now implies∣∣d′− c′

∣∣≤ L,

where L := 2E ·Mε1 +4E +322E3 +40E2 depends only on E and ε1 (and hence only on K
and ε). Consequently, since ρ is a geodesic, for any t ∈ [c′,d′] and α ∈ F we have

ε1 ≤ `(α|Gd′)≤ eL`(α|Gt),

which implies that Gt ∈ Xε ′ for ε ′ := ε1e−L. Since this estimate holds for every point t ∈ J′
and ε ′ depends only on K and ε , the result follows.
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Before proving Theorem 4.1 in its full generality, we focus on the case where the
geodesic ρ is a standard geodesic.

Proposition 4.7. The conclusions of Theorem 4.1 hold under the additional assumption
that ρ : J→ X is a standard geodesic.

Proof. Let γ : I→X be a K–quasigeodesic whose projection π ◦γ : I→F is a K–quasigeodesic,
and let ρ : J→ X be any standard geodesic with the same endpoints as γ . By Lemma 4.3,
γ is ε–thick for some ε ≥ 0 depending only on K (and on the injectivity radius of γ(I+)
when I+ < ∞). Lemma 4.6 therefore provides an ε ′ ≥ 0, depending only on K and ε , so
that ρ(t) ∈ Xε ′ for all t ∈ J. Thus conclusion (i) holds.

Applying Proposition 4.4 in conjunction with the symmetrization estimate from Lemma 2.3,
we see that for each i ∈ I there exists ti ∈ J with dsym

X (γ(i),ρ(ti)) ≤Mε ′D0. Similarly for
every j ∈ J there is some s j ∈ I so that dsym

X (γ(s j),ρ( j)) ≤ Mε ′D0. Thus conclusion (ii)
holds with A =Mε ′D0 since we have shown that

dHaus(γ(I),ρ(J))≤Mε ′D0.

It is now easy to see that π ◦ρ : J→ F is a parameterized quasigeodesic: Consider any
times a,b ∈ J with a < b. Since π is coarsely 80–Lipschitz, we automatically have

dF(ρ(a),ρ(b))≤ 80 ·dX(ρ(a),ρ(b))+80 = 80 |b−a|+80.

On the other hand, by the above there exist times s, t ∈ I such that dsym
X (γ(s),ρ(a)) and

dsym
X (γ(t),ρ(b)) are both bounded by Mε ′D0. By the triangle inequality, it follows that

dX(γ(s),γ(t))≥ dX(ρ(a),ρ(b))−2Mε ′D0 = |b−a|−2Mε ′D0.

Since γ is a directed K–quasigeodesic by assumption, this implies

(t− s)≥ 1
K dX(γ(s),γ(t))−K ≥ 1

K |b−a|− 2M
ε ′D0
K −K.

Since π ◦ γ : J→ F is also a K–quasigeodesic, we may extend this to conclude

|b−a| ≤ K(t− s)+2Mε ′D0 +K2 ≤ K
(
KdF(ρ(a),ρ(b))+K

)
+2Mε ′D0 +K2.

Therefore, π ◦ ρ is a K′–quasigeodesic for K′ = max
{

80, 2K2 + 2Mε ′D0
}

. This proves
conclusion (iii).

4.1 More on Bestvina–Feighn projections

Proposition 4.7 above suffices to prove our main result on hyperbolic extensions of free
groups (Theorem 1.1). However for completeness, and to strengthen the quasiconvexity
results in Section 5, it is desirable to prove the more general result Theorem 4.1 which
applies to arbitrary geodesics. This subsection is devoted to that purpose.
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Heuristically, Theorem 4.1 follows easily from Proposition 4.7 and some ideas in Bestvina–
Feighn [BF2]. Specifically, as remarked in [BF2, Corollary 7.3], Bestvina and Feighn’s
Proposition 7.2 (Proposition 2.11 here) essentially says that folding paths that make definite
progress in the factor complex are strongly contracting in Outer space, which generalizes
Algom-Kfir’s result [AK]. One should then apply this notion of strong contracting to con-
clude that such folding paths are stable (using standard arguments). However, to make this
precise, we first require a more detailed discussion of the projection Prγ : X→ γ(I).

Following [BF2], given a free factor A ∈ F0 and a point G ∈ X, we write A|G for the
core subgraph of the cover of G corresponding to the conjugacy class of A in F∼= π1(G). We
say that A|G is the core of the A-cover. Restricting the covering map thus gives a canonical
immersion A|G→ G that identifies π1(A|G) with A ≤ π1(G). The graph A|G is equipped
with a metric structure by pulling back the edge lengths from G. Similarly, whenever G
is given an illegal turn structure (e.g., if G lies on a folding path), we may pull back this
structure via A|G→ G, equipping A|G with an illegal turn structure as well. When A is a
cyclic free factor generated by a primitive element α ∈ F, we note that A|G agrees with our
already defined α|G.

Setting I = (18m̆(3r− 3)+ 6)(2r− 1), where r = rk(F) and m̆ denotes the maximum
number of illegal turns in any train track structure on any G ∈ X, Bestvina and Feighn then
define the following projections from F to folding paths in X:

Definition 4.8. Let γ : I→ X be a folding path, and let A ∈ F0 be a proper free factor. The
left and right projections of A to γ are respectively given by:

leftγ(A) := inf{t ∈ I : A|Gt has an immersed legal segment of length 3} ∈ I
rightγ(A) := sup{t ∈ I : A|Gt has an immersed illegal segment of length I} ∈ I,

where here an illegal segment means a segment that does not contain a legal segment of
length 3.

Using this, the Bestvina–Feighn projection Prγ is defined as follows:

Definition 4.9 (Bestvina–Feighn projection). Let γ : I→ X be a folding path. For H ∈ X,
the left and right projections of H are defined to be

leftγ(H) := inf
A∈π(H)

leftγ(A) and rightγ(A) := sup
A∈π(H)

rightγ(A).

The projection of H to γ(I) is then given by Prγ(H) := γ(leftγ(H)).

Note that every candidate conjugacy class α ∈ CH at H ∈ X is primitive and thus gen-
erates a cyclic free factor of F; thus we may view α as a point in F0. Since the immersion
α|H→H lands in a proper subgraph of H, we additionally have α ≤ A for some A∈ π(H).
Therefore, Bestvina and Feighn’s Proposition 6.4 and Corollary 6.11 immediately give the
following estimates regarding the above projections.
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Proposition 4.10 (Bestvina–Feighn). Let γ : I→X be a folding path and let H ∈X be any
point. Then for every candidate α ∈ CH of H, we have[

leftγ(α), rightγ(α)
]
⊂
[
leftγ(H), rightγ(H)

]
⊂ I.

Moreover, the set

π

(
γ

([
leftγ(H), rightγ(H)

]))
⊂ F

has uniformly bounded diameter depending only on rk(F).

As a consequence, we may deduce that Prγ(H) coarsely agrees with the closest point
projection of H to γ(I) in the case that γ makes definite progress in F.

Lemma 4.11. Let γ : I → X be a folding path whose projection π ◦ γ : I → F is a K–
quasigeodesic. Then there exists D≥ 0, depending only on K and rk(F) (and the injectivity
radius of γ(I+) when I+ < ∞) satisfying the following: If H ∈ X and t0 ∈ I are such that

dX(H,γ(t0)) = inf
{

dX(H,γ(t)) | t ∈ I
}
,

then dsym
X (γ(t0),Prγ(H))≤ D.

Proof. We write Gt = γ(t) for t ∈ I. Let us define

L = inf
{

leftγ(α) | α ∈ CH
}

and R = sup
{

rightγ(α) | α ∈ CH
}
.

Note that each candidate α ∈ CH is a simple class and that, by definition of leftγ(α), the
loop α|Gs cannot contain a legal segment of length 3 for any s < L. Therefore, Lemma 5.8
of [BF2] and the fact that π ◦ γ is a K–quasigeodesic together imply that that there exists
T ≥ 0 depending only on K and rk(F) such that for all t ≥ T we have

`(α|GL−t)> 2`(α|GL).

