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Abstract. We characterize convex cocompact subgroups of mapping class groups that arise
as subgroups of specially embedded right-angled Artin groups. That is, if the right-angled
Artin group G < Mod(S) satisfies certain conditions that imply G is quasi-isometrically
embedded in Mod(S), then a purely pseudo-Anosov H < G is convex cocompact in Mod(S)
if and only if it is combinatorially quasiconvex in G. We use this criterion to construct
convex cocompact subgroups of Mod(S) whose orbit maps into the curve complex have
small Lipschitz constants.

1. Introduction

Convex cocompact subgroups of mapping class groups are those finitely generated sub-
groups whose orbits in Teichmüller space are quasiconvex [FM02], or equivalently, whose
orbit map into the curve complex defines a quasi-isometric embedding of the group [Ham05,
KL08]. Such subgroups of mapping class groups are of interest because of their close con-
nection to surface group extensions. Letting S denote the close surface of genus g ≥ 2 and
S̊ denote S punctured at p ∈ S, the well-known Birman exact sequence

1 −→ π1(S, p) −→ Mod(S̊)
f−→ Mod(S)→ 1

gives rise to an extension EG of π1(S, p) for each subgroup G < Mod(S), obtained by setting
EG = f−1(G). Theorems in [FM02] and [Ham05] combine to say that EG is Gromov-
hyperbolic if and only if G is convex cocompact. Hence, to understand the prevalence and
properties of hyperbolic surface group extensions we are left to study convex cocompact
subgroups of Mod(S).

The results of this paper determine the conditions of convex cocompactness for mapping
class subgroups contained in certain admissible embedded right-angled Artin groups, includ-
ing the groups constructed in [CLM12]. We denote by A(Γ) the right-angled Artin group
associated to the graph Γ, and say a subgroup H < A(Γ) is quasiconvex in A(Γ) if it is
quasiconvex in the word metric using the generating set corresponding to vertices of Γ.

Theorem 1.1. Suppose A(Γ) < Mod(S) is admissible. Then H < A(Γ) is convex cocompact
if and only if it is quasiconvex in A(Γ) and all nontrivial elements of H are pseudo-Anosov.
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As observed in [KL07], the existence of a purely pseudo-Anosov subgroup H ≤ Mod(S)
that is not convex cocompact would imply that the extension EH has a finite K(EH , 1) and
no Baumslag-Solitar subgroups but is not hyperbolic. A well-know conjecture attributed to
Gromov asserts that such a group does not exist (see [KL07] and [FM02]). By Theorem 1.1
an affirmative answer to the following questions would produce a counter-example to this
conjecture.

Question 1.2. Does there exist an admissible embedding A(Γ) ↪→ Mod(S) for which some
non-quasiconvex H < A(Γ) is all-pseudo-Anosov?

The condition for convex cocompactness in Theorem 1.1 comes as corollary to a stronger,
constructive result. In this form, we are able to identify when H < A(Γ) is purely pseudo-
Anosov by checking only finitely many mapping classes. Below, f(Γ, K) is a positive integer
valued function depending only on Γ and a K ≥ 0, and A(Γ)-length is word length in A(Γ)
with respect to the generating set corresponding to vertices of Γ.

Theorem 1.3. Suppose A(Γ) < Mod(S) is admissible and H is K-quasiconvex in Γ. Let
L = f(Γ, K). Then H is generated by words of A(Γ)-length less than L; if these are pseudo-
Anosov, then H is convex cocompact.

In particular, Theorem 1.3 provides flexible means to build explicit examples of convex
cocompact subgroups of mapping class groups, distinguishing it from other constructions in
the literature. See Section 7 for some examples.

We briefly survey other methods of producing convex cocompact subgroups of mapping
class groups. The simplest are free groups generated by sufficiently high powers of any finite
family of independent pseudo-Anosov mapping classes [FM02]. Later, Min [Min08] created
virtually free examples isomorphic to G∗H for arbitrary finite subgroups G,H < Mod(S), by
conjugating one of these groups by a sufficiently high power of a pseudo-Anosov. A third set
of examples live in certain hyperbolic groups embedded in the mapping class group Mod(S̊)

of a once-punctured surface S̊; these are the surface group extensions EG described above.
Generalizing [KLS09], Dowdall, Kent, and Leininger prove that, when EG is hyperbolic, its

quasiconvex all-pseudo-Anosov subgroups are convex cocompact in Mod(S̊) [DKRL12]. The
convex cocompact subgroups considered in this paper are most similar in spirit to these last
examples, with EG replaced by A(Γ) and cubical CAT(0) geometry playing a role similar
to hyperbolicity. Here, the idea is to replace quasi-convex orbits in Teichmüller space with

combinatorially quasiconvex orbits in S̃Γ, the CAT(0) cube complex associated to A(Γ).
To highlight a difference between the all-pseudo-Anosov free groups constructed by our

method and earlier examples, we describe a family of convex cocompact subgroups of Mod(Sg)
whose orbit maps into the curve complex have Lipschitz constants on the order of 1/g. Let
C(S) denote the curve complex of S and `S(f) the stable translation length of f ∈ Mod(S)
in C(S) (see Section 2 for definitions).

Theorem 1.4. Let Sg be a surface of genus g for some g ≥ 3. Then for any N ≥ 1 there
exists a convex cocompact H = 〈w1, . . . wN〉 < Mod(Sg) with the following property: there is
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an α ∈ C0(Sg) so that for any h ∈ H,

dC(Sg)(α, hα) ≤ |h|H ·
4

g − 1
+ 2,

where |.|H denotes word length in H with the given generators. In particular, `S(wi) ≤ 4
g−1

for each i = 1, . . . , N .

The pseudo-Anosovs wi appearing in Theorem 1.4 are themselves gth powers. Since it
is known that the minimum stable translation length in the curve complex is of order 1/g2

[GT11], it would be interesting to construct rank ≥ 2 convex cocompact subgroups whose
orbit maps into the curve complex have Lipschitz constants on the order of 1/g2.

This paper is organized as follows: Section 2 contains background on surfaces and mapping
class groups. Section 3 briefly reviews some cubical geometry and proves the main technical
property of quasiconvex subgroups of right-angled Artin groups used in this paper. The
definition of admissibility is then given in Section 4, where some properties of admissible
homomorphisms from right-angled Artin groups into mapping class groups are established.
The proof of Theorem 1.3 is given in Section 5. Section 6 completes the proof of Theorem 1.1
and Section 7 contains explicit constructions of convex cocompact mapping class subgroups.
The paper concludes with Section 8, which proves Theorem 1.4.

Acknowledgments. We thank Centre de Recerca Matemàtica and the Polish Academy
of Sciences for hosting both authors during parts of this research.

2. Surfaces and mapping classes

2.1. Quasiconvexity and quasi-isometry. Let (X, dX) and (Y, dY ) be metric spaces. For
constants K ≥ 1 and L ≥ 0, a map f : X → Y is a (K,L)-quasi-isometric embedding if for
all x1, x2 ∈ X

dX(x1, x2)− L
K

≤ dY (f(x1), f(x2)) ≤ K(dX(x1, x2) + L).

In addition, if every point in Y is within a bounded distance from the image f(X), then f
is a quasi-isometry and X and Y are said to be quasi-isometric. Where I is a subinterval
of R or Z, we call a (K,L)-quasi-isometric embedding f : I → Y a (K,L)-quasi-geodesic.
If K = 1 and L = 0, then f : I → Y is a geodesic. We say Y is a geodesic metric space if
for all y1, y2 ∈ Y , there is a a geodesic f : [a, b] → Y with f(a) = y1 and f(b) = y2. For
example, giving unit length to each edge of a graph G, i.e. a 1-dimensional CW complex,
turns G into a geodesic metric space by taking the induced path metric.

For convenience, we write K-quasigeodesic or K-quasi-isometric embedding to mean a
(K,K)-quasigeodesic or (K,K)-quasi-isometric embedding respectively.

We say a subset X ′ of a geodesic metric space X is K-quasiconvex if for any x, y ∈ X ′
and any geodesic [x, y] between x, y in X,

[x, y] ⊂ NK(X ′).
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We say X ′ is quasiconvex if it is K-quasiconvex for some K. When we speak of a quasiconvex
subgroup H of a group G, we have fixed a word metric on G with respect to some finite
generating set (changing generating sets can change which subgroups are quasiconvex). For
CAT(0) cube complexes we additionally define combinatorial quasiconvexity in Section 3.2.

2.2. Surface topology basics. Here we recall some relevant information about surfaces.
For additional details, we refer the reader to [MM00, FM12]. Fix a surface S of genus g
with p punctures and b boundary components. The complexity of S is the quantity ξ(S) =
3g − 3 + p+ b. In this paper we will only consider surfaces with ξ(S) ≥ 1 and we will often
not distinguish between boundary components and punctures of S. By a subsurface X of
S, we mean a compact submanifold such that the homomorphism π1X → π1S induced by
inclusion is injective. Hence, all subsurfaces are assumed to be essential. The subsurface
X ⊂ S is nonannular if X is not homeomorphic to an annulus. Denote by Ω(S) the set of
isotopy classes of nonannular subsurfaces of S. Although annuli play an important part in
the analysis of [MM00] and subsequence work, they are not considered in this paper. A curve
γ in S is an essential, simple loop in S, i.e. the image of a π1-injective embedding of the
circle into S. Recall that γ is essential if it is homtopically nontrivial and not parallel to a
boundary component or puncture. As is standard in the subject, we often do not distinguish
between a curve and its isotopy class or a subsurface and its isotopy class.

The curve complex C(S) of the surface S is the graph with vertex set the collection of
isotopy classes of curves in S. Vertices v and w are joined by an edge in C(S) if v and w have
disjoint representatives in S. When S has complexity 1, that is when S is a once-punctured
torus or a four-times punctured sphere, this definition produces a graph without edges and
so is modified as follows: the vertices of C(S) are unchanged, but two vertices are joined by
an edge if the corresponding curves have the minimal number of intersections among pairs
of curves on S. Hence, curves on the once-punctured surface intersecting once are joined
by an edge, as are curves intersecting twice on the four-times punctured sphere. With this
definition, if S has complexity 1 then C(S) is the standard Farey graph. In general, we
consider C(S) with its standard graph metric where each edge is assigned unit length. In
Section 2.3 we describe the action of Mod(S) on C(S) by isometry. The foundational result
in the study of the coarse geometry of the mapping class group is the following:

Theorem 2.1. [MM99] For S with ξ(S) ≥ 1, C(S) is Gromov hyperbolic.

