
On a weak∗ stochastic Fubini theorem

Thomas Hille
ETH Zürich
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1 Introduction

Let Z = (Zt)t∈R+ be an Rd-valued semimartingale, (ϑt,s)t≥0, 0≤s≤t a two-parameter Rd-valued

process such that (ϑt,s)0≤s≤t is Z-integrable and consider the process

Xt :=

∫ t

0

ϑt,sdZs.

If Z is Brownian motion and ϑt,s is non-random then X is a Volterra-type integral process

and there are many Gaussian-type results. If Z is a Lévy process and ϑt,s = g(t− s), where

g : R+ → Rd is deterministic, then X is called a moving average, which occurs in stochastic

Volterra equations (e.g. Protter (1985)) and stochastic delay equations (e.g. Reiß et al.

(2007)) among many. In particular, the question whether X is a semimartingale or not is

of great importance, for instance if X models an asset-price, then it is of particular interest

to show that integration with respect to X is possible. Basse/Pedersen (2009) show in this

case that X is a semimartingale if and only if g is absolutely continuous with a density g′

satisfying some integrability conditions which depend on the Lévy triplet.

If Z is a general semimartingale, then Protter (1985) reduces the problem to the stan-

dard stochastic Fubini theorem under the assumption that t 7→ ϑt,s(ω) is C1 with a locally

Lipschitz derivative, where the main idea is to decompose X as

Xt =

∫ t

0

ϑs,sdZs +

∫ t

0

(ϑt,s − ϑs,s)dZs =

∫ t

0

ϑs,sdZs +

∫ t

0

(∫ t

s

∂

∂r
ϑr,s dr

)
dZs.

The stochastic Fubini theorem as in Theorem IV.64/65 of Protter (2005) yields∫ t

0

(∫ t

s

∂

∂r
ϑr,s dr

)
dZs =

∫ t

0

(∫ r

0

∂

∂r
ϑr,s dZs

)
dr,

which shows that X is a semimartingale, as the right-hand side is absolutely continuous

with respect to the Lebesgue measure. Choulli/Schweizer (2013) go further and assume that
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t 7→ ϑt,s is for each s ≥ 0 of finite variation but does not admit a dominating measure

simultaneously for all s ≥ 0 as above. The standard Fubini theorem cannot be used as

discussed above, as the main assumption is that there is a fixed measure that depends on

a parameter but not on the randomness (see van Neerven/Veraar (2005), Veraar (2012)).

The main idea will be to construct a stochastic integral with respect to Z, where suitable

integrands are (d-dimensional) measure-valued processes µt(ω) ∈ M ([0, T ])d, the integral∫ t
0
µsdZs(ω) ∈M ([0, T ]) is a (1-dimensional) measure-valued process and it satisfies for any

continuous function f ∈ C([0, T ]) the property∫
[0,T ]

fd

(∫ t

0

µsdZs

)
=

∫ t

0

(∫
[0,T ]

fdµs

)
dZs,

which we call the weak∗ Fubini property. We show, that under an extra integrability con-

dition on the variation process of (t 7→ ϑt,s)s∈R+ the process X introduced above is a semi-

martingale.

Our strategy is the following: we view the space M ([0, T ]) of signed Radon measures on

[0, T ] abstractly as the dual space of a Banach space E. In the setup of the problem it is

natural to think of the desired integrands for the new stochastic integral as being M ([0, T ])d-

valued. However, we will interpret this space rather as the tensor product of two Banach

spaces M ([0, T ]) ⊗ Rd, which together with a suitable norm is again a Banach space. The

main reason for this approach is that we can view Rd as the space of (bounded) linear forms

L (Rd,R) from Rd to R. Recall that in the spirit of Métivier, natural integrands of an

H-valued semimartingale Z are L (H,G)-valued processes, where H and G are separable

Hilbert spaces, so that if Y is an allowed integrand, then
∫
Y dZ is a G-valued process.

We can rephrase our abstract problem setting as follows: given a separable Banach space

E, two separable Hilbert spaces H and G and an H-valued semimartingale Z we would

like to define a new stochastic E∗ ⊗ G-valued integral such that allowed integrands X are

E∗ ⊗L (H,G)-valued and the new stochastic integral
∫
XdZ is E∗ ⊗ G-valued and satisfies

a compatibility condition with the old stochastic integral, namely∫
XdZ(ξ) =

∫
X(ξ)dZ

for all ξ ∈ E, where we interpret
∫
XdZ as a linear operator from E∗ to G and similarly X

as an operator from E to L (H,G). Note that this equation implicitly suggests that allowed

integrands X of the new stochastic integral should at least pointwise, for each ξ ∈ E, be

integrands of the old stochastic integral. Hence, our basic strategy will be to extend to old

stochastic integral pointwise, satisfying some continuity properties that are well-suited for

our purposes. To make this clear, if E∗ = M ([0, T ]), H = Rd and G = R, then a suitable

integrand of the new stochastic integral should be of the form µ = (µ1, . . . , µd) ∈M ([0, T ])d
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or in tensor notation µ =
∑d

i=1 µi ⊗ ei ∈ M ([0, T ]) ⊗ Rd such that
∫
µdZ is an M ([0, T ])-

valued process, for any continuous function f ∈ C([0, T ]) we have the weak∗ Fubini property

anounced before and the process µ(f) = (µ1(f), . . . , µd(f)) ∈ Rd is Z-integrable. The main

drawback or difficulty of this extension is that allowed integrands of the new stochastic

integrals are not necessarily measurable, and hence many arguments require special care

when measurability is needed. Another technicality that we have to address is the tensor

product of two Banach spaces E∗ and F as discussed above. We will be forced to construct a

suitable norm on E∗⊗F such that the completion of this space satisfies our requirements, the

resulting tensor product is then innately related to the well-known injective tensor product.

In section 2 we discuss measurability of Banach space valued functions and processes

and repeat the construction of the stochastic integral with respect to a Hilbert-valued semi-

martingale in the sense if Métivier. In this section we introduce the basic notation that

will be used throughout this text and try to convey the main difficulties and known results

regarding measurability of Banach space valued functions and processes. In section 3 we

construct the new integral, which we call a weak∗ stochastic integral and discuss a measura-

bility result that is tailor-made for the case of the two-parameter process. Section 4 contains

the main result on the two-parameter process.

I would like to acknowledge Martin Schweizer, first for giving me the opportunity of

studying the beautiful and elegant approach to the problem described above, developed first

in Schweizer/Choulli (2013), then for providing guidance and sharing his deep intuition, in

particular Proposition 3.22, which is the soul of the main result in this work, would not have

been possible without him. His dedication and patience to provide guidance and feedback

made this work possible.

2 Preliminaries

This section is divided into two parts. We start by discussing the concept of measurability

for Banach space valued functions and processes. The main result contained in this part

is Pettis’ measurability theorem and the techniques involving the proof will be used later.

In the second part of this section we recollect the construction of the stochastic integral

with respect to a Hilbert space valued semimartingale via control processes in the sense of

Métivier. The construction of the weak∗ integral that we develop later in Section 3 is an

extension of this case, and as such several ideas already appear here.

2.1 Banach space valued functions and processes

Let (E, ‖ · ‖) be a Banach space over R and (C,C ) a measure space. We start by recalling

the notion of measurability of functions between measure spaces.
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Definition 2.1. Suppose that B is a σ-algebra on E. We say that a function X : C → E

is (C ,B)-measurable if X−1(B) ∈ C for all measurable subsets B ∈ B.

When E = R and B = B(R) is the Borel σ-algebra generated by the standard topol-

ogy on R, any (C ,B(R))-measurable function is the pointwise limit of a sequence of step

functions. It is natural to expect that this result should generalize to the case of Banach

valued functions, but this is not true for a general σ-algebra. However, as step functions are

extremely practical, we define the set of C -measurable E-valued step functions

E (E,C ) :=

{ n∑
i=1

1Ciξi

∣∣∣∣ n ∈ N, Ci ∈ C , ξi ∈ E
}
.

Each step function satisfies the property that it is (C ,B)-measurable, irrespective of the

σ-algebra B on E.

Lemma 2.2 (Measurability of step functions). Let B be a σ-algebra on E and let

X ∈ E (E,C ) be a C -measurable E-valued step function, then X is (C ,B)-measurable.

Proof. Let X =
∑n

i=1 1Ciξi ∈ E (E,C ) and B ∈ B a measurable set, then either X−1(B) is

empty or it is not. Suppose X−1(B) 6= ∅, then im(X) ∩ B = {ξi1 , . . . , ξik}, with 1 ≤ i1 <

· · · < ik ≤ n, which implies that X−1(B) =
⋃k
j=1Cij ∈ C .

Consider a (C ,B)-measurable function X : C → E for some σ-algebra B on E. A

natural question that arises is whether it is possible to approximate X with step functions

or vice versa. This question implicitly entails a choice of the topology on E, which must

not necessarily be the norm topology. For instance, we rarely view the dual space E∗ of a

Banach space E together with the norm topology, instead we take the weak∗ topology on

E∗, which has in some cases more convenient properties compared to the norm topology.

Definition 2.3. Let O be a topology on E. We say that a function X : C → E is strongly

C -measurable with respect to O if there is a sequence (Xn)n∈N ⊂ E (E,C ) of C -measurable

E-valued step functions such that Xn(c)
O−−−→

n→∞
X(c) for all c ∈ C.

