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1 Amenable actions

Let G be a second countable locally compact group, (X,B(X)) a standard Borel

G-space (g ⋅ x = xg), µ ∈ P(X) a quasi-invariant (∀B ∈ B(X) ∀g ∈ G ∶ µ(B) = 0 ⇔
µ(Bg) = 0) and ergodic probability measure.

Let H be a locally compact Borel group, a Borel map α ∶X ×G→H is a cocycle if

∀g1, g2 ∈ G ∶ α(x, g1g2) = α(x, g1)α(xg1, g2) a.e. In particular, if G = Z then

{α ∶X ×Z→H ∣ α cocycle} Ð→ {f ∶X →H ∣ f Borel meas.}
α z→ (x↦ α(x,1))

is a 1-1 identification of cocycles and Borel functions.

Remark 1.1. Suppose that α ∶ X ×G Ð→ H is a cocycle. Define the skew product

G-space X ×α H, that is the space X × H together with the G-action (x,h)g ∶=
(xg, hα(x, g)) (this is actually a near action but it is equal a.e. to an action)1.

Let A ∶= {f ∈ L∞(X ×α H)∣ ∀g ∈ G ∶ f((x,h)g) = f(x,h) a.e} be the fixed points

of L∞(X ×α H) under the G-action and note that A is an abelian von Neumann

algebra, hence there is a standard measure space (M,νM) and a measure preserving

Borel map ϕ ∶ X ×α H Ð→ M such that ϕ∗(L∞(M,νM)) = A. Moreover note that

H ↷X×αH by (x,h)h0 ∶= (x,h−1
0 h) and this action commutes with the (near) action

of G. Hence H ⋅ A = A and we may choose M to be an H-space and ϕ to be an

H-map. (M,νM) is called the Mackey range of α.

Let E be a separable Banach space,

Lemma 1. 2 Iso(E) is a separable metrizable group with the strong operator topology

and the induced Borel structure on Iso(E) is standard and is the smallest such that

all maps T ↦ T (ξ), where ξ ∈ E, are Borel.

1R.J. Zimmer, Ergodic Theory and Semisimple Groups, Appendix B
2Zimmer, Amenable ergodic group actions and an application to Poisson boundaries of random walks
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Let E∗ be the dual space of E, E∗
1 = BE∗

1 ⊆ E∗ the closed unit ball in E∗ and

denote by ⟨ , ⟩ the dual pairing of E∗ and E. For T ∈ BL(E)1 , where L(E) denotes the

space of bounded linear operators from E to E, we have an adjoint map T ∗ ∈ BL(E∗)
1

characterized by the following condition: ∀ξ ∈ E ∀λ ∈ E∗ ∶ ⟨Tξ, λ⟩ = ⟨ξ, T ∗λ⟩.

Lemma 2. The maps

Iso(E) ×E∗
1 Ð→ E∗

1 , Iso(E) Ð→Homeo(E∗
1 ),

(T,λ) z→ T ∗(λ) T z→ T ∗

are continuous, where Homeo(E∗
1 ) is the group of homemorphisms with the topology

of uniform convergence.

Remark 1.2. G is amenable if any affine action of G on a weak∗-compact convex

subset of the dual of a (not necessarily separable) Banach space E has a fixed point,

i.e. if α ∈ Hom(G, Iso(E)) or equivalently if α ∶ X × G Ð→ Iso(E) is a cocycle,

where X = {pt}, and if K ⊂ E∗
1 is a compact, convex subset such that K is G-

invariant, α∗(G)K ⊂ K, then there is a fixed point λ ∈ K, that is α∗(G)λ = λ or

equivalently if we interpret α as a cocycle, there is a Borel map ϕ ∶X = {pt} Ð→ E∗
1

that is fixed by α∗, i.e. α∗({pt},G)ϕ({pt}g) = ϕ({pt}).

Let E be a separable Banach space and suppose for any x ∈ X there is some

Kx ⊂ E∗
1 non-empty, convex, compact set. We call {Kx}x∈X a Borel field of compact

convex sets if {(x,λ)∣λ ∈ Kx} ⊂ B(X × E∗
1 ). Suppose α ∶ X × G Ð→ Iso(E) is a

cocycle, then there is an adjoint cocycle

α∗ ∶X ×GÐ→Homeo(E∗
1 ),

(x, g) z→ (α(x, g)−1)∗

{Kx}x∈X is then called α-invariant if for any g ∈ G: α∗(x, g)Kxg = Kx a.e. and a

Borel map ϕ ∶X Ð→ E∗
1 such that ϕ(x) ∈Kx a.e. is called an α-invariant section in

{Kx}x∈X if for any g ∈ G: α∗(x, g)ϕ(xg) = ϕ(x) a.e.