Recall that a geodesic metric space is Gromov hyperbolic if there exists a δ ≥ 0 so that
for any points x, y, z and geodesics [x, y], [y, z] and [z, x] between the three points,

[x, y] ⊂ Nδ([y, z] ∪ [z, x])

where Nδ denotes a δ-neighborhood in C(S).
A pants decomposition P of S is a maximal collection of pairwise connected vertices of
C(S), or in terms of the surface, a maximal collection of isotopy classes of pairwise disjoint
curves in S. A marking µ of S is a pants decomposition P = {γ1, . . . , γξ(S)} with the
following additional structure: for each γi ∈ P there is a corresponding curve βi contained in



CONVEX COCOMPACTNESS IN Mod(S) VIA QUASICONVEXITY IN RAAGS 5

S \(P \γi) that intersects γi in the minimal possible number of times. In other words, if X is
the complexity 1 component of S \ (P \γi) then βi is any adjacent curve to γi in C(X). Then
µ = {(γ1, β1), . . . , (γξ(S), βξ(S))} is a marking of S. The underlying pants decomposition
of the marking µ is called the base of µ and is denoted base(µ). In the terminology of
[MM00], what we have described is a complete clean marking of S and in this reference the
authors construct the marking complex M(S) whose vertices are markings of S and edges
are determined by certain elementary moves on markings. The details will not be reviewed
here; however, it suffices for us to recall that M(S) is a locally finite, connected graph and
the natural action of Mod(S) is proper and cocompact. Hence, by the Svarc-Milnor lemma,
M(S) is quasi-isometric to Mod(S). Again, see [MM00] for details.

For a curve γ and a nonannular subsurface X of S we define the subsurface projection
of γ to X, denoted πX(γ), as follows: first realize γ and ∂X with minimal intersection, for
example by taking geodesic representatives in some hyperbolic metric on S. If γ does not
intersect ∂X then either γ ⊂ X, in which case we set πX(γ) = {γ}, or γ does not intersect
X and πX(γ) is the empty set. Otherwise, γ ∩X = {γ1, . . . , γk} is an nonempty collection
of essential arcs in X and πX(γ) is the subset of C(X) whose elements are isotopic to the
boundary of a regular neighborhood of the union of ∂X and γi for some 1 ≤ i ≤ k. In other
words, the curves of πX(γ) arise from performing surgery along ∂X to the arcs of γ ∩ ∂X.
This gives a subset of C(X) with diamX(πX(γ)) ≤ 3, where diamX denotes the diameter
of a collection of vertices in C(X). Observe that if πX(γ) = ∅ then γ ∈ N1(∂X). When
πX(γ) 6= ∅, then we say that γ cuts X; otherwise γ misses X.

The following result of Masur-Minsky gives control over the projection of a geodesic in the
curve complex to the curve complex of a subsurface. Its main application in this paper is to
force curve complex geodesics to run though prescribed regions of C(S) thereby guaranteeing
a definite length.

Theorem 2.2 (Bounded Geodesic Image Theorem [MM00]). Given S as above, there is
KBGI ≥ 0 so that if g is a geodesic in C(S) and Y is a subsurface of S with diamY (g) ≥ KBGI

then there is a vertex α of g with πX(α) = ∅.

We can also project markings to the curve complex of a subsurface. For a marking µ and
(nonannular) subsurface X the projection of µ to C(X) is defined as

πX(µ) = ∪γ∈base(µ)πX(γ).

For α, β either curves or markings, we set

dX(α, β) = diamC(X)(πX(α) ∪ πX(β)),

when defined. With this notation, it is well known that the projection from the marking
complex to the curve complex of a subsurface is coarsely 4-Lipschitz.

Given connected, non-isotopic, proper subsurfaces X and Y of S, there are three pos-
sibilities for their relative position in S and these possibilities are captured by subsur-
face projections. If X and Y are disjoint, then πX(∂Y ) = ∅ = πY (∂X). X and Y are
nested if, up to switching X and Y , X ⊂ Y up to isotopy in which case πY (∂X) 6= ∅ but
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πX(∂Y ) = ∅. Finally, if X and Y are neither disjoint nor nested, then X and Y overlap and
πX(∂Y ) 6= ∅ 6= πY (∂X). We use the notation X t Y to denote that X and Y overlap. A
collection X = {X1, . . . , Xn} of nonannular proper subsurfaces of S is cleanly embedded if
whenever two subsurface in the collection intersect essentially they overlap, i.e.

Xi ∩Xj 6= ∅ =⇒ Xi t Xj for i 6= j.

In this case, we can consider the associated coincidence graph ΓX whose vertices are labeled
v1, . . . , vn in correspondence to the subsurfaces of X and vi is joined by an edge to vj if and
only if Xi ∩ Xj = ∅. See, for example, Figure 1. In general, a collection of subsurfaces
{X1, . . . , Xn} fills the surface S if for any curve γ, there is an i such that πXi(γ) 6= ∅. That
is, there is a subsurface Xi in the collection that is cut by γ.

Figure 1. Cleanly embedded subsurfaces with coincidence graph

2.3. Mapping class group basics. The mapping class group of the surface S is the group of
isotopy classes of orientation preserving homeomorphisms of S and is denoted Mod(S). For a
nonannular subsurface X and f ∈ Mod(S), if f has a representative homeomorphism that is
the identity outside of X then f is said to be supported on X. The mapping classes supported
on X are precisely those mapping classes in the image of the natural map Mod(X)→ Mod(S)
(see [FM12] for details). f is fully supported on X if f is supported on X and the restriction
of f to X, denoted fX , is pseudo-Anosov. Recall that g ∈ Mod(X) is pseudo-Anosov if
no positive power of g fixes an isotopy class of curve in X. See [FLP79] for the standard
definition of pseudo-Anosov and the equivalence to the definition given here. There is a
natural action of Mod(S) on the curve complex C(S) obtained by extending the action of
Mod(S) on isotopy classes of curves.

For f ∈ Mod(S), define the (stable) translation length of f on C(S) as follows:

`S(f) = lim
n→∞

dS(α, fn(α))

n
.

where α is any vertex in C0(S). It is a standard exercise to verify that this limit exists and
is independent of α, and that `S(fn) = n · `S(f). In [MM99], it is shown that if f ∈ Mod(S)
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is pseudo-Anosov then `S(f) ≥ c > 0, where c depends only on the topology of S. This
implies that if f is fully supported on the subsurface X then `X(f) := `X(fX) > 0. For more
discussion on translation length see Section 8.

Finally, recall that the Teichmüller space of S, denoted T (S), is the space of marked
hyperbolic structures on the surface S. We will consider T (S) with its Teichmüller metric
dT and refer the reader to [FM12] for precise definitions and basic properties, including
details about the action of Mod(S) on T (S) by isometries. With this background at hand,
we define the subgroups of the mapping class group that are of interest in this paper.

Definition 1. Let S be a surface with ξ(S) ≥ 1 and H be a finitely generated subgroup of
Mod(S). Then H is convex cocompact if for some X ∈ T (S) the orbit H · X is quasiconex
(with respect to the Teichmüller metric).

Farb and Mosher introduced convex cocompact subgroups of mapping class groups in
[FM02], confirmed that the definition does not depend on the basepoint X , and proved its
equivalence to a detailed condition requiring both hyperbolicity of the subgroup and its well-
behaved, cocompact action on a “weak” convex hull in T (S), justifying the analogy with
convex cocompact Kleinian groups. Of particular relevance to this paper is the following
characterization of convex cocompact subgroups of mapping class groups:

Theorem 2.3. [KL08, Ham05] Let S be a surface with ξ(S) ≥ 1 and H be a finitely generated
subgroup of Mod(S). Then H is convex cocompact if and only if for some (any) α ∈ C0(S)
the orbit map

H → C(S)

given by h 7→ h · α is a quasi-isometric embedding.

Using this characterization, it is immediate that if H is convex cocompact then any h ∈ H
with infinite order is pseudo-Anosov.

2.4. A partial order on subsurfaces. We recall the partial order on connected subsurfaces
described in [CLM12]. The origins of this ordering can be found in [MM00, BKMM12]. Fix
markings µ, µ′ and fix K ≥ 20. Define Ω(K,µ, µ′) = {Y ⊂ S : dY (µ, µ′) ≥ K}. Recall
that connected subsurfaces X, Y overlap if X and Y intersect essentially and one cannot be
isotoped to be contained in the other. This is equivalent to the condition that both πY (∂X)
and πX(∂Y ) are not empty. Define the relation X ≺ Y to mean X and Y overlap and

dX(µ, ∂Y ) ≥ 10.

The following properties of ≺ are verified in [CLM12].

Lemma 2.4. Let K ≥ 20 and choose X, Y ∈ Ω(K,µ, µ′) that overlap. Then X and Y are
ordered and the following are equivalent

(1) X ≺ Y
(2) dX(µ, ∂Y ) ≥ 10
(3) dX(µ, ∂Y ) ≥ K − 4
(4) dX(µ′, ∂Y ) ≤ 4

(5) dY (µ′, ∂X) ≥ 10
(6) dY (µ′, ∂X) ≥ K − 4
(7) dY (µ, ∂X) ≤ 4
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Moreover, ≺ is a strict partial order on Ω(K,µ, µ′).

The following observation will be used in combination with the Bounded Geodesic Image
Theorem (Theorem 2.2) to show when large subsurface projections combine to build up
distance in the curve complex.

Lemma 2.5. If K ≥ 20, X, Y, Z ∈ Ω(K,µ, µ′), and X ≺ Y ≺ Z, then any curve disjoint
from both X and Z is also disjoint from Y .

