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1 Ergodicity

1.1 Measure Preserving Systems

Definition 1.1. Let (X,B, µ) be a probability space. A measurable map
T : (X,B) → (X,B) is called measure-preserving if µ(T−1(B)) = µ(B) for
all B ∈ B. The measure µ is said to be T -invariant and (X,B, µ, T ) is called
a measure-preserving system.

Theorem 1.2. Let (X,B, µ) be a probability space and S a semi-algebra
generating B. A measurable map T : (X,B)→ (X,B) is measure-preserving
if and only if µ(T−1(B)) = µ(B) for all B ∈ S

Proof. Define D := {B ∈ B | µ(T−1(B)) = µ(B)}. D is a Dynkin-System,
S is in particular a π-System and S ⊆ D. Hence, by Dynkin’s Lemma we
get that B = σ(S ) ⊆ D.

Example 1.1. (Circle rotation) Let T := R/Z be the 1-torus, α ∈ R and λ
the Lebesgue-measure on T. Define

Rα : T→ T, x 7→ x+ α mod 1.

S := {[a, b) ⊆ T | a ≤ b mod 1} is a semi-algebra generating the Borel
σ-algebra B. Let [a, b) ∈ S , then

λ(R−1
α ([a, b))) = b− a = λ([a, b)).

So (T,B, λ, Rα) is a measure preserving system.

Example 1.2. (Circle-doubling map) Consider the 1-torus together with the
Lebesgue measure (T,B, λ) and define

T2 : T→ T, x 7→ 2x mod 1.

Let [a, b) ∈ S := {[a, b) ⊆ T | a ≤ b mod 1} as above. Then

T−1
2 ([a, b)) = [

a

2
,
b

2
) ∪ [

a

2
+

1

2
,
b

2
+

1

2
)

is a disjoint union, so

λ(T−1
2 ([a, b))) = b− a = λ([a, b)).

We conclude that (T,B, λ, T2) is a measure preserving system.
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Example 1.3. (Gauss map) Consider X = [0, 1]\Q together with the induced
Borel σ-algebra. Define

T : X → X, x 7→ 1

x
−
⌊

1

x

⌋
.

T(x) is the fractional part of 1
x
. Let

dµ(x) :=
1

log 2

dλ(x)

1 + x
,

where λ denotes the Lebesgue measure. Take [a, b] ∈ B, then

µ(T−1([a, b])) =
∞∑
n=1

µ([
1

b+ n
,

1

a+ n
]) =

∞∑
n=1

1

log 2

∫ 1
a+n

1
b+n

dλ(x)

1 + x
=

=
1

log 2

( ∞∑
n=1

log(1 +
1

a+ n
)︸ ︷︷ ︸

=limn→∞(− log(a+1)+log(1+a+n))

−
∞∑
n=1

log(1 +
1

b+ n
)

)
=

=
1

log 2
lim
n→∞

(
log(

b+ 1

a+ 1
) + log(

1 + a+ n

1 + b+ n
)

)
= µ([a, b]).

So, (X,B, µ, T ) is a measure preserving system.

Lemma 1.3. Let (X,B) be a measurable space and T : (X,B) → (X,B) a
measurable map. A probability measure µ ∈ P(X) is T -invariant if and only
if ∫

X

fdµ =

∫
X

f ◦ Tdµ

for all bounded functions f ∈ L∞.

Proof. Suppose the equation∫
X

fdµ =

∫
X

f ◦ Tdµ

holds for all f ∈ L∞ and let B ∈ B be a measurable set, then

µ(B) =

∫
X

1Bdµ =

∫
X

1B ◦ Tdµ =

∫
X

1T−1(B)dµ = µX(T−1(B)).
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So µ is T -invariant.
Assume µ is T -invariant. By measure theoretic induction it is enough to
show ∫

X

fdµ =

∫
X

f ◦ Tdµ

for functions of the form f = 1B, where B ∈ B,∫
X

1Bdµ = µ(B) = µ(T−1(B)) =

∫
X

1B ◦ Tdµ.

Example 1.4. (Bernoulli shift) Let X = {1, 2, . . . , n}Z together with the σ-
algebra B generated by finite cylinders of the form

Ca,F := {x ∈ X | x |F= a(F )},

where F ⊆ Z is a finite set and a : F → {1, . . . , n} a map.
Define on X the infinite product measure

µ := (
n∑
k=1

pkδk)
⊗Z,

where (p1, . . . , pn) is a probability vector and the left-shift on X:

θ : X → X, x 7→ (xj+1)j∈Z.

Since µ is preserved by θ on finite cylinders and these generate B we may
conclude that (X,B, µ, θ) is a measure preserving system.

1.2 Ergodicity

Definition 1.4. A measure preserving system (X,B, µ, T ) is called ergodic
if the only T -invariant measurable sets B ∈ B are µ-trivial.

Proposition 1.5. Let (X,B, µ, T ) be a measure preserving system. The
following conditions are equivalent:
i)(X,B, µ, T ) is an ergodic system.
ii) For B ∈ B, µ(B∆T−1B) = 0 implies µ(B) ∈ {0, 1}.
iii)For B ∈ B, µ(B) > 0 implies

µ(
⋃
n∈N

T−nB) = 1.
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iv)For A,B ∈ B, µ(A), µ(B) > 0 implies the existence of some n ∈ N such
that

µ(T−nA ∩B) = 1.

v)For f ∈ L∞, f ◦ T = f µ-a.e. implies that f is constant µ-a.e.

Proof. i) ⇒ ii) Let B ∈ B be a measurable set such that µ(B∆T−1B) = 0.
Starting with B, we want to construct a T -invariant measurable set C ∈ B
such that µ(B) = µ(C). Define

C := lim sup
n→∞

T−nB =
⋂
n∈N0

⋃
k≥n

T−kB.

By construction C is measurable and T -invariant, so µ(C) ∈ {0, 1} by er-
godicity of the system. The sequence (

⋃
k≥n T

−kB)n≥0 is decreasing and for
each n ≥ 0

B∆
⋃
k≥n

T−kB ⊆
⋃
k≥n

B∆T−kB.

So
µ(C∆B) ≤ lim

n→∞
µ(
⋃
k≥n

B∆T−kB) ≤ lim
n→∞

∑
k≥n

µ(B∆T−kB) ≤

≤ lim
n→∞

∑
k≥n

µ(
k−1⋃
l=0

T−lB∆T−l−1B)︸ ︷︷ ︸
= 0

= 0.

This implies that µ(C) = µ(B).
ii)⇒ iii) Let B ∈ B such that µ(B) > 0. Define

A :=
⋃
n∈N

T−nB.

Then T−1A ⊆ A and µ(A) = µ(T−1A), since T is a measure preserving
transformation. Hence µ(A∆T−1A) = 0, so µ(A) ∈ {0, 1}. Since B ⊆ A and
µ(B) > 0 we conclude µ(A) = 1.
iii)⇒ iv) Let A,B ∈ B, µ(A), µ(B) > 0. Then

µ(
⋃
n∈N

T−nA) = 1.

So
0 < µ(B) = µ(B ∩

⋃
n∈N

T−nA) ≤
∑
n∈N

µ(B ∩ T−nA).
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This implies the existence of some n ∈ N such that µ(B ∩ T−nA) > 0.
iv)⇒ i) Let A ∈ B be a T -invariant set. Let n ∈ N, then

µ(T−n(A)︸ ︷︷ ︸
=A

∩Ac) = 0.

So µ(A) = 0 or µ(Ac) = 0.
ii)⇒ v) Let f ∈ L∞ so that f ◦ T = f µ-a.e. Without loss of generality we
can assume f to be real-valued. Let n ∈ N, then

X =
⋃
k∈Z

f−1(
[k
n
,
k + 1

n

)
) =

⋃
k∈Z

Ak(n)
n

is a disjoint partition of X and

T−1Akn(n)∆Akn(n) ⊆ {x ∈ X | f ◦ T (x) 6= f(x)},

is a null-set for all k(n) ∈ Z. For any n ∈ N we obtain µ(A
k(n)
n ) ∈ {0, 1}.

So, for all n ∈ N there exists exactly one k(n) ∈ Z such that µ(A
k(n)
n ) = 1.

Define
Y :=

⋂
n∈N

Ak(n)
n .

Then, f |Y is constant µ-a.e. on Y . So f is constant µ-a.e.
v) ⇒ ii) Let B ∈ B such that µ(B∆T−1B) = 0. Define f := 1B, which is
T -invariant since

f ◦ T = 1T−1B = 1B = f.

So f = const. µ-a.e. Hence µ(B) ∈ {0, 1}.

Example 1.5. (Circle rotation) Let (T,B, λ, Rα) as above.
Suppose first α = p

q
∈ Q is rational, then f := χq is not constant and

f ◦Rα = f . So (T,B, λ, Rα) is not ergodic if α is rational.
Assume α ∈ R \ Q is irrational and f ∈ L2(T, µ) is a T -invariant function.
The Fourier series corresponding to f

f =
∑
n∈Z

anχn

converges in L2. Moreover g 7→ g ◦Rα is an L2-isometry. Hence

f ◦Rα =
∑
n∈Z

anχn ◦Rα.
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Uniqueness of the Fourier coefficients implies that for any n ∈ N

an = ane
2πinα.

Therefore, an = 0 if n 6= 0 and f = a0 µ-a.e. So (T,B, λ, Rα) is ergodic if α
is irrational.