Since this estimate holds for each candidate, Proposition 2.5 implies that 2dX(H,GL) <
dX(H,GL−t) for all t ≥ T . Similarly, for all s > R the loop α|Gs contains immersed le-
gal segments contributing to a definite fraction of `(α|Gs). Therefore, by Corollary 4.8
of [BF2], the length `(α|Gs) grows exponentially beyond R and so after increasing T if
necessary we have

`(α|GR+t)> 2`(α|GR)

and consequently 2dX(H,GR)< dX(H,GR+t) for all t ≥ T . Given any time t0 ∈ I satisfying

dX(H,Gt0) = inf
{

dX(H,γ(t)) | t ∈ I
}
,

it follows that t0 necessarily lies in [L−T,R+T ].
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By Proposition 4.10, we know that π(γ([L,R])) has bounded diameter and bounded
F–distance from π(Prγ(H)). Therefore, since π ◦ γ is a K–quasigeodesic, there exists D′,
depending only on K and rk(F), so that |s0− t0| ≤ D′, where s0 ∈ I is the time for which
Gs0 = Prγ(H). By Lemma 4.3, we additionally know γ(I)⊂ Xε for some ε > 0 depending
on K (and the injectivity radius of γ(I+) when I+ < ∞). Therefore, since γ is a directed
geodesic, we may conclude dsym

X (Gt0 ,Prγ(H))≤MεD′, as desired.

Lemma 4.11 shows that whenever γ : I→ X is a standard geodesic for which π ◦ γ is a
K–quasigeodesic, then the closest point projection X→ γ(I) coarsely agrees with Prγ : X→
γ(I). Thus, since γ makes definite progress in F, Proposition 2.11 implies that γ is strongly
contracting. That is, there exists D, depending only on rk(F) and K (and the injectivity
radius of γ(I+) if I+ < ∞), such that if dX(H,H ′) ≤ dX(H,γ(I)), then any closest point
projections of H and H ′ to γ(I) are at most dsym

X –distance D apart. We are therefore in
the situation of the standard Morse lemma (see, e.g., Section 5.4 of [AK]), which gives the
following stability result.

Lemma 4.12 (Morse lemma for F–progressing folding paths). Suppose that γ : I→ X is
a standard geodesic for which π ◦ γ : I→ F is a K–quasigeodesic. Then for any K′ ≥ 1
there exists B depending only on rk(F), K, and K′ (and the injectivity radius of γ(I+) when
I+ < ∞) such that dHaus(γ(I),ρ(J)) ≤ B for every K′–quasigeodesic ρ : J→ X with the
same endpoints as γ .

Using this, we may finally give the proof of Theorem 4.1:

Proof of Theorem 4.1. Let γ : I→ X be a K–quasigeodesic such that π ◦ γ is also a K–
quasigeodesic, and let ε,A > 0 and K′ ≥ 1 be the corresponding constants provided by
Proposition 4.7. Choose a standard geodesic ρ ′ : J′ → X with the same endpoints as γ .
Then by Proposition 4.7 we know that ρ ′(J′) ⊂ Xε and that π ◦ρ ′ is a K′–quasigeodesic.
Now consider an arbitrary geodesic ρ : J→ X with the same endpoints as γ , and thus also
ρ ′. Applying Lemma 4.12 to ρ and the folding path ρ ′, we find that

dHaus(ρ(J),ρ ′(J′))≤ B

for some B depending only on ε and K′. Consequently ρ(J)⊂ Xε ′ where ε ′ = e−Bε . Since
ρ ′(J′) and γ(I) have Hausdorff distance at most A by Proposition 4.7, it also follows that
dHaus(ρ(J),γ(I)) ≤ B + A. Finally, as in the proof of Proposition 4.7 above, these two
facts easily show that π ◦ρ is a K′′–quasigeodesic for some K′′ depending only on ε ′ and
A+B.

5 Quasi-isometric into F implies quasiconvex in X

Consider a finitely generated subgroup Γ ≤ Out(F). For any finite generating set S ⊂ Γ,
we then consider the word metric dΓ = dΓ,S on Γ defined by dΓ(g,h) =

∣∣g−1h
∣∣
S, where |·|S

denotes word length with respect to S. This is just the restriction of the path metric on the
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Cayley graph Cay(Γ,S) to Γ = (Cay(Γ,S))0. In this section we explain various ways in
which the geometry of Γ relates to that of X or F.

For any free factor A ∈ F0, we may consider the orbit map (Γ,dΓ)→ (F,dF) given by
g 7→ g ·A. We say that this map is a qi-embedding if it is a K–quasi-isometric embedding
for some K ≥ 1. We remark that if some orbit map into F is a quasi-isometric embedding,
then so is any orbit map into F.

Definition 5.1. We say Γ ≤ Out(F) qi-embedds into F if Γ is finitely generated and any
orbit map into F is a qi-embedding.

Given a point H ∈ X, we say that the orbit Γ ·H is quasiconvex if it is A–quasi-convex
for some A ≥ 0, meaning that every (directed) geodesic between points of Γ ·H lies in
the (symmetric) A–neighborhood NA(Γ ·H) (see Section 2.6). We record the following
straightforward consequence of quasiconvexity.

Lemma 5.2. Let Γ≤Out(F) be finitely generated with corresponding word metric dΓ, and
suppose H ∈ X is such that Γ ·H ⊂ X is quasiconvex. Then the orbit map g 7→ g ·H defines
a quasi-isometric embedding (Γ,dΓ)→ (X,dX).

Proof. Let S ⊂ Γ be the generating set inducing the word metric dΓ. By assumption, there
exists A≥ 0 so that Γ ·H is A–quasiconvex. Choose ε = ε(H,A)> 0 so that NA(Γ ·H)⊂Xε .
Since Out(F) acts properly discontinuously on X, the set

D = {g ∈ Γ | dsym
X (H,g ·H)≤ 2A+Mε}

is finite, and we may set K = maxg∈D dΓ(1,g).
Letting γ : [0,L]→X be a (directed) geodesic from g ·H to g′ ·H, our hypothesis implies

γ ⊂ NA(Γ ·H) and consequently that γ(t) ∈ Xε for all t ∈ [0,L]. Setting N = bLc, we may
find h0, . . . ,hN+1 ∈ Γ so that h0 = g, hN+1 = g′ and dsym

X (γ(i),hi ·H)< A for all i = 0, . . . ,N.
In particular, we see that for each i = 0, . . . ,N the element h−1

i hi+1 translates H by at most
dsym
X –distance 2A+Mε and therefore has dΓ(1,h−1

i hi+1)≤ K. Thus

dΓ(g,g′)≤ dΓ(h0,h1)+ · · ·+dΓ(hN ,hN+1) =
N

∑
i=0

dΓ(1,h−1
i hi+1)≤ K(N +1)

≤ K(L+1) = KdX(g ·H,g′ ·H)+K.

On the other hand, if K′ = max{dX(H,s ·H)|s ∈ S}, then dX(g ·H,g′ ·H) ≤ K′dΓ(g,g′).
Therefore g 7→ g ·H is a max{K′,K}–quasi-isometric embedding.

Definition 5.3. A subgroup Γ≤ Out(F) is said to be quasiconvex in X if the orbit Γ ·H is
quasiconvex for every H ∈ X.

We remark that knowing a single orbit Γ ·H is quasiconvex in X does not necessarily
seem to imply that Γ is quasiconvex: it is conceivable that some other orbit Γ ·H ′ could fail
to be quasiconvex.

We now employ the results of Section 4 to show that every subgroup that qi-embedds
into the factor complex is quasiconvex in Outer space:
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Theorem 5.4. Let Γ ≤ Out(F) be finitely generated. If Γ qi-embedds into F, then Γ is
quasiconvex in X.

Proof. Let H ∈X be arbitrary and let A∈ π(H)⊂ F. Since π : X→ F is coarsely Lipschitz
and g 7→ g ·A gives a quasi-isometric embedding Γ→F, the orbit map O : Γ→X defined by
O(g) = g ·H is also a quasi-isometric embedding. Let g1,g2 ∈Γ be given. For any (discrete)
geodesic path ρ : {1, . . . ,N}→Γ from g1 to g2, the image O ◦ρ is thus a quasigeodesic path
in X joining g1 ·H and g2 ·H such that π ◦O ◦ρ is also a quasigeodesic in F. Theorem 4.1
then implies that any geodesic γ : I→ X from g1 ·H to g2 ·H stays uniformly close to the
image of O ◦ p, which is contained in Γ ·H. Hence, Γ is quasiconvex in X.