Note that it does not directly follow from the definition whether a strongly C -measurable

function with respect to a topology O is (C ,B)-measurable or not, even if B is the Borel

σ-algebra generated by O. We start by discussing the case where O is the norm topology on

E. Denote the Borel σ-algebra on E generated by the norm topology by B(E). The following

result due to Pettis (1938) Theorem 1.1 characterizes strongly C -measurable functions with

respect to the norm topology.
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Proposition 2.4 (Pettis’ measurability theorem). Let X : C → E be a function. Then,

X is strongly C -measurable with respect to the norm topology if and only if X is separably

valued and the function λ(X) : C → R is (C ,B(R))-measurable for all λ ∈ E∗.

Proof. The proof we give here is basically identical to the original proof given in Pettis (1938).

This following version can be found in van Neerven (2008) Theorem 1.5 up to minor changes.

If X is strongly C -measurable with respect to the norm topology we can find a sequence

(Xn)n∈N ⊂ E (E,C ) of C -measurable E-valued step functions that converges pointwise to

X in the norm topology. Each step function Xn has finite range im(Xn) = {ξn1 , . . . , ξnkn}.
Hence, if we denote by E0 the closure of the subspace spanned by all these vectors we obtain

that im(X) ⊂ E0 , which shows that X is separably valued. Moreover, if we take any λ ∈ E∗,
the R-valued step function λ(Xn) is (C ,B(R))-measurable by Lemma 2.2 for any n ∈ N and

λ(Xn(c)) −−−→
n→∞

λ(X(c)) for any c ∈ C, which shows that λ(X) is (C ,B(R))-measurable.

Conversely suppose that im(X) ⊂ E0 for a separable closed subspace E0 ⊂ E. Let

{ξn}n∈N ⊂ E0 be a dense countable subset in E0. Denote by E∗1 the closed unit ball in the

dual space E∗ and choose a countable subset {λn}n∈N ⊂ E∗1 such that for any ξ ∈ E0

‖ξ‖ = sup
n∈N
|λn(ξ)|.

For completeness we show how to find such a sequence: recall that

‖ξ‖ = sup
λ∈E∗1
|λ(ξ)|,

hence for any n ∈ N we may choose λn ∈ E∗1 such that 0 ≤ ‖ξn‖−|λn(ξn)| ≤ 1
n
. So if ξ ∈ E0,

then for subsequence (ξnk)k∈N ⊂ (ξn)n∈N, such that ‖ξ − ξnk‖ −−−→
k→∞

0, we get

sup
n∈N
|λn(ξ)| ≤ ‖ξ‖ ≤ ‖ξ − ξnk‖+ ‖ξnk‖ ≤ ‖ξ − ξnk‖+

1

nk
+ |λnk(ξnk)| ≤

‖ξ − ξnk‖+
1

nk
+ |λnk(ξ − ξnk)|+ |λnk(ξ)| ≤ 2‖ξ − ξnk‖+

1

nk
+ sup

n∈N
|λn(ξ)| −−−→

k→∞
sup
n∈N
|λn(ξ)|,

which proves the existence of the countable subset {λn}n∈N as claimed above.

For any ξ ∈ E0 we notice that the function

C → [0,∞)

c 7→ ‖X(c)− ξ‖ = sup
n∈N
|λn
(
X(c)− ξ

)
|,

is (C ,B(R))-measurable, as it is the countable supremum of (C ,B(R))-measurable. Hence,
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for any m ∈ N and 1 ≤ k ≤ m we know that the sets

Cm,1
k =

{
c ∈ C

∣∣∣∣ d(Xm(c), λk) = min
1≤i≤n

d(Xm(c), λi)

}
and

Cm,2
k =

{
c ∈ C

∣∣∣∣ ∀ 1 ≤ l ≤ k − 1 : d(Xm(c), λl) > min
1≤i≤n

d(Xm(c), λi)

}
,

are (C ,B(R))-measurable. Let m ∈ N, ξ ∈ E0 and denote by km(ξ) the least integer with

the property that

km(ξ) := min

{
1 ≤ k ≤ m

∣∣∣∣‖ξ − ξk‖ = min
1≤i≤m

‖ξ − ξi‖
}
.

Note that ‖ξkm(λ) − ξ‖ −−−→
m→∞

0, by density of the subset {ξn}n∈N in E0. Define the function

Xm : C → E

c 7→
m∑
k=1

1Cmk
(c)ξk,

where Cm
k = Cm,1

k ∩Cm,2
k = {c ∈ C

∣∣Xm(c) = ξk} ∈ C . Let c ∈ C, then Xm(c) −−−→
m→∞

X(c) in

the norm topology by the previous discussion, which shows that X is strongly C -measurable

with respect to the norm topology.

This powerful result due to Pettis (1938) implies that measurable Banach valued functions

behave like R-valued measurable functions under the Borel σ-algebra generated by the norm

topology, in the sense that they can be approximated by step functions and pointwise limits

are measurable. The next results make this clear.

Corollary 2.5 (Pointwise limit of strongly measurable functions). Suppose that

(Xn)n∈N is a sequence of strongly C -measurable functions with respect to the norm topol-

ogy that converges pointwise to a function X : C → E, then X is strongly C -measurable

with respect to the norm topology.

Proof. Suppose that (Xn)n∈N is a sequence of strongly C -measurable functions with respect

to the norm topology that converges pointwise to X. By Proposition 2.4, each Xn takes

values in some separable closed subspace En
0 ⊂ E. Hence, X takes only values in the closure

of the span of these separable subspaces, which in turn is separable again. Moreover, if

λ ∈ E∗, then each λ(Xn) is measurable by Proposition 2.4 and λ(Xn(c)) −−−→
n→∞

λ(X(c)) for

all c ∈ C, which shows that λ(X) is (C ,B(R))-measurable. By Proposition 2.4 it follows

that X is strongly C -measurable with respect to the norm topology.
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Proposition 2.6 (Strong measurability and measurability). Let X : C → E be a

function. Then, X is strongly C -measurable with respect to the norm topology if and only if

X is separably valued and (C ,B(E))-measurable.

Proof. This proof can be found in Rieffel (1970) Chapter 3 Theorem 10 and Lemma 12.

Suppose that X is separably valued and (C ,B(E))-measurable. Any λ ∈ E∗ is in particular

continuous, so λ(X) is (C ,B(R))-measurable. Hence, by Proposition 2.4 we may conclude

that X is strongly (C ,B(E))-measurable.

Conversely, if X is strongly C -measurable with respect to the norm topology, then in

particular it is separably valued. Let (Xn)n∈N ⊂ E (E,C ) be a sequence of C -measurable

E-valued step functions converging pointwise to X in the norm topology. To show that X

is (C ,B(E))-measurable it suffices to verify that X−1(U) ∈ C for all open sets U ∈ E, since

X−1 is a Boolean algebra homomorphism. Let U ∈ E be open, we claim that

X−1(U) =
⋃
m≥1

⋃
n≥1

⋂
k≥n

(
Xk
)−1
({

ξ ∈ E
∣∣∣∣ d(ξ, U c) >

1

m

})
,

where d(ξ, U c) = inf{‖ξ − ξ′‖
∣∣ ξ′ ∈ U c}. Indeed, c ∈ X−1(U) if and only if X(c) ∈ U if and

only if Xk(c) ∈ {ξ ∈ E| d(ξ, U c) > 1
m
} for some m,n ∈ N and all k ≥ n, where we use that U

is open. By Lemma 2.2 Xk is (C ,B(E))-measurable for any k ∈ N, hence X−1(U) ∈ C .

Let (Ω,F , P ) be a complete probability space. We start by extending the notion of strong

measurability to the notion of P -strong measurability and by defining the (Bochner-)integral

with respect to Banach valued functions.

Definition 2.7. Let O be a topology on E. We say that a function X : Ω→ E is P -strongly

F -measurable with respect to O if there is a sequence (Xn)n∈N ⊂ E (E,C ) of F -measurable

E-valued step functions such that Xn(ω)
O−−−→

n→∞
X(ω) for P -a.e. ω ∈ Ω.

The results presented above extend naturally to the P -a.e. case, hence we do not repeat

them. Instead we refer to Talagrand Chapter 3. The (Bochner-)integral of an E-valued

function with respect to P , which as we will explain, is an extension of the naturally defined

integral with respect to step functions.

Definition 2.8. Let X =
∑n

i=1 1Fiξi ∈ E (E,F ) be an F -measurable E-valued step function.

We call

E(X) :=

∫
Ω

XdP :=
n∑
i=1

P (Fi)ξi ∈ E,

the integral of X with respect to P .
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Lemma 2.9. Let X : Ω → E be a P -strongly F -measurable function with respect to the

norm topology, then the R-valued function ‖X‖ : Ω→ R is (F ,B(R))-measurable.

Proof. By Proposition 2.4, respectively the extension to the P -a.e case, there is a conull set

Ω0 ⊂ Ω such that X : Ω0 → E is separably valued. Suppose that X(Ω0) ⊂ E0 for a closed

separable subspace E0 ⊂ E and choose a countable subset {λn}n∈N ⊂ E∗1 in the unit ball

of E∗ as in the proof of Proposition 2.4, such that ‖ξ‖ = sup
n∈N
|λn(ξ)| for all ξ ∈ E0. Note

that λ(X) is (F ,B(R))-measurable for all λ ∈ E∗ by Proposition 2.4, so ‖X‖ is (F ,B(R))-

measurable, as a countable supremum of measurable functions.