Definition 1.3. An action G ↷ X is called amenable if for any separable Banach

space E, any cocycle α ∶X ×GÐ→ Iso(E) and any α-invariant field {Kx}x∈X there

is an α-invariant section ϕ ∶X Ð→ E∗
1 in {Kx}x∈X .

Proposition 1. G↷ {pt} is amenable if and only if G is amenable

Proof. If G is amenable then G ↷ {pt} is amenable and if G ↷ {pt} then the

amenability condition of G holds for separable Banach spaces 3. Let E be an arbi-

trary Banach space, α ∈Hom(G, Iso(E)) and K ∈ E∗
1 non-empty, convex, compact,

3see Remark 1.2
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G-invariant set. G is separable, hence there is a sequence {En}n∈N such that En ⊂ E
is a separable, closed, G-invariant subspace and E = ⋃n∈NEn. Let ϕn ∶ E∗ Ð→ E∗

n be

the restriction operator and define Kn ∶= ϕn(K). Note that Kn is a compact convex

G-invariant subspace and by separability of En the set of fixed points is non-empty

and closed. Finally deduce by the finite intersection property the existence of a fixed

point.

Proposition 2. Suppose that H < G is a closed subgroup. G↷ G/H is amenable if

and only if H is amenable.

Proposition 3. If G is amenable and G↷ (X,µ) is ergodic then G↷X amenable.

Remark 1.4. Let E be a separable Banach space, then

L1(X,E) ∶= {f ∶X Ð→ E∣f Borel meas. ∫
X
∥f(x)∥dµ(x) < ∞}/ ∼

is a separable Banach space. A map λ ∶ X Ð→ E∗ is called weakly measurable if

X ∋ xz→ ∥λ(x)∥ is measurable and

L∞(X,E∗) ∶= {λ ∶X Ð→ E∗∣λ weakly meas. X ∋ xz→ ∥λ(x)∥ ∈ L∞(X)}

is a Banach space under the essential sup-norm. Moreover we can define the pairing

⟨ , ⟩ ∶ L∞(X,E∗) ×L1(X,E) Ð→ C.

(λ, f) z→ ⟨λ, f⟩ ∶= ∫
X
⟨λ(x), f(x)⟩dµ(x)

Note that L∞(X,E∗) ∋ λ z→ ⟨λ, ⟩ ∈ L1(X,E)∗ is an isometry, i.e. L∞(X,E∗) ≅
L1(X,E)∗. Hence, the closed unit ball in L∞(X,E∗) is compact and metrizable

with the σ(L∞(X,E∗), L1(X,E)) topology. Moreover, if {Kx}x∈X is a Borel field of

compact convex subsets of E∗
1 then B ∶= {λ ∈ L∞(X,E∗)∣λ(x) ∈Kx a.e.} ⊂ BL∞(X,E∗)

1

is a closed convex subset.

Proof. Let α ∶ X ×G Ð→ Iso(E) be a cocycle, {Kx}x∈X an α-invariant Borel field.

Note that g⋅µ(B) ∶= µ(Bg) defines a.e. an equivalent measure on X so by the Radon-

Nikodym theorem there exists a positive Borel density function r ∶ X × G Ð→ R+

such that

d(g ⋅ µ)(x) ∶= dµ(xg) = r(x, g)dµ,

in fact, r is a cocycle

r(x, g1g2) =
dµ(xg1g2)
dµ(x) = dµ(xg1g2)

dµ(xg1)
dµ(xg1)
dµ(x) = r(xg1, g2)r(x, g1)
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and it is called the Radon-Nikodym cocycle. Define

π ∶ GÐ→ Iso(L1(X,E)),
g z→ (f z→ r(⋅, g)α(⋅, g)f(⋅g))

π is a well-defined homomorphism:

∥π(g)f∥ = ∫
X
r(x, g) ∥α(x, g)f(xg)∥

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∥f(xg)∥

dµ(x) = ∫
X
r(xg−1, g)∥f(x)∥ dµ(xg−1)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=r(x,g−1)dµ(x)