6 Quasiconvex orbit implies conjugacy flaring

Consider a subgroup Γ≤Out(F) with finite generating set S⊂Γ and corresponding wordlength
|·|S. Fix also a basis X of F. We say that Γ has (λ ,M)–conjugacy flaring for the given λ > 1
and positive integer M ∈ N if the following condition is satisfied:

For all α ∈ F and g1,g2 ∈ Γ with |gi|S ≥M and |g1g2|S = |g1|S + |g2|S, we have

λ ‖α‖X ≤max
{
‖g1(α)‖X ,

∥∥g−1
2 (α)

∥∥
X

}
,

where ‖·‖X denotes conjugacy length (i.e., the shortest word length with respect to X
of any element in the given conjugacy class).

In this section we show that any purely hyperbolic subgroup Γ≤Out(F) that qi-embedds
into F has conjugacy flaring. In fact, our argument only relies on the following weaker hy-
pothesis. Before making the definition, we first recall that a (finite) geodesic in Γ may be
encoded by a sequence of group elements (g0, . . . ,gN) such that dΓ(gi,g j) = |i− j| for all
i, j = 0, . . . ,N. For R ∈ X, the image of this geodesic in the orbit Γ ·R is simply the set of
points g0 ·R, . . . ,gN ·R.

Definition 6.1 (QCX). Consider a subgroup Γ ≤ Out(F) and point R ∈ X. We say that
the orbit Γ ·R is A–QCX if for any geodesic (g0, . . . ,gN) in Γ there exists a folding path
ρ : J→ X that has Hausdorff distance at most A from the image of (g0, . . . ,gN), that is

dHaus
(
ρ(J),{g0 ·R, . . . ,gN ·R}

)
≤ A,

such that dsym
X (ρ(J−),g0 ·R)≤ A and dsym

X (ρ(J+),gN ·R)≤ A.

We summarize this property by saying the image of the geodesic (g0, . . . ,gN) in Γ ·R⊂
X has Hausdorff distance at most A from a folding path in X with the correct orientation.
Note that for an arbitrary subgroup Γ, there is no direct correspondence between quasi-
convexity and this QCX condition. However, we have the following relationship when Γ is
hyperbolic.
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Lemma 6.2. Suppose that Γ≤Out(F) is finitely generated, δ–hyperbolic, and that Γ ·R⊂
X is A–quasiconvex. Then Γ ·R is A′–QCX for some A′.

Proof. Let dΓ be a word metric on Γ so that (Γ,dΓ) is δ–hyperbolic. By Lemma 5.2 the
orbit map g 7→ g ·R defines a K–quasi-isometric embedding (Γ,dΓ)→ (X,dX) for some K.
Let (g0, . . . ,gN) be any geodesic in Γ and let γ0 : I0→ X be a standard geodesic from g0 ·R
to gN ·R. Then by quasiconvexity we have that γ0(I0) ⊂ NA(Γ ·R). Note that NA(Γ ·R) ⊂
Xε for some ε > 0 (since R has positive injectivity radius). The scaling image Imsc(γ0)
of γ0 therefore lives in Xε and thus has length at most log(2/ε) by Lemma 2.6. Setting
A0 = A+Mε(log(2/ε)+1), it follows that if γ : [0,L]→ X is the folding portion of γ0 and
m = bLc, then we may find group elements h0, . . . ,hm with h0 = g0 and hm = gN such that
dsym
X (γ(i),hi ·R)≤ A0 for all i = 0, . . . ,m ∈ [0,L]. It follows that for i < j

j− i−2A0 ≤ dX(hi ·R,h j ·R)≤ j− i+2A0.

Therefore the map i 7→ hi ·R is a discrete 2A0–quasigeodesic in (X,dX); consequently, the
sequence g0 = h0, . . . ,hm = gN is a K′–quasigeodesic in Γ for some K′ = K′(K,A0). Since
Γ is δ–hyperbolic, Proposition 2.1 implies that for each j ∈ {0, . . . ,m} there exists i ∈
{0, . . . ,N}with dΓ(h j,gi)≤R0 =R0(K′,δ ). Noting that dsym

X (h j ·R,gi ·R)≤Mε(KdΓ(h j,gi)+
K), it follows that

{h0 ·R, . . . ,hm ·R} ⊂NMε (KR0+K)({g0 ·R, . . . ,gN ·R}).

As we also have γ([0,L]) ⊂ NMε+A0({h0 ·R, . . . ,hm ·R}) by the selection of h0, . . . ,hm, the
claim follows with A′ =Mε(KR0 +K)+Mε +A0.

Corollary 6.3. If Γ≤Out(F) qi-embedds into F, then for every R ∈X there exists A≥ 0 so
that the orbit Γ ·R is A–QCX.

Proof. By Theorem 5.4 we know that every orbit Γ ·R is quasiconvex in X. Since F is
hyperbolic, the hypothesis that Γ qi-embedds into F also implies that Γ is finitely generated
and δ–hyperbolic for some δ ≥ 0. Lemma 6.2 thus implies the claim.

We also have the following simple consequence of being A–QCX:

Lemma 6.4. Suppose Γ ≤ Out(F) is finitely generated and that the orbit Γ ·R ⊂ X is A–
QCX. Then g 7→ g ·R gives a quasi-isometric embedding (Γ,dΓ)→ (X,dX).

Proof. Let g1, . . . ,gN be a geodesic in Γ from g = g1 to g′ = gN . By using a folding path
γ : I→ X with Hausdorff distance at most A from the image of (g1, . . . ,gN), an argument
exactly as in Lemma 5.2 shows that dΓ(g,g′) and dX(g ·R,g′ ·R) agree up bounded additive
and multiplicative error depending only on R and A.

Having established this terminology, we now turn to the main result of this section:

Theorem 6.5. Suppose that Γ ≤ Out(F) is finitely generated, purely hyperbolic, and that
for some R ∈ X the orbit Γ ·R is A–QCX. Then Γ has (2,M)–conjugacy flaring for some
M ∈ N depending only on A and R.
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The proof of Theorem 6.5 will take several steps. We first show in Proposition 6.11 that,
provided Γ is purely hyperbolic, a corresponding flaring property holds for the length of any
conjugacy class along any folding path that remains within the symmetric A–neighborhood
of the orbit Γ ·R ⊂ X. When the orbit Γ ·R is A–QCX we use this flaring on folding paths
to deduce a similar flaring in the orbit Γ ·R. Measuring this flaring from R, where `(·|R)
coarsely agrees with the conjugacy length ‖·‖X , then yields Theorem 6.5. We first require
the following lemma, which is central to this section. It implies that there is a uniform
bound on how long a conjugacy class can stay short along our folding paths.

Lemma 6.6. Fix Γ ≤ Out(F) and R ∈ X. For any L0 ≥ 0 and A0 ≥ 0, there is a D0 ≥ 0
satisfying the following: If α ∈ F is nontrivial and γ : I→ X is a folding path with Gt =
γ(t) ∈NA0(Γ ·R) for all t ∈ I, then either

diam{t ∈ I : `(α|Gt)≤ L0} ≤ D0

or there is an infinite order element φ ∈ Γ with φ([α]) = [α].

Proof. Let Γα be the subgroup of elements of Γ that fix the conjugacy class of α . If Γα is
a torsion group, then |Γα | ≤ er by Lemma 2.14.

Let a and b be the infimum and supremum of the set {t ∈ I : `(α|Gt) ≤ L0}. Then,
by Proposition 3.2, for all t ∈ [a,b] we have `(α|Gt) ≤ ML0, where M = 6rk(F). It fol-
lows that if d0 ≥ 3A0, then for all t, t + d0 ∈ [a,b] the points Gt and Gt+d0 cannot both be
A0–close (in symmetric distance) to the same orbit point of Γ ·R (since dsym

X (Gt ,Gt+d0) ≥
dX(Gt ,Gt+d0) = d0 > 2A0).

Set N = b(b−a)/d0c and for each 0≤ n≤ N select φn ∈ Γ such that

dsym
X (φn ·R,Ga+d0n)≤ A0.

By our choice of d0, φi = φ j for 0 ≤ i, j ≤ N if and only if i = j. By assumption, α ∈ F
has length at most ML0 in Ga+d0n; thus we have `(φ−1

n (α)|R)≤ eA0ML0 for all 0≤ n≤ N.
Let C denote the number of immersed loops in R of length at most eA0ML0; we note that C
depends only on R, A0 and L0. It follows that if N > C(er + 1) then we may find distinct
0≤ k0 < · · ·< ker ≤ N such that

φ
−1
k0

(α) = φ
−1
k1

(α) = · · ·= φ
−1
ker

(α).