Proof. Suppose γ is disjoint from both X and Z but it intersects Y . Because both X and Z
are ordered with Y , they overlap with Y . So we have that dY (∂X, γ), dY (γ, ∂Z) ≤ 2. Then

K ≤ dY (µ, µ′) ≤ dY (µ, ∂X) + dY (∂X, γ) + dY (γ, ∂Z) + dY (∂Z, µ′)

≤ 4 + 2 + 2 + 4 = 12

using Lemma 2.4. This contradicts K ≥ 20. �

3. Right-angled Artin groups

3.1. RAAGs and normal forms. Let Γ be a simplicial graph with vertex set V (Γ) =
{v1, . . . , vn} and edge set E(Γ) ⊂ V (Γ) × V (Γ). The right-angled Artin group, A(Γ), asso-
ciated to Γ is the group presented by

〈vi ∈ V (Γ) : [vi, vj] = 1 ⇐⇒ (vi, vj) ∈ E(Γ)〉.
The vi will be referred to as the standard generators of A(Γ). Note that if Γ is the graph
with n vertices and no edges then A(Γ) = Fn. At the other extreme, if Γ is the complete
graph of n vertices then A(Γ) = Zn. Because of this, A(Γ) is often said to “interpolate”
between free and free abelian groups. Although they are simple to define, right-angled Artin
groups have been at the center of major recent developments in geometric group theory and
low-dimensional topology.

In this section, we briefly recall a normal form for elements of a right-angled Artin group.
For details see Section 4 of [CLM12] and the references provided there. Fix a word w =
xe11 . . . xekk in the vertex generators of A(Γ), with xi ∈ {v1, . . . , vn} for each i = 1, . . . , k .
Each xeii together with its index, which serves to distinguish between duplicate occurrences
of the same generator, is a syllable of the word w. Let syl(w) denote the set of syllables for
the word w. We consider the following 3 moves that can be applied to w without altering
the element in A(Γ) it represents:

(1) If ei = 0, then remove the syllable xeii .

(2) If xi = xi+1 as vertex generators, then replace xeii x
ei+1

i+1 with x
ei+ei+1

i .
(3) If the vertex generators xi and xi+1 commute, then replace xeii x

ei+1

i+1 with x
ei+1

i+1 x
ei
i .

For σ ∈ A(Γ), set Min(σ) equal to the set of words in the standard generators of A(Γ)
that have the fewest syllables among words representing σ. We refers to words in Min(σ) as
normal representatives of σ. We also refer to a word in the standard generators as normal
if it is normal for the element of A(Γ) that it represents. Hermiller and Meiler showed in
[HM95] that any word representing σ can be brought to any word in Min(σ) by application



CONVEX COCOMPACTNESS IN Mod(S) VIA QUASICONVEXITY IN RAAGS 9

of the three moves above. Since these moves increase neither word nor syllable length, we see
that words in Min(σ) are also minimal length with respect to the standard generators, and
that any two words in Min(σ) differ by repeated application of move (3) only. For normal
words w,w′, we will occasionally use the notation w ∼ w′ to denote that w and w′ differ by
a repeated application of move (3). In other words, w ∼ w′ if and only if there is a σ ∈ A(Γ)
with w,w′ ∈ Min(σ). It is verified in [CLM12] that for any σ ∈ A(Γ) and w,w′ ∈ Min(σ)
there is a natural bijection between syl(w) and syl(w′), which extends the obvious bijection
between normal form words differing by a single application of move (3). Thus we define,
for σ ∈ A(Γ), syl(σ) := syl(w) using any w ∈ Min(σ). This permits us to define, for each
σ ∈ A(Γ), a strict partial order ≺ on the set syl(σ) by setting xeii ≺ x

ej
j if and only if for

every w ∈ Min(σ) the syllable xeii appears to the left of x
ej
j in the spelling of w.

One can imagine that the generators and their inverses correspond to directions in the
Cayley graph. For example, the standard Cayley graphs for either F2 = 〈a, b〉 or Z2 =
〈a, b|ab = ba〉 have four directions; typically a and a−1 correspond to east and west respec-
tively, while b and b−1 point north and south. A word in normal form represents a geodesic
path that also minimizes changes in direction.

Example 1. Take Γ to be the graph with vertex set {a, b, c, d} and edge set {(a, b), (b, c), (c, d)}
and consider the word w = acbd. We see that w is in normal form and is equivalent through
move (3) to the words abcd, bacd, abdc, and badc. Hence, the only ordered syllables of w are
a ≺ c, a ≺ d, and b ≺ d.

Our first lemma states immediate properties of our partial order and normal forms. We
use this lemma without mention, in particular to prove a second, more technical lemma
critical to our proof of the main theorem.

Lemma 3.1. Subwords of normal words are themselves normal words. Unordered syllables
of a normal word correspond to generators that commute.

Lemma 3.2. Suppose w is a normal word containing distinct, unordered syllables p, q ∈
syl(w) separated by the subword M . That is, up to switching p and q,

w = xe11 · · ·xe
k

k p = xeii q = x
ej
j M = x

ei+1

i+1 · · ·x
ej−1

j−1 ,

so pMq is the smallest subword of w containing p and q. Then M has normal representative
M ′ = LR where L and R are (possibly empty) subwords commuting with p and q respectively.

Proof. We induct on the syllable length of M . The claim is vacuous if M is the empty word.
If M non-empty, observe that each syllable of M is ordered with at most one of p and q, since
p and q are not ordered. Find the first syllable in M from the left which is ordered with p.
If no such syllable exists then the claim is true for M = L and R empty. Otherwise, call this
syllable s and observe that s and q are not ordered and therefore commute. Furthermore,
pMq = pL1sM1q where L1 commutes with p by construction. Inductively, M1 has normal
representative L2R2 where L2 commutes with s and R2 commutes with q. Thus pMq has
normal representative L1pL2qsR2 got by a repeated application of move (3). Inductively,
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L2 = L3R3 where p commutes with L3 and q commutes with R3. We have shown that the
word M has normal representatives

M ∼ L1sM1 ∼ L1sL2R2 ∼ L1L2sR2 ∼ L1L3 ·R3sR2

where L = L1L3 commutes with p and R = R3sR2 commutes with q. �

3.2. Cubical geometry. In this section we briefly review some geometry of non-positively
curved cube complexes, which we use throughout the paper. Good references for this material
are [BH09, HW08, Hag08]. First, recall that a simplicial complex is a flag complex if any
n+ 1 pairwise adjacent vertices span an n-simplex. A subcomplex X of a simplicial complex
Y is a full subcomplex when any simplex in Y whose vertices are in X is contained in X.

Definition 2. A cube complex X is the space formed by isometrically gluing Euclidean unit
cubes along their faces. X is non-positivley curved (NPC) if the link of each vertex is a flag
simplicial complex. X is CAT(0) if it is NPC and simply connected.

Because of their combinatorial nature, local isometries between NPC cube complexes have
a particularly simple description; see [Cha07, BH09, Hag08] for details. A map between cube
complexes is said to be cubical if it maps open cubes homeomorphically onto open cubes.
Denote by lk(x) the link of the vertex x of X.

Theorem 3.3. Let X, Y be cube complexes, Y NPC, and f : X → Y a cubical map such that
for each x ∈ X0 the induced map on the link of x is injective and f(lk(x)) is a full subcomplex
of lk(f(x)) in Y . Then X is NPC, and f is a local isometry. Further, f∗ : π1(X)→ π1(Y ) is

injective and the induced map on the universal covers f̃ : X̃ → Ỹ is an isometric embedding

with f̃(X̃) ⊂ Ỹ a convex subcomplex.

Given a simplical graph Γ with associated right-angled Artin group A(Γ), we recall the
definition of the so-called Salvetti complex SΓ. This is the cube complex defined as follows:
begin with a rose, denoted S1

Γ, with vertex x and |V (Γ)| petals oriented and labeled by the
vertices of Γ. Now attach 2-cubes for each edge of Γ corresponding to a commutation relator
in A(Γ). Specificaly, if u and w are vertices of Γ joined by an edge, then a square is attached
to S1

Γ with boundary label uwu−1w−1. For n > 2, we attach an n-cube for each set of n
pairwise commuting generators (for each n-clique of Γ) whose attaching map restricted to
each face is the characteristic map for that face. It is easy verified that SΓ is an NPC cube
complex with fundamental group A(Γ), see [BH09] for example. We denote its universal

cover S̃Γ and fix a lift x̃ of the unique vertex x of SΓ. By the construction, it follows that

(S̃1
Γ, x̃) is isomorphic to the Cayley graph for A(Γ) with its standard generating set. In this

paper, our cube complexes arise as compact locally convex subcomplexes of covers of the
Salvetti complex. These are known as compact special cube complexes in the literature.

Besides the induced path metric on a CAT(0) cube complex X, we will also be interested
in the graph metric on the 1-skeleton of X. We refer to this metric as combinatorial distance
on X0 and observe that this distance can be alternatively characterized as the number of
hyperplanes separating two vertices or the number of hyperplanes intersected by the CAT(0)
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geodesic between the vertices. Geodesics in this metric on X1 are called combinatorial
geodesics. For more on combinatorial distance see [Hag08], or the appendix of [HW08]. In

the special case of S̃Γ, we note that combinatorial distance agrees with distance in A(Γ) with

its standard generating set via the identification A(Γ)→ S̃Γ given by g 7→ g · x̃.
Finally, recall that a collection of vertices Y ⊂ X0 for X a CAT(0) cube complex is called

combinatorially K-quasiconvex in X if every combinatorial geodesic between points of Y
stays within combinatorial distance K from Y . Again translating to the group A(Γ), quasi-
convexity of the subgroup H < A(Γ) with respect to the standard generators is equivalent

to combinatorial quasiconvexity of H · x̃ in S̃Γ.

3.3. Quasiconvex subgroups of RAAGs. We will make use of the following theorem of
Haglund. Here, the convex hull of a subcomplex Y of the CAT(0) cube complex X is the
intersection of all convex subcomplexes containing Y .

Theorem 3.4. [Hag08] Let X be a uniformly locally finite CAT(0) cube complex. Then
for any K ≥ 0 there exists an L ≥ 0 such that the convex hull of any combinatorially
K-quasiconvex subcomplex Y is contained in the L-neighborhood of Y .