Example 1.6. (Bernoulli shift) Let (X,B, µ, θ) be defined as above and let
B ∈ B be a θ-invariant set. For any ε > 0 there exists a finite cylinder
Cε := Ca(ε),F (ε) with µ(Cε∆B) < ε. Without loss of generality we may write
F (ε) = [−Nε, Nε] ∩ Z. Take any Mε > 2Nε. Then θ−Mε(Cε) and Cε are two
independent events. So

µ(θ−Mε(Cε) \ Cε) = µ(θ−Mε(Cε))︸ ︷︷ ︸
=µ(Cε)

µ(Ccε ) = µ(Cε)µ(Ccε ).

B is θ-invariant. Hence,

µ(θ−MCε∆B) = µ(θ−MCε∆θ−MB) = µ(Cε∆B) < ε.

Therefore µ(θ−MCε∆Cε) < 2ε and

µ(B)µ(Bc) ≤ (µ(Cε) + ε)(µ(Ccε ) + ε) = µ(Cε)µ(Ccε )︸ ︷︷ ︸
2ε

+ε+ ε2 < 5ε.

This holds for each ε > 0. Therefore µ(B) ∈ {0, 1} and we can conclude that
(X,B, µ, θ) is ergodic.

1.3 The Mean and Pointwise Ergodic Theorem

Theorem 1.6 (Mean Ergodic Theorem). Let (X,B, µ, T ) be a measure
preserving system. Denote by PI the orthogonal projection onto the closed
subspace I := {g ∈ L2(X,µ) | g ◦ T = g}. Then, for any f ∈ L2(X,µ)

1

n

N−1∑
k=0

f ◦ T k L2

−−−→
n→∞

PIf.

Proof. The basic idea is to see that if f ∈ I, then the theorem holds, so we
just need to prove this for elements on the orthogonal complement.
A candidate for a dense subset of the orthogonal complement of I is

B := {g ∈ L2(X,µ) | g ◦ T − g}.
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It suffices to verify that B⊥ = I. Suppose now that f = g ◦ T − g ∈ B, then

‖ 1

n

n−1∑
k=0

(g ◦ T − g) ◦ T k‖L2 =
1

n
‖g ◦ T n − g‖L2 −−−→

n→∞
0.

Corollary 1.7. Let (X,B, µ, T ) be a measure preserving system. Then, for
any f ∈ L1

µ(X) there exists a T -invariant function f ′ ∈ L1
µ(X) so that

1

n

n−1∑
k=0

f ◦ T k L1

−−−→
n→∞

f ′.

In particular f ′ is given by

f ′ = E(f | F),

where F := {B ∈ B | µ(T−1B∆B) = 0}.

Proof. We want to show that for any f ∈ L∞(X,µ) ⊆ L2(X,µ) the conver-
gence to PIf is in L1. By density of L∞(X,µ) in L1(X,µ) we can extend the
same conclusion to any f ∈ L1(X,µ).
Let f ∈ L∞(X,µ), then ‖PIf‖∞ ≤ ‖f‖∞. Moreover ‖ · ‖L1 ≤ ‖ · ‖L2 , so the
convergence to PIf is in L1.

Theorem 1.8 (Birkhoff). Let (X,B, µ, T ) be a measure preserving system.
If f ∈ L1

µ(X), then there is a T -invariant function f ∗ ∈ L1
µ(X) so that for

µ-a.e. x ∈ X
1

n

n−1∑
k=0

f ◦ T k(x)
L1

−−−→
n→∞

f ∗(x).

Moreover, ∫
X

f ∗dµ =

∫
X

fdµ,

and if the system is ergodic, then for µ-a.e. x ∈ X

f ∗(x) =

∫
X

fdµ.

Proof. Without loss of generality we may assume that f is real valued. For
any x ∈ X define following two functions,

f ∗(x) = lim sup
n→∞

n−1∑
k=0

f ◦ T k(x)

7



and

f∗(x) = lim inf
n→∞

n−1∑
k=0

f ◦ T k(x).

We want to show that the set on which these two functions differ is a null
set. For this, note that

{f ∗ > f∗} ⊆
⋃
p,q∈Q

{f ∗ ≥ p > q ≥ f∗}.

It is sufficient to show that for any rationals p > q, the set {f ∗ ≥ p > q ≥ f∗}
is a null set. This follows from the maximal ergodic theorem, since∫

{f∗≥p>q≥f∗}
fdµ ≥ pµ({f ∗ ≥ p > q ≥ f∗})

and ∫
{f∗≥p>q≥f∗}

fdµ ≤ qµ({f ∗ ≥ p > q ≥ f∗}),

implies that {f ∗ ≥ p > q ≥ f∗} is a null set.
To prove convergence in L1 we know from the previous corollary, that

fn :=
1

n

n−1∑
k=0

f ◦ T k L1

−−−→
n→∞

f ′.

Hence, we can find a subsequence (fnk)k∈N such that limk→∞(fnk)k∈N = f ′

µ-a.e. So f ′ = f ∗ and the convergence

1

n

n−1∑
k=0

f ◦ T k(x) −−−→
n→∞

f ∗(x).

is in L1.
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2 Markov Processes and G-Spaces

2.1 Markov Processes and Convergence Results

Let X be a compact metric space. Denote by P(X) the space of probabil-
ity measures defined on the Borel σ-algebra B of X. By the Tychonoff-
Alaoglu theorem P(X) forms a non-empty compact metric space in the
weak∗-topology.

Definition 2.1. Let X be a compact metric space and

Ψ : X → P(X), x 7→ µx,

a continuous map. The Markov operator acting on C(X) is the map

P : C(X)×X → C(X), (f, x) 7→ Pf(x) :=

∫
X

f(y)dµx(y).

The measures µx are called transition probabilities of P. The dual operator is
defined on P(X) by

P ∗ : P(X)× B → P(X), (µ,B) 7→ P ∗µ(B) :=

∫
X

µx(B)dµ(x).

Remark. A Markov operator defines in a natural way a stochastic kernel from
(X,B) to itself, namely by setting

K : X × B → [0, 1], (x,B) 7→ P1B(x) = µx(B).

Example 2.1. (Random walk on the n-cycle) Let X = Z/nZ and define

Ψ : X → P(M), x 7→ µx :=
1

2
(δx−1 + δx+1).

The corresponding Markov operator is given by

P : C(X)×X → C(X), (f, x) 7→ Pf(x) :=
1

2
(f(x+ 1) + f(x− 1)).

Alternatively if we identify C(X) ∼= Rn we may represent P in the canonical
basis as

P =



0 1
2

0 · · · 0 1
2

1
2

0 1
2

0 · · · 0

0
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 0
0 . . . 0 1

2
0 1

2
1
2

0 . . . 0 1
2

0


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Remark. For any x ∈ X, the transition probability µx can be interpreted as
the probability of the process to move from x to a measurable set B ∈ B.
The corresponding Markov operator is the description of all these possible
moves.

Definition 2.2. Let X be a compact metric space, P a Markov operator
acting on C(X) and µ0 ∈ P(X) a probability distribution on X. A stochastic
process (Xn)n∈N0 with state space X is called a Markov process with respect
to P and µ0 if for any bounded measurable function f ∈ L∞(X) and any
n ∈ N0 we have for µ0-a.e. x ∈ X

E(f(Xn+1) | X0, . . . , Xn) = E(f(Xn+1) | Xn) = Pf(Xn),

and the distribution of X0 is given by µ0.

Remark (Canonical space of Markov processes). Define on XN0 the projec-
tions

Xn : XN0 → X, (xk)k≥0 7→ xn.

and the σ-algebra B0 := σ(
⋃
n∈N0

Xn) generated by these. The measure space
(XN0 ,B0) is the canonical space of Markov processes.

Lemma 2.3. Let X be a compact metric space, P a Markov operator acting
on C(X) and µ0 ∈ P(X) a probability distribution on X. Then, there exists
a unique probability measure Pµ0 on (XN0 ,B0) such that (Xn)n≥0 is a Markov
process with respect to P and µ0. Moreover, for any n ∈ N0 and any bounded
measurable function f ∈ L∞(Xn+1) on Xn+1,

EPµ(f(X0, . . . , Xn)) =

∫
M

. . .

∫
M

f(x0, . . . , xn)dµxn−1(xn) . . . dµx0(x1)dµ0(x0).

Proof. This is an application of the Ionescu-Tulcea theorem taking as stochas-
tic kernels copies of the stochastic kernel induced by P .

Theorem 2.4. Let X be a compact metric space, P a Markov operator acting
on C(X), µ0 ∈ P(X) a probability measure on X, (Xn)n∈N0 a Markov process
with respect to P and µ0 . For any f ∈ C(X) and Pµ0-a.s.

lim sup
n→∞

1

n+ 1

n∑
k=0

f(Xk) ≤ sup{
∫
fdµ | µ ∈ P(X) : P ∗µ = µ}.
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Proof. Let f ∈ C(X) be a continuous function on X. The theorem follows
from the following two observations

Claim 1. Suppose there exists some g ∈ C(X) such that f = Pg − g. Then,
Pµ0-a.s.

lim
n→∞

1

n+ 1

n∑
k=0

f(Xk) = 0.

Claim 2. For any ε > 0 there exist g, h ∈ C(X) so that f = Pg − g + h and

‖h‖∞ ≤ sup{
∫
fdµ | µ ∈ P(X) : P ∗µ = µ}+ ε.

Without loss of generality we may assume that f is positive. For any ε > 0
we can find g, h ∈ C(X) so that f = Pg − g + h and

lim sup
n→∞

1

n+ 1

n∑
k=0

f(Xk) = lim sup
n→∞

1

n+ 1

n∑
k=0

(
Pg(Xk)− g(Xk) + h(Xk)

)
≤ lim sup

n→∞
‖h‖∞ ≤ sup{

∫
fdµ | µ ∈ P(M) : P ∗µ = µ}+ ε.