= ∥f∥,

continuity follows from the fact that if f ∈ L1(X,E) and λ ∈ L∞(X,E∗) then

G ∋ g z→ ⟨λ,π(g)f⟩ = ∫
X
⟨λ(x), r(x, g)α(x, g)f(xg)⟩dµ(x)

is measurable by Fubini. Moreover the adjoint action π∗ on L1(X,E)∗ ≅ L∞(X,E∗)
is given by (π∗(g)λ)(x) = α∗(x, g)λ(xg). The set B ∶= {λ ∈ L∞(X,E∗)∣λ(x) ∈
Kx a.e.} ⊂ BL∞(X,E∗)

1 is non-empty, compact, convex andG-invariant, so by amenabil-

ity of G there is a fixed point λ ∈ B such that π∗(G)λ = λ, i.e. α∗(x, g)λ(xg) =
(π∗(g)λ)(x) = λ(x) a.e., so λ is an α-invariant section in {Kx}x∈X .

Theorem 1. If G ↷ X is amenable and α ∶ X ×G Ð→ H is a cocycle then H ↷M

is amenable.

2 The Poisson boundary à la Zimmer

Let µ ∈ P(G) be étalée 4, (Ω, η) ∶= (GZ, µZ) and (Ω0, η0) ∶= (GN0 , µN0). Let θ ∶
Ω Ð→ Ω be the right-shift (θω)n = ωn+1, so that we have an action Z ↷ Ω defined

by ωn ∶= θn(ω). Using this action we can define the cocycle α ∶ Ω × Z Ð→ G by

α(ω,1) ∶= ω(0) =∶ α(ω)5. Consider the skew product G-space X ∶= Ω ×α G, then

A = {f ∈ L∞(X)∣ ∀n ∈ Z ∶ f((ω, g)n) = f(ω, g) a.e.} = {f ∈ L∞(X)∣ f ○ θ̃ = f},

where θ̃ ∶ X Ð→ X is the skew product transformation (θ̃(ω, g) ∶= (θ(ω), gα(ω)),
so functions on the Mackey range M of α correspond to invariant functions on the

sample space of the 2-sided walk.

Let H∞(G,µ) = {f ∈ L∞(G,µ)∣Pf = f} be the space of harmonic functions on

G, where P is the Markov operator of the walk corresponding to the transition

probability δg ∗ µ, i.e. if f ∈ L1(G,µ) then

Pf(g) ∶= ∫
G
∫
G
f(hk)d(δg ∗ µ)(k, h) = ∫

G
f(gh)dµ(h),

4µ∗n has a non-singular component with respect to the Haar measure for some n
5We think of α and θ also as being defined on Ω0

4



Let Ω0 ∋ ω z→Xn(ω) ∶= ωn ∈ G be the projections which induce the natural filtration

Fn ∶= ⋁k≥n σ(Xk) on Ω0. If f ∈ H∞(G,µ) then for any g ∈ G

E(f(gX1 . . .Xn+1)∣Fn) = ∫
G
f(gX1 . . .Xnh)dµ(h) = f(gX1 . . .Xn),

i.e. {f(gX1 . . .Xn)}n is a bounded martingale, so by Doob’s martingale convergence

theorem in particular the function defined by

f̃ ∶ Ω0 ×GÐ→ C

(ω, g) z→ lim
n→∞

f(gω1 . . . ωn),

exists a.e. and f̃ ∈ A0 (by harmonicity), so we can interpret harmonic functions on G

as invariant functions on the sample space of the 1-sided random walk X0 ∶= Ω0 ×G.

Let6 Bool(X0) ∶= {f ∈ L∞(X0)∣f 2 = f} be the Boolean σ-algebra of X0 and

consider B0 ∶= Bool(X0) ∩ A0. B0 is then isomorphic to Bool(P,m), where (P,m)
is an ergodic G-space7. Let p0 ∶ X0 Ð→ P 8 be a measure preserving G-map such

that p∗0(P ) ≅ B0
9 and note that p0 ○ θ̃ = p0 so that p0 is a G-equivariant and θ̃-

invariant map. Let ι ∶ Ω0 Ð→ X0 be the natural injection (ι(ω) = (ω, e)) and define