We recall that a subcomplex Y ⊂ X is CAT(0) convex if and only if Y is full and combi-
natorially convex [Hag08, HW08]. For a simplicial graph Γ and K ≥ 0, define the function
f(Γ, K) as follows: first use Theorem 3.4 to choose an L so that the L-neighborhood of any

combinatorially K-quasiconvex subcomplex Y of the CAT(0) cube complex S̃Γ contains the
convex hull of Y . Now define f(Γ, K) to be the number of vertices of combinatorial distance

≤ L from x̃ ∈ S̃Γ, where x̃ is a lift of the unique vertex of SΓ. Hence, f(Γ, K) counts the
number of elements in the L-ball about the identity in the Cayley graph of A(Γ) with its
standard generators. We now obtain the following consequence of Theorem 3.4.

Lemma 3.5. Let H < A(Γ) be a quasiconvex subgroup with respect to the standard generators
of A(Γ). Then there exists a pointed compact cube complex (C, x) and a cubical local isometry
φ : (C, x)→ (SΓ, x) with H = φ∗(π(C, x)). Furthermore if H is K-quasiconvex, then C has
less than f(Γ, K) vertices.

Proof. Since quasiconvexity of H in the standard generators of A(Γ) is equivalent to combi-

natorial quasiconvexity of H · x̃, Theorem 3.4 provides a convex subcomplex C̃ containing

x̃, the convex hull of H · x̃ in S̃Γ, that is H-invariant and cocompact. Set C = C̃/H and

let φ : C → SΓ denote the composition C̃/H → S̃Γ/H → SΓ. As the composition of local
isometries, φ is a local isometry and H = φ∗(π(C, x)).

To conclude, note that if H is K-quasiconvex then the number of vertices of C is no greater

than the number of vertices of NL(H · x̃)/H, as C̃ ⊂ NL(H · x̃). This is in turn bounded by

the number of vertices of NL(x̃) in S̃Γ, because the projection map NL(x̃) → NL(H · x̃)/H
is surjective. Hence, the number of vertices of C is bounded above by f(Γ, K). �
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Fixing a lift x̃ ∈ S̃Γ over x ∈ SΓ, the map φ lifts to a cubical isometric embedding

φ̃ : (C̃, x̃)→ (S̃Γ, x̃). Through this embedding, C̃ becomes a convex, combinatorially convex

subcomplex of S̃Γ.
Label the oriented edges of SΓ by the vertex generators of A(Γ) as in the construction

of SΓ. Using the cubical map φ, pull back these labels to the oriented edges of C so that
oriented loops in C at x correspond to words in H written in the standard generators of
A(Γ). We note the following implication of the geometric properties of C. First, call an
edge path in a nonpositively curved cube complex X a combinatorial local geodesic if each

of its lifts to X̃ is a combinatorial geodesic. Note that this property is preserved under local
isometry of cube complexes.

Lemma 3.6. With the notation above, oriented edge-loops at x ∈ C which are combinatorial
local geodesics are in bijective correspondence with minimal length words in H with respect
to the standard generators of A(Γ).

Proof. By Lemma 3.5, a loop based at x in SΓ corresponding to a word inH is a combinatorial
local geodesic in SΓ if and only if it is contained in C and is a combinatorial local geodesic
there. More precisely, if γ is a combinatorial local geodesic loop of (SΓ, x) with [γ] ∈ H,

then its lifts based at x̃ in S̃Γ are contained in C̃, and so γ corresponds to a combinatorial
local geodesic in C. Conversely, combinatorial local geodesic loops of (C, x) map through φ
to combinatorial local geodesic loops of (SΓ, x) representing elements of H.

The lemma then reduces to the observation that since (S̃1
Γ, x̃) is isomorphic to the Cayely

graph of A(Γ) with the standard vertex generators, combinatorial local geodesics in SΓ

correspond to minimal length words in A(Γ). �

The following proposition gives us control over the normal forms of elements of H.

Proposition 3.7. Let H be a K-quasiconvex subgroup of A(Γ). There is an ` = `(Γ, K) ≥ 0
so that for h ∈ H and a minimal length representative w = w1w2 . . . wn of h in the standard
generators of A(Γ), any subword wiwi+1 . . . wj of w with length j − i ≥ `/3 contains as a
subword a conjugate of an element of H of A(Γ)-length ≤ `.

Proof. Since H is quasiconvex in A(Γ) with the standard generators, H · x̃ is combinatorially

quasiconvex in S̃Γ. Hence, there is a cube complex C and a cubical local isometry φ :
(C, x)→ (SΓ, x) with H = φ∗(π1(C, x)), as discussed above. Set ` = 3(f(Γ, K) + 1).

If w is as in the statement of the proposition, then by Lemma 3.6 above w corresponds

to a combinatorial local geodesic in C. Since subpaths of combinatorial geodesics in C̃ are
themselves combinatorial geodesics, the subword wiwi+1 . . . wj is also a combinatorial local
geodesic of C. This implies, in particular, that the edge path in C spelled by wiwi+1 . . . wj
does not backtrack in C1. If j − i ≥ f(Γ, K) + 1, then this edge path must repeat a vertex,
say w ∈ C, since the number of vertices of C is no greater then f(Γ, K) by Lemma 3.5.

Let α be the subpath of wiwi+1 . . . wj beginning and ending at w. Again, α is a combina-
torial local geodesic loop of length ≤ f(Γ, K) + 1. Since the combinatorial distance from x
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to w is also ≤ f(Γ, K) + 1, we have that α represents a word in A(Γ) conjugate to a loop in
C based at x of length ≤ 3(f(Γ, K) + 1) = `. This complete the proof. �

For concrete examples of the local isometries C → SΓ considered above, see Section 7.

4. Admissible A(Γ) in Mod(S)

4.1. The [CLM12] construction. In order to introduce notation and motivate the condi-
tion to which our theorem applies, we begin by describing the types of the homomorphisms
constructed in [CLM12]. Begin with a finite simplicial graph Γ and a collection of cleanly
embedded, connected nonannular subsurfaces X = {X1, . . . , Xn} in S, whose coincidence
graph is Γ = ΓX. We label the vertices of Γ by v1, . . . , vn so that these indices agree with
subsurfaces they represent in X. Since mapping classes supported on disjoint subsurfaces
commute, any choice of mapping classes F = {f1, . . . , fn} with fi ∈ Mod(Xi) ≤ Mod(S)
determines a homomorphism φ = φF : A(Γ) → Mod(S) with φ(vi) = fi. Suppose we have
fixed such a homomorphism where the mapping classes are fully supported on their respec-
tive surfaces. Recall this implies that for each 1 ≤ i ≤ n, `Xi(fi) > 0. Informally, the main
theorem from [CLM12] concludes that if these translation lengths are large enough, depend-
ing only on X, then the induced homomorphism into A(Γ) is a quasi-isometric embedding.
Here are some of the relevant details.

For σ ∈ A(Γ) with w = xe11 . . . xekk ∈ Min(σ), define J : {1, . . . , k} → {1, . . . , n} so that
xi = vJ(i) as standard generators of A(Γ). Hence, φ(xi) = fJ(i) is supported on XJ(i). Write

Xw(xeii ) = φ(xe11 . . . x
ei−1

i−1 )(XJ(i))

for i = 2, . . . , k and Xw(xe11 ) = XJ(1). This defines a map

Xw : syl(w)→ Ω(S).

It is verified in [CLM12] that this map is well-defined for σ ∈ A(Γ) independent of the choice
of normal representative w, so we set Xσ := Xw for w ∈ Min(σ).

Define subs(σ) as the image of the map Xσ : syl(σ)→ Ω. Thus we may associate to every
syllable s in syl(σ) the subsurface Y = Xσ(s) in subs(σ), without reference to the particular
indexing of syllables in w. The subsurface Y is not to be confused with the support of the
syllable φ(s) = f ij , denoted supp(φ(s)), which is Xj.

Example 2. Consider the surface S and the collection of subsurfaces X = {Xa, Xb, Xc}
given in Figure 1 with coincidence graph Γ. Let F = {fa, fb, fc} be a collection of mapping
classes that are fully supported on X and let φ : A(Γ) → Mod(S) be the induced homo-
morphism. Consider the normal form word w = abca. Then subs(w) = {Xa, faXb, fafbXc,
fafbfcXa}. A single application of move (3) yields the word w′ = acba with subs(w′) =
{Xa, faXc, fafcXb, fafcfbXa}. AsXb andXc are disjoint, fb and fc commute and so subs(w) =
subs(w′), as claimed above.
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4.2. Admissibility. Suppose that we have fixed the homomorphism φF : A(Γ) → Mod(S)
as in the previous section. The following definition collects the properties necessary for the
proof of our main theorem.

Definition 3. Fix the marking µ ∈ M(S). Let Γ be the coincidence graph of a collection
X = {X1, . . . , Xn} of cleanly embedded, nonannular, proper subsurfaces of S. Choose F a
collection of mapping classes fully supported on X. The homomorphism φ = φF : A(Γ) →
Mod(S) is K-admissible if the following conditions holds for each σ ∈ A(Γ):

• For each syllable xeii of σ, we have dXσ(x
ei
i )(µ, φ(σ)µ) ≥ K|ei|. In particular, Xσ(xeii ) ∈

Ω(K,µ, φ(σ)µ).
• The map Xσ : syl(σ)→ subs(σ) is injective and order preserving, where subs(σ) ⊂

Ω(K,µ, φ(σ)µ) is given the induced ordering.

The main result from [CLM12] can then be rephrased as

Theorem 4.1. [CLM12] Let X = {X1, . . . , Xn} be cleanly embedded in S with co-incidence
graph ΓX. Then for any K there is a c0 ≥ 0 so that the following holds: if F = {f1, . . . , fn}
is a collection of mapping classes fully supported on X and for each fi ∈ Mod(Xi) we have
`Xi(fi) ≥ c0, then the induced homomorphism φF : A(Γ) → Mod(S) is K-admissible. For
K sufficiently large, any K-admissible homomorphism is a quasi-isometric embedding into
Mod(S) and has a quasi–isometric orbit map into Teichmüller space.

We remark that while in the proof of the Theorem 4.1 showing that large translation length
implies admissibility is quite involved, once admissibility is demonstrated, showing that the
homomorphisms are quasi-isometric embeddings into Mod(S) and Teichmüller space follows
immediately from the distance formulas of Masur-Minsky [MM00] and Rafi [Raf07], respec-
tively. In [Tay13], the second author gives a similar criterion for quasi-isometric embeddings
of right-angled Artin groups into Out(Fn).