Since the φki are all distinct, this implies that Γα contains at least er+1 elements and, hence,
an infinite order element. Otherwise N ≤C(er +1) and thus we conclude

b−a≤ d0(N +1)≤ d0(C(er +1)+1).

Setting D0 = d0(C(er +1)+1) completes the proof.

We next examine how the length of a loops varies over a folding path Gt that is near
the orbit of Γ. Our arguments are inspired by Section 5 of [BF2], however, the use of
Lemma 6.6 greatly simplifies our analysis.

34



For a folding path Gt and a conjugacy class α , recall that α|Gt is the core of the α-
cover of Gt . We think of α|Gt as having edge lengths and illegal turn structure induced
from Gt . As such, α|Gt is composed of legal segments separated by illegal turns. We say
that a collection of consecutive illegal turns in α|Gt survive to α|Gt ′ for t ≤ t ′ if no illegal
turn in the collection becomes legal in the process of folding from Gt to Gt ′ nor do two
illegal turns of the collection collide. In other words, a collection of consecutive illegal
turns of α|Gt survive to α|Gt ′ if and only if there is a collection of consecutive illegal turns
of α|Gt ′ and a bijection between the illegal turns in both collections induced by the process
of unfolding an illegal turn of α|Gt ′ to an illegal turn of α|Gt (see Lemma 2.7 and the
surrounding discussion). Set m̆ equal to the maximum number of illegal turns in any train
track structure on any G ∈ X. Note that m̆≥ 2rk(F)−2.

Lemma 6.7 (Illegal turns don’t survive). Suppose that Γ≤Out(F) is purely hyperbolic and
that R ∈X. For each l ≥ 0 and A0 ≥ 0 there exists Dl ≥ 0 satisfying the following property.
If Gt is a folding path with Gt ∈NA0(Γ ·R) for all t ∈ [a,b] and α is a conjugacy class such
that α|Ga has a segment containing m̆+ 1 consecutive illegal turns that survive to α|Gb
and the length of each legal segment between these illegal turns in α|Gb is no greater than
l, then b−a≤ Dl .

Proof. Let st be the segment spanning the consecutive surviving illegal turns in α|Gt for
a≤ t ≤ b. Since the number of illegal turns in sb is greater than the total number of illegal
turns in Gb, there are a pair of illegal turns of sb that project to the same illegal turn of Gb
under the immersion α|Gb→Gb. Let s′b be the subsegment between two such turns and let
σb denote the loop obtained by projecting s′b to Gb and identifying its endpoints.

By the unfolding principle of [BF2] (Lemma 2.7), there is a subsegment s′t of st that
maps to the segment s′b after folding and tightening and such that the illegal turn endpoints
of s′t map to the same illegal turn in Gt (just as in Gb). Hence, we may form the loop σt

by identifying these endpoints in Gt . We note for each a ≤ t ≤ b, σt is immersed except
possibly at the illegal turn corresponding to the endpoints of s′t and that the conjugacy class
of σt maps to the conjugacy class of σb under the folding map Gt → Gb, again by the
unfolding principle. Let σ denote this conjugacy class in F.

By construction, the length of σb is bounded by l · (m̆+ 1) and the number of illegal
turns of σa is no more than m̆+1, since these illegal turns all survive in Gb by assumption.
By Lemma 3.1, `(σt)≤ 2l · (m̆+1) for all a≤ t ≤ b. Then, by Lemma 6.6 either φ(σ) = σ

for some infinite order φ ∈ Γ or we have b− a ≤ Dl for some Dl depending only on A0, l
and R. Since Γ is purely hyperbolic, the claim follows.

Recall the notation from Section 3: If Gt is a folding path and α is a conjugacy class,
then kt = k(α|Gt) denotes the number of illegal turns of α|Gt and mt denotes the illegality
of Gt . The following lemma is similar to Lemma 5.4 of [Bri]. Again, we use that our
folding path in near the orbit of Γ as a a replacement for having a single train track map, as
was the case in [Bri]. Let r = rk(F).
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Lemma 6.8. Let Gt be a folding path with Gt ∈ NA0(Γ ·R) for t ∈ [a,b] and let pb be an
immersed path in Gb whose endpoints are illegal turns such that k(pb)≥ 2(2r−2) and pb
contains no legal segment of length L ≥ 3. Let pt be the corresponding path in Gt whose
endpoints are illegal turns which is obtained from pb by unfolding. Then

ε0 · k(pt)

2(2r−2)
≤ `(pt)≤ L · k(pt),

where ε0 is the minimal injectivity radius of any graph in NA0(Γ ·R).

Proof. Any path in Gt with at least 2r− 2 illegal turns contains a loop in Gt which has
length at least ε0. The lemma now easily follows.

We find the following terminology helpful. Suppose that Gt , t ∈ [a,b], is a folding path
and that α is a nontrivial conjugacy class in F. As mentioned earlier, the immersed loop
α|Gt→Gt consists of legal segments separated by illegal turns. We let α

leg
t denote the sub-

set of α|Gt consisting of maximal legal segments of length at least 3, and we write leg(α|Gt)

for the length of α
leg
t . This is the legal length of α|Gt . The complement α|Gt −α

leg
t con-

sists of finitely many disconnected segments, and we write ilg(α|Gt) for the sum of the
lengths of the components of α|Gt −α

leg
t that contain at least m̆+1 illegal turns (counting

the endpoints). This is the illegal length of α|Gt . Finally we write ntr(α|Gt) for the sum
of the lengths of the remaining components of α|Gt −α

leg
t , that is, those components with

less than m̆+ 1 illegal turns. This is the neutral length of α|Gt . By construction we thus
have

`(α|Gt) = leg(α|Gt)+ ilg(α|Gt)+ntr(α|Gt).

Notice that, since every component of α
leg
t has length at least 3, there are at most (leg(α|Gt)/3)+

1 components of α|Gt−α
leg
t . On the other hand, each component contributing to ntr(α|Gt)

has length at most 3m̆ by definition, and so we find that

ntr(α|Gt)≤ m̆(leg(α|Gt)+3).

The previous two lemmas allow us to show that the illegal length of α|Gt decreases
exponentially fast along a folding path that remains close to the orbit of Γ.

Lemma 6.9 (Illegal turn mortality rate). Suppose that Γ is purely hyperbolic and that
γ : [a,b]→X is a folding path with Gt = γ(t)∈NA0(Γ ·R) for all t. Then for every nontrivial
conjugacy class α we have

ilg(α|γ(a))≥ ε0m̆
3(2r−2)(2m̆+1)

(
2m̆+1

2m̆

) (b−a)
D3
· ilg(α|γ(b)),

where ε0 is the minimal injectivity radius of any point in NA0(Γ ·R), r = rk(F), and D3 is
the constant from Lemma 6.7.
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Proof. Let pb be a component of α|Gb−α
leg
b contributing to ilg(α|Gb), and write pt for

the corresponding path in α|Gt (i.e., pt ′ unfolds to pt for t ≤ t ′). First note that for t ∈ [a,b],
the hypotheses on pb imply that every legal subsegment of pt has length less than 3 (since
legal segments of length at least 3 grow under folding) and the number of illegal turns in pt

is at least m̆+1 (since k(pt) is nonincreasing in t).
Suppose that t ∈ [a,b] is such that t−D3 ∈ [a,b]. Partition pt into s+1 subpaths

pt = p1
t · · · · · ps

t ·qt ,

where each pi
t has m̆+ 1 illegal turns and qt has less than m̆+ 1 illegal turns (counting

endpoints). Thus the number of illegal turns in pt is k(pt) = sm̆+ k(qt), where in the case
that qt is degenerate we view it as a segment with 1 illegal turn so that k(qt) = 1. By our
the condition on qt and the assumption that k(pt)≥ (m̆+1), it follows that

k(pt)

m̆
≤ s+1 and 1≤ k(pt)−1

m̆
≤ k(pt)

2m̆
.

Unfolding these pi
t to subsegments of pt−D3 and applying Lemma 6.7, we conclude that the

number of illegal turns in each subsegment increases by at least 1. Thus

k(pt−D3) ≥ s(m̆+1)+ k(qt) = k(pt)+ s≥ k(pt)+
k(pt)

m̆
−1

≥ k(pt)+
k(pt)

2m̆
=

(
2m̆+1

2m̆

)
k(pt).

So long as a≤ t−nD3 ≤ b, we may inductively apply this argument to conclude that

k(pa)≥ k(pt−nD3)≥
(

2m̆+1
2m̆

)n

k(pt).