Proof (Claim 1). Without loss of generality we may assume that f ≥ 0, so
Pg ≥ g. Then, for any n ∈ N0

1

n+ 1

n∑
k=0

f(Xk) ≤
n∑
k=0

1

k + 1
f(Xk) =: Mn.

We want to construct a martingale that converges in L2 and behaves like
(Mn)n∈N0 . Define for n ∈ N0 the following process

Nn :=
n∑
k=1

1

k + 1

(
Pg(Xk−1) + g(Xk)

)
.

(Nn)n∈N0 is a martingale with respect to the filtration generated by the
Markov process since

E(Nn+1 | X0, . . . Xn) = E(Nn) +
1

n+ 1
E(Pg(Xn)− g(Xn+1) | X0, . . . Xn)︸ ︷︷ ︸

= Pg(Xn)− Pg(Xn) = 0

.

Moreover

sup
n∈N
‖Nn‖L2 ≤ 2‖g‖∞

∞∑
k=1

1

k2
≤ ∞.
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So by Doob’s martingale convergence theorem (Nn)n∈N converges in L2 and
Pµ0-a.s. By rearranging the sum to reconstruct Mn we get Pµ0-a.s. conver-
gence of the process (Mn)n∈N0 . Applying Kronecker’s lemma to (Mn)n∈N0 we
conclude, that Pµ0-a.s.

lim
n→∞

1

n+ 1

n∑
k=0

f(Xk) = 0.

Proof (Claim 2). Define the linear subspace S := {Pg − g | g ∈ P(X)} and
denote the distance of f to S by

δ := inf
g∈C(X )

‖f − (Pg − g)‖∞.

By the Hahn-Banach theorem, there exists a continuous linear functional
Λ ∈ C(X)∗ so that ‖Λ‖op = 1, Λ(f) = δ and Λ |S= 0. By the Riesz-
representation theorem there is a signed measure |µ| representing Λ with
‖|µ|‖ = 1, P ∗|µ| = |µ| and

∫
fd|µ| = δ.

Decompose |µ| into its positive and negative parts |µ| = |µ|+ − |µ|−. Then,
P ∗|µ|± = |µ|±.

Define µ := |µ|+
‖|µ|+‖ ∈ P(X). Then P ∗µ = µ and

∫
fdµ ≥

∫
fd|µ| = δ.

Let ε > 0, choose g ∈ C(X) so that ‖f − (Pg − g)‖∞ ≤ δ + ε and let
h := f − (Pg − g) ∈ C(X). Then ‖h‖∞ ≤ δ + ε and

δ ≤ sup{
∫
fdµ | µ ∈ P(X) : P ∗µ = µ},

since for µ := |µ|+
‖|µ|+‖ ∈ P(X) we have

∫
fdµ ≥ δ.

Corollary 2.5. Let X be a compact metric space and P a Markov operator
acting on C(X). The space of P ∗-invariant probability measures

PP ∗(X) := {µ ∈ P(X) | P ∗µ = µ},

is not empty.
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Corollary 2.6. Let X be a compact metric space, P a Markov operator
acting on C(X), µ0 ∈ P(X) a measure on X, (Xn)n∈N0 a Markov process
with respect to P and µ0 . Let f ∈ C(X) so that for all µ ∈ PP ∗(X)∫

X

fdµ = f̄ ,

where f̄ is a constant. Then, Pµ0-a.s.

lim
n→∞

1

n+ 1

n∑
k=0

f(Xk) = f̄ .

Proof. This follows directly from the theorem applied to f and −f :

lim sup
n→∞

1

n+ 1

n∑
k=0

f(Xk) ≤ sup{
∫
fdµ | µ ∈ PP ∗(X)} = f̄ ,

and

lim sup
n→∞

1

n+ 1

n∑
k=0

−f(Xk) ≤ sup{
∫
−fdµ | µ ∈ PP ∗(X)} = −f̄ .

So,

lim sup
n→∞

1

n+ 1

n∑
k=0

f(Xk) ≤ f̄ ≤ lim inf
n→∞

1

n+ 1

n∑
k=0

f(Xk).

Example 2.2 (Bernoulli process). Let (Xn)n∈N be a Markov process on X =
{−1, 1} with transition probabilities

µ1 = µ−1 = pδ1 + (1− p)δ−1.

Consider a continuous function f ∈ C(X) on X. Note that any P ∗-invariant
probability measure µ ∈ PP ∗(X) on X is equal to µ1, since for any B ∈ 2X

we have

P ∗µ(B) =

∫
X

µx(B)dµ(x) = µ1(B) = µ(B).

Hence, PP ∗(X) = {µ1}. Moreover,∫
X

fdµ1 = pf(1) + (1− p)f(−1).

13



So we can deduce, that

lim
n→∞

1

n+ 1

n∑
k=0

f(Xk) = pf(1) + (1− p)f(−1),

for any f ∈ C(M). Consider f = 1{1} ∈ C(M). Then for any n ∈ N,
1

n+1

∑n
k=0 1{1}(Xk) can be interpreted as the relative number of successes of

the Markov process and converges to

lim
n→∞

1

n+ 1

n∑
k=0

1{1}(Xk) = p.

2.2 Stationary Measures

Definition 2.7. Let X be a compact metric space and µ ∈ P(X) a probability
measure on X. A sequence (xn)n∈N0 ∈ XN0 is equidistributed with respect to
µ if

lim
n→∞

1

n+ 1

n∑
k=0

δxk = µ

converges in the weak∗-topology.

Example 2.3 (Random equidistribution on T). Let X = T be the 1-torus and
λ ∈ P(T) the Lebesgue measure on T. Take as transition probability µx = λ
for any x ∈ T, i.e. the probability to move from x to any other point in T
is uniformly distributed. Note that PP ∗(T) = {λ}, since for any B ∈ B we
have

P ∗µ(B) =

∫
T
λ(B)dµ(x) = λ(B) = µ(B).

Hence, for any f ∈ C(T) we get

lim
n→∞

1

n+ 1

n∑
k=0

f(Xk) =

∫
T
fdλ.

So the random sequence µn+1 = 1
n+1

(δX0 + · · · + δXn) equidistributes with
respect to the Lebesgue measure λ.
In general, for any µ ∈ P(T) it is possible to construct a random equidis-
tributed sequence by choosing as transition probabilities µx = µ.

Remark. Last example shows that it is simple to construct a random equidis-
tributed sequence if the set of P ∗-invariant probability measures PP ∗(X) is
uniquely determined.
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Proposition 2.8. Let X be a compact metric space and T : X → X a
measurable map. The space

PT (X) := {µ ∈ P(X) | µ is T-invariant }

of T -invariant probability measures µ ∈ P(X) is a weak∗-compact convex
subset of P(X). The extremal points of PT (X) are precisely the ergodic
measures in PT (X).

Corollary 2.9. Let X be a compact metric space, P a Markov operator
acting on C(X) and µ ∈ P∗(X) a P ∗-invariant probability measure on X.
Then Pµ is an ergodic measure for the shift θ : XN0 → XN0 if and only if µ
is an extremal point of PP ∗(X).

Proof. Suppose µ is not an extremal point of of PP ∗(X). Then, we can find
two distinct extremal points µ1, µ2 ∈ PP

∗
(X) and some t ∈ (0, 1) so that

µ = tµ1 + (1− t)µ2.

By uniqueness of the measures Pµ,Pµ1 ,P
µ
2 ∈ P(XN0) we obtain

Pµ = tPµ1 + (1− t)Pµ2 .

Assume by contradiction that Pµ is an ergodic measure. Let B ∈ B0 be a θ-
invariant set. Then, Pµ1 and Pµ2 are also ergodic measures, since Pµ1(B),Pµ2(B) ∈
{0, 1}. Let f ∈ L∞(XN0) be a bounded measurable function. By Birkhoff’s
ergodic theorem we conclude, that

lim
n→∞

1

n

n−1∑
k=0

f ◦ θk(ω) =

∫
fdPµ1 =

∫
fdPµ2 ,

for Pµ1 ,P
µ
2 -a.e. ω ∈ XN0 . Therefore we get that Pµ1 = Pµ2 , which is a contra-

diction.
Suppose Pµ is not ergodic. We want to find distinct measures µ1, µ2 ∈ PP ∗(X)
and some t ∈ (0, 1) so that

µ = tµ1 + (1− t)µ2.

Since Pµ is not ergodic there exists a θ-invariant measurable set B0 ∈ B0 so
that Pµ(B0) =: t ∈ (0, 1). Moreover since Pµ is θ-invariant we can find some
measurable set B ∈ B such that µ(B) = Pµ(B0). Define

µ1(A) :=
1

t
µ(A ∩B), µ2(A) :=

1

1− t
µ(A ∩Bc).

Note that µ = tµ1 + (1− t)µ2 and µ1, µ2 are distinct measures. So, µ is not
extremal.
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Corollary 2.10. Let X be a compact metric space and P a Markov operator
acting on C(X). If the space PP ∗(X) of P ∗-invariant probability measures
on X contains more than one element, then there are two mutually singular
measures µ1, µ2 ∈ PP

∗
(X).

Proof. Without loss of generality suppose µ1, µ2 ∈ PP
∗
(X) are two distinct

extremal probability measures. Let f ∈ C(X) be a continuous function so
that ∫

X

fdµ1 6=
∫
X

fdµ2.

Since Pµ1 and Pµ2 are ergodic measures for θ we conclude for the Markov
process (Xn)n∈N0 with respect to P and δx using Birhoff’s ergodic theorem
that

lim
n→∞

n−1∑
k=0

f(Xk) =

∫
X

fdµ1

for µ1-a.e. x ∈ X and

lim
n→∞

n−1∑
k=0

f(Xk) =

∫
X

fdµ2

for µ2-a.e. x ∈ X. It follows that the set

A := {x ∈ X | lim
n→∞

n−1∑
k=0

f(Xk) =

∫
fdµ1 holds }

is measurable and has µ1(A) = 1 but µ2(A) = 0.