Definition 4. Assuming the set-up of Definition 3, φF : A(Γ)→ Mod(S) is admissible if it
is K-admissible for some K ≥ max{KBGI , 20}, with KBGI as in Theorem 2.2.

4.3. Filling words, filling blocks, and `-short filling subgroups. Fix an admissible
homomorphism φF : A(Γ)→ Mod(S). In this section we define three notions of “filling,” for
words, subwords, and subgroups in A(Γ) respectively. We emphasize that these conditions
depend on the particular admissible embedding of A(Γ) into Mod(S), which we denote by φ
for brevity. These definitions allow us to develop the technical machinery used in the proof
of Theorem 5.1, from which we derive the “if” direction of Theorem 1.1: that quasiconvex,
all-pseudo-Anosov subgroups of admissibly embeddings A(Γ) are convex cocompact.

Call σ ∈ A(Γ) cyclically reduced if it has the least number of syllables among all of its
conjugates. If σ is cyclically reduced, we say that σ fills if the collection of subsurfaces
subs(σ) fills S; that is, for any curve γ there is a subsurface Y ∈ subs(σ) such that πY (γ)
is not empty. For arbitrary σ ∈ A(Γ), we say that σ fills if σ is conjugate to σ′ where σ′

is cyclically reduced and fills. Note that this is equivalent to requiring that all conjugates
σ′ of σ are such that the collection of subsurfaces subs(σ′) fills S. We say a word w in the
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standard generators of A(Γ) fills, or is a filling word, if and only if w ∈ Min(σ) for some
σ ∈ A(Γ) that fills.

Filling words relate to pseudo-Anosov mapping classes in an unsurprising way. The idea
for the next lemma appears in [CLM12], but we include a proof for completeness. Let Xσ

be the collection of subsurfaces

Xσ = {X ∈ X : X = supp(φ(xi)) for some xeii ∈ syl(σ)}.

Lemma 4.2. The set of subsurfaces subs(σ) fills S if and only if Xσ fills S.

Proof. Fix an indexing by i of syllables xeii in syl(σ), their supports Xi in X, and their
associated subsurfaces Yi = φ(xe11 · · ·x

ei−1

i−1 )Xi in subs(σ). If Xσ fills S, then given a curve
γ we may consider the smallest index I such that γ cuts XI . Because φ(xe11 · · ·x

eI−1

I−1 ) fixes
γ, we know γ = φ(xe11 · · ·x

eI−1

I−1 )(γ) cuts YI = φ(xe11 · · ·x
eI−1

I−1 )XI . Since γ was arbitrary, we
conclude subs(σ) fills S. On the other hand, if some curve γ misses all Xi in Xσ, then
because γ = φ(xe11 · · ·x

ei−1

i−1 )(γ) for any i, it is easy to see that γ is also disjoint from all Yi in
subs(σ). �

Lemma 4.2 implies that, if subs(σ) fails to fill, φ(σ) fixes the isotopy class of some curve
and thus cannot be pseudo-Anosov. Therefore, for any σ ∈ A(Γ), if φ(σ) is pseudo-Anosov,
then σ fills. The converse is shown in [CLM12]: if σ fills then φ(σ) is pseudo-Anosov.
However, we do not directly use this fact, which can be recovered from Theorem 5.1 in
the case H is a cyclic group. Indeed, rather then assume that φ(H) is a purely pseudo-
Anosov subgroup of the mapping class group, Theorem 5.1 requires the (a priori weaker)
filling assumption on a finite collection of elements of the subgroup H. We formalize this
assumption with a definition: say that for H ≤ A(Γ) and ` > 0, H is `-short filling if for
all h ∈ H with |h|A(Γ) ≤ `, h fills. We remind the reader that this condition is for a fixed
admissible homomorphism φ : A(Γ)→ Mod(S).

Consider a normal word w = s1 · · · sk where si are syllables in syl(w). Suppose w′ is a
subword consisting of a sequence of consecutive syllables, so w′ = sisi+1 · · · sj where i < j.
If subs(w′) fills S, we say w′ is a filling block for w. Note that, while every filling word
has a filling block, filling blocks can also appear in non-filling words. We are interested in
filling blocks because, as Lemma 4.4 shows, these have consequences about syllable order.
Theorem 4.1 relates syllable order to subsurface order, and we prove Theorem 5.1 by relating
subsurface order to distances in the curve complex.

The proof of Theorem 5.1 relies on the lemmas that follow. We have already mentioned
Lemma 4.4, which shows that filling blocks block commutation. Lemma 4.6 show how to
find filling blocks for `-short filling H. Before either of these, we need to relate subs(w′)
to subs(w) when w′ is a subword of w. Given u, v ∈ A(Γ), write u · subs(v) to denote the
collection {φ(u)Y : Y ∈ subs(v)}.

Lemma 4.3. Suppose w is a normal word with length k in the standard generators of A(Γ),
partitioned into subwords by w = BME, so

w = x1 · · ·xk B = x1 · · ·xi M = xi+1 · · ·xj 1 ≤ i < j ≤ k



16 J. MANGAHAS AND S. TAYLOR

where xi are generators of A(Γ), and E may be empty. Then B · subs(M) ⊂ subs(w), and
any syllable s′ ∈ syl(M) with associated subsurface Y ∈ subs(M) is a subword of the syllable
s ∈ syl(w) with associated subsurface φ(B)Y .

Proof. This follows by inspection, using Lemma 3.1 and the definition of subs. �

Lemma 4.4. Suppose the normal word w = s1 · · · sk contains a filling block w′ = sisi+1 · · · sj,
where sn are syllables in syl(w) for 1 ≤ n ≤ k. Then each syllable sn is ordered with some
syllable of w′.

Proof. Let Y ∈ subs(w) be the subsurface associated to the syllable sn, that is Y = Xw(sn).
Write w = Bw′E where B and E are the prefix and suffix respectively of the subword w′ in
w. Because subs(w′) fills, so does its homeomorphic image B · subs(w′), which is a subset
of subs(w) by Lemma 4.3. In particular we have Z ∈ B · subs(w′) ⊂ subs(w) such that
πZ(∂Y ) is not empty. Let sm be the syllable of w associated to Z; observe that sm is also a
syllable of w′. Write Xn and Xm for the supports of sn and sm respectively.

We will show that sn and sm are ordered. Suppose not. Then w has normal representatives
w1 = bsnsme and w2 = bsmsne which each represent some σ ∈ A(Γ). Since either of Xw1

and Xw2 can be used to determine the bijection Xσ : syl(σ)→ subs(σ), we know

Y = φ(b)Xn = φ(bsm)Xn while Z = φ(bsn)Xm = φ(b)Xm.

This means φ(sn)Xm = Xm, which requires that Xm and Xn are either the same or they are
disjoint subsurfaces, by admissibility. Either case contradicts our finding that

πZ(∂Y ) = πφ(b)Xm(∂(φ(b)Xn)) = φ(b)(πXm(∂Xn))

is not empty. �

Finally, we give lemmas to find filling blocks whenever H < A(Γ) is quasiconvex and
`-short filling for appropriate `.

Lemma 4.5. Given an admissible embedding φ : A(Γ) → Mod(S), suppose H < A(Γ) is
quasiconvex and `-short filling, where ` is the constant determined in Proposition 3.7. Then
for any h ∈ H, every syllable xe ∈ syl(h) has exponent e < `/3.

Proof. Supposing the contrary, let w ∈ Min(h) with syllable xe. Since normal form words
are length minimizing, Proposition 3.7 says that xe contains a subword conjugate to h′ ∈ H
where |h′|A(Γ) ≤ `. Then by hypothesis, h′ fills. Thus all its conjugates fill, including the
subword of xe. But any such subword is merely a power of the generator x, whose image
under the admissible embedding φ is supported on a proper subsurface of S. In particular,
such a subword cannot fill, our contradiction. �

Lemma 4.6. Given an admissible embedding φ : A(Γ) → Mod(S), suppose H < A(Γ) is
quasiconvex and `-short filling, where ` is the constant determined in Proposition 3.7. Then
for any h ∈ H and any w ∈ Min(h), every subword of w of length at least ` contains a filling
block for w.
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Proof. Let w′ be a subword of w of length at least `. Then w′ partitions into subwords
w′ = BME where M has length `/3 while B and E have length at least `/3. By Proposition
3.7, M has a subword M ′ which, as an element of A(Γ), is conjugate to h′ ∈ H such that
|h′|A(Γ) ≤ `. By the hypothesis that H is `-short filling, h′ is a filling word, and therefore so
is its conjugate M ′. This means subs(M ′) fills. If M ′ is not already a filling block for w, it
must be that the first and/or last syllables of M ′ are proper subwords of syllables of w. By
Lemma 4.5, since B and E have length greater than `/3, it is possible to complete M ′ to a
filling block of w which is entirely contained in w′. �

5. Proof of convex cocompactness

In this section, we provide the conditions for when a subgroup of the mapping class group
that come from an admissible embedding of a right-angled Artin group is convex cocompact.
The idea is the following: fix a marking µ and begin with a normal word w of H ≤ A(Γ).
If w has n syllables, admissibility implies that there are at least n subsurfaces with large
subsurface projection between µ and its translate φ(w)µ. An application of the Bounded
Geodesic Image Theorem (Theorem 2.2) implies that any geodesic between the marking and
its translate in C(S) must enter a 1-neighborhood in the curve complex of the boundary of
each of the subsurfaces of large projection distances. This will force curve complex distance
of at least n

k
so long as we have a k-to-1 association between subsurfaces of large projection

distance and, on the geodesic between the markings, vertices that are distance 1 from the
boundaries of these subsurfaces in C(S). Hence, the difficulty is determining such a k that is
independent of the word w. This is where the cubical geometry developed in Section 3.3 is
employed. In particular, the existence of the compact, locally convex subcomplex C, coming
from quasiconvexity of H, controls the regularity with which one encounters filling subwords
in the spelling of w. This regularity, along with the order preserving map Xw, implies that
syllables sufficiently spaced out in the spelling of w correspond to filling subsurfaces. Hence,
subsurfaces coming from such syllables cannot both be disjoint from a single vertex of our
geodesics, thereby forcing up the amount that w displaces the original marking. We now
give the details.