Using Lemma 6.8 to compare lengths with number of illegal turns, we conclude that

`(pa) ≥
(

ε0

4r−4

)
k(pa)

≥
(

ε0

4r−4

)(
2m̆+1

2m̆

)b(b−a)/D3c
k(pt)

≥
(

ε0m̆
3(2r−2)(2m̆+1)

)(
2m̆+1

2m̆

) b−a
D3

`(pb).

Summing these estimates over each component of α|Gb contributing to ilg(α|Gb) gives the
desired result.

There is a similar estimate for the growth of legal length in the forward direction.

Lemma 6.10. For any folding path Gt , t ∈ [a,b], every nontrivial conjugacy class α ∈ F
satisfies

leg(α|Gb)≥ leg(α|Ga)

(
1
3

)
eb−a.
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Proof. Let pa be a component of α
leg
a and let pb be the corresponding segment in α|Gb (so

that pb unfolds to pa). Then `(pa)≥ 3 by assumption, so Corollary 4.8 of [BF2] gives

`(pb)≥ 2+(`(pa)−2)eb−a ≥ `(pa)

(
1− 2

`(pa)

)
eb−a ≥ `(pa)

3
eb−a

Summing over the segments contributing to leg(α|Ga) now proves the claim.

Combining these estimates easily leads to uniform flaring along folding paths that stay
close to the orbit Γ ·R:

Proposition 6.11 (Flaring in folding paths). Suppose Γ≤ Out(F) is purely hyperbolic and
that R ∈ X is such that Γ ·R is A0–QCX. Then for all λ1 ≥ 1 there exits D1 ≥ 1 such that
the following holds: For any nontrivial conjugacy class α , any folding path γ : I→ X with
Gs = γ(s) ∈ NA0(Γ ·R), and any parameters t ∈ R and d ≥ D1 satisfying [t− d, t + d] ⊂ I
we have

λ1 · `(α|Gt)≤max{`(α|Gt−d), `(α|Gt+d)} .

Proof. Fix t ∈ I.

Case (1). Suppose ilg(α|Gt) ≥ `(α|Gt)/2. Then Lemma 6.9 provides a constant D′ such
that for all and d ≥ D′ with [t−d, t]⊂ I we have

`(α|Gt−d)≥ ilg(α|Gt−d)≥ 2λ1 · ilg`(α|Gt)≥ λ1 · `(α|Gt).

Case (2). Suppose ilg(α|Gt)< `(α|Gt)/2 and leg(α|Gt) 6= 0. In this case we have

`(α|Gt) = ilg(α|Gt)+ leg(α|Gt)+ntr(α|Gt)

≤ 1
2`(α|Gt)+ leg(α|Gt)+ m̆(leg(α|Gt)+3),

which gives `(α|Gt) < 2(1+ m̆)leg(α|Gt)+ 6. Note that 3 ≤ leg(α|Gt) by definition of
(nonzero) legal length. Lemma 6.10 now provides a constant D′′ such that for all d ≥ D′′

with [t, t +d]⊂ I we similarly have

`(α|Gt+d)≥ leg(α|Gt+d)≥ λ14(1+ m̆)leg(α|Gt)≥ λ1 · `(α|Gt).

Case (3). Suppose ilg(α|Gt) < `(α|Gt)/2 and leg(α|Gt) = 0. Then the above shows
`(α|Gt) ≤ 6. Thus by Lemma 6.6, applied with L0 = 6λ1 shows that there exists a con-
stant D0 so that for all d ≥ D0 we have `(α|Gt+d)> L0 ≥ λ1`(α|Gt).

We are now prepared to prove the main result of this section:

Proof of Theorem 6.5. Fix a finite generating set S ⊂ Γ and a free basis X of F. We must
produce M ∈ N such that for every nontrivial α ∈ F and all g1,g2 ∈ Γ with |gi|S ≥M and
|g1g2|= |g1|S + |g2|S we have

2‖α‖X ≤max
{
‖g1(α)‖X ,

∥∥g−1
2 (α)

∥∥
X

}
.
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Recall first that, by Proposition 2.5, there exists a constant K = K(X ,R) such that
1
K ‖α‖X ≤ `(α|R) ≤ K ‖α‖X for every conjugacy class α in F. We apply Proposition 6.11
with λ1 = 2K2e2A and obtain a corresponding constant D1. By Lemma 6.4, we know that
g 7→ g ·R defines a quasi-isometric embedding of (Γ,dΓ) into (X,dX). Thus we may choose
M ∈ N sufficiently large so that every g ∈ Γ with |g|S ≥M satisfies dX(R,g ·R)≥ D1 +2A.
We claim that Γ has (2,M)–conjugacy flaring.

Let g1,g2 ∈ Γ be any elements with |gi|S ≥ M and |g1g2|S = |g1|S + |g2|S. It follows
that there exists a geodesic (h−k, . . . ,h−1,e,h1, . . . ,h j) in Γ with h−k = g−1

1 and h j = g2.
In particular, k = |g1|S and j = |g2|S. Since Γ ·R is A–QCX by hypothesis, there exists a
folding path γ : I→X that has Hausdorff distance at most A from the image of (h−k, . . . ,h j).
Writing Gt = γ(t), we may thus choose times a < s < b in I so that

dsym
X (Ga,h−k ·R)≤ A, (5)

dsym
X (Gs,R)≤ A,

dsym
X (Gb,h j ·R)≤ A.

Since
∣∣g−1

1

∣∣
S , |g2|S ≥M, the above remarks imply that

dX(h−k ·R,R) = dX(R,g1 ·R) and

dX(R,h j ·R) = dX(R,g2 ·R)

are both bounded below by D1 +2A. Thus by the triangle inequality we have

dX(Ga,Gs)≥ D1 and

dX(Gs,Gb)≥ D1,

which is equivalent to s−a≥D1 and b−s≥D1. Since the folding path γ(I) lies in NA(Γ ·R)
and the orbit Γ ·R is A–QCX by assumption, Proposition 6.11 now ensures that

2K2e2A · `(α|Gs)≤max{`(α|Ga), `(α|Gb)}

for every nontrivial α ∈ F. Finally, since dX ≤ dsym
X , equation (5) implies that

`(α|Ga)≤ eA`(α|g−1
1 ·R),

`(α|Gb)≤ eA`(α|g2 ·R), and

`(α|R)≤ eA`(α|Gs).

Combining the above two estimates and using the rule `(α|g−1 ·R) = `(g(α)|R) yields

2‖α‖X ≤ 2K`(α|R)
≤ 1

K e−A max{`(α|Ga), `(α|Gb)}
≤ 1

K max
{
`(g1(α)|R), `(g−1

2 (α)|R)
}

≤max
{
‖g1(α)‖X ,

∥∥g−1
2 (α)

∥∥
X

}
.

Since this holds for every nontrivial α ∈ F, we have proved the claim.

39



7 The Cayley graph bundle of a free group extension

Fix Γ≤Out(F) with finite generating set S= {s1, . . . ,sn}, and fix a free basis X = {x1, . . . ,xr}
for F. Recalling that the extension EΓ is naturally a subgroup of Aut(F), choose lifts
ti ∈ Aut(F) of si for each 1 ≤ i ≤ n so that EΓ is generated as a subgroup of Aut(F) by
W = {ix1 , . . . ixr , t1, . . . , tn}. That is

EΓ = 〈ix1 , . . . ixr , t1, . . . , tn〉 ≤ Aut(F).

Here, ix is the inner automorphism given by conjugation by x ∈ F, i.e., ix(α) = xαx−1 for
α ∈ F. Note that by construction,

tixt−1 = it(x) ∈ Aut(F)

for each x ∈ F and each t ∈ Aut(F). For convenience, set X̂ = {ix1 , . . . , ixr} and F̂ = 〈X̂〉,
so that F̂ is the image of F in Aut(F). Note that F̂ is also the kernel of the homomorphism
EΓ→ Γ. In general, for g ∈ Γ we denote a lift of g to an automorphism in the extension EΓ

by g̃.
Let T = Cay(F,X), E = Cay(EΓ,W ), and B = Cay(Γ,S), where Cay(·, ·) denotes the

Cayley graph with the specified generating set equipped with the path metric in which each
edge has length one. Set R to be the standard rose on the generating set X so that R= T/F.
There is an obvious equivariant simplicial map

p : E →B

obtained from the surjective homomorphism EΓ → Γ. In details, p : E → B is defined
to be the homomorphism EΓ → Γ on the vertices of E and maps edges of E to either
vertices or edges of B, depending on whether the edge corresponds to a generator in X or
S, respectively. Note that for each b ∈ Γ, the preimage Tb = p−1(b) is the simplicial tree
(isomorphic to T ) with vertices labeled by the coset b̃F̂ (b̃ any lift of b) and edges labeled
by X̂ . We write db for the induced path metric on the fiber Tb over b ∈ Γ.