Corollary 2.11. Let X be a compact metric space and P a Markov operator
acting on C(X). If PP ∗(X) has a unique P ∗-invariant measure µ ∈ P(X),
then Pµ ∈ P(XN0) is an ergodic measure with respect to the shift θ.

Remark. If PP ∗(X) has more than one invariant measure, then we can find a
measurable disjoint partition B1, B2 ∈ B of X so that if the Markov process
starts in B1 then it will stay in B1 almost surely.
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2.3 Random Walks on G-Spaces

Definition 2.12. A compact metric space X is called a G-space if there is
a locally compact group G acting on X so that

G×X → X, (g, x) 7→ g · x

is continuous. Given µ ∈ P(X) and m ∈ P(G), the convolution probability
measure m ∗ µ ∈ P(X) on X is the image of m × µ under the action map.
For f ∈ C(X) we have∫

X

fd(m ∗ µ) =

∫
G

∫
X

f(g · x)dµ(x)dm(g).

Moreover, µ is called m-stationary if m ∗ µ = µ.

Remark (Induced random walk). The continuous map

Ψ : X → P(X), x 7→ µx = m ∗ δx,

induces a Markov operator by setting

P : C(X)×X → C(X), (f, x) 7→ Pf(x) :=

∫
X

f(y)dµx =

∫
G

f(g · x)dm(g).

Moreover, if for any x ∈ X, the associated measure m ∗ δx is m-stationary.
Then any probability measure µ ∈ P(X) is P ∗-invariant

P ∗ν(B) =

∫
X

m ∗ δx(B)dν(x) =

∫
X

δx(B)dν(x) = ν(B).

Remark. A probability measure m ∈ P(G) induces a random walk on X,
where Xn+1 arises by applying some g ∈ G to Xn and g is chosen with
respect to the probability measure m.
The random walk may be transient or recurrent. In the case where the
random walk is recurrent and the expected return time is finite, we talk
about positive recurrence, this is the case if and only if the Markov process
has an m-invariant measure µ ∈ Pm(X).

Proposition 2.13. Let G be a locally compact group and m ∈ P(G) a prob-
ability measure on G. If X is a G-space, then the space

Pm(X) := {µ ∈ P(X) | m ∗ µ = µ}

of m-stationary measures is not empty.
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Proof. Note that m ∈ P(G) induces a Markov operator P acting on C(X), so
a measure µ ∈ P(X) is P ∗-invariant if and only if it is m-stationary, and we
already know that the space PP ∗(X) is not empty. Nevertheless the following
proof is more constructive. Let µ ∈ P(X) be any probability measure on X.
Define the averages

µn :=
1

n

n−1∑
k=0

mn ∗ µ,

where µn ∗m := m∗ (m∗ (. . . (m∗µ) . . . )). (µn)n∈N ∈ P(X)N is a sequence of
probability measures on X and P(X) is a weak∗-compact space. Therefore,
we can find a subsequence (µnl)l∈N ⊆ (µn)n∈N so that µnl −−−→

l→∞
µ∗ ∈ P(X).

We want to show that the limit µ∗ is m-stationary. Let f ∈ C(X) be a
continuous function. Then, for any l ∈ N we can approximate the difference
of m ∗ µnl(f) from µnl(f) by

|
∫
X

fd(m ∗ µnl)−
∫
X

fdµnl | ≤
2

nl
‖f‖∞.

The triangle inequality yields the desired result.

Example 2.4 (Random walk on Z ). Let p ∈ [0, 1
2
) and consider the probability

distribution on Z given by

m := pδ1 + (1− p)δ−1.

The induced Markov operator on Z is then

P : C(Z)× Z→ C(Z), (f, x) 7→ pf(x+ 1) + (1− p)f(x+ 1).

We want to describe the space Pm(Z) of m-stationary probability measures.
Let µ ∈ Pm(Z), for any x ∈ Z the measure µ must satisfy

µ(x) = m ∗ µ(x) =

∫
Z

∫
Z
1x(y + z)dµ(y)dm(z) =

=

∫
Z

(
p1x(y + 1) + (1− p)1x(y − 1)

)
dµ(y) = pµ(x− 1) + (1− p)µ(x+ 1).

Solutions of this linear recurrence are of the form

µ(x) = α + β

(
p

1− p

)x
.

So Pm(Z) = ∅. This shows that X has to be compact.
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Example 2.5 (Lazy random walk on the hypercube). Consider as state space
the hypercube X = {0, 1}d. Two vertices x, y ∈ X are said to be neighbors,
x ∼ y, if and only if they differ in exactly one coordinate or equivalently if the
(euclidean) distance is one Each vertex has exactly d neighbors. The group
G = (Z/2Z)d acts on X by addition. Denote by ek = (0, . . . , 1, . . . , 0) ∈ G
the basis elements and introduce the following probability measure on G,

m =
1

2d
(δe1 + · · ·+ δed) +

1

2
δ0.

The corresponding Markov operator is the map

P : C(X)×X → C(X), (f, x) 7→ 1

2d

d∑
k=1

f(ek + x) +
1

2
f(x).

The Markov process moves at each step to one neighbor or stays put with
with equal probability 1

2
. This can be seen by looking at the transition

probabilities

µx(y) = P1{y}(x) =


1
2d

, if x ∼ y
1
2

, if x = y

0 , else

.

Note that the uniform distribution on X is P ∗-invariant (resp. m-stationary).
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3 Examples of G-Spaces

3.1 Law of Large Numbers for Matrix Products

An application of the last section is the following case: G = GLn(R) is a
locally compact group. Denote by Pn−1(R) the (n−1)-dimensional projective
space. Suppose m ∈ P(G) is a probability measure on G with compact
support supp(m) ⊂⊂ G. Pn−1(R) is a G-space with respect to G and the
group acts continuously on Pn−1(R) by multiplication

G× Pn−1(R)→ Pn−1(R), (g, [x]) 7→ [gx],

where [x] ∈ Pn−1(R) denotes the equivalence class of x ∈ Rn \{0}. Introduce
the Markov operator induced on C(Pn−1(R) by G,

PG : C(Pn−1(R))× Pn−1(R)→ C(Pn−1(R)), (f, [x]) 7→
∫
G

f(g · [x])dm(g).

Fix some [x] ∈ Pn−1(R), let (Xn)n∈N be a sequence of G-valued independent
indentically m-distributed random variables and consider the random walk
on Pn−1(R) defined by

Sn =

{
Xn . . . X1 · [x] if n ≥ 1

[x] if n = 0
.

Note that for any f ∈ C(Pn−1(R)) we have

E(f(Sn) | S0, . . . , Sn−1) = E(f(Xn . . . X1 · [x]) | X1, . . . , Xn−1) =

=

∫
G

f
(
g · (Xn−1 . . . X1 · [x])

)
dm(g) = Pf(Sn−1).

So (Sn)n∈N defines a Markov process on Pn−1(R) with respect to PG. The aim
of this example is to construct a non-commutative analogue of the Law of
Large Numbers. In order to do this, we will analyze the following expression

lim
n→∞

1

n
log ‖Sn‖ = lim

n→∞

1

n
log ‖Xn . . . X1 · [x]‖.
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Theorem 3.1. Let m ∈ P(G) be a probability measure with compact support
and (Xn)n∈N a G-valued independent identically m-distributed sequence of
random variables. Then, for any x ∈ Rn \ {0} with probability one

lim sup
n→∞

1

n
log ‖Xn . . . X1 · x‖ ≤

≤ sup{
∫ ∫

log
‖g[y]‖
‖[y]‖

dm(g)dν([y]) | µ ∈ Pm(Pn−1(R))}.

Moreover, if there is a constant β so that for any m-invariant measure
µ ∈ P(Pn−1(R)), ∫ ∫

log
‖g[y]‖
‖[y]‖

dm(g)dν([y]) = β.

Then, with probability one

lim
n→∞

1

n
log ‖Xn . . . X1‖ = β.

Proof. Define X := supp(m)× Pn−1(R)

P : C(X)×X → C(M), (f, (g, [x])) 7→
∫
G

f(h, h · [x])dm(h).

Note that if a function f ∈ C(X) is of the form f(g, [x]) = f([x]), then P
coincides with PG.
For any g ∈ G and [x] ∈ Pn−1(R) the expression ‖x‖

‖g−1x‖ is independent of the

choice of x ∈ [x]. Therefore, the map

f : M → R, (g, [x]) 7→ log

(
‖x‖
‖g−1x‖

)
defines a well-defined and continuous function on M . The process

Yn =

{
(Xn, Sn) , if n ≥ 1

(id, [x]) , if n = 0
,

is as above a Markov process with respect to P . Then, for any n ∈ N

1

n+ 1

n∑
k=0

log(Yk) =
1

n+ 1

n∑
k=1

log

(
‖Xk . . . X1 · x‖
‖Xk−1 . . . X1 · x‖

)

=
1

n+ 1
log(‖Xn . . . X1 · x‖)−

1

n+ 1
log(‖x‖).
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So,

lim sup
n→∞

1

n
log(‖Xn . . . X1 · x‖) ≤ sup{

∫
log

‖y‖
‖g−1y‖

dν(g, [y]) | ν ∈ PP ∗(M)}.