Theorem 5.1. Let µ be a marking of S and let φ : A(Γ) → Mod(S) be an admissible
homomorphism into the mapping class group of the surface S. Let H be a quasiconvex
subgroup of A(Γ). Then there is a ` > 0 so that if H is `-short filling, φ(H) is a convex
cocompact subgroup of the mapping class group. In particular, for any h ∈ H

dS(µ, φ(h)µ) ≥ |h|A(Γ)/6`− 2.

Proof. Given quasiconvex H < A(Γ), apply Proposition 3.7 to obtain the constant ` for the
condition that H is `-short filling. We show that the orbit map from H to C(S) sending h
to φ(h)µ is a quasi-isometric embedding. This will prove that φ(H) < Mod(S) is convex
cocompact. Recall that since H is quasiconvex, it is undistorted in A(Γ) and so we may use
the word norm on A(Γ) in place of a word norm for H. Being quasiconvex, H is finitely
generated, and therefore the orbit map is coarsely Lipshitz. In detail, if h1, . . . , hs generates
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H and C = max{dS(µ, φ(hi)µ) : 1 ≤ i ≤ s} then dS(µ, φ(h)µ) ≤ C · |h|, where h ∈ H and
| · | denotes the word norm in these generators. Hence, it suffices to prove the lower bound
on curve complex distance given in the statement of the theorem.

Given h ∈ A(Γ), choose a normal representative w ∈ Min(h). Then w = x1 · · ·xN where
xi are standard generators (not syllables) and N = |h|A(Γ). Let m be the smallest integer
strictly greater than N/6`− 1. We can partition w into m subwords of length 6` by setting

Wj = xI(j)+1 · · ·xI(j+1) I(j) = 6` · (j − 1)

so that w = W1 · · ·WmWm+1, where Wm+1 is some possibly empty suffix.
Each Wj admits a decomposition

Wj = PjQjRj, where |Pj| = 3` |Qj| = ` |Rj| = 2`,

where | · | denotes the length of each subword; recall that subwords of w are all minimal
length for the elements of A(Γ) they represent. Let pj be the first syllable of Pj that is also
a syllable of w for 1 ≤ i ≤ m. There are m of these, and we claim that these syllables can be
associated to distinct vertices in a fixed geodesic [µ, φ(h)µ] in the curve complex, as follows.

Let Yj ∈ subs(w) correspond to the syllable pj, that is, Yj = Xw(pj). Here the index
corresponds to the Wj subwords, not the syllable indexing of w. Since φ is admissible,
we know that dYj(µ, φ(h)µ) ≥ K ≥ KBGI . By Theorem 2.2, any curve complex geodesic
[µ, φ(h)µ] contains a vertex vj with empty projection to Yj. It remains to show that these
vj are distinct for j between 1 and m; then we can conclude that

dS(µ, φ(h)µ) ≥ m− 1 ≥ |h|A(Γ)/6`− 2,

completing the proof of the theorem. Towards contradiction, suppose there exists j < k such
that Yj and Yk contribute the same vertex in [µ, φ(h)µ]. This means there exists a curve
γ = vj = vk disjoint from both Yj and Yk.

Now consider each Qj and recall |Qj| = `. Lemma 4.6 ensures Qj contains a filling block
for w. In particular, this gives a syllable q ∈ syl(w) that falls in Qj and is associated to a
subsurface Z ∈ subs(w) for which πZ(γ) is not empty.

Let us show that Z and Yj are ordered; by admissibility it suffices to show that q and
pj are ordered. Recall pj is the first syllable of Pj that is also a syllable of w, and Pj has
length 3`. Lemma 4.5 assures us that the suffix of pj in Pj has length at least 2`. Since we
know q lies in Qj, we see that the shortest subword of w containing pj and q has the form
pjMq, where M has length at least 2`. If pj and q are not ordered, then Lemma 3.2 says M
has normal representative LR where pj commutes L and q commutes with R. On the other
hand, since M has length at least 2`, one of the pair L,R is longer than `, and thus contains
a filling block (by Lemma 4.6) which includes syllables ordered with each of pj and q (by
Lemma 4.4). This contradicts the characterization of L and R from Lemma 3.2. So it must
be pj and q are ordered. Then so are Yj and Z. As w is a normal word, evidently Yj ≺ Z.

Similarly, because Rj has length at least 2`, we can conclude that Z ≺ Yk. We have shown
Yj ≺ Z ≺ Yk. By Lemma 2.5, since γ is disjoint from both Yj and Yk, it must also be disjoint
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from Z. This contradicts our choice of Z such that πZ(γ) is not empty. Hence, no curve is
simultaneously disjoint from Yj and Yk for j 6= k. �

Observe that in the proof of Theorem 5.1 the lower bound on translation distance is proven
using only the fact that, in a normal representative of a word in H, filling blocks occur with
a definite frequency. More precisely, we have shown the following corollary.

Corollary 5.2. For an admissible homomorphism φ : A(Γ)→ Mod(S), suppose H ≤ A(Γ)
satisfies the following: there exists ` ≥ 0 such that, for every h ∈ H, any normal form
w ∈ Min(h) has the property that every subword of w of length ≥ ` contains a filling block.
Then φ(H) < Mod(S) is convex cocompact.

Since pseudo-Anosov mapping classes of H are necessarily filling, we have the following
version of Theorem 5.1.

Corollary 5.3. Let φ : A(Γ)→ Mod(S) be an admissible homomorphism and H ≤ A(Γ) is
quasi-convex. If φ(H) is purely pseudo-Anosov, then it is convex cocompact in Mod(S).

Observe that although Corollary 5.3 is simpler to state, the Theorem 5.1 provides a means
of verifying that a quasiconvex subgroup H ≤ A(Γ) is actually purely pseudo-Anosov, as-
suming that one knows the quasiconvexity constant for H.

6. Necessity of quasiconvexity in A(Γ)

Fix an admissible homomorphism φ : A(Γ)→ Mod(S). Having shown that for H < A(Γ)
with φ(H) purely pseudo-Anosov, quasiconvexity of H in A(Γ) implies convex cocompactness
of φ(H) in Mod(S), it is natural to ask whether quasiconvexity of H is a necessary condition
for φ(H) to be convex cocompact. To answer this question, we first review some facts about
the geometry of Teichmüller space.

Recall that the ε-thick part of Tecihmüller space is the region determined by

T≥ε(S) = {X ∈ T (S) : `X(γ) ≥ ε for all γ ∈ C0(S)}
and a set in T (S) is called ε-cobounded if it resides in the ε-thick part. Although Teichmüller
space itself is in no ordinary sense negatively curved, a driving principle in the study of the
coarse geometry of T (S) is that the thick part T≥ε has many hyperbolic-like features. See for
example [KL07]. One manifestation of this principle is Minsky’s theorem that Teichmüller
geodesics which remain in the thick part of Teichmüller space are strongly contracting. More
precisely,

Theorem 6.1 (Theorem 4.2, [Min96]). Given K and ε, there exists a B so that if α is a
K-quasigeodesic path in T (S) whose endpoints are connected by an ε-cobounded Teichmüller
geodesic τ , then α is contained in the B-neighborhood of τ .

We can now show that quasiconvexity of H < A(Γ) is necessary for φ(H) to be convex
cocompact in Mod(S). The idea is that quasiconvexity in T (S) can be pulled back to
quasiconvexity in A(Γ). Recall that admissible homomorphisms induce quasi-isometric orbit
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maps into T (S). Therefore the next theorem, along with Theorem 1.3, completes the proof
of Theorem 1.1.

Theorem 6.2. Consider A(Γ) < Mod(S) so that for X ∈ T (S) the orbit map

φ : A(Γ)→ T (S)

g 7→ g ·X
is a K-quasi-isometric embedding, where T (S) is given the Teichmüller metric. If H < A(Γ)
is convex cocompact as a subgroup of Mod(S), then H is quasiconvex in A(Γ).

Proof. Fix D, the quasiconvexity constant for H · X in T (S). Note that ND(H · X) is ε-
cobounded for some ε > 0. This follows from the facts thatX is ε′-thick and that, if Y ∈ T (S)
with dT (S)(X, Y ) ≤ D, then for any simple closed curve γ, lY (γ) ≥ e−2DlX(γ) ≥ e−2Dε′.

Let h, h′ ∈ H and suppose α is a geodesic path in A(Γ) from h to h′. Then φ(α) is a
K-quasigeodesic joining h ·X and h′ ·X. Let τ be the Teichmuller geodesic between these
points. By quasiconvexity, τ ⊂ ND(H ·X) and so τ is ε-cobounded.

By Theorem 6.1, there exists a B depending only on ε and K so that any K-quasigeodesic
with endpoints on τ is contained in a B-neighborhood of τ . Hence, φ(α) ⊂ NB(τ) ⊂
ND+B(H ·X). So if p ∈ α ⊂ A(Γ), then there is an h ∈ H with

dT (S)(φ(p), h ·X) ≤ D +B

and so

dA(Γ)(p, h) ≤ K(dT (S)(φ(p), h ·X)) +K

= K(D +B) +K

This implies that α ⊂ NK(D+B)+K(H), as required.
�

7. Some examples

In this section we produce some examples of convex cocompact subgroups of mapping
class groups. We encourage the reader to observe the algorithmic nature of these examples,
and that in each case quasiconvexity of the subgroup is proven by constructing the compact
complex C.

Example 3. Take Γ with E(Γ) = ∅, so that A(Γ) = F(V (Γ)), the free group on the vertex
set of Γ. In this case, any finitely generated H ≤ A(Γ) is quasiconvex and C is the Stallings
core graph for H, as explained in [Sta83]. Briefly, one begins with a rose RH with rank(H)
petals and subdivides and labels each petal with a generator of H written in terms on the
standard generators of A(Γ). This produces a map RH → SΓ = R|V (Γ)| and iteratively
folding the graph RH produces a graph GH and an immersion GH → R|V (Γ)| with image
H at the fundamental group level. This is the desired C, since graph immersions are local
isometries (when each edge is given unit length). Hence, when A(Γ) is free, for any finitely
generated H < A(Γ) and any admissible homomorphism φ : A(Γ) → Mod(S), φ(H) is
convex cocompact if and only if φ(H) is purely pseudo-Anosov.
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Example 4. Take Γ as in Figure 1 with any admissible realization of A(Γ) in Mod(S) fully
supported on Xa, Xb, Xc. Then A(Γ) = 〈a, b, c|[b, c] = 1〉 and consider H = 〈bca, babc〉. We
construct the complex C described below. This will be the desired complex once we verify
that the induced map C → SΓ is a local isometry, as in Section 3.2.