In Example 1.8 of [MS], it is verified that p : E →B is a metric graph bundle. We
provide the details here for completeness. We first make the following observation.

Lemma 7.1. Let g1,g2 be vertices of p−1(b) = Tb. Then g−1
1 g2 ∈ F̂∼= F and

db(g1,g2) =
∣∣g−1

1 g2
∣∣
X̂ .

Proof. Since Tb is a graph (it is a tree), db(g1,g2) counts the minimal number of edges
traversed by any path from g1 to g2 that remains in Tb. Such a path consists of edges
labeled by generators in W coming from X̂ . As any such path represents g−1

1 g2, we have
g−1

1 g2 ∈ F̂ and db(g1,g2) ≥
∣∣g−1

1 g2
∣∣
X̂ . Conversely, writing g−1

1 g2 in terms of {i±x1
, . . . , i±xr

}
produces a path in Tb from g1 to g2. Thus db(g1,g2)≤

∣∣g−1
1 g2

∣∣
X̂ .

Lemma 7.2. The equivariant map of Cayley graphs p : E →B is a metric graph bundle.
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Proof. For each n ∈N, the n–ball {g∈ EΓ : |g|W ≤ n} is finite. We may therefore define the
properness function f : N→ N by setting f (n) = max{|iα |X̂ : iα ∈ F̂ and |iα |W ≤ n}. Then
for any b ∈ Γ and any g1,g2 in Tb = p−1(b), Lemma 7.1 implies that

db(g1,g2) =
∣∣g−1

1 g2
∣∣
X̂ ≤ f

(∣∣g−1
1 g2

∣∣
W

)
= f (dE (g1,g2)) ,

as required. Lastly, suppose b1,b2 ∈B are adjacent vertices and that g1 ∈ Tb1 is any vertex
over b1. Then b2 = b1s for some s ∈ S. If t ∈W is the chosen lift of s, then g1t is adjacent to
g1 in E and satisfies p(g1t) = b1s= b2, as desired. This completes the proof that p : E →B
is a metric graph bundle.

Using our choice of generators in W , we may define canonical lifts of paths in B
through any particular point in a fiber. For N ∈ N, let γ : [−N,N]→B be any edge path
in B (by which we mean a path that maps each integer j to a vertex and each intervening
interval [ j, j+ 1] isometrically onto an edge) and let γ̃(0) be any vertex in the fiber Tγ(0).
For each integer−N ≤ j <N, the product s j = γ( j)−1γ( j+1) then lies in the generating set
S, and we let t j be the chosen lift of s j to W . Thus for j > 0 we have γ( j) = γ(0)s0 · · ·s j−1
and γ(− j) = γ(0)s−1

−1 · · ·s
−1
− j . Accordingly, the canonical lift of γ through γ̃(0) ∈ Tγ(0) is

defined to be the edge path γ̃ : [−N,N]→ E given by

γ̃( j) = γ̃(0)t0 · · · t j−1 and γ̃(− j) = γ̃(0)t−1
−1 · · · t

−1
− j .

for each integer 0 ≤ j ≤ N. Observe that p(γ̃( j)) = γ( j), so that γ̃ is in fact a lift of
γ . Moreover, since p : E → B is 1–Lipschitz, when the original path γ : [−N,N]→ B
is a geodesic, so is the canonical lift of γ through any point in Tγ(0). These lifts will be
instrumental in establishing the flaring property for the metric graph bundle E →B, which
we do in Proposition 8.1 below.

8 Conjugacy flaring implies hyperbolicity of EΓ

In this section we complete the proof of our main theorem and show that the F–extension
group EΓ is hyperbolic when Γ≤Out(F) is purely hyperbolic and qi-embeds into the factor
complex F. We first show that conjugacy flaring for the group Γ implies that the metric
bundle E →B defined in Section 7 has the flaring property. Combining with Theorem 2.2,
this will show that E , and consequently EΓ, is hyperbolic.

Proposition 8.1 (Conjugacy flaring implies the flaring property). Suppose that a finitely
generated subgroup Γ≤Out(F) satisfies (λ ,N)–conjugacy flaring for some λ > 1 and N ∈
N. Then the corresponding metric graph bundle p : E →B satisfies the flaring condition.

Proof. By hypothesis, there is a finite generating set S = {s1, . . . ,sn} of Γ and a free basis
X = {x1, . . . ,xr} of F with respect to which Γ has (λ ,N)–conjugacy flaring (see Section 6).
As in Section 7 we then consider the generating set W = {ix1 , . . . , ixr , t1, . . . , tn} of EΓ, where
ti denotes a chosen lift of si, and the natural simplicial surjection p : E →B, where E =
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Cay(EΓ,W ) and B = Cay(Γ,S). As before, set X̂ equal to the subset of the generators of
W coming from X and denote the isomorphic image of F in EΓ by F̂= 〈X̂〉.

To establish the flaring property, we must show that for every k ≥ 1 there exists λk > 1
and nk,Mk ∈ N such that for any geodesic γ : [−nk,nk]→B and any two k–qi lifts γ̃1 and
γ̃2 satisfying dγ(0)(γ̃1(0), γ̃2(0))≥Mk we have

λk ·dγ(0)(γ̃1(0), γ̃2(0))≤max
{

dγ(nk)(γ̃1(nk), γ̃2(nk)), dγ(−nk)(γ̃1(−nk), γ̃2(−nk))
}
.

In fact, we show that in terms of the given conjugacy flaring constants (λ ,N) we may take
λk =

λ+1
2 and nk = N (each independent of k) so that given any k ≥ 1, if

Mk = 2(λ +2ek)/(λ −1)

then the flaring condition holds with these constants. Here ek = f (N +1+ kN + k), where
f (·) is the properness function for the bundle E →B.

Let γ : [−N,N] → B be a geodesic and set b = γ(0). Suppose that two k–qi lifts
γ̃1, γ̃2 : [−N,N] → E are given (hence, p(γ̃i( j)) = γ( j) for i = 1,2 and each integer j).
Recall from Section 7 that Tγ( j) = p−1(γ( j)) is a simplicial tree whose edges are labeled
by the free basis X̂ of F̂. With respect to this basis, the element γ̃1(0)−1γ̃2(0) ∈ F̂ may
not by cyclically reduced. However, there is some x ∈ X̂ so that iα = γ̃1(0)−1γ̃2(0)x ∈ F̂ is
cyclically reduced. Then iα has the property that ‖iα‖X̂ = |iα |X̂ and that |iα |X̂ differs from
db(γ̃1(0), γ̃2(0)) =

∣∣γ̃1(0)−1γ̃2(0)
∣∣
X̂ by at most 1. Set z1 = γ̃1(0) and z2 = γ̃2(0)x ∈ Tb so that

by construction,

z1iα = z2.

For each integer −N ≤ j < N, let us set s j = γ( j)−1γ( j+1) ∈ S. Since γ is a geodesic,
the products

g = s−N · · ·s−1 ∈ Γ and

h = s0 · · ·sN−1 ∈ Γ

satisfy |g|S = |h|S = N and |gh|S = |g|S + |h|S. Therefore (λ ,N)–conjugacy flaring implies
that

max{‖g(α)‖X ,
∥∥h−1(α)

∥∥
X} ≥ λ · ‖α‖X

= λ · |α|X
= λ · |iα |X̂
≥ λ · (db(γ̃1(0), γ̃2(0))−1).

Let γ̃z1 , γ̃z2 : [−N,N]→ E be the canonical (geodesic) lifts of γ : [−N,N]→B through
the points z1 and z2, respectively. Let us also write g̃ = t−N · · · t−1 and h̃ = t0 · · · tN−1, where
ti is the chosen lift of si ∈ S in the generating set W of EΓ. By construction, g̃ and h̃ are also
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lifts of g,h ∈ Γ ≤ Out(F) to EΓ ≤ Aut(F). Recall that the canonical lifts γ̃z j are defined so
that

γ̃z j(−N) = z jt−1
−1 · · · t

−1
−N = z jg̃−1 and

γ̃z j(N) = z jt0 · · · tN−1 = z jh̃

for j = 1,2. Therefore

γ̃z1(−N)−1
γ̃z2(−N) = (g̃z−1

1 )(z2g̃−1) = g̃iα g̃−1 = ig̃(α) and

γ̃z1(N)−1
γ̃z2(N) = (h̃−1z−1

1 )(z2h̃) = h̃−1iα h̃ = ih̃−1(α).