We want to show that there is a bijection between P ∗-invariant measures and
m-invariant measures.
Suppose ν ∈ PP ∗(X) is a P ∗-invariant measure on X. Denote by
µ ∈ P(Pn−1(R)) the projection of ν on Pn−1(R). If f ∈ C(X) is a continuous
function of the form f(g, [x]) = f([x]), then∫

f([x])dµ([x]) =

∫
f([x])dν(g, [x]) =

∫
f([x])d(P ∗ν)(g, [x]) =

=

∫
Pf([x])dν(g, [x]) =

∫ ∫
f(g · [x])dm(g)dµ([x]).

So µ is m-invariant. Conversely suppose that µ ∈ Pm(Pn−1(R)) is an m-
invariant measure. Define a measure ν ∈ P(X) on X by∫

f(g, [x])dν(g, [x]) :=

∫ ∫
f(g, g · [x])dm(g)dµ([x]),

for f ∈ C(X). Then ν ∈ PP ∗(X) is a P ∗-invariant measure, since∫
fd(P ∗ν) =

∫
Pfdν =

∫ ∫
Pf(g, g · [x])dm(g)dµ([x]) =

=

∫ ∫
f(h, h · [x])dm(h)dµ([x]) =

∫
fdν.

Let ν ∈ PP ∗(X) be a P ∗-invariant measure on X and µ ∈ Pm(Pn−1(R)) the
corresponding m-invariant measure on Pn−1(R). Then∫

log
‖y‖
‖g−1y‖

dν(g, [y]) =

∫ ∫
log
‖gy‖
‖y‖

dm(g)dµ([y]).

Hence, we can rewrite the above inequality as

lim sup
n→∞

1

n
log(‖Xn . . . X1 · x‖) ≤

≤ sup{
∫ ∫

log
‖gy‖
‖y‖

dm(g)dµ([y]) | µ ∈ Pm(Pn−1(R))}.
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Corollary 3.2. Let m ∈ P(G) be a probability measure with compact support
and (Xn)n∈N a G-valued independent identically m-distributed sequence of
random variables. With probability one

lim
n→∞

1

n
log ‖Xn · · ·X1‖ =

= sup{
∫ ∫

log

(
‖gx‖
‖x‖

)
dm(g)dµ([x]) | µ ∈ Pm(Pn−1(R))}.

Proof. Note that the previous theorem implies directly that

lim sup
n→∞

1

n
log(‖Xn . . . X1‖) ≤

≤ sup{
∫ ∫

log
‖gx‖
‖x‖

dm(g)dµ([x]) | µ ∈ Pm(Pn−1(R))}

holds with probability one, independent of the choice of norm. We want to
show the inverse inequality for the lim inf.
Let µ ∈ Pm(Pn−1(R)) be an m-invariant probability measure and [U0] a µ-
distributed random variable independent of the sequence (Xn)n∈N. Consider
the random walk on Pn−1(R) defined by

Sn =

{
Xn . . . X1 · [U0] , if n ≥ 1

[U0] , if n = 0
,

and the process

Yn =

{
(Xn, Sn) , if n ≥ 1

(id, [U0]) , if n = 0
,

on M := supp(m) × Pn−1(R). The latter process is a Markov process with
respect to the Markov operator

P : C(M)×M → C(M), (f, (g, [x])) 7→
∫
G

f(h, h · [x])dm(h).

The process (Sn)n≥0 is stationary: For n = 0 this is clear, for n ≥ 1 this
follows from the fact that Xn and Un−1 are independent. So the process
(Yn)n≥0 is stationary. Hence

lim
n→∞

1

n
log ‖Xn . . . X1U0‖ = f ∗,
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where f ∗ ∈ L1(X) and

E(f ∗) =

∫ ∫
log

(
‖gx‖
‖x‖

)
dm(g)dµ([x]).

Note that

lim inf
n→∞

1

n
log ‖Xn . . . X1U0‖

is a random variable, which is measurable with respect to the tail σ-algebra
F∞ :=

⋂
n≥0 σ(Xn, Xn+1, . . . ). So by Kolmogorov’s zero-one law it is a.e.

constant. Moreover, there must be a measurable set B of positive probability
so that

lim inf
n→∞

1

n
log ‖Xn . . . X1U0‖ ≥

∫ ∫
log

(
‖gx‖
‖x‖

)
dm(g)dµ([x]).

Hence B is a set of full measure. Since µ was arbitrary, we conclude that

lim inf
n→∞

1

n
log ‖Xn . . . X1U0‖ ≥

sup{
∫ ∫

log

(
‖gx‖
‖x‖

)
dm(g)dµ(x) | µ ∈ Pm(Pn−1(R))}

holds with probability one. The previous theorem gives the remaining in-
equality.

3.2 Rotations on the 2-Sphere

Let S2 := {x ∈ R3 | ‖x‖ = 1} be the 2-sphere embedded in R3 together with
its Borel σ-algebra. Parametrize S2 in spherical coordinates,x1

x2

x3

 =

cos(ϕ) sin(θ)
sin(ϕ) sin(θ)

cos(θ)

 ,

where θ ∈ [0, π] and ϕ ∈ [0, 2π]. The Haar measure on S2 is the usual
Lebesgue measure given by

dµ =
1

4π
sin(θ)dθdϕ.

Let G = SO(3) = {g ∈ O(3) | det(g) = 1} be the special orthogonal group.
G acts continuously on S2 by left-multiplication,

G× S2 → S2, (g, x) 7→ g · x.
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SO(3) is a compact subgroup, each element g ∈ SO(3) can be parametrized
(up to measure zero) by the Euler angles as

g = gϕhθgϑ

where θ ∈ [0, π], ϕ ∈ [0, 2π], ϑ ∈ [0, 2π] and

gϕ =

cos(ϕ) − sin(ϕ) 0
sin(ϕ) cos(ϕ) 0

0 0 1

 , hθ =

1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)

 .

The normalized Haar measure on SO(3) is then given by∫
SO(3)

f(g)dm(g) =
1

8π2

∫ 2π

0

∫ π

0

∫ 2π

0

f(gϕhθgϑ) sin(θ)dϕdθdϑ,

for f ∈ C(SO(3)). The main observation for this example is that SO(3) acts
as measure preserving transformations on S2.

Lemma 3.3. SO(3) is a family of measure preserving transformations of the
sphere S2.

Proof. Let f ∈ L∞ be a bounded function on the sphere and g ∈ SO(3) an
arbitrary element. Then ∫

S2
f ◦ g dµ =

∫
S2
fdµ,

since det g = 1. Since g ∈ SO(3) was arbitrary we conclude the claim.

We want to construct a Markov process with a unique P ∗-invariant prob-
ability measure. The idea is to use the left-invariance property of the Haar
measure. Take any g ∈ SO(3) \ {id} and define

Ψ1 : S2 → P(S2), x 7→ δg·x.

The corresponding Markov operator acting on C(S2) is the map

P1 : C(S2)× S2 → C(S2), (f, x) 7→
∫
S2
f(y)dµx(y) = f(g · x).

Lemma 3.4. Let (Xn)n≥0 be a Markov process with respect to P1 and some
initial distribution µ0 ∈ P(S2). Then

Xn ∈ gn · supp(µ0)

for Pµ0-a.e. x ∈ S2.
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Proof. For X0 it is clear by definition of the initial distribution. Consider
first n = 1,

P
(
X1 ∈ g · supp(µ0)

)
= P

(
P
(
X1 ∈ g · supp(µ0) | X0

))
=

= E
(
P11{X0∈g·supp(µ0)}(X0)

)
= P

(
g ·X0 ∈ g · supp(µ0)

)
= 1.

Let n ∈ N be arbitrary, then by conditioning on the first n − 1 steps and
using the Markov property we get

P
(
Xn ∈ gn · supp(µ0)

)
= P

(
P
(
Xn ∈ gn · supp(µ0) | X0, . . . , Xn−1

))
=

= E
(
P11{Xn−1∈gn·supp(µ0)}(X0)

)
= P

(
gn−1 ·Xn−1 ∈ gn−1 · supp(µ0)

)
= 1.

Corollary 3.5. Suppose µ0 = δx0 is the initial distribution for the Markov
chain with respect to P1 for some x0 ∈ S2. Then, for any n ∈ N0 we have
Xn = gn · x0 for Pµ0-a.e. x ∈ S2.
Moreover {gn · x0}n≥0 ⊆ Γ, where Γ ⊂ S2 is a circle radial to the axis
of rotation and the sequence equidistributes with respect to the line element
along Γ induced by µ if and only if the rotation angle along the axis of rotation
is irrational.

Proof. Without loss of generality we may assume that g ∈ SO(3) is a rotation
of angle α ∈ [0, 2π] about the z-axis and that {gn · x0}n≥0 has more than 3
three elements.
Let Γ = E ∩ S2, where E is the unique plane through the orbit of x0. In
particular Γ is a circle radial to the axis of rotation.
If α ∈ Q is rational then {gn · x0}n≥0 is finite. If α ∈ R \Q is irrational then
the map g |Γ: Γ → Γ is an ergodic transformation of Γ with respect to the
line element induced by µ (Circle rotation). Hence, the sequence {gn ·x0}n≥0

equidistributes on Γ if and only if α is irrational.

Lemma 3.6. µ ∈ P(S2) is the unique non-atomic P ∗1 -invariant probability
measure.

Proof. Suppose ν ∈ P(S2) is a P ∗1 -invariant probability measure on S2. For
any B ∈ B we get

P ∗1 ν(B) =

∫
S2
µx(B)dν(x) =

∫
S2
δg·x(B)dν(x) = ν(g ·B) = ν(B).

So ν is invariant under g. The only rotation-invariant non-atomic probability
measure on the sphere is µ. Hence ν = µ.
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Remark. If x, y ∈ S2 are the unique points on the sphere fixed by g, then
δx, δy ∈ P(S2) are the only atomic P ∗1 -invariant probability measures.