νP ∶= (p0 ○ ι)∗(η0) ∈ P(P ) 10. The measure space (P, νP ) is the Poisson boundary

of the random walk. Similarly we can also construct a shift-invariant, measure class

preserving Borel map p ∶ Ω ×GÐ→M . Define

Zk ∶ Ω0 Ð→ P,

ω z→ p0(θkω, e)

Let Xk ∶ Ω0 Ð→ G be as above, then Xk ∼ µ and

Zk+1X
−1
k (ω) = p0(θk+1ω, e)X−1

k (ω)´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
ω−1
k

= p0((θk+1ω, e)ω−1
k ) = p0(θk+1ω,ωk

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=θ̃(θkω,e)

) = Zk(ω)

which shows that {Zk}k is a µ-process (this explains the choice of νP ). To summarize

this discussion we see that Bool(P,m) ≅ B0 ↪ A0 ≅ L∞(M,νM) so that P is a factor

of M .

(P, νP ) corresponds to the usual notion of the Poisson boundary in the following

sense: the reason why µ is étalée is that if it is, then any harmonic function is

continuous and so any two harmonic functions equal a.e. must be the same, so

it suffices to show that any harmonic function h ∈ H∞(G,µ) can be represented
6A0 is an abelian von Neumann algebra, hence A0 ≅ L∞(P,m) for some standard measure G-space (P,m) but

this space need not be ergodic!
7See G. W. Mackey, Point realizations of transformation groups
8p is defined on a conull set Ω′

0 ×G
9If ϕ ∶ (X,µ) Ð→ (Y, ν) is a measure class preserving map then we get an injective map ϕ∗ ∶ Bool(Y ) Ð→ Bool(X)

10m can be recovered from νP by m = ∫G(g∗νP )dmG(g), where mG is a Haar measure
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by a bounded measurable function ϕ ∈ L∞(P, νP ). A short sketch of the idea is

the following: a martingale-type argument shows that h(g) = Eg(H) for some H ∈
L∞(X0), the function

Φ ∶X0 = Ω0 ×GÐ→ Ω0,

(ω, g)n z→ (gω0⋯ωn−1)

is an intertwiner of θ̃ on X0 and θ on Ω0 and for any λ ∈ P(G): Φ∗(η0 × λ) = Pλ,
where Pλ is the Markov measure of the walk with initial distribution λ. Hence H ○Φ

is invariant on X0, so there is a function ϕ ∶ P Ð→ C such that H ○Φ = ϕ○p a.e. and

h(g) = Eg(H) = ∫
X0

H ○Φd(η0 × δg) = ∫
Ω0

H ○Φ(ω, g)dη0(ω) =

= ∫
Ω0

(ϕ ○ p)(ω, g)dη0(ω) = ∫
P
ϕ(zg)dνP (z).

3 Amenability of the Poisson boundary

Theorem 2. G↷ (P, νP ) is amenable

Proof. The discussion above gives the following commutative diagram of measure

preserving G-maps

Ω ×G M

Ω0 ×G P

p0

r × id

p

t

Let γ0 ∶ P ×G Ð→ Iso(E) be a cocycle, where E is a separable Banach space, let

{Kz}z∈P be a γ0-invariant field. We need to construct an γ0-invariant section. Define

γ ∶M ×GÐ→ Iso(E)
(m,g) z→ γ0(t(m), g)

Suppose we can construct a γ-invariant section σ that factors (mod measure) to a

function on P , then we are done.

Step 1:11 There is a cocycle β ∶ Ω×ZÐ→ G such that β is strict on some inessen-

tial contraction12 Ω0 ∗Z and ∀n ∈ Z: β(ω,n) = α(ω,n) a.e.

11R.J. Zimmer, Amenable ergodic group actions, Lemma 3.4
12Ω0 is a conull subset and Ω0 ∗Z ∶= {(ω,n)∣ωn ∈ Ω0}
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Step 2:13 There is a conull set Ω0 ⊂ Ω, a measure preserving Z-equivariant 14,

measure preserving function p̃ ∶ Ω0 ×G Ð→ M and a cocycle α̃ ∶ Ω × Z Ð→ G such

that for all n ∈ N α̃(ω,n) = α(ω,n) a.e. and (p̃ ○ ι, α̃) ∶ Ω0 ∗ Z Ð→M ×G is a strict

homomorphism.