Definition 2.10. Let O be a topology on E. We define the class L0(Ω,F ;E,O) of P -

strongly F -measurable functions with respect to O, where we identify functions that are

equal P -a.e. Whenever we say that an element X ∈ L0(Ω,F ;E,O) has a given property,

we mean that there is a representative in the class corresponding to X with this property,

and we denote this representative by X.

Whenever the topology on E is clear, we write L0(Ω,F ;E) instead of L0(Ω,F ;E,O).

Note that if E is separable and B(E) is the Borel σ-algebra on E generated by the norm

topology, then the conditions (F ,B(E))-measurable and P -strongly F -measurable with

respect to the norm topology are tautological by Proposition 2.6. This discussion enables a

definition of the integral with respect to P for an (F ,B(E))-measurable function X. The

mapping defined by

‖ · ‖L1 : L0(Ω,F ;E,B(E))→ [0,∞]

X 7→ E(‖X‖),

which is well-defined by Lemma 2.9, defines a seminorm on the vector space

V0 :=

{
X ∈ L0(Ω,F ;E,B(E))

∣∣∣∣ E(‖X‖) <∞
}
.

Indeed, it is positive and if X, Y ∈ V0 then ‖X(ω) + Y (ω)‖ ≤ ‖X(ω)‖ + ‖Y (ω)‖ for P -a.e.

ω ∈ Ω, which proves the triangle inequality. Moreover, note that E (E,F ) ⊂ V0.

Definition 2.11. We denote by L1(Ω,F ;E,B(E)) the closure of E (E,F ) in V0 with respect

to the seminorm ‖ · ‖L1 identifying functions that agree with respect to the seminorm ‖ · ‖L1.

The next result defines the integral with respect to P for an element in L1(Ω,F ;E,B(E))

and gives a practical characterization of this integral in terms of the dual pairing.
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Lemma 2.12. Let X ∈ L1(Ω,F ;E,B(E)), then E(X) ∈ E exists and λ(E(X)) = E(λ(X))

for all λ ∈ E∗.

Proof. Suppose that (Xn)n∈N ⊂ E (E,F ) is a sequence F -measurable E-valued step func-

tions such that ‖Xn(ω)−X(ω)‖ −−−→
n→∞

0 for P -a.e. ω ∈ Ω, then

‖E(Xn −Xm)‖ ≤ E(‖Xn −Xm‖) −−−−→
n,m→∞

0,

we denote the limit of this Cauchy sequence in E by E(X). Let λ ∈ E∗, then

λ(E(Xn)) = E(λ(Xn)),

for all n ∈ N. By continuity of λ ∈ E∗ we have λ(E(Xn)) −−−→
n→∞

λ(E(X)). Moreover,

λ(Xn)
P -a.e.−−−→
n→∞

λ(X), λ(Xn)
P -a.e.

≤ ‖λ‖‖Xn‖ and λ(X)
P -a.e.

≤ ‖λ‖‖X‖ which implies by domi-

nated convergence that E(λ(Xn)) −−−→
n→∞

E(λ(X)).

Notice that we defined the integral with respect to P just for (F ,B(E))-measurable

functions, where B(E) is the σ-algebra generated by the norm topology. With more effort, it

is possible to define an integral with respect to P if the topology that generates the σ-algebra

satisfies some regularity conditions. However, we will circumvent this issue and exploit the

definition and properties of this integral.

We are now able to introduce the notion of conditional expectation in this setup. Suppose

that G ⊂ F is a sub-σ-algebra, define the mapping

E( · | G ) : E (E,F )→ E (E,G )
n∑
i=1

1Fiξi 7→
n∑
i=1

E(1Fi | G )ξi,

and note that for any F -measurable E-valued step function X =
∑n

i=1 1Fiξi we have

E
(
‖E(X| G )‖

)
≤

n∑
i=1

E(1Fi)‖ξ‖ = E(‖X‖),

where we assume that the measurable sets in the representation of X are disjoint, which

we may always assume. Hence, E( · | G ) is a continuous linear mapping from a dense

subspace of L1(Ω,F ;E,B(E)) into L1(Ω,G ;E,B(E)), such that the operator norm sat-

isfies ‖E( · | G )‖op ≤ 1. This mapping can be uniquely extended to an operator from

L1(Ω,F ;E,B(E)) into L1(Ω,G ;E,B(E)) satisfying the same norm. We emphasize that

this conditional expectation is defined without using any Radon-Nikodym type of theorem.
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Definition 2.13. Suppose that (Ft)t∈R+ is a filtration in F . A process M : R× Ω→ E is

called an E-valued martingale if Mt ∈ L1(Ω,Ft;E,B(E)) for all t ∈ R+ and for all s < t

E(Mt| Fs)
P -a.e.

= Ms.

Corollary 2.14. Let (M)t∈R+ be an E-valued martingale and λ ∈ E∗, then (λ(Mt))t∈R+ is

an R-valued martingale.

Proof. This is a direct application of Lemma 2.12. Indeed, if λ ∈ E∗, then λ(M) is adapted

and integrable. If s < t and Fs ∈ Fs, then

E
(
1Fsλ(Mt −Ms)

)
= λ

(
E
(
1Fs(Mt −Ms)

))
= 0,

which shows that λ(M) is an R-valued martingale.

Note that when E = R the space L1 we defined above is the regular L1. We turn

to the discussion of measurability for Banach valued processes processes. Suppose that

C ⊂ B(R)⊗F =: F̄ is a sub-σ-algebra on Ω̄ := Ω× R.

Definition 2.15. Let O be a topology on E. We say that an E-valued process X = (Xt)t∈R+

is P -strongly C -measurable with respect to O if there is a sequence of C -measurable step

functions (Xn)n∈N ⊂ E (E,C ) that converges to X up to indistinguishability, that is

P

({
ω ∈ Ω

∣∣∣∣ ∃t ∈ R+ : Xt(ω)
O
6= lim

n→∞
Xn
t (ω)

})
= 0.

We define the class L0(Ω̄,C ;E,O) of P -strongly C -measurable processes with respect to O,

where we identify processes that are equal up to indistinguishability. Moreover, we say that

X ∈ L0(Ω̄,C ;E,O) has a given property, if there is a representative in this class that has

this property and we denote this representative by X.

As above we repeat that this definition does not directly imply that a P -strongly C -

measurable process X is (C ,B)-measurable, even when B is the Borel σ-algebra generated

by O. However, in the case where O is the norm topology on E the previous results translate

in the language of processes into the following:

Corollary 2.16. A process X is P -strongly C -measurable with respect to the norm topology

if and only if X is separably valued up to indistinguishability and the process λ(X) : Ω̄→ R
is P -strongly (C ,B(R))-measurable simultaneously for all λ ∈ E∗.

Proof. Suppose that X is P -strongly C -measurable with respect to the norm topology.

Let (Xn)n∈N ⊂ E (E,C ) be a sequence of C -measurable E-valued step functions such that

‖Xn
t (ω) − Xt(ω)‖ −−−→

n→∞
0 for all (t, ω) ∈ R × Ω0, where Ω0 ⊂ Ω is a conull subset. The

10



process X̄ := 1R×Ω0X is strongly (C ,B(E))-measurable, so by Proposition 2.4 it is separably

valued. Suppose that im(X̄) ⊂ E0 for a separable closed subspace E0 ⊂ E, then

P

({
ω ∈ Ω

∣∣∣∣ ∃t ∈ R+ : Xt(ω) /∈ E0

})
≤ P (Ωc

o) = 0,

which shows that X is separably valued up to indistinguishability. Let λ ∈ E∗, then by

continuity we obtain

λ(Xt(ω)) = λ( lim
n→∞

Xn
t (ω)) = lim

n→∞
λ(Xn

t (ω)),

for all (t, ω) ∈ R×Ω0, which shows that the process λ(X) : Ω̄→ R is P -strongly (C ,B(R))-

measurable.

Conversely suppose that X is separably valued up to indisinguishability and let E0 ⊂ E

be a closed separable subspace such that Xt(ω) ∈ E0 for all (t, ω) ∈ R×Ω1, where Ω1 ⊂ Ω is a

conull set. By assumption λ(X) : Ω̄→ R is P -strongly (C ,B(R))-measurable simultaneously

for all λ ∈ E∗, so there is a conull subset Ω2 ⊂ Ω such that 1R×Ω2λ(X) is (C ,B(R))-

measurable for all λ ∈ E∗. The set Ω0 := Ω1 ∩Ω2 is a conull subset such that X̄ := 1R×Ω0X

is separably valued and λ(X̄) = 1R×Ω0λ(X) is (C ,B(R))-measurable for all λ ∈ E∗, so X̄

is strongly (C ,B(E))-measurable by Proposition 2.4 and indistinguishable from X. Hence,

if we let (Xn)n∈N ⊂ E (E,C ) be a sequence of C -measurable E-valued step functions such

that ‖Xn
t (ω)− X̄t(ω)‖ −−−→

n→∞
0 for all (t, ω) ∈ Ω̄, then

P

({
ω ∈ Ω

∣∣∣∣ ∃t ∈ R+ : Xt(ω)
‖·‖
6= lim

n→∞
Xn
t (ω)

})
≤ P (Ωc

0) = 0,

which shows that X is P -strongly C -measurable with respect to the norm topology.

Corollary 2.17. Suppose that (Xn)n∈N is a sequence of P -strongly C -measurable processes

with respect to the norm topology that converges up to indistinguishability to the process

X : Ω̄→ E, then X is P -strongly C -measurable with respect to the norm topology.