Corollary 3.7. Let (Xn)n≥0 be a Markov process with respect to P1 and
µ0 ∈ P(S2). For any continuous function f ∈ C(S2), Pµ0-a.s.

lim sup
n→∞

1

n+ 1

n∑
k=0

f(Xk) ≤ sup{
∫
S2
fdν | ν ∈ {µ, δx, δy}}.

Lemma 3.8. For any f ∈ C(S2), P1f = f µ-a.e. implies that f is constant
µ-a.e.

Proof. Suppose f ∈ C(S2) and P1f = f µ-a.e. For any x ∈ S2 we must have

P1f(x) = f(g · x) = f(x).

This holds if and only if f is constant, since g 6= id.

The second Markov process that we want to describe is the Markov pro-
cess induced by the natural map

Ψ2 : S2 → P(S2), x 7→ δx ∗m.

The corresponding Markov operator acting on C(S2) is the map

P2 : C(S2)× S2 → C(S2), (f, x) 7→
∫
SO(3)

f(g · x)dm(g).

The dynamics of this Markov process is the following: If at time n the Markov
chain is at the point Xn = xn ∈ S2, then it moves to some x ∈ B ⊂ B in the
next step with probability P1B(x). Informally, the Markov process moves
from xn to x with probabililty dm(g) if there is some g ∈ SO(3) so that
x = g · xn.

Lemma 3.9. The space of m-invariant probability measures on S2 contains
only µ ∈ P(S2).

Proof. Let f ∈ C(S2) be a continuous function and ν ∈ Pm(S2) an m-
invariant probability measure. Let g ∈ SO(3), then∫
S2
f(g ·x)dν(x) =

∫
S2
f(g ·x)d(m∗ν)(x) =

∫
SO(3)

∫
S2
f(h ·g ·x)dν(x)dm(h) =
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=

∫
S2

∫
SO(3)

f(h · x)dm(h)dν(x) =

∫
S2
f(x)d(m ∗ ν)(x) =

∫
S2
f(x)dν(x).

So any m-invariant probability measure is SO(3)-invariant. Since Pm(S2)
is not empty and µ is the only SO(3)-invariant probability measure on the
sphere, we may conclude that Pm(S2) = {µ}.

Corollary 3.10. Let µ0 ∈ S2 be an initial probability distribution for the
Markov process (Xn)n≥0 with respect to P2 and f ∈ C(S2) a continuous func-
tion on the sphere, then Pµ0-a.s.

lim
n→∞

1

n+ 1

n∑
k=0

f(Xk) =

∫
S2
fdµ.

Lemma 3.11. For any B ∈ B, µ(g−1B∆B) = 0 for m-a.e. g ∈ SO(3)
implies µ(B) ∈ {0, 1}.

Proof. Let B ∈ B be a measurable set so that gB = B for m-a.e. g ∈ SO(3)
and µ(B) ∈ (0, 1).
Since B 6= S2, we can find (ϕ1, ϕ2)×(θ1, θ2)×(ϑ1, ϑ2) ∈ [0, 2π]×[0, π]×[0, 2π]
so that for any gϕ,θ,ϑ ∈ SO(3), where (ϕ, θ, ϑ) ∈ (ϕ1, ϕ2)× (θ1, θ2)× (ϑ1, ϑ2)
we have

gϕ,θ,ϑ ∩B 6= B,

and

m({g ∈ SO(3) | g = gϕ,θ,ϑ, (ϕ, θ, ϑ) ∈ (ϕ1, ϕ2)× (θ1, θ2)× (ϑ1, ϑ2)}) > 0

which is a contradiction.

3.3 Stationary Measures on the Torus

Let Td := Rd/Zd be the d-torus and µ the Lebesgue measure on Td. Denote
by SLd(Z) := {g ∈ GLd(Z) | det g = 1} the special linear group of integer
matrices.

Proposition 3.12. Let g ∈ SLd(Z). The action of g on Zd is ergodic if and
only if no eigenvalue of g is a root of unity.

Proof. The proposition follows directly from the following claim,

Claim. g is ergodic with respect to µ if and only if e2πi〈n,Al·x〉 = e2πi〈n,x〉

µ-a.e. for some l > 0 implies n = 0.
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Proof (Claim). Suppose that g is ergodic. Let n ∈ Zd and l > 0 so that
µ-a.e.

e2πi〈n,gl·x〉 = e2πi〈n,x〉.

Without loss of generality we may assume that l > 0 is the smallest exponent
so that the above equality holds. Define

f(x) :=
l−1∑
k=0

e2πi〈n,gk·x〉.

Note that f ◦ g = f µ-a.e. By assumption g is an ergodic transformation, so
f is constant µ-a.e. Hence, n = 0.
Conversely suppose that e2πi〈n,gl·x〉 = e2πi〈n,x〉 µ-a.e. for some l > 0 implies
n = 0. Let f ∈ L2(Td, µ) and suppose that f ◦ g = f µ-a.e. Since f ◦ gl = f
µ-a.e. for all l > 0, we get from the Fourier series for both functions following
expression, ∑

k∈Zd
ake

2πi〈k,gl·x〉 =
∑
k∈Zd

ake
2πi〈k,x〉.

By the uniqueness of the Fourier coefficients we obtain for any k ∈ Zd,

ak = agk = · · · = aglk = . . . .

Note that if ak 6= 0, then there must be some l > 0 so that k = glk. So
e2πi〈k,gl·x〉 = e2πi〈k,x〉 µ-a.e., hence k = 0. Therefore f = a0 µ-a.e.

Suppose g were no ergodic, then there is some n ∈ Zd \ {0} and some

l > 0 such that e2πi〈n,gl·x〉 = e2πi〈n,x〉 µ-a.e. So (gtr)ln = n. Hence, gl has an
eigenvalue 1 and g an l-th root of unity as eigenvalue.

Suppose g has an l-th root of unity as eigenvalue. Then, gl has 1 as an
eigenvalue. So n(gl − id) = 0 for some n ∈ Rd \ {0}. Since g ∈ Zd we can

take n ∈ Zd. Moreover e2πi〈n,gl·x〉 = e2πi〈n,x〉. So g is not ergodic.

The first Markov process we will analyze on the torus is the following
trivial Markov process: Let g ∈ SLd(Z) so that no eigenvalue of g is a root of
unity. Consider the following probability distribution on G = 〈g〉 < SLd(Z),
m1 := δg ∈ P(G). The corresponding Markov operator acting on C(Td) is

P1 : C(Td)× Td → C(Td), (f, x)→ f(g · x).
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Remark. The space Pm1(Td) contains the Lebesgue measure µ, and Dirac
measures (δx)x∈{0,σ(g)}, where σ(g) denotes the spectrum of g.
Lebesgue measure is invariant with respect to the action of g, since det g = 1,
and g fixes any x ∈ {0, σ(g)}.
This is the usual behavior of invariant distributions, convex combination of
the Haar measure and atomic measures. Following proposition explains one
case.

Proposition 3.13. Let G<SLd(Z) be a finite index subgroup and µ ∈ PG(Td)
a G-invariant probability measure on Td. Then, µ is a convex combination
of the Haar measure and atomic measures on finite orbits.

Proof. Suppose ν ∈ PG(Td) is not the Haar measure. Then there exists some
n ∈ Zd \ {0} so that |ν̂(n)| > 0. For any g ∈ G,

ν̂(n) =

∫
Td
e2πi〈n,g·x〉dν(x) =

∫
Td
e2πi〈gtr·n,x〉dν(x) = ν̂(gtr · n),

since ν is G-invariant. By Wiener’s lemma,

∑
x∈Td

ν({x})2 = lim
n→∞

1

n

n∑
k=1

1

|Bn|
∑
b∈Bn

ν̂(b)2.

where the sum is taken over all atoms and Bn = {b ∈ Zd | max |bk| ≤ n} It
follows that ν has atoms, since it is not the Haar measure. Moreover, any
orbit Gtrn ⊂ Zd \ {0} has positive measure. So the atoms of ν must lie on
finite orbits.

Example 3.1 (Finite index subgroups). For any n ∈ N define the reduction
map

Φ : SL2(Z)→ SL2(Z/nZ),

(
a b
c d

)
7→
(
a b
c d

)
mod n.

Φ is an epimorphism and SL2(Z)/ker(Φ) is a subgroup of index n. This can
be seen by considering the generators

A :=

(
1 1
0 1

)
, B :=

(
1 0
1 1

)
,

of SL2(Z) and observing that SL2(Z/nZ) is generated by Φ(A) and Φ(B),
which have both order n.
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Proposition 3.14 (Benoist & Quint). Suppose G < SLd(Z) is a subgroup,
whose action is strongly irreducible and proximal, and m ∈ P(G) is a gen-
erating probability measure on G so that supp(G) is finite. Then the Haar
measure µ is the unique m-stationary, non-atomic probability distribution.

For the sketch of the proof we introduce a new dynamical system, we
define Ω = GN, P = mN the product measure on Ω and θ the Bernoulli shift
θ(g1, g2, . . . ) = (g2, g3, . . . ), where ω = (g1, g2, . . . ) ∈ Ω.
We say that a measure ν ∈ Pm(Td) is m-ergodic if it is an extremal point of
Pm(Td).

Lemma 3.15. If ν ∈ Pm(Td) is a m-stationary and m-ergodic probability
measure on Td, such that its support supp(ν) is countable. Then ν is G-
invariant and its support is finite.

Proof. Choose some x ∈ Td such that it has maximal measure, say ν({x}) =
p > 0. Then

ν({x}) =

∫
G

ν({g−1x})dm(g).

For m-a.e. g ∈ G, g−1x has also maximal measure. So the support of ν has
to be finite.