Hence, the endpoints of our canonical lifts of γ satisfy

dγ(−N)(γ̃z1(−N), γ̃z2(−N)) =
∣∣γ̃z1(−N)−1

γ̃z2(−N)
∣∣
X̂ =

∣∣ig̃(α)

∣∣
X̂ = |g̃(α)|X ≥ ‖g(α)‖X

and

dγ(N)(γ̃z1(N), γ̃z2(N)) =
∣∣γ̃z1(N)−1

γ̃z2(N)
∣∣
X̂ =

∣∣∣ih̃−1(α)

∣∣∣
X̂
=
∣∣h̃−1(α)

∣∣
X ≥

∥∥h−1(α)
∥∥

X .

In light of conjugacy flaring, it follows that we have

max
{

dγ(−N)

(
γ̃z1(−N), γ̃z2(−N)

)
, dγ(N)

(
γ̃z1(N), γ̃z2(N)

)}
≥ λ ·

(
db(γ̃1(0), γ̃2(0))−1

)
.

Let us now estimate the distances between our canonical lifts γ̃z j and the given lifts γ̃ j

of γ . By metric properness, for j = 1,2 we have

dγ(N)(γ̃z j(N), γ̃ j(N))) ≤ f
(

dE (γ̃z j(N), γ̃ j(N))
)

≤ f
(

dE (γ̃z j(N), γ̃z j(0))+dE (γ̃z j(0), γ̃ j(0))+dE (γ̃ j(0), γ̃ j(N))
)

≤ f (N +1+ kN + k) = ek.

We similarly have dγ(−N)(γ̃z j(−N), γ̃ j(−N)) ≤ ek for j = 1,2. The triangle inequality thus
gives

dγ(∗)(γ̃1(∗), γ̃2(∗))≥ d∗(γ̃z1(∗), γ̃z2(∗))−2ek

for ∗ = ±N. Combining with our above estimate, it follows that the given lifts γ̃1 and γ̃2
satisfy

max
{

dγ(−N)

(
γ̃1(−N), γ̃2(−N)

)
, dγ(N)

(
γ̃1(N), γ̃2(N)

)}
≥ λ ·db(γ̃1(0), γ̃2(0))−λ −2ek.

Therefore whenever db(γ̃1(0), γ̃2(0))≥Mk = 2(λ +2ek)/(λ −1), so that

λ ·db(γ̃1(0), γ̃2(0))−λ −2ek ≥ λ ·db(γ̃1(0), γ̃2(0))− λ−1
2 db(γ̃1(0), γ̃2(0))

= λ+1
2 db(γ̃1(0), γ̃2(0)).

we obtain the inequality required by the flaring property. This completes the proof.
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Theorem 8.2 (Hyperbolic extensions). Suppose that Γ ≤ Out(F) is purely hyperbolic and
that there exists R ∈ X so that Γ ·R is A–QCX. Then the corresponding extension group EΓ

is hyperbolic.

Proof. Since E is the Cayley graph of EΓ, it suffice to show that E is hyperbolic. We
show that the metric graph bundle E →B satisfies the three conditions for hyperbolicity
appearing in Theorem 2.2 (the Mj–Sardar Theorem). Conditions (1) and (2) are obvious
since each fiber is isomorphic to the universal cover of an rk(F)–petal rose. Since the
hypotheses imply that Γ has conjugacy flaring (Theorem 6.5), condition (3) follows from
Proposition 8.1. Hence, EΓ is hyperbolic.

Corollary 8.3. Suppose Γ≤Out(F) is purely hyperbolic and qi-embeds into F. Then EΓ is
hyperbolic.

Proof. This follows immediately from Corollary 6.3 and Theorem 8.2.

9 Applications

In this section, we produce examples of hyperbolic extensions of the free group F using
the main result of this paper. We begin by defining a version of the intersection graph I
for F, which is an Out(F)–graph introduced by Kapovich and Lustig in [KL1]. First, let
I ′ be the graph whose vertices are conjugacy class of F and two vertices are joined by an
edge if there is a very small simplicial tree F y T in which each conjugacy class fixes a
point. (Recall that a simplicial tree is very small if edge stabilizers are maximal cyclic and
tripod stabilizers are trivial.) Define I to be the connected component of I ′ that contains
the primitive conjugacy classes. We note that there is a coarsely Lipschitz surjective map
Θ : F→I given by mapping the free factor A to the set of primitive conjugacy classes that
are contained in A. Note that Θ : F→I is Out(F)–equivariant.

Second, recall that the action of a non-virtually cyclic group G on a hyperbolic metric
space X is WPD if for every g ∈ G with positive translation length on X , the following
property holds: for every R≥ 0 and every x ∈ X there is an N ≥ 1 so that the set{

φ ∈ G : dX(x,φ(x)))≤ R and dX(gN(x),φ(gN(x)))≤ R
}

is finite. It is further required that the group G contains an element that acts with positive
translation length on X . This property was first defined by Bestvina–Fujiwara in [BF4],
where it was shown that the action of the mapping class group on the curve complex is
WPD. The following theorem was communicated to us by Patrick Reynolds. For complete
proofs see Mann [Man] and [DT, Theorem 4.2, Proposition 4.4].

Theorem 9.1 (Mann–Reynolds [MR]). The graph I is hyperbolic and f ∈ Out(F) acts
with positive translation length on I if and only if f is atoroidal and fully irreducible.
Moreover the action Out(F)y I is WPD.
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Following Bestvina–Fujiwara, we say that loxodromic elements f1, f2 ∈G are indepen-
dent if their quasigeodesic axes in X do not contain rays that have finite Hausdorff distance
from one another. Said differently, f1 and f2 are independent if they determine 4 distinct
points on the Gromov boundary of X . The WPD condition can be used to understand how
distinct loxodromic elements can fail to be independent. In particular, Proposition 6 of
[BF4], implies that f1 and f2 are independent if and only if they do not have a common
power. Since Theorem 9.1 states that the action Out(F) y I is WPD, two hyperbolic,
fully irreducible automorphisms f1, f2 ∈Out(F) are independent if and only if they have no
common power. Thus the notion of independence of two fully irreducibles (with respect to
the action Out(F)y I ) is intrinsic to the algebra of Out(F).

Using Theorem 9.1, we have (a priori weaker) version of our main theorem:

Theorem 9.2. Let Γ ≤ Out(F) be a finitely generated subgroup such that some (any) or-
bit map into I is a quasi-isometric embedding. Then the corresponding extension EΓ is
hyperbolic.

Proof. Fix A∈F and let O : Γ→F be the corresponding orbit map into the free factor com-
plex. By assumption Θ ◦O : Γ→ I is a quasi-isometric embedding. Since Θ is coarsely
Lipschitz, O must also be a quasi-isometric embedding. Moreover, since all outer automor-
phisms with positive translation length of I are hyperbolic, Γ must be purely hyperbolic,
i.e. each infinite order element is atoroidal. Now apply Corollary 8.3 to conclude that EΓ is
hyperbolic.

We remark that our subsequence work [DT] implies that Theorem 9.2 is equivalent to
our main theorem Theorem 1.1.

Our first application is a new proof of the following theorem of Bestvina–Feighn–
Handel [BFH], where we allow for any number of hyperbolic, fully irreducible automor-
phisms.

Theorem 9.3. Let f1, . . . , fk ∈ Out(F) be a collection of pairwise independent, hyperbolic,
fully irreducible outer automorphisms. Then for sufficiently large N ≥ 1, every nonidentity
element of

Γ = 〈 f N
1 , . . . , f N

k 〉

is hyperbolic and fully irreducible. Moreover, Γ is isomorphic to the free group of rank k
and the extension EΓ is hyperbolic.