Step 3:15 Let M0 ⊂ M be a conull set. Then there is a conull set Ω1 ⊂ Ω0 and

a measurable function ϑ ∶ Ω1 Ð→ G such that (q, β) ∶ Ω1 ∗ Z Ð→ M ×G is a strict

homomorphism such that (q, β)(Ω1 ∗Z) ⊂M0 ∗G, where q(ω) = p̃ ○ ι(ω)ϑ(ω)−1 and

β(ω,n) = ϑ(ω)α̃(ω,n)ϑ(ωn)−1. In particular M0 can be chosen to be t−1(P0) for

some conull set P0 ⊂ P .

Step 4:16 If K ⊂ Ω × Z contains a conull set and (ω,n1), (ωn1, n2) ∈ K implies

(ω,n1n2) ∈K, then K contains an inessential constraction of Ω ×Z

By Step 1 we may assume that γ is strict on some inessential contraction M1∗G.

For any g ∈ G we have γ∗(m,g)Kt(m)g = Kt(m) a.e. and this holds on an inessential

contraction of M 17.

Let (q, β) ∶ Ω1 ∗ Z Ð→M0 ∗G as in Step 3. Define δ = γ ○ (q, β) ∶ Ω1 ∗ Z Ð→ Iso(E)
then δ is a strict cocycle on Ω1 ∗Z and

δ∗(ω,n)Kt(ω)n = γ∗(q(ω), β(ω,n))Kq(t(ω)n) = γ∗(q(ω), β(ω,n))Kq(t(ω)β(ω,n)) =Kq(ω)

i.e. {Kt(ω)}ω is a δ-invariant field, hence 18 we can find a δ-invariant section ϕ ∶ ΩÐ→
E∗

1 . Let K ∶= {(ω,n) ∈ Ω1 ∗ Z∣δ∗(ω,n)ϕ(ωn) = ϕ(ω)}, then K is a conull set and if

(ω,n1), (ωn1, n2) ∈ K then (ω,n1n2) ∈ K, so by Step 4 K contains an inessential

contraction and we may assume that δ∗(ω,n)ϕ(ωn) = ϕ(ω) for all (ω,n) ∈ Ω1 ∗ Z.

Define following two maps

ψ ∶ Ω1 ×GÐ→ E∗
1 , w ∶ Ω1 ×GÐ→ E∗

1 ,

(ω, g) z→ γ∗(q(ω), g−1)−1ϕ(ω) (ω, g) z→ ψ(ω, gϑ(ω)−1)

if (ω,n) ∈ Ω1 ∗Z then

ψ(ωn, gβ(ω,n)) = ψ(ω, g) a.e.

and similarly

w(ωn, gα̃(ω,n)) = w(ω, g) a.e.

13R.J. Zimmer, Amenable ergodic group actions, Lemma 3.5
14In this case shift-equivariant
15R.J. Zimmer, Amenable ergodic group actions, Lemma 3.6
16A. Ramsay, Virtual groups and group actions, Lemma 5.2
17R.J. Zimmer, Amenable ergodic group actions, Lemma 1.7 and Step 4
18R.J. Zimmer, Amenable ergodic group actions, Theorem 2.1
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so w is essentially Z-invariant on Ω ×α G and hence there is a map σ ∶ M Ð→ E∗
1

such that σ(p̃(ω, g)) = w(ω, g) a.e. σ is a γ-invariant section19, moreover we have

w(ω, g) = γ∗(p̃○ι(ω)ϑ(ω)−1, ϑ(ω)g−1)−1ϕ(ω) = γ∗0 (t(p̃○ι(ω))ϑ(ω)−1, ϑ(ω)g−1)−1ϕ(ω)

t(p̃ ○ ι(ω)) factors to Ω0 so we just have to choose ϑ and ϕ correctly. By Step 3 M0

can be chosen to be t−1(P0) for some conull set P0 ⊂ P and hence ϑ can be chosen

so that it factors to a map on Ω0. Moreover ϕ was chosen to be a fixed point of

the action Z ↷ L∞(Ω,E∗
1 ), for n ≥ 0 we see that δ = γ ○ (q, β) factors to a function

on Ω0, so under the Z action, L∞(Ω0,E∗
1 ) will be invariant under N, which is an

amenable semigroup, hence we can find an invariant section, in other words ϕ can

be chosen so that it factor to Ω0.

19R.J. Zimmer, Amenable ergodic group actions Page 365
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