Lemma 3.16 (Furstenberg). Let ν ∈ Pm(Td) be a m-stationary measure
on Td. For P-a.e. ω ∈ Ω the following limit exists

νω := lim
n→∞

(g1 . . . gn)∗ν,

it satisfies the equivariance condition

νω = (g1)∗νθω,

and ν can be recovered as the average

ν =

∫
Ω

νωdP(ω).

Proof. Define the σ-algebra Fn := σ({g1 . . . gn}). The process (Mn)n∈N

Mn : Ω→ P(Td), ω → (g1 . . . gn)∗ν

is a bounded martingale with respect to (Fn)n∈N. By Doob’s martingale
convergence theorem the limit exists and is a probability measure on Td.
The remaining properties follow for continuous functions on Td, hence also
for the measure νω.
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Lemma 3.17. For P-a.e. ω ∈ Ω there is a line Vω ∈ Pd−1(R) so that any
cluster point g of g1...gn

‖g1...gn‖ has image im(g) = Vω and satisfies the equivariance
property

Vω = g1Vθω.

Proof. See Theorem 4.3 in [3].

Furthermore we choose some vω ∈ Vω such that ‖vω‖ = 1 and κ(ω) :=
log ‖g1vTω‖, so that for P-a.e. ω ∈ Ω we have

g1vθω = eκ(ω)vω

(we assume that we can choose it to be positive). The main step in the proof
of the proposition is the following observation:

Lemma 3.18. For P-a.e. ω ∈ Ω, the limit probability νω is Vω-invariant;
that is νω is translation invariant, x 7→ x+ v, with v ∈ Vω.

Proof (Sketch of Proof of Proposition). Let ν ∈ P(Td) be a non-atomic prob-
ability measure. We want to show that ν = µ.
The stabilizer of ν

Gν = {g ∈ G | g∗ν = ν}

is a closed subgroup. The measure νω is translation invariant, so we can
consider Cω, the connected component of Vω inside of Td, which satisfies the
equivariance condition

Cω = g1Cθω.

Cω is by construcion a non-zero subtorus. The push-forward measure P∗ of
P under the map ω 7→ Cω is a m-stationary and m-ergodic measure on the
countable set T of non-zero subtori of Td. By Lemma 3.15 this implies that
the support of P∗ is finite and G-invariant. Since the action of G is strongly
irreducible we may conclude that Cω = Td. In particular this conclusion,
together with the first part of Lemma 3.16, implies that νω is the unique
Haar measure on Td, hence νω = µ. The second part of Lemma 3.16 recovers
ν as the average over all νω, so ν = µ.
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Remark. (Conditional measures) Let (X,B, µ) be a σ-finite measure space
and A ⊂ B a σ-subalgebra. Let Y ⊂ X be a measurable subset of finite
positive measure µ(Y ) > 0 and consider the restriction of the measure µ to
Y ,

µY :=
1

µ(Y )
µ|Y .

Formally we define the inclusion ι : Y −→ X and denote by AY := ι−1A
the σ-algebra generated by A on Y , so that µY is a measure on AY . If
f ∈ L∞µ (X,B), then for µY -a.e. y ∈ Y ,

E(1Y |A)(y) 6= 0,

and

E(f ◦ ι|AY )(y) =
E(f1Y |A)(y)

E(1Y |A)(y)
.

To check this it is enough to note that the set D := {E(1Y |A) = 0} is A-
measurable and satisfies µ(Y ∩ D) = 0. The equality follows directly from
the defining property of the conditional expectation.

Proof (Sketch of Proof of Lemma 3.18). Introduce the dynamical system on
Ω× Td,

P̄ :=

∫
Ω

δω ⊗ νωdP(ω),

T̄ : Ω× Td → Ω× Td, (ω, x) 7→ (θ(ω), g−1
1 x).

The probability measure P̄ is T̄ -invariant. Let ω ∈ Ω and define the parametriza-
tion of the leaves by

πω : R→ x+ Vω, t 7→ x+ tvω.

For P̄-a.e. (ω, x) ∈ Ω× Td the conditional measure along the leaves K(ω, x)
is a Radon measure on R. Lemma 3.18 can be reformulated as translation
invariance of these measures K(ω, x). Define the translation on R by

τt : R→ R, s 7→ s+ t.

We need to show that for P̄-a.e. (ω, x) ∈ Ω × Td and ε > 0 there is some
t ∈ (0, ε), such that

(τt)∗K(ω, x) = K(ω, x).
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The map K satisfies the following two properties:

i) There is a measurable set A ⊂ Ω×Td of full measure so that if (ω, x) ∈ A
and (ω, x+ tvω) ∈ A then K(ω, x) = (τt)∗K(ω, x+ tvω).

ii) For P̄-a.e. (ω, x) ∈ Ω× Td we have K(ω, x) = (eκ(ω))∗K(T̄ (ω, x)).

Property i) implies that we need only to find enough points (ω, x) ∈ A
and (ω, x + tvω) ∈ A on the same leaf such that K takes the same value on
them. Property ii) implies that for all n ∈ N

K(ω, x) = (eκn(ω))∗K(T̄ n(ω, x)),

where κn(ω) := κ(ω) + · · ·+ κ(θn−1ω).

The strategy is first to find a measurable set, which is large enough and
contains a measurable set containing a large proportion of elements satisfy-
ing the first property of the map K. The next idea is to find a set on which
we can control the map K, by the second property we can actually control
it on {|θn(hn,ω(a))− θn(ω)| < 1}, where a ∈ supp(m). We just need to show
that the set of elements satisfying this inequality is almost of full measure.
The limit measure νω has no atoms for a.e. ω ∈ Ω. This will allow us to
contruct on a set of almost full measure for any point (ω, x) ∈ Ω × Td a
sequence (see below) which will be near to the line Vω. The sequence has
a limit point and by the first property above the cluster point is invariant
under translation, which is what we want to show on a set of full measure
up to an ε-set.

Let ε > 0, then by Lusin’s theorem we can find a compact set C ⊂ A
such that P̄(C) > 1 − ε and on which the functions κ, K, and ω 7→ Vω are
continuous.
To simplify notations, assume that |supp(m)| = 2. Define

hn,ω,x : supp(m)n → T̄−n(T̄ n(ω, x)), a 7→ (hn,ω(a), a1 . . . ang
−1
n . . . g−1

1 x),

where hn,ω(a) := (a1, . . . , an, gn+1, gn+2, . . . ) and ω = (g1, g2, . . . ) ∈ Ω. As
a varies, hn,ω(a) parametrizes the fiber T−n(T nω) ∈ Ω × Td and hn,ω,x the
fibers of T̄ n (which contain 2n elements). Introduce

An,ω := {a ∈ supp(m)n | |θn(hn,ω(a))− θn(ω)| < 1}.

The following Lemma implies that up to an ε-negligible set, all elements in
hn,ω,x(a) lie inside of the Lusin set C.
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Lemma 3.19. Let C ⊂ Ω×Td be a measurable set. For P̄-a.e. (ω, x) ∈ Ω×Td
the following limit exists

ψω,x = lim
n→∞

1

|An,ω|
∑

a∈An,ω

1C(hn,ω,x(a)),

and satisfies ∫
Ω×Td

ψω,xdP(ω, x) = P̄(C)

Pick C as in Lusin’s theorem, then by Egoroff’s theorem we can also find
a compact subset L ⊂ A such that P̄(L) > 1− ε and on which the averages
above are larger than 1− ε uniformly for n ≥ N .
The last part uses a so-called exponential drift argument:

Lemma 3.20. For P-a.e. ω ∈ Ω and for any x ∈ Td we get νω(x+ Vω) = 0.

This lemma implies that we can find a set of full measure such that
the above condition holds. Hence if we take the Lusin set L we can find
(conditioned) on L a set of full measure such that for P̄-a.e. (ω, x) ∈ Ω×Td
there is a sequence yk := x + vk ∈ Td so that (ω, yk) ∈ L, vk → 0 as k →∞
and vk /∈ Vω for all k ∈ N.
For each k ∈ N we can find some nk ∈ N such that

eκnk (ω)‖g−1
nk
. . . g−1

1 vk‖ �k 1.

At least 1 − 8ε of all elements a ∈ An,ω parametrize elements of both fibers
which belong to C,

hnk,ω,x(a) = (ω′, x′), hnk,ω,yk = (ω′, y′) ∈ C,

where we can write y′ = x′ + v′ and v′ = a1 . . . ankg
−1
nk
. . . g−1

1 vk. This drift
vector v′ can be controlled by

‖v′‖ � ‖a1 . . . ank‖‖g−1
nk
. . . g−1

1 vk‖ � ‖eκnk (hnk,ω(a)‖‖g−1
nk
. . . g−1

1 vk‖ �

� eκnk (ω)‖g−1
nk
. . . g−1

1 vk‖ � 1.

After taking a subsequence we may assume that θn(hn,ω(a)) − θn(ω) → θ∞.
Without loss of generality we can assume that θ∞ = 0. Taking the limit
(with respect to the subsequence) of the above sequences we find

(ω′∞, x
′
∞), (ω′∞, y

′
∞) ∈ C,

with y′∞ = x′∞ + v′∞, v′∞ = t∞vω′∞ and t∞ � 1. Up to a set of ε-measure we
stay in the Lusin set L, so

K(ω, x) = K(ω′∞, x
′
∞) = (τt∞)∗K(ω′∞, x

′
∞ + v′∞) = (τt∞)∗K(ω, x).
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4 Random Transformations

4.1 Random Ergodic Theorem

Let (X,B, µ) be a probability space and Φ ⊆ XX a familiy of measure-
preserving transformations of X. Suppose m ∈ P(Φ) is a probability measure
on Φ and consider a sequence (Xn)n∈N of m-distributed Φ-valued random
variables defined on the product space (Ω,P) := (ΦN,mN). As in the example
of products of random matrices we will be interested in the random walk on
Φ. For this define for n ∈ N the product of random transformations

Sn := Xn ◦ · · · ◦X1.