Proof. Let Ω0 ⊂ Ω be a conull set such that ‖Xt(ω)−Xn
t (ω)‖ −−−→

n→∞
for all (t, ω) ∈ R×Ω0.

For each n ∈ N let Ωn ⊂ Ω be a conull set such that 1R×ΩnX
n is strongly C -measurable

with respect to the norm topology. The set Ω∗ :=
⋂
n∈N0

Ωn is still a conull set, the function

X̄n := 1R×Ω∗X
n is strongly C -measurable with respect to the norm topology for each n ∈ N

and ‖Xt(ω)−Xn
t (ω)‖ −−−→

n→∞
0 for all (t, ω) ∈ R × Ω∗. Hence, X̄ := 1R×Ω∗X is strongly

C -measurable with respect to the norm topology by Corollary 2.5. Let (Y n)n∈N ⊂ E (E,C )

be a sequence of E-valued C -measurable step functions such that ‖X̄t(ω)− Y n
t (ω)‖ −−−→

n→∞
0

11



for all (t, ω) ∈ Ω̄, then

P

({
ω ∈ Ω

∣∣∣∣ ∃t ∈ R+ : Xt(ω)
‖·‖
6= lim

n→∞
Y n
t (ω)

})
≤ P (Ωc

∗) = 0,

which proves that X is P -strongly C -measurable with respect to the norm topology.

For a more detailed and thorough discussion we refer to Chapter 3 in Rieffel (1970),

Chapter 1 in van Neerven (2008) and Chapter 3 in Talagrand (1984) for the topic of measur-

ability for Banach space valued functions and processes. We refer to Chapter 1.10 in Métiver

(1977), Chapter 1 in Dinculeanu (2000) and Pettis (1938) for a discussion on the Bochner

integral. It should be noted that all results presented here were only valid for the norm

topology, respectively the σ-algebra generated by this topology. In general, it is not clear at

all, whether and when the limit of strongly measurable processes is still strongly measurable

and whether and when a measurable function is again strongly measurable and vice versa.

The usual definition of measurability is not useful in the case of Banach valued functions,

this was already noted by Bochner (1933) and Pettis (1938), who call strongly measurable

functions directly measurable functions. This measurability issue will be discussed in more

detail in Sections 3 and 4. However, it is beyond our scope to give a full characterization in

these cases. Even in the case where the σ-algebra is generated by the norm topology, there

may exist (depending on the axiomatic system being used) measurable functions that are

not strongly measurable, we refer for instance to Chadwick (1982) for a discussion on this

topic. In Section 3 we return to this problem when discussing measurability with respect

to the σ-algebra generated by the weak∗ topology on E∗. It is very important to notice

that many of the results presented here do generalize under some circumstances to the case

where the topology on E is metrizable in a suitable way, or if the process takes values in a

metrizable subspace of E.

2.2 The stochastic integral

Let (Ω,F , (Ft)t∈R+ , P ) be a filtered probability space satisfying the usual assumptions and

set as above Ω̄ := R+ × Ω. The main σ-algebra we will consider on Ω̄ is the predictable

σ-algebra P generated by all adapted and left-continuous R-valued processes.

Lemma 2.18 (Predictable rectangles). The family of predictable rectangles defined by

R :=

{
(s, t]× F

∣∣∣∣ s, t ∈ R+, s < t, F ∈ Fs

}
∪
{
{0} × F

∣∣∣∣F ∈ F0

}
,

generates the predictable σ-algebra P.

12



Proof. The proof given here is standard and a general version with more generators of P can

be found for instance in Theorem 3.3 in Métivier (1982). Suppose that R = (s, t]× F ∈ R,

where F ∈ Fs. The function 1R : Ω̄→ R is adapted and left-continuous, hence σ(R) ⊂P.

Conversely suppose that X : Ω̄→ R is adapted, left-continuous and bounded. Define for

all n ∈ N the process

Xn
t (ω) := 1{0}(t)X0(ω) +

∑
i∈N

1(i2−n,(i+1)2−n](t)Xi2−n(ω).

Let B ∈ B(R) be a measurable set, then

(Xn)−1(B) = {0}×
{
ω ∈ Ω

∣∣ X0(ω) ∈ B
}
∪
⋃
i∈N

(
(i2−n, (i+1)2−n]×

{
ω ∈ Ω

∣∣ Xi2−n(ω) ∈ B
})

,

is P measurable, as {ω ∈ Ω|X0(ω) ∈ B} ∈ F0 and {ω ∈ Ω|Xi2−n(ω) ∈ B} ∈ Fi2−n by

adaptedness. Let (t, ω) ∈ Ω̄ then Xn
t (ω) −−−→

n→∞
Xt(ω) by left-continuity of X, which implies

that P ⊂ σ(R).

Hence, whenever P ∈P is a predictable set, there is a sequence of step functions of the

form Xn :=
∑n

i=1 1R
n
i
λni with λni ∈ R and Rn

i ∈ R such that Xn
t (ω) −−−→

n→∞
1P (t, ω) for all

(t, ω) ∈ Ω̄. This in turn implies that it is sufficient to consider R-measurable E-valued step

functions of the form

E (E) :=

{ n∑
i=1

1Riξi

∣∣∣∣ n ∈ N, Ri ∈ R, ξi ∈ E
}
,

instead of working directly with the set E (E,P) of P-measurable E-valued step function,

which we defined above. As it will become apparent in the next few lines, the structure of

predictable rectangles is optimal for the definition of an integral.

We start by defining the stochastic integral of an R-measurable L (H,G)-valued step

function with respect to an H-valued process, where L (H,G) denotes the Banach space of

bounded operators from a Hilbert space H to another Hilbert space G.

Definition 2.19. Let H and G be two Hilbert spaces and Z : Ω̄→ H and H-valued process.

For an R-measurable L (H, G)-valued step function X =
∑n

i=1 1(si,ti]×FiTi ∈ E (L (H,G))

we define the process∫ t

0

XsdZs(ω) :=
n∑
i=1

1Fi(ω)Ti

(
Zt∧ti(ω)− Zt∧si(ω)

)
∈ G,

and we call
∫
XdZ : Ω̄→ G the stochastic integral of X with respect to Z.

13



Let H be separable Hilbert space, denote the set of H-valued semimartingales by S (H)

and fix Z ∈ S (H). The semimartingale Z and the Hilbert space H will be kept unchanged

throughout this part.

Definition 2.20. We call an increasing, positive and adapted process A = (At)t∈R+ a control

process for Z if for any Hilbert space G, any R-measurable L (H, G)-valued step function

X ∈ E (L(H,G)) and any stopping time τ ∈ T we have

E
(

sup
t<τ

∥∥∥∥∫ t

0

XsdZs

∥∥∥∥2

G

)
≤ E

(
Aτ−

∫ τ−

0

‖Xs‖2
L (H,G)dAs

)
,

where Aτ−(ω) := lim
t↗τ(ω)

At(ω). We denote by A (Z) the set of all control processes for Z.

An intuitive explanation of why we require τ−, shared to me by Martin Schweizer, is that

this corresponds to pre-stopping, for instance if X is a left-continuous process and τ is the

first time at which the process exceeds a given constant, then the pre-stopped process Xτ−

will be bounded by this constant, but this may not be true for the stopped process Xτ .

To illustrate the concept of a control process we show how to construct it for a process

of finite variation and a continuous locally square integrable martingale.

Example 2.21 (Processes of finite variation). Suppose that V is an RCLL H-valued

process of finite variation. We denote by |V | the increasing process such that |V |t(ω) is the

variation of V.(ω) on the interval [0, t], that is

|V |t(ω) := V ar(V.(ω), [0, t]) :=

sup

{ n∑
i=1

‖Vti+1
(ω)− Vti(ω)‖H

∣∣∣∣ n ∈ N, 0 ≤ t0 < t1 < · · · < tn ≤ t

}
.

Let τ ∈ T be a stopping time, X =
∑n

i=1 1(si,ti]×FiTi ∈ E (L(H,G)) an R-measurable

L (H, G)-valued step function and assume without loss of generality that the predictable

rectangles in the representation of X are disjoint, then for P -a.e. ω ∈ Ω we have

sup
t<τ(ω)

∥∥∥∥∫ t

0

XsdVs(ω)

∥∥∥∥
G

= sup
t<τ(ω)

∥∥∥∥ n∑
i=1

1Fi(ω)Ti

(
Vt∧ti(ω)− Vt∧si(ω)

)∥∥∥∥
G
≤

sup
t<τ(ω)

n∑
i=1

1Fi(ω)‖Ti‖L (H,G)‖Vt∧ti(ω)− Vt∧si(ω)‖H ≤
∫ τ(ω)−

0

‖Xs(ω)‖L (H,G)d|V |s(ω) <∞,

and the Cauchy-Schwarz inequality for the Lebesgue-Stieltjes integral in the last inequality

yields

sup
t<τ(ω)

∥∥∥∥∫ t

0

XsdVs(ω)

∥∥∥∥2

G
≤ |V |τ−(ω)

∫ τ(ω)−

0

‖Xs‖2
L (H,G)d|V |s(ω).
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Taking the integral with respect to P gives

E
(

sup
t<τ

∥∥∥∥∫ t

0

XsdVs

∥∥∥∥
G

)
≤ E

(
|V |τ−

∫ τ−

0

‖Xs‖2
L (H,G)d|V |s

)
,

which shows that the variation process of any RCLL H-valued process V of finite variation

is a control process for V .