To construct C, we begin as in the example above by building an immersion from a based
graph into the 1-skeleton of SΓ, see Figure 2. In this case, a single fold is required. This
map, however, is far from a local isometry into SΓ because of the absence of 2-cells. We add
such 2-cells to the graph representing the commuting relations between b and c, first adding
the squares between adjacent occurrences of b and c in the graph. The resulting complex
admits an obvious cubical map into SΓ. This, however, is not a local isometry as the image
of the link at the base point is not a full subcomplex of lk(v, SΓ). To rectify this, attach
an additional square representing commuting relations between b and c, giving four 2-cells
in total. Call the resulting complex C. We then verify that the induced map on the link
of each vertex satisfies the conditions for C → SΓ to be a local isometry. Hence, H is a
quasiconvex subgroup of A(Γ). From this, we can readily check that each h ∈ H is filling
and so by Theorem 1.3, H is convex cocompact as a subgroup of the mapping class group.

Figure 2. Constructing C

Example 5. We augment the example above by adding the element b2c2a2 to the generating
set of H. Note that inspection of the complex C reveals that this word is not already in the
subgroup H. Call the resulting subgroup H ′ = 〈abc, cba, a2b2c2〉.

To build C ′, the complex with a local isometry to SΓ with fundamental group H ′, we add
to the complex C with a relative version of the construction above. This requires attaching
a loop labeled b2c2a2 to the base vertex, performing 2 folds, and adding 5 squares. Once this
is done, it is again easily seen that C ′ has the required properties. Hence, H ′ is a convex
cocompact subgroup of the mapping class group (through the homomorphism fixed above).
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In the above examples, we used the existence of the complex C to verify that our subgroup
was quasiconvex with all filling elements. The following example shows how attempting to
construct C can also show that a particular group will not be purely pseudo-Anosov.

Example 6. As in the previous example, we add to the subgroup H without changing
A(Γ) ≤ Mod(S). Suppose we wish to add the generator bca2 to obtain the subgroup H ′′ =
〈abc, cab, a2bc〉. Attaching the necessary cells to the complex C, we see that some word in
H ′′ is conjugate to a and hence not filling. Adding the word b−1ca2, however, will result in a
quasiconvex subgroup all of whose elements are filling. Again, this is immediate by building
the associated complex.

8. Short-translation convex cocompact subgroups of Mod(S)

As an application of our main theorem, we construct convex cocompact subgroups of
mapping class groups Mod(Sg) whose orbit maps into the curve complex have Lipschitz
constant on the order of 1/g , where g denotes the genus of the surface. This is in contrast
to other examples of convex cocompact subgroups occurring in the literature, where one does
not have such control over the group constructed. This is clear in the first two constructions of
convex cocompact subgroups of mapping class groups that are discussed in the introduction.
It is also the case that, in the mapping class group of a once-punctured surface, a pseudo-
Anosov in the image of the point-pushing map (the map π1(Sg)→Mod(S̊g) discussed in
Section 1) has minimum possible translation length equal to 1, independent of genus [Zha13].

Figure 3. Sg with subsurfaces
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Fix n ≥ 2 and let Sg be a surface of genus g = n + 1. Referring to Figure 3, let f0 be a
mapping class fully supported on X0, let g0 be fully supported on Y0, and let ρ be the order-n
counterclockwise rotation shown (see Section 2.3 for the definition of fully supported). Here
X0 is a once-punctured torus and Y0 is a four-times punctured sphere. We will require these
maps to be pseudo-Anosov with sufficiently large translation length in the curve complex.
Define

fi = ρif0ρ
−i and gi = ρig0ρ

−i.

By construction, fi is fully supported on Xi and gi on Yi, where Xi = ρiX0 and Yi = ρiY0.
Note that we have only defined finitely many distinct maps, and may consider the index i
as an integer mod n.

Observe by disjointness of the subsurfaces involved, we have the following:

• fi commutes with fj for all 1 ≤ i, j ≤ n,
• gi commutes with gj for all 1 ≤ i, j ≤ n, and
• fi commutes with gj for j 6= i− 1, i.

Hence, if Γ is the coincidence graph for these subsurfaces, Γc is a cycle of length 2n, alter-
nating fi and gi in cyclic order. If the initial f0, g0 are chosen with large enough translation
length in the curve complexes of X0 and Y0 respectively, where “large enough” is independent
of n, then by Theorem 4.1 we have an admissible embedding

A(Γ)→ Mod(S),

and so we identify A(Γ) with its image under this homomorphism.
We now demonstrate a few calculations. Set φ = ρg0f0 and ψ = φn, so

ψ = φn = ρg0f0ρg0f0 . . . ρg0f0

= ρg0f0ρ
−1ρ2g0f0ρ

−2 . . . ρng0f0

= g1f1g2f2 . . . gnfn

= (g1g2 . . . gn−1)(f1gn)(f2f3 . . . fn).

Let wi = (ρgi0f
i
0)n, so that w1 = ψ and wi replaces each gj and fj in ψ with its ith power:

wi = (gi1g
i
2 . . . g

i
n−1)(f i1g

i
n)(f i2f

i
3 . . . f

i
n)

Let α be the separating curve in Y0 disjoint from both X0 and X1, as shown in Figure 3.
We can now prove the following theorem, which gives examples of convex cocompact

subgroups of the mapping class group whose generators have small translation length in the
curve complex.

Theorem 8.1. Let S be as above with genus g = n+1 for n ≥ 2, and let H = 〈w1, . . . wN〉 <
A(Γ) < Mod(Sg) as above, for any N ≥ 1. Then H is a convex cocompact subgroup of
Mod(S) and with α as above,

dC(S)(α,w
p
iα) ≤ 2,

for all i = 1, . . . , N and p ≤ n
2
. In particular, `S(wi) ≤ 4

g−1
.
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Proof. The statement about translation length follows from Theorem 8.5 below.
Proving convex cocompactness of H require additional notation as well as a few lemmas.

Set for 1 ≤ i ≤ N
Bi = gi1 . . . g

i
n−1,

Mi = f i1g
i
n,

Ei = f i2 . . . f
i
n.

Observe that B−1
i = B−i, E

−1
i = E−i, but M−1

i 6= M−i. In what follows we do not allow
negative indices for the Mi. Symbols without subscripts will be used when the subscript is
not important (e.g. B = B−1 but M 6= M−1). In any case, the occurrence of such a symbol
will aways denote a non-zero subscript (and power). The first lemma gives a procedure for
assembling a particular normal form for any h ∈ H.

Lemma 8.2. With notation as above, we have the following facts:

(1) wi = BiMiEi
(2) wiw

−1
j = BiMiEi−jM

−1
j B−1

j

w−1
i wj = E−1

i M−1
i Bj−iMjEj

(3) BiM
±1
j Ek and its inverse are filling words where j ≥ 1.

(4) Suppose that h is a word of A(Γ) that is a concatenation of Bs, Ms, and Es so that
adjacent pairs appear as BM , ME, EB or their inverses (M−1B, EM−1, or BE).
Then h is in normal form with respect to the standard generators f1, . . . , fn, g1, . . . , gn
of A(Γ).

Proof. Fact 1 is immediate from the definitions, as is Fact 2 once it is recalled that all letters
used in the spelling of B (and E) pairwise commute. Fact 3 follows since these words have
the least number of syllables in their conjugacy classes and the supports of the generators
used in their spelling fill S. Fact 4 requires some verification. First observe that any word
with at most one occurrence of B,M and E is in normal form, since in this case every
generator occurs in a syllable at most once. Suppose toward contradiction that h as in Fact
4 is not in normal form. Then there is a syllable that can be shuffled to the right using
move (3) and combined with another syllable elsewhere in the word. This syllable must
commute with every letter in between. By Fact 3 and the fact that each generator occurs
only within a B,M or E such shuffling can only occur between consecutive occurrence of
the same symbol B,M or E; otherwise it would have to commute with a filling word, an
impossibility. Hence, the remaining cases are when the syllables that are to be combined
occur between consecutive B,M or E expressions. For the B case, such a syllable is a power
of gj and must be commuted passed an entire expression E to combine with another power
of gj. This, however, is a contradiction since gj fails to commute with both fj and fj+1,
one of which occurs in E. The case where the syllable to be combined is contained in E
is similar. The final case is when the syllable is contained in M or M−1 and is therefore
either a power of f1 or gn. However, in M , f1 cannot be commuted past gn, and gn cannot
be commuted past fn which occurs in the expression E. In either case, neither syllable can
be shuffled right to combine with another syllable. In M−1, g−1

n cannot commute past f−1
1 ,
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and f−1
1 cannot commute past g1 which occurs in the expression B, so we have a similar

contradiction. This completes the proof that no syllable of h can be combined with another
syllable and shows that h is in normal form. �

By Corollary 5.2, to prove that H is a convex cocompact subgroup of Mod(Sg) it suffices
to show that there is an ` ≥ 0 so that for h ∈ H, any w ∈ Min(h) has the property that any
subword of w of A(Γ)-length greater than ` contains a filling block.

First suppose that h ∈ H is written in terms of the generators w1, . . . , wN with no consec-
utive occurrences of a generator and its inverse (i.e. h is written as a reduced word in the
free group generated by the symbols w1, . . . , wN). Now use Facts 1 and 2 above to transform
h into it its BME spelling. We note that since h is reduced in the free group generated by
the wi, within the BME spelling no subscript is zero (see Fact 2) and so expressions E and
B are always separated by a M or M−1. To verify that this rewriting of h is in normal form,
we use Fact 4 above. This is immediate from Fact 2 and the fact that no zero subscript
occurs in the rewriting. Denote the normal form representative of h so obtained by w∗ and
refer to it as the BME normal form. The next lemma shows that this normal form has the
desired property.

Lemma 8.3. For any h ∈ H, its BME normal form w∗ has the property that every subword
of w∗ with A(Γ)-length at least b = 3Nn+ 4N has a filling block.