Furthermore we will assume that the action of Φ on X

Φ×X → X, (ϕ, x) 7→ ϕ(x)

is measurable with respect to the measurable structure on Φ and on X. Note,
that if Φ is a family of invertible transformations, then we can talk about
the group G of transformations of X generated by Φ.
Denote by θ the Bernoulli shift on Ω,

θ : Ω→ Ω, (ϕn)n∈N 7→ (ϕn+1)n∈N,

and consider the following transformation of the product space Ω×X,

T : Ω×X → Ω×X, ((ϕn)n∈N, x) 7→ (θ((ϕn)n∈N), ϕ1(x)).

Since T is the composition of measure preserving transformations, it is also
measure-preserving. Consider the Markov operator acting on Lp(X,µ), for
p ∈ [1,∞], defined by

P : Lp(X,µ)×X → Lp(X,µ), (f, x) 7→
∫

Φ

f(ϕ(x))dm(ϕ).

Note that if X is a compact metric space, then it is sufficient to define P on
the space of continuous functions C(X) on X.

Proposition 4.1. Let G be a locally compact group, m ∈ P(G) a probability
measure on G, X a compact G-space and µ ∈ P(X) a probability measure
on X. Then,
i) The product measure P× µ is T -invariant if and only if µ is m-invariant.
ii) The product measure P × µ is an ergodic measure if and only if µ is an
extremal point of Pm(X).
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Proof. It is sufficient to note that any continuous function f ∈ C(X) can be
identified with a continuous function on Ω × X by setting f(ω, x) := f(x).
Let f ∈ C(X) be a continuous function on X. If the product measure P× µ
is T -invariant then∫

Ω×X
fd(P× µ)︸ ︷︷ ︸

=

∫
X

fdµ

=

∫
Ω×X

f ◦ Td(P× µ).︸ ︷︷ ︸
=

∫
X

∫
G

f(g · x)dm(g)dµ(x)

So µ is m-invariant. Conversely if µ is not m-invariant, the same computation
shows that P× µ is not T -invariant.

Theorem 4.2 (Random Ergodic Theorem). The following conditions
are equivalent:
i) For any B ∈ B, µ(ϕ−1B∆B) = 0 for m-a.e. ϕ ∈ Φ implies µ(B) ∈ {0, 1}.
ii) For f ∈ Lp(X,µ), Pf = f µ-a.e. implies that f is constant µ-a.e.
iii) The measure preserving system (Ω×X,P⊗ µ, T ) is ergodic.
Moreover, if any of these conditions is satisfied, then for any f ∈ L1(X,µ)
and for P⊗ µ-a.e. (ω, x) ∈ Ω×X,

1

n

n−1∑
k=0

f ◦ Sn(ω)(x)
L1

−−−→
n→∞

∫
X

fdµ.

Proof. i) ⇒ ii) Let f ∈ Lp(X,µ) so that Pf = f µ-a.e. We want to show
that sets of the form f−1

(
[r,∞)

)
∈ B are µ-trivial for any rational r ∈ Q.

Note that |f | = |Pf | ≤ P |f |, so |Pf | − |f | ∈ Lp(X,µ) is non-negative.
Moreover we have∫

X

(P |f | − |f |)dµ =

∫
X

∫
Φ

|f |(ϕ(x))dm(ϕ)dµ(x)︸ ︷︷ ︸
=

∫
X

|f |dP ∗µ

−
∫
X

|f |dµ = 0

Since P ∗µ = µ:

P ∗µ(B) =

∫
X

∫
Φ

1ϕ−1B(x)dm(ϕ) dµ(x) =

∫
Φ

µ(ϕ−1B)︸ ︷︷ ︸
= µ(B)

dm(x) = µ(B).

So |f | = P |f | µ-a.e., that is |f | ∈ Lp(X,µ) is P -invariant. Hence,

f+ = f ∨ 0 =
1

2
(|f |+ f),
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is also P -invariant, so the set E0:=f−1
(
[0,∞)

)
satisfies µ(ϕ−1E0∆E0)=0 for

m-a.e. ϕ ∈ Φ. Therefore E0 is µ-trivial.
Repeat the argument for the function f − r, where r ∈ Q. Then, all sets of
the form f−1

(
[r,∞)

)
∈ B are µ-trivial, so f is constant µ-a.e.

ii)⇒ iii) We will show that any T -invariant function f ∈ L∞(Ω×X,P⊗ µ)
is constant P ⊗ µ-a.e. Let f ∈ L2(Ω ×X,P ⊗ µ) be a T -invariant function.
For P⊗ µ-a.e. (ω, x) ∈ Ω×X we have

f ◦ T (ω, x) = f(θω, ϕ1(x)) = f(ω, x).

Fix x ∈ X. Consider the projections

ωn : Ω→ Φ, ω = (ϕn)n∈N 7→ ϕn

and the martingale generated by these projections and x,

Mn(x) := E(f(ω, x) | ω1 . . . ωn).

Since f is T -invariant we can rewrite Mn(x) in the following way:

Mn(x) := E( f(ω, x)︸ ︷︷ ︸
= f(θω, ω1(x))

| ω1 . . . ωn) = E(f(θω, ω1(x)) | ω2 . . . ωn) =

= · · · = E(f(θnω, ωn . . . ω1(x)) = M0(ωn . . . ω1x).

In particular, for n = 0 we obtain for any x ∈ X

M0(x) = E(f(ω, x)) = E(E(f(ω, x) | ω1)) = E(f(θω, ω1x)) = PM0(x),

since

PM0(x) =

∫
Φ

M0(φ(x))︸ ︷︷ ︸
= E(f(ω, x))

dm(φ) = E(f(ω, x)).

So M0 is P -invariant. Hence it is constant µ-a.e. In particular we get that for
any n ∈ N, Mn = M0 is constant µ-a.e. Denote by Fn := σ((ω1, . . . ωn), id)
the σ-algebra generated by the projections and x.
The sequence L2(Fn) ⊆ L2(Ω × X,P ⊗ µ) increases to L2(Ω × X,P ⊗ µ),
so the limit function f(ω, x) has to be constant and equal to M0 P⊗ µ-a.e.,
since the orthogonal projection of f(ω, x) onto each L2(Fn) is constant.
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Corollary 4.3 (Kakutani). Let G be a locally compact group and m ∈ P(G)
a generating probability measure for G. Moreover, suppose that the action on
X is ergodic; that is, for any g ∈ G the system (X,B, µ, g) is ergodic. Then,
for any f ∈ L1(X,µ) and for P⊗ µ-a.e. (ω, x) ∈ Ω×X,

lim
n→∞

1

n

n∑
k=0

f ◦ Sk(ω)(x) =

∫
X

fdµ.

Proof. We want to show that for any B ∈ B, µ(gB∆B) = 0 for m-a.e. g ∈ G
implies µ(B) ∈ {0, 1}, the previous theorem implies the rest. Take any such
B ∈ B. The unitary representation of G on L2(X,µ),

π : G→ L2(X,µ), g 7→
(
x 7→ f(g−1x)

)
is continuous in the weak topology. Moreover, π(g)(1B) = 1B for m-a.e.
g ∈ G. So by continuity, π(g)(1B) = 1B for any g ∈ supp(m). Since for any
g ∈ G the system (X,B, µ, g) is ergodic, π(g)(1B) = 1B implies that 1B is
constant. Hence, µ(B) ∈ {0, 1}.

4.2 Examples

Example 4.1. Let (X,B, µ, T ) be an ergodic system. Then, the group G =
{id} acts trivially on X and the above theorem is just the ergodic theorem
from section 1.

Example 4.2 (Simple rotation on the 2-sphere). Consider the 2-sphere S2 with
the Lebesgue measure µ and the special orthogonal group SO(3) with mea-
sure m = δg, where g ∈ SO(3) \ {id}. The corresponding Markov operator
is the map,

P : C(S2)× S2 → C(S2), (f, x) 7→
∫
S2
f(y)dµx(y) = f(g · x).

From Lemma 3.9. we already know that for any f ∈ C(S2), Pf = f µ-a.e.
implies that f is constant µ-a.e.

Example 4.3 (Rotation on the 2-sphere). Consider as above the 2-sphere with
the Lebesgue measure and SO(3) acting on the sphere with the Haar measure
m. The induced Markov operator is the map,

P : C(S2)× S2 → C(S2), (f, x) 7→
∫
SO(3)

f(g · x)dm(g).
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In Lemma 3.12. we proved that for any B ∈ B, µ(gB∆B) = 0 for m-a.e.
g ∈ SO(3) implies µ(B) ∈ {0, 1}.

Example 4.4 (Automorphisms on the torus). As above, let g ∈ SLd(Z) so that
no eigenvalue of g is a root of unity and consider the probability distribution
m := δg ∈ P(G) on G = 〈g〉 < SLd(Z). The corresponding Markov operator
acting on C(Td) is

P : C(Td)× Td → C(Td), (f, x)→ f(g · x).

Since no eigenvalue of g is a root of unity, the action of G on Td is ergodic.

40



References

[1] Y. Benoist, J.-F. Quint, Stationary measures and invariant subsets of
homogeneous spaces (II), CRAS 349, 2011, pp. 341-345, 2011.

[2] Y. Benoist, J.-F. Quint, Introduction to random walks on homogeneous
spaces, 10th Takagi Lectures, 2012.

[3] P. Bougerol, J. Lacroix, Products of random matrices with applications
to Schrödinger operators, Birkhäuser, 1985.
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