Example 2.22 (Square integrable continuous martingales). Suppose that M ∈M 2,c
loc (H)

is anH-valued locally square integrable martingale and let X =
∑n

i=1 1(si,ti]×FiTi ∈ E (L (H,G))

be an R-measurable L (H,G)-valued step function, where we can and we do assume that the

rectangles in the representation of X are disjoint. Notice that if (τn)n∈N is a localizing se-

quence for M , then for any n ∈ N(∫
XdM

)τn
=

∫
XdM τn ∈M 2,c(G),

is a G-valued continuous square integrable martingale and so
∫
XdM ∈ M 2,c

loc (G) is a G-

valued continuous locally square integrable martingale. For notational purposes denote the

process
∫
XdM by N . We will show that ‖N‖2

G is an R-valued submartingale. The process

‖N‖2
G is adapted by assumption and integrable. Let s < t and Fs ∈ Fs, then

0 ≤ E
(
‖Nt −Ns‖2

G1Fs

)
= E

(
‖Nt‖2

G1Fs

)
− 2E

(
(Nt| Ns)G1Fs

)
+ E

(
‖Ns‖2

G1Fs

)
,

where (· | ·)G denotes the scalar product in G. We claim that

E
(

(Nt| Ns)G

∣∣∣∣ Fs

)
=

(
E(Nt| Fs)

∣∣∣∣ Ns

)
G
.

Indeed, if Nn
s :=

∑n
i 1G

n
i
gni ∈ E (Fs,G) is a sequence of Fs-measurable G-valued step func-

tions such that ‖Nn
s (ω)−Ns(ω)‖G −−−→

n→∞
0 for P -a.e. ω ∈ Ω, then using the fact that Gn

i ∈ Fs

and applying Lemma 2.12 yields

E

(
(Nt| Nn

s )G

∣∣∣∣ Fs

)
P -a.e.

=
n∑
i

E
(

(Nt| gni )G1Gni

∣∣∣∣ Fs

)
P -a.e.

=
n∑
i

E
(

(Nt| gni )G

∣∣∣∣ Fs

)
1Gni

P -a.e.
=

n∑
i

(
E(Nt| Fs)

∣∣∣∣ gni )
G
1Gni

P -a.e.
=

(
E(Nt| Fs)

∣∣∣∣ Nn
s

)
G
,

for all n ∈ N. Recall that conditional expectation is an L1-contraction, this proves the claim.

This argument can be found in Kunita (1970) Proposition 1 or for an alternative approach
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see Métivier (1977) Satz 10.5. Hence we obtain that

0 ≤ E
(
‖Nt −Ns‖2

G1Fs

)
= E

(
‖Nt‖2

G1Fs

)
− E

(
‖Ns‖2

G1Fs

)
,

for all s < t and Fs ∈ Fs, which means that ‖N‖2
G is an R-valued (positive) submartingale,

which is in particular continuous. So by Doob’s Lp-inequality we obtain for any stopping

time τ ∈ T

E
(

sup
t≤τ

∥∥∥∥∫ t

0

XsdMs

∥∥∥∥2

G

)
≤ 4E

(∥∥∥∥∫ τ

0

XsdMs

∥∥∥∥2

G

)
.

Similarly as in the real case there is a unique up to indistinguishability, predictable, in-

creasing, positive and continuous process 〈N〉 of finite variation and null at zero, such that

‖N‖2
G − 〈N〉 is an R-valued martingale, see Métivier (1982) Corollary 15.4 (Doob-Meyer

decomposition theorem). In particular this implies that

E
(∥∥∥∥∫ τ

0

XsdMs

∥∥∥∥2

G

)
= E

(〈∫
XdM

〉
τ

)
= E

(〈∫
XdM

〉
τ−

)
,

where in the second equality we use that 〈N〉 is continuous in this case. We claim that

E
(〈∫

XdM

〉
τ−

)
≤ E

(∫ τ−

0

‖Xs‖2d〈M〉s
)
.

So let σ ∈ T be a stopping time such that Mσ ∈M 2,c(H) is a square integrable continuous

martingale, then for all (t, ω) ∈ Ω̄ we have∥∥∥∥∫ t

0

XsdM
σ
s (ω)

∥∥∥∥2

G
−
∫ t∧σ

0

‖Xs(ω)‖2
L (H,G)d〈M〉s(ω) =

n∑
i=1

1Fi(ω)

(
‖Ti
(
Mt∧σ∧ti(ω)−Mt∧σ∧si(ω)

)
‖2
G − ‖Ti‖2

L (H,G)

(
〈M〉t∧σ∧ti(ω)− 〈M〉t∧σ∧si(ω)

))
≤

n∑
i=1

1Fi(ω)‖Ti‖2
L (H,G)

(
‖Mt∧σ∧ti(ω)−Mt∧σ∧si(ω)‖2

H −
(
〈M〉t∧σ∧ti(ω)− 〈M〉t∧σ∧si(ω)

))
.

Hence,

E
(〈∫

XdMσ

〉
τ−
−
∫ τ−

0

‖Xs‖2
Gd〈Mσ〉s

)
≤

E
(〈∫

XdMσ

〉
τ−
−
∥∥∥∥∫ τ

0

XsdM
σ
s

∥∥∥∥2

G
+

∥∥∥∥∫ τ

0

XsdM
σ
s

∥∥∥∥2

G
−
∫ τ−

0

‖Xs‖2
Gd〈Mσ〉s

)
=

n∑
i=1

‖Ti‖2
L (H,G)E

(
1Fi‖Mt∧σ∧ti −Mt∧σ∧si‖2

H − 1Fi

(
〈M〉t∧σ∧ti − 〈M〉t∧σ∧si

))
≤ 0,
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since
(
〈
∫
XdMσ〉−‖

∫
XdMσ‖2

G
)

and
(
‖Mt∧σ∧ti−Mt∧σ∧si‖2

H− (〈M〉t∧σ∧ti−〈M〉t∧σ∧si)
)

are

R-valued martingales and this in turn implies that

E
(〈∫

XdM

〉
τ−

)
≤ E

(∫ τ−

0

‖Xs‖2
L (H,G)d〈M〉s

)
,

which proves the claim. The previous discussion shows that for any stopping time τ ∈ T

and X ∈ E (L (H,G))

E
(

sup
t<τ

∥∥∥∥∫ t

0

XsdMs

∥∥∥∥2

G

)
≤ E

(
sup
t≤τ

∥∥∥∥∫ t

0

XsdMs

∥∥∥∥2

G

)
≤ 4E

(∥∥∥∥∫ τ

0

XsdMs

∥∥∥∥2

G

)
=

4E
(〈∫

XdM

〉
τ−

)
≤ 4E

(∫ τ−

0

‖Xs‖2
L (H,G)d〈M〉s

)
≤

4E
(

(1 + 〈M〉τ−)

∫ τ−

0

‖Xs‖2
L (H,G)d〈M〉s

)
= E(Aτ−

∫ τ−

0

‖Xs‖2
L (H,G)dAs

)
,

where we set A := 2(1 + 〈M〉τ−) and use in the last equality that d(2(1 + 〈M〉)) = d(2〈M〉)
as Lebesgue-Stieltjes measures. This shows that A = 2(1 + 〈M〉) is a control process for

M . For a general locally square integrable martingale M , a control process is of the form

A = 2(1 + 〈M〉 + [M̌ ]), where M̌ is the pure jump-martingale part of M , and [M̌ ] is the

quadratic variation of M̌ , see Métivier (1982) Theorem 19.4 or Métivier and Pellaumail

(1979) Theorem 2 and 2′ for a Doob-like inequality in this general setup and see Métivier

(1982) Theorem 23.14 or Emery (1980) for the construction of the control process of M in

the general case. In particular we refer to counter-examples 1.1.3 and 1.1.4 in Métivier and

Pellaumail (1979) for examples on why “sup
s<τ

” cannot be simply replaced by “sup
s≤τ

”.

As discussed in the previous examples, any semimartingale allows the existence of a

control process and this is in fact a sufficient condition for a semimartingale, namely:

Theorem 2.23 (Métivier). An RCLL H-valued process is a semimartingale if and only if

it admits a control process.

Proof. See Métivier (1982) Theorem 23.14.

The extension of the stochastic integral to a suitable class of integrands requires the

construction of seminorms that control the integral with respect to elementary step functions

defined above. Let G be a separable Hilbert space. We denote by L0
(
Ω̄,P; L (H,G)

)
the

class of P -strongly P-measurable processes with respect to the norm topology on L (H,G).
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For a control process A ∈ A (Z) and a stopping time τ ∈ T such that E(A2
τ−) < ∞ we

consider the mapping

qAτ : L0
(
Ω̄,P; L (H,G)

)
→ [0,∞]

X 7→ E
(
Aτ−

∫ τ−

0

‖Xs‖2
L (H,G)dAs

) 1
2

.

We remark that an element in L0
(
Ω̄,P; L (H,G)

)
is not necessarily P-measurable,

however, there is a sequence (Xn)n∈N ⊂ E (L (H,G),P) of P-measurable L (H,G)-valued

step functions such that Xn L (H,G)−−−−→
n→∞

X up to indistintinguishability, which implies that

X(h) ∈ L0(Ω̄,P;G) for all h ∈ H and by Proposition 2.6 this means that X(h) is P-

measurable for all h ∈ H, since G is separable. The assumption that H is separable implies

then, that ‖X‖L (H,G) can be realized as a countable supremum of P-measurable processes,

so ‖X‖L (H,G) is P-measurable and hence qAτ (X) is well-defined. The mapping qAτ defines a

seminorm on the vector space

ΛA
τ (L (H,G)) :=

{
X ∈ L0

(
Ω̄,P; L (H,G)

)∣∣∣∣ qAτ (X) <∞
}
.