Proof. Assume that r is a subword of w∗ of A(Γ)-length at least 3Nn+ 4N . In this spelling,
no more than the first Nn letters occur in r before the first full occurrence of B,M or E.
Whichever symbol occurs first, we see that there is a terminal subword of r of length at
least 2Nn + 4N that begins with either B,M or E. Checking the possible cases, we see
that within r we have a subword w′ which is a consecutive occurrence of BME up to cyclic
permutations and inverses. By Fact 3 of the previous lemma, w′ is a filling block. Thus, r
contains a filling block as required. �

Our final lemma needed for the proof gives a strong ordering property for the BME
normal forms. Note that our choice of A(Γ) ≤ Mod(Sg) is such that the support of every
generator is required to fill the surface Sg.

Lemma 8.4. There is an L ≥ 0 so that if h ∈ H has BME normal form w∗ and s is a
syllable of w∗, then any syllable separated from s in w∗ by L or more syllables is ordered with
s. Hence, no more than 2L syllables in h are unordered with s ∈ syl(h) in any normal form
for h.

Proof. Let Γc denote the complement graph of Γ. As previously observed, Γc is connected;
let d denote its diameter. Take L = d · b.

Now let t be a syllable of w∗ so that at least L syllables occur between s and t in w∗. Let
v and u be standard generators of A(Γ) so that s is a power of v and t is a power of u. Then,
for some k ≤ d, there is a path v = v0, v1, . . . , vk = u in Γc; by construction, vi and vi+1 do
not commute. Since k · b ≤ d · b, we may select w1, w2, . . . , wk−1 a sequence of disjoint filling
blocks between s and t occurring in the order as read from s to t. Being filling blocks, each
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wi must include every generator, so for 1 ≤ i < k we choose si to be a syllable in wi that is
a power of vi. Then by construction

s ≺ s1 ≺ . . . ≺ sk−1 ≺ t.

Hence, by transitivity s ≺ t. For the conclusion on the lemma, recall that the number of
syllables unordered with a given s in syl(h) is independent of choice of normal form. �

We can now conclude the proof of the theorem. Set `′ = b + 4LN + 1 and let w be any
normal form for h ∈ H. Towards contradiction, suppose that there is a subword r of w of
length at least `′ that does not contain an occurrence of some generator, call this generator
v. Enlarge this subword, continuing to denote it r, so that either the first or last syllable of
r is a power of v and the other terminal syllable is either a terminal syllable of w or another
syllable that is a power of v. This is possible since w itself is filling and so must contain at
least one occurrence of a power of v.

Let w∗ be the BME normal form for h; note that, by Lemma 8.3, there is no subword of
w∗ longer than b that fails to contain each generator of A(Γ). Since w,w∗ ∈ Min(h), these
words are related by a repeated application of the type (3) moves described in Section 3.1.
There are two cases, depending on whether r contains one or two occurrences of v. If the first
and last syllables of r are powers of v then denote these by s1 and s2. Since between these
syllables in w there is no occurrence of v, the type (3) moves from w to w∗ must commute
`′ − b letters past either s1 or s2. Hence, at least (`′ − b)/2 letters must be commuted past,
say, s1. Since no syllable contains more than N letters, at least (`′ − b)/(2N) syllables are
commuted past s1 in the process of applying type (3) moves. All of these syllables must be
unordered with s1. However, by Lemma 8.4 the number of syllables unordered with s1 is
bounded by 2L. Hence,

`′ − b
2N

≤ 2L,

contradicting our choice of `′. The case where r contains only one occurrence of the generator
v and, hence, contains the first or last syllable of w is similar and left to the reader.

Let ` = `′ + 2N . Given w′ a subword of w of length at least `, let r be the subword
consisting of the middle `′ letters of w′. We have seen that r contains an occurrence of each
generator. By Lemma 4.2, r is a filling block for w unless one or both of its terminal syllables
are not complete syllables in w. Appending up to N letters to the left and the right of r
gives filling block for w contained in w′. �

Let Sg be as above with genus g = n + 1 for n ≥ 2, and let H = 〈w1, . . . wN〉 ≤ A(Γ) ≤
Mod(Sg) as above, for any N ≥ 1. For any element h ∈ H, let |h|H denote its word length
with respect to the generating set {w1, . . . wN}. Let α be the curve in Figure 3.

Theorem 8.5. For any h ∈ H,

dC(S)(α, hα) ≤ |h|H ·
4

g − 1
+ 2

Proof. It suffices to prove the following lemma:



CONVEX COCOMPACTNESS IN Mod(S) VIA QUASICONVEXITY IN RAAGS 27

Lemma 8.6. If |h|H ≤ n/2 then dC(S)(α, hα) ≤ 2.

This is because, where m is the largest integer less than |h|H · (2/n) + 1, we may write
h = h1 · · ·hm for some hi such that |hi|H ≤ n

2
. Using the triangle inequality, we have

dC(S)(α, hα) ≤ dC(S)(α, h1α) + dC(S)(h1α, h1h2α) + · · ·+ dC(S)(h1h2 · · ·hm−1α, hα)

=
m∑
i=1

dC(S)(α, hiα) ≤ 2m ≤ |h|H · (4/n) + 2.

To obtain the theorem, recall g = n+ 1.
So we are tasked with proving the lemma above. We rely on an obvious principle: if S is

connected has a proper subsurface S ′ containing the two curves α and β, then dC(S)(α, β) ≤ 2,
because α and β are each disjoint from the curves of ∂S ′.

For a list of subsurfaces Z1, . . . , Zk of S, we will write span{Z1, . . . , Zk} for the essential
subsurface of S of minimal complexity that contains each of Z1, . . . , Zk (up to isotopy).
In other words, span{Z1, . . . , Zk} is the subsurface Z of S that contains each subsurface
in the collection and has the property that any curve that projects nontrivially to Z also
has nontrivial projection to some Zi. If each Zi in the collection equals either some Xs or
Yt, observe that span{Z1, . . . , Zk} is a proper subsurface of S unless all of the subsurfaces
X1, . . . , Xn and Y1, . . . , Yn occur in the collection. Hence, the set of all Xs and Yt fill S, but
no proper subset of this collection of subsurfaces fills S.

...

...

......

...

...

α

Y0 Y1 Y2 Y3Y-1Y-2Y-3

X1 X2 X3 X4X0X-1X-2X-3

Y2

X2

Y0

X1

Figure 4. Three views of Sg. The supports of B, M , and E are shaded in
the top, middle, and bottom copies respectively.

Below, we write w to represent any wi and v to represent any w−1
i . That is, any appearance

of w or v satisfies w = BME or v = EM−1B for some suitabe B,M, and E. It turns out
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H is a free group, although this fact is not necessary in order to obtain upper bounds on
displacement. We think of a given h as a product of generators of type w or v. It is tedious
but straightforward to verify by inspection the following statements:

• α, vα ⊂ span{X0, Y0} which is a proper subsurface of S (written “( S”) if n ≥ 2
• α,wα ⊂ span{Y0, X1, Y1} ( S if n ≥ 2
• α,wvα ⊂ span{Y1, X0, Y0, X1, Y1} ( S if n ≥ 3
• α, vwα ⊂ span{X0, Y0, X1, Y1, X2} ( S if n ≥ 3
• α,w2α ⊂ span{Y−1, X0, Y0, X1, Y1, X2, Y2} ( S if n ≥ 4
• α, v2α ⊂ span{X−1, Y−1, X0, Y0, X1} ( S if n ≥ 5

These statements are sufficient to verify Lemma 8.6 if n ≤ 5. They also set forth enough
initial cases to complete the proof of Lemma 8.6 via induction.

For k ≥ 2, define the subsurfaces:

Xk = span{Xi , Yj : −k < i < k and − k < j < k − 1}
Y k = span{Yi , Xj : −k < i ≤ k and − k + 1 < j ≤ k}

Using our comment above about how many subsurfaces Xi and Yj are required to fill S, one
can check that, for k ≤ n/2, Xk and Y k are proper subsurfaces of S. Thus we are done if
we can establish the claim:

(?) If |h| ≤ k then hα is contained in either Xk or Y k.

The claim for k = 2 is an outcome of the definitions and the bulleted statements above. So
it remains to assume the truth of (?) for k ≥ 2, and prove (?) for k + 1.

Given h such that |h| = k + 1, either h = wh′ or h = vh′ where |h′| = k satisfies (?). We
also know h′α is contained in either Xk or Y k. We analyze all possibilities below. Recall
that w = BME and v = EM−1B where B is supported entirely on ∪Yi and E is supported
entirely on ∪Xi. Since k ≥ 2 we are also assured that M is supported within Xk as well as
within Y k. For the next set of statements—apparent by inspection—observe that, depending
on the case, applying B or E may increase the support required to contain the image curve,
while M has no effect. See Figure 4.

If h′α ⊂ Xk = span{X−k+1, Y−k+1, · · · , Yk−2, Xk−1},

Bh′α ⊂ span{Y−k, X−k+1, Y−k+1, · · · , Yk−2, Xk−1, Yk−1}
M−1Bh′α ⊂ span{Y−k, X−k+1, Y−k+1, · · · , Yk−2, Xk−1, Yk−1}

vh′ = EM−1Bh′α ⊂ span{X−k, Y−k, X−k+1, Y−k+1, · · · , Yk−2, Xk−1, Yk−1, Xk} = Xk+1

Eh′α ⊂ Xk

MEh′α ⊂ Xk

wh′ = BMEh′α ⊂ span{Y−k, X−k+1, Y−k+1, · · · , Yk−2, Xk−1, Yk−1} ⊂ Xk+1.
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If h′α ⊂ Y k = span{Y−k+1, X−k+2, · · · , Xk, Yk},
Eh′α ⊂ span{X−k+1, Y−k+1, X−k+2, · · · , Xk, Yk, Xk+1}

MEh′α ⊂ span{X−k+1, Y−k+1, X−k+2, · · · , Xk, Yk, Xk+1}
wh′ = BMEh′α ⊂ span{Y−k, X−k+1, Y−k+1, X−k+2, · · · , Xk, Yk, Xk+1, Yk+1} = Y k+1

Bh′α ⊂ Y k

M−1Bh′α ⊂ Y k

vh′ = EM−1Bh′α ⊂ span{X−k+1, Y−k+1, X−k+2, · · · , Xk, Yk, Xk+1} ⊂ Y k+1.

�
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