Proof. The proof that the subgroup quasi-isometrically embeds into I follows from a stan-
dard geometric ping-pong argument for groups acting on hyperbolic spaces, exactly as in
the proof of Theorem 1.4 (Abundance of Schottky groups) in Kent–Leininger [KL3]. One
can also deduce the result from [TT, Lemma 3.2]. The point is that we are dealing with a
collection of independent loxodromic automorphisms of a hyperbolic graph. To conclude
that EΓ is hyperbolic, apply Theorem 9.2.
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Our next application, to the authors’ knowledge, produces the first examples of hyper-
bolic F–extensions EΓ where Γ is has torsion and is not virtually cyclic. First, for a finite
group H ≤ Out(F) say that a hyperbolic, fully irreducible f ∈ Out(F) is independent for
H if f and h f h−1 are independent for each h ∈ H. Hence, f is independent for H if and
only if H ∩ comm( f ) = /0, where comm( f ) is the commensurator of f in Out(F).

Theorem 9.4. Let H be a finite subgroup of Out(F) and let f ∈ Out(F) be a hyperbolic,
fully irreducible outer automorphism that is independent for H. Then for all sufficiently
large N ≥ 1, the subgroup

Γ = 〈H, f N〉

is isomorphic to H ∗Z and quasi-isometrically embeds into I . Hence, the F-by-(H ∗Z)
extension EΓ is hyperbolic.

Proof. Fix x ∈I and for each h ∈ H set fh = h f h−1. Let D = maxh∈H d(x,hx). Consider
the Cayley graph Ch of 〈 fh〉 and the equivariant orbit map Ch→I obtained by mapping f i

h
to f i

h(hx) and edges to geodesic segments. Since f has positive translation length on I by
Theorem 9.1, the maps Ch→I are all K0–quasi-isometric embeddings (for some K0 ≥ 1).
Let us write ρ

±
h : [0,∞)→ I for the positive and negative subrays of Ch → I based at

hx. Since the fh for h ∈ H are all pairwise independent, no distinct pair or rays in the set
{ρ+

h ,ρ−h }h∈H have finite Hausdorff distance.
Similar to [KL3], we now consider the following set of paths in I . For any h1,h2 ∈ H

and ε1,ε2 ∈ {+,−} with ρ
ε1
h1
6= ρ

ε2
h2

, we may build a biinfinite path in I by traversing ρ
ε1
h1

with the reverse parameterization, then following a geodesic from h1x to h2x (which has
length at most D), and lastly traversing the ray ρ

ε2
h2

with the usual parameterization. As
there are finitely many such paths and the chosen rays ρ

ε1
h1

and ρ
ε2
h2

have infinite Haus-
dorff distance, there exists a uniform constant K1 ≥ 1 so that each of these paths is a K1–
quasigeodesic in I . We call subpaths of these K1–quasigeodesics, as well as their images
under the isometric action of Out(F) on I , f -pieces.

Since I is hyperbolic, there exist L,K2 ≥ 1 so that any L–local, K1–quasigeodesic is
a K2–quasigeodesic [BH2]. In particular, if γ : I→ I is any path that agrees with some
f -piece on every length L subinterval of I, then γ is a K2–quasigeodesic.

Now take N to be an integer larger than L and D, and let θ : H ∗Z→ Out(F) be the
homomorphism that restricts to the identity on H and maps the generator t of Z to f N . Let
Γ = 〈H, f N〉 be the image of this homomorphism and let C be the Cayley graph of H ∗Z for
the generating set {t,h : h ∈H}, metrized so that each edge labeled h ∈H has length D and
each edge labeled t has length N . We define a θ–equivariant map O : C→I as follows:
For each vertex w ∈ H ∗Z of C, we set O(w) = θ(w)x. For h ∈ H, the edge in C from 1 to
h is mapped by O to any geodesic from x to hx, and the edge in C from 1 to t is mapped by
O to the f -piece from x to f Nx using the parameterization coming from the quasigeodesic
C1→I . Now extend O by equivariance. Observe that for all a,b ∈ Z and h ∈ H, O maps
the length (a+b)N+D path in C from 1 to tahtb to an f -piece in I . Thus by construction,
O maps any geodesic in C to a path that agrees with f -pieces on all subintervals of length
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at most L. Using the constant K2 obtained above, it follows that O sends every geodesic
path in C to a K2–quasigeodesic in I and thus that O : C→ I is a K2–quasi-isometric
embedding. Since the metric on C differs from the word metric on H ∗Z (with our chosen
generators) by a multiplicative factor of no more than N, we conclude that θ : H ∗Z→I
is an NK2–quasi-isometric embedding.

Finally, to see that θ is an isomorphism, note that θ itself is a quasi-isometric embedding
into Out(F). This is a simple consequence of the fact that any orbit map from Out(F) to I
is coarsely Lipschitz. Hence, θ must have finite kernel. Since each finite order g ∈ H ∗Z
is conjugate into H, and H injects into Γ ≤ Out(F), we must have that θ : H ∗Z → Γ

is an isomorphism. Since Theorem 9.2 implies that EΓ is hyperbolic, this completes the
proof.

Remark. Note that for Γ = 〈H, f N〉 ∼= H ∗Z as in Theorem 9.4, the subgroup

Γ0 = 〈H, f NH f−N〉

is undistorted and isomorphic to H ∗H. Hence, the F-by-(H ∗H) extension EΓ0 is also hy-
perbolic. In the situation of surface group extensions, Honglin Min has constructed convex
cocompact subgroups of the mapping class group that are isomorphic to the free product of
two finite groups [Min].

Finally, we show how to construct examples of hyperbolic, fully irreducible f ∈Out(F)
that are independent for a given finite group H ≤Out(F). First, say that the finite group H ≤
Out(F) is projectively good if its image under the surjective homomorphism Out(F)→
GLr(Z) does not contain −I (where r = rk(F)). Note that any finite group H embeds into
the outer automorphism group Out(F(H)) with projectively good image, where F(H) is the
free group on H. This may be achieved by using the left action of H on itself to embed H
into Aut(F(H)) as permutation automorphisms whose images in GL|H|(Z) are permutation
matrices.

Example 9.5. Let H be any projectively good, finite subgroup of Out(F) with rk(F) ≥ 3.
We show that there is a hyperbolic, fully irreducible f ∈ Out(F) that is independent for
H. By Theorem 9.4, this shows that there is a hyperbolic group G fitting into the exact
sequence

1−→ F−→ G−→ H ∗Z−→ 1.

As any finite group embeds into the outer automorphism group of some free group with
projectively good image, this shows that there exists extensions of the above form for any
finite group H.

Suppose that H ≤ Out(F) is a finite, projectively good subgroup. Write r = rk(F). As
in Lemma 2.14, the restriction of the homomorphism Out(F)→ GLr(Z) to H is injective
and we identify H with its image in GLr(Z).

Claim 9.6. There is a matrix A ∈ GLr(Z) such that for any h ∈ H \1, the matrices hAh−1

and A have no common power.
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We complete the argument before proving the claim. Let A be a matrix as in the claim.
Now an application of the main result of Clay–Pettet [CP] implies that there is a hyperbolic,
fully irreducible outer automorphism f whose image in GLr(Z) is A. We then have that f
is independent for the finite group H. Otherwise, there is an h ∈ H \1 and integers r,s such
that h f rh−1 = f s. Applying the homomorphism Out(F)→GLr(Z) we see that this equation
contradicts our choice of A. Hence, f is independent for H. To complete the example, it
now suffices to prove the claim.

Proof of Claim 9.6. By assumption, the finite subgroup H ≤ GLr(Z) does not contain −I.
Hence, the action H yRPr−1 is effective and if we denote the fixed subspace of h ∈ H by
Vh, we have that VH = ∪h∈H\1Vh is a union of positive-codimension projective hyperplanes.
Hence, RPr−1 \VH is open.

Now let B ∈ GLr(Z) be the block diagonal matrix consisting of
(

2 1
1 1

)
in the upper left

2×2 corner and the identity matrix in the lower right corner. The eigenvalues for B are λ ,
1, and λ−1, where λ is the golden ratio. Moreover, the λ–eigenspace is one-dimensional
and so defines a point [v] ∈ RPr−1. Since RPr−1 \VH is open and every orbit of GLr(Z)y
RPr−1 is dense [Mos2, Lemma 8.5], there is a C ∈ GLr(Z) so that C[v] /∈ VH . Setting
A = CBC−1, we see that the λ–eigenspace of A is one-dimensional and is not projectively
fixed by any h ∈ H \1. Hence, no power of A can equal any power of hAh−1 for h ∈ H \1.
This completes the proof of the claim.
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