Indeed, if X ∈ ΛA
τ (L (H,G)), then (qAτ (X))2 is the integral of ‖X‖2 with respect to the

(finite) measure on (Ω̄,P) defined by

P ⊗ Aτ−(B) := E
(
Aτ−

∫ τ−

0

1B(s, ·)dAs
)
,

for B ∈ P, in other words, qAτ is an L2-seminorm. An important observation is that the

(quotient) space L2(Ω̄,P, P ⊗ Aτ−) of square integrable P-measurable R-valued functions

with respect to the measure P ⊗ Aτ− contains the space of R-measurable R-valued step

functions E (R) as a dense subspace by Lemma 2.18. This implies that any P-measurable

L (H,G)-valued step function in E (L (H,G),P) can be approximated with respect to qAτ by

a sequence of R-measurable L (H,G)-valued step function in E (L (H,G)). To be more pre-

cisely, suppose that X =
∑n

i=1 1PiT
i ∈ E (L (H,G),P), where Pi ∈ P and T i ∈ L (H,G).

For each 1 ≤ i ≤ n there is a sequence (Xm,i)m∈N ⊂ E (R) of R-measurable R-valued step

functions such that

‖Xm,i − 1Pi‖2
L2(Ω̄,P,P⊗Aτ− ) =

∫
Ω̄

|Xm,i − 1Pi |2d(P ⊗ Aτ−) −−−→
m→∞

0.

Hence,

qAτ (X −
n∑
i=1

Xm,iTi) ≤
n∑
i=1

‖Ti‖L (H,G)‖Xm,i − 1Pi‖L2(Ω̄,P,P⊗Aτ− ) −−−→
m→∞

0.

18



Lemma 2.24. The space of R-measurable L (H,G)-valued step functions E (L (H,G)) is a

qAτ -dense subspace of the seminormed vector space ΛA
τ (L (H,G)).

Proof. The ideas contained in this proof can be found in the proof of Proposition 22.4 in

Métivier (1982). Let X ∈ ΛA
τ (L (H,G)). By separability of H we may write

‖X‖L (H,G) = sup
n∈N
‖X(hn)‖G,

for a dense countable subset {hn}n∈N in the unit ball of H. Note that for each n ∈ N
the process ‖X(hn)‖G : Ω̄ → [0,∞) is P-measurable, which implies that ‖X‖L (H,G) is P-

measurable, as it is a countable supremum of predictable processes. For any (s, ω) ∈ Ω̄ we

have ‖1{‖X‖L (H,G)≤K}(s, ω)Xs(ω) − Xs(ω)‖L (H,G) −−−→
K→∞

0, so by dominated convergence it

holds that

E
(
Aτ−

∫ τ−

0

‖1{‖X‖L (H,G)≤K}(s, ·)Xs −Xs‖2
L (H,G)dAs

)
−−−→
K→∞

0.

Hence we may assume that sup
(s,ω)∈Ω̄

‖Xs(ω)‖L (H,G) ≤ K for some K ≥ 0. Let {hn}n∈N be an

orthonormal basis of H and {gn}n∈N an orthonormal basis of G. Denote by Span(h1, . . . , hn)

and Span(g1, . . . , gn) the linear subspaces generated by {h1 . . . hn} and {g1, . . . , gn} re-

spectively. Let πnH : H → Span(h1, . . . , hn) and πnG : G → Span(g1, . . . , gn) be the or-

thogonal projections onto Span(h1, . . . , hn) and Span(g1, . . . , gn). Notice that the process

Xn := πnGXπ
n
H ∈ E (L (H,G),P) is a P-measurable L (H,G)-valued step function. More-

over, since {hn}n∈N and {gn}n∈N are orthonormal bases, we obtain for each k ∈ N and

(s, ω) ∈ Ω̄ ∥∥∥∥(πnGXs(ω)πnH −Xs(ω)

)
(hk)

∥∥∥∥
G
−−−→
n→∞

0 and∥∥∥∥(πnGXs(ω)πnH −Xs(ω)

)
(hk)

∥∥∥∥
G
≤ 2K,

so by dominated convergence it follows that

E
(
Aτ−

∫ τ−

0

‖Xn
s −Xs‖2

L (H,G)dAs

)
−−−→
n→∞

0,

that is Xn qAτ−−−→
n→∞

X. This is sufficient, as any Xn can be approximated by a sequence of

R-measurable L ((H,G))-valued step functions as explained above, where we showed that

E (L (H,G)) is a qAτ -dense subspace of E (L (H,G),P). Note as an aside that we do not

use the full strength of the P -strongly P-measurability of X. Instead we just exploit the

separable Hilbert-structure and require for any h ∈ H the process X(h) : Ω̄ → G to be

P-measurable.

19



Let Πτ (G) := {1[[0,τ))Y |Y ∈ L0(Ω̄, F̄ ;G) is RCLL}, where we consider the stochastic

interval [[0, τ)) := {(t, ω) ∈ Ω̄| 0 ≤ t < τ(ω)}, and

pτ : L0(Ω̄, F̄ ;G)→ [0,∞]

Y 7→ E
(

sup
s<τ
‖Ys‖2

G

) 1
2

.

Note again that the mapping pτ is well-defined. Indeed if Y ∈ L0(Ω̄, F̄ ;G) then Y (g) is F̄ -

measurable by Proposition 2.4 for any g ∈ G and since G is separable, ‖Y ‖G is F̄ -measurable

as a countable supremum of F̄ -measurable processes.

Lemma 2.25. The vector space Πτ (G) is complete with respect to the seminorm pτ .

Proof. The proof is the same as of the real case in Lemma 24.1.1 in Métivier. The mapping

pτ is positive and if Y 1, Y 2 ∈ Πτ (G) then

pτ (Y
1+Y 2)2 = E

(
sup
s<τ
‖Y 1

s +Y 2
s ‖2
G

)
≤ E

(
sup
s<τ
‖Y 1

s ‖2
G+2 sup

s<τ
‖Y 1

s ‖G sup
s<τ
‖Y 2

s ‖G+sup
s<τ
‖Y 2

s ‖2
G

)
≤

E
(

sup
s<τ
‖Y 1

s ‖2
G

)
+2E

(
sup
s<τ
‖Y 1

s ‖2
G

) 1
2

E
(

sup
s<τ
‖Y 2

s ‖2
G

) 1
2

+E
(

sup
s<τ
‖Y 2

s ‖2
G

)
=

(
pτ (Y

1)+pτ (Y
2)

)2

,

where we use the Cauchy-Schwarz inequality in the second estimate and this proves that pτ

is indeed a seminorm. Let (Yn)n∈N be a Cauchy sequence in Πτ (G) and choose a subsequence

nk ↗∞ such that

P

({
ω ∈ Ω

∣∣∣∣ sup
s<τ
‖Ys(ω)nk+1 − Ys(ω)nk‖2

G >
1

2k

})
≤ 1

2k
,

then for any l ∈ N we have

P

({
ω ∈ Ω

∣∣∣∣ sup
s<τ
‖Ys(ω)nk+l − Ys(ω)nk‖2

G >
1

2k−4

})
≤ 1

2k−1
,

and the Borel-Cantelli lemma implies that

P

(
lim sup
k→∞

{
sup
s<τ
‖Y nk+l

s − Y nk
s ‖2

G >
1

2k−4

})
= 0.

Hence, the mappings t 7→ Y nk
t (ω) converge uniformly on [0, τ(ω)) to a function t 7→ Yt(ω) for

P -a.e. ω ∈ Ω. The process 1[[0,τ))Y is then RCLL and it belongs to the seminormed vector

space Πτ (G) by Corollary 2.5, since it is the pointwise limit of P -strongly F̄ -measurable

processes with respect to the norm topology.
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Formally we can view the stochastic integral as a linear operator defined by

ΦA
τ : E (L(H,G))→ Πτ (G)

X 7→ 1[[0,τ))

∫
XdZ,

where the notation ΦA
τ indicates that the mapping X 7→ 1[[0,τ))

∫
XdZ is not only viewed

as an algebraic map, but as a continuous operator with respect to the seminorm qAτ on

E (L(H,G)) and for this it is necessary for the process to be defined on 1[[0,τ)), as we want

to exploit the bounding property of the control process A, more precisely:

Lemma 2.26. The mapping ΦA
τ : E (L(H,G)) → Πτ (G) is a bounded operator with respect

to the seminorms qAτ on E (L(H,G)) and pτ on Πτ (G).

Proof. Let X ∈ E (L (H,G)) be an R-measurable L (H,G)-valued step function, then∫
XdZ ∈ L0(Ω̄, F̄ ;G) and it is RCLL so 1[[0,τ))

∫
XdZ ∈ Πτ (G). Moreover,

pτ

(
1[[0,τ))

∫
XdZ

)2

= E
(

sup
t<τ

∥∥∥∥∫ t

0

XsdZs

∥∥∥∥2

G

)
≤ E

(
Aτ−

∫ τ−

0

‖Xs‖2
L (H,G)dAs

)
<∞,

where the second to last inequality uses the main property of the control process A and

the last inequality uses that ‖X‖L (H,G) is globally bounded as it is a step function and

E(A2
τ−) <∞ by assumption.

Hence, ΦA
τ can be uniquely extended to a bounded operator ΦA

τ : ΛA
τ (L (H,G))→ Πτ (G).

However, we want a process defined on R+×Ω and not just on the stochastic interval [[0, τ)).

The basic technique to overcome this problem is to define the stochastic integral for each

stopping time of a sequence of increasing stopping times (τn)n∈N and to glue the resulting

processes on overlapping stochastic intervals. This requires the process ΦA
τ to be independent

of the stopping time τ ∈ T in the following sense:

Lemma 2.27 (Independence of stopping times). Suppose that τ , σ ∈ T are two stop-

ping times such that both satisfy the property that E(A2
τ−) < ∞ and E(A2

σ−) < ∞. If

X ∈ ΛA
τ (L (H,G)) ∩ ΛA

σ (L (H,G)), then

1[[0,τ∧σ))Φ
A
τ (X) = 1[[0,τ∧σ))Φ

A
σ (X).

Proof. This is part of the proof of Lemma 24.1.2 in Métivier (1982). Let X ∈ ΛA
τ (L (H,G))∩

ΛA
σ (L (H,G)) and choose a sequence (Xn

1 )n∈N ⊂ E (L (H,G)) of R-measurable L (H,G)-

valued step functions such that Xn
1

qAτ−−−→
n→∞

X. In particular this implies that Xn
1

qAτ∧σ−−−→
n→∞

X.

Note that for each n ∈ N we have

1[[0,τ∧σ))Φ
A
τ (Xn

1 ) = ΦA
τ∧σ(Xn

1 ).
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Hence, ΦA
τ∧σ(Xn

1 )
pτ∧σ−−−→
n→∞

ΦA
τ∧σ(X) and ΦA

τ∧σ(Xn
1 )

pτ∧σ−−−→
n→∞

1[[0,τ∧σ))Φ
A
τ (X), which by uniqueness

of the extension implies that ΦA
τ∧σ(X) = 1[[0,τ∧σ))Φ

A
τ (X) in Πτ (G). Similarly, this argument

can repeated for a sequence (Xn
2 )n∈N ⊂ E (L (H,G)) of R-measurable L (H,G)-valued step

functions such that Xn
2

qAσ−−−→
n→∞

X, which gives the result.

To conclude the construction of the integral with respect to the semimartingale Z we

require an integrand X to allow the existence of an increasing sequence of stopping times as

described above, in order to be able to glue the process on overlapping intervals. A class of

processes which admits this is described by the following result:

Theorem 2.28 (The stochastic integral). Let X ∈ L0(Ω̄,P; L (H,G)) and consider the

process

λAt (X) := At

∫ t

0

‖Xs‖2
L (H,G)dAs.

If λAt (X) < ∞ P -a.e. for all t ≥ 0, then there is an increasing sequence (τn)n∈N ⊂ T

of stopping times such that lim
n→∞

τn
P -a.e.

= ∞ and for any n ∈ N we have E(A2
τ−n

) < ∞ and

X ∈ ΛA
τn(L (H,G)). In particular there is a unique RCLL G-valued process

∫
XdZ up to

indistinguishability, such that for any n ∈ N

ΦA
τn(X) = 1[[0,τn))

∫
XdZ.

Moreover, the process
∫
XdZ is independent of the control process A ∈ A (Z), whenever

λA(X) <∞.

Proof. This proof can be found in Lemmas 24.1.2 and 24.1.3 in Métivier (1982). The sequence

τn := inf{t ≥ 0|At ∧ λAt (X) ≥ n} satisfies the properties above. Define Y A by setting

Y A
∣∣
[[0,τn))

:= 1[[0,τn))Φ
A
τn(X).

Lemma 2.27 shows that the process Y A is defined independently of the sequence (τn)n∈N.

To show that this definition is independent of the control process A let A1, A2 ∈ A (Z) be

two control processes such that λA
1
(X) <∞ and λA

2
(X) <∞. Then, A1 +A2 ∈ A (Z) and

λA
1+A2

(X) <∞. Lemma 2.27 shows that

1[[0,σn))Y
A1

= 1[[0,σn))Y
A2

= 1[[0,σn))Y
A1+A2

,

where σn := inf {t ≥ 0|(A1
t + A2

t ) ∨ λA
1+A2

t }.

22



Therefore, we consider as the class of Z-integrable processes the set

Λ(L (H,G)) :=
⋃

A∈A (Z)

{
X ∈ L0(Ω̄,P; L (H,G))

∣∣∣∣ λA(X) <∞
}
.

We finalize this part with an example that shows that the construction above yields the

same stochastic integral as the well-known isometric stochastic integral with respect to a

continuous locally square integrable martingale.

Example 2.29 (The case of a continuous R-valued martingale). Suppose that M =

(Mt)t∈R is a continuous locally square integrable martingale. Denote by L2(Ω̄,P, PM) the

L2-space with respect to the Doléans measure PM of M , that is

‖H‖2
L2(Ω̄,P,PM ) = E

(∫ ∞
0

H2
sd〈M〉s

)
,

and by M 2,c
0 (R) the Hilbert space of continuous square integrable R-valued martingales with

respect to the norm

‖M‖2
M 2 := E(|M∞|2) = E(〈M〉∞).

Then, there is a unique isometry

ΦM : L2(Ω̄,P, PM)→M 2,c
0 (R)

H 7→ H •M,

such that 〈H • M,N〉 =
∫
Hd〈M,N〉, for any continuous local martingale N and H ∈

L2(Ω̄,P, PM). Moreover, we know by Example 2.22 that A := 2(1 + 〈M〉) is a control

process for M and any H ∈ L2(Ω̄,P, PM) satisfies
∫ t

0
H2
sd〈M〉s <∞ P -a.e. for any t ≥ 0.

So that λAt (H) <∞ P -a.e. for any t ≥ 0, which means that H is M-integrable in the sense

we described above. Let (τn)n∈N ⊂ T be a sequence of stopping times such that

E
(
Aτ−n

∫ τ−n

0

H2
sdAs

)
<∞,

for all n ∈ N, which exists by Theorem 2.28. It suffices to show that for each n ∈ N we have

1[[0,τn))H •M = 1[[0,τn))

∫
HdM , hence let τ = τl for some l ∈ N. Choose a sequence (Hn)n∈N

of R-measurable step function as in Lemma 2.24 such that

E
(
Aτ−

∫ τ−

0

(Hs −Hn
s )2dAs

)
−−−→
n→∞

0,

then 1[[0,τ))H
n L2

−−−→
n→∞

1[[0,τ))H in L2(Ω̄,P, PM), since A ≥ 1 and dA = d〈M〉. Note that for
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any n ∈ N we have Hn •M =
∫
HndM , see for instance Chapter 4 Lemma 2.10 in Schweizer

(2012). Hence

E
(

sup
t<τ

∣∣∣∣ ∫ t

0

HdM − (H •M)t

∣∣∣∣2) 1
2

≤

E
(

sup
t<τ

∣∣∣∣ ∫ t

0

HdM −
∫ t

0

HndM

∣∣∣∣2) 1
2

+ E
(

sup
t<τ

∣∣∣∣(H •M)t − (Hn •M)t

∣∣∣∣2) 1
2

≤

E
(

sup
t<τ

∣∣∣∣ ∫ t

0

HdM −
∫ t

0

HndM

∣∣∣∣2) 1
2

+ 2E
(∣∣∣∣(H •M)τ − (Hn •M)τ

∣∣∣∣2) 1
2

−−−→
n→∞

0

where we use that ΦM is an isometry and
∫
HndM

pτ−−−→
n→∞

∫
HdM . This shows that for all

H ∈ L2(Ω̄,P, PM) the processes
∫
HdM and H •M coincide up to indistinguishability. A

similar argument, just using a localizing sequence of stopping times, can be repeated to show

that any locally integrable process H ∈ L2
loc(Ω̄,P, PM) is also integrable with respect to M

in the sense we described above.

We refer to Métivier (1982) Chapters 20 and 26 for results on martingales and the con-

struction of the stochastic integral as we did. In particular the construction of the stochastic

integral with respect to a martingale that allows unbounded operators as integrands is par-

ticularly fascinating, see Chapter 22 in Métivier (1982) for this. The construction of the

control process for a general martingale can be found in Métivier (1982) as we stated above.

However, this involves the development of too many techniques, the main ingredients being

the notion of the dual predicable projection of a process (see Chapter 15 in Métivier (1982)

or Chapter 5 §22 in Dinculeanu (2000)), the pure jump-martingale part of a martingale (see

Chapter 19 in Métivier (1982)) and the stopped Doob’s inequality (see Métivier and Pel-

laumail (1980)). Once the characterization of semimartingales through control processes is

known, these results just serve the purpose of illustrating the concept of a control process, as

they are not needed in our construction, which is the main reason we refrained from proving

this (painstaking) result.
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3 Construction of the weak∗ integral

Let (Ω,F , (Ft)t∈R+ , P ) be a filtered probability space satisfying the usual assumptions, H
and G two separable Hilbert spaces and Z ∈ S (H) an H-valued semimartingale. Let E

be a separable Banach space and denote the set of dense countable subsets in the unit ball

E1 := BE
1 (0) by D(E1). We will consider elementary step functions of the form

E
(
E∗⊗̂εL (H,G)

)
:=

{ n∑
i=1

1Riui

∣∣∣∣n ∈ N, Ri ∈ R, ui ∈ E∗⊗̂εL (H,G)

}
,

where E∗ is the dual Banach space of E and E∗⊗̂εL (H,G) denotes the weak∗ injective tensor

product of E∗ and L (H,G), by which we mean the closure of E∗⊗L (H,G) as a subspace

of L (E,L (H,G)). Recall the definition of the algebraic tensor product,

Definition 3.1. Let R be a commutative ring and M,N two R-modules. The tensor product

of M and N is an R-module T together with an R-bilinear mapping ⊗ : M × N → T such

that for any R-module P and any R-bilinear mapping β : M ×N → P , there exists a unique

R-linear mapping ι : T → P such that β = ι ◦ ⊗.

Proposition 3.2. Let R be a commutative ring and M,N two R-modules. The tensor

product of M and N exists and is unique up to isomorphism.

Proof. See for instance Atiyah, MacDonald (1969) Proposition 2.12. However, we sketch the

existence-part of the statement. Let C be the free R-module RM×N , so elements in C are

formal finite sums of the form
∑k

i=1 ri(mi, ni), with k ∈ N, ri ∈ R, mi ∈M and ni ∈ N . Let

D be the submodule generated by elements in C of the type

(m+m′, n)− (m,n)− (m′, n), (m,n+ n′)− (m,n)− (m,n′),

(rm, n)− r(m,n), (m, rn)− r(m,n),

where r ∈ R, m,m′ ∈ M and n, n′ ∈ N . Define M ⊗ N := T := C/D and denote the

image of (m,n) under the projection C → T by m ⊗ n. M ⊗ N is then a model for the

tensor product, and it is the model that we will use. Elements in M ⊗ N are of the form∑k
i=1mi ⊗ ni with k ∈ N, mi ∈ M and ni ∈ N . Moreover for all m,m′ ∈ M , n, n′ ∈ N and

r ∈ R we have the following relations

(m+m′)⊗ n = m⊗ n+m′ ⊗ n, m⊗ (n+ n′) = m⊗ n+m⊗ n′

(rm)⊗ n = r(m⊗ n) = m⊗ (rn).
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If F is a Banach space, we denote the algebraic tensor product over R of E∗ and F by

E∗⊗F . The bilinear mapping

β : E∗×F → L (E,F )

(λ, ζ) 7→
(
ξ 7→ λ(ξ)ζ

)
,

gives rise to a unique linear mapping ι : E∗⊗F → L (E,F ), such that the following diagram

commutes

E∗×F L (E,F )

E∗⊗F

β

⊗ ι

We start by justifying that we can view E∗ ⊗ F as a subspace of L (E,F ).

Lemma 3.3. The linear mapping ι : E∗ ⊗ F → L (E,F ) is injective.

Proof. Suppose that
∑n

i=1 λi ⊗ ζi ∈ ker ι and for simplicity that n = 2, then

ι

(
λ1 ⊗ ζ1 + λ2 ⊗ ζ2

)
(ξ) = λ1(ξ)ζ1 + λ2(ξ)⊗ ζ2 = 0,

for all ξ ∈ E. Suppose that λ2(ξ2) = −1 for some ξ2 ∈ E, otherwise this would imply that

λ2 = 0 and hence λ1 ⊗ ζ1 = 0. So

ζ2 = λ1(ξ2)ζ1,

and therefore

λ1 ⊗ ζ1 + λ2 ⊗ ζ2 = λ1 ⊗ ζ1 + λ2 ⊗ (λ1(ξ2)ζ1) = (λ1 + λ1(ξ2)λ2)⊗ ζ1 = 0.

This implies either ζ1 = 0 or λ1 = −λ1(ξ2)λ2. If ζ1 = 0 then ζ2 = 0 and so λ1⊗ζ1+λ2⊗ζ2 = 0.

If λ1 = −λ1(ξ2)λ2, then

λ1 ⊗ ζ1 + λ2 ⊗ ζ2 = λ2 ⊗ (−λ1(ξ1)ζ1 + ζ2) = 0,

since ζ2 = λ1(ξ2)ζ1. This argument is sufficient for the case of a general n ∈ N. Indeed,

suppose that n ≥ 3 and suppose that λn(ξn) = −1 for some ξn ∈ E then

ζn =
n−1∑
i=1

λi(ξn)ζi,
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and plugging this relation in yields

n∑
i=1

λi ⊗ ζi =
n−1∑
i=1

λ̄i ⊗ ζi,

where λ̄i := λi+λi(ξn)λn ∈ E∗. So repeating this argument reduces to the case where n = 2,

which we proved above. Hence, ker ι = {0} and this ends the proof.

However, note that β is not injective. In particular ι induces a norm ‖ · ‖ε on E∗⊗F ,

which can be explicitly written as

‖u‖ε := ‖ι(u)‖L (E,F ) =

∥∥∥∥ n∑
i=1

β(λi, ζi)

∥∥∥∥
L (E,F )

= sup
ξ∈E1

∥∥∥∥ n∑
i=1

λi(ξ)ζi

∥∥∥∥
F

,

where
∑n

i=1 λi⊗ ζi ∈ E∗⊗F is any representation of u ∈ E∗⊗F . We define the space E∗⊗̂εF
to be the closure of ι(E∗ ⊗ F ) ⊂ L (E,F ) with respect to the norm ‖ · ‖ε. Traditionally,

the subscript ε stands for the injective norm, but due to the similarities between this tensor

product and the injective tensor product (both coincide if E is reflexive) and due to the

fact that we do not use the injective tensor product, the subscript ε will denote the tensor

product constructed above.

Example 3.4 (Motivating example). Suppose that X is a compact topological space, then

C(X)∗ ∼= M (X) by the Riesz representation theorem, where C(X) denotes the Banach space

of continuous functions on X with respect to the sup-norm ‖ · ‖∞ and M (X) denotes the

Banach space of signed Radon measures on X with respect to the variation norm ‖ · ‖V .

Let d ∈ N and set M (X)d :=
⊕d

i=1 M (X). Recall that the direct sum and the direct

product of finitely many modules is the same, however we prefer to write it as a sum. For

a suitable M (X)d-valued process µ, our aim is to define an M (X)-valued process
∫
µdZ,

where Z ∈ S (Rd) is an Rd-valued semimartingale, such that∫
X

fd

(∫
µsdZs

)
=

∫ (∫
X

fdµs

)
dZs,

whenever f ∈ C(X) is a continuous function. Moreover,
∫

(
∫
X
fdµs)dZs should coincide

with the stochastic integral constructed above for all f ∈ C(X). As we will explain in this

section, it is more natural to work with M (X)⊗ Rd instead of M (X)d, as Rd = L (Rd,R)

is the space on which we defined the stochastic integral above. More precisely, note that we

have the following algebraic isomorphisms

M (X)⊗ Rd = M (X)⊗
d⊕
i=1

R ∼=
d⊕
i=1

M (X)⊗ R ∼=
d⊕
i=1

M (X) = M (X)d,
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in fact the mapping

ϕ : M (X)d →M (X)⊗ Rd µ1

...

µd

 7→ d∑
i=1

µi ⊗ ei

is an isomorphism, where e1, . . . , ed ∈ Rd is the canonical basis of Rd. Note that the space

M (X) ⊗ Rd is complete with respect to the norm ‖ · ‖ε defined above. Indeed, if (un)n∈N ⊂
M (X)⊗Rd is a Cauchy sequence with respect to ‖ ·‖ε and we fix the standard representation

un =
∑d

i µ
n
i ⊗ ei, then for any δ > 0 and m,n ∈ N large enough we have

‖un − um‖ε = sup
‖f‖≤1

∥∥∥∥

∫
X

fdµn1 −
∫
X

fdµm1

...∫
X

fdµnd −
∫
X

fdµmd


∥∥∥∥
Rd
< δ,

which implies that (µni )n∈N ⊂ M (X) is a Cauchy sequence with respect to the variation

norm ‖ · ‖V for each coordinate 1 ≤ i ≤ d and in addition this implies that M (X) ⊗ Rd =

M (X)⊗̂εRd. The space M (X)d is also a Banach space if we endow it with the natural norm

∥∥∥∥
 µ1

...

µd

∥∥∥∥ :=
d∑
i=1

‖µi‖V .

It follows directly that ϕ is a homeomorphism or alternatively this follows from the open

mapping theorem, since ϕ is an isomorphism of vector spaces and a bounded operator between

two Banach spaces. Hence, in this case we have M (X)⊗̂εRd = M (X)⊗Rd ∼= M (X)d, which

explains the motivation behind the choice of the tensor product introduced above.

The space E∗⊗̂εL (H,G) has two natural identifications, either as described above as a

subspace of L (E,L (H,G)) or of L (H, E∗⊗̂εG). To explain the identification as a subspace

of L (H, E∗⊗̂εG) suppose that u ∈ E∗⊗̂εL (H,G) and let (un)n∈N ⊂ E∗⊗L (H,G) be a

Cauchy sequence such that

sup
ξ∈E1

‖u(ξ)− un(ξ)‖L (H,G) −−−→
n→∞

0.
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Similarly as above we have a bilinear mapping

β̃ : E∗×L (H,G)→ L (H,E∗⊗̂εG)

(λ, T ) 7→
(
h 7→ λ⊗ (T (h))

)
,

which induces a unique linear mapping ι̃ : E∗ ⊗L (H,G) such that the following diagram

commutes

E∗×L (H,G) L (H,E∗⊗̂εG)

E∗⊗L (H,G)

β̃

⊗ ι̃

The same proof as above shows that ι̃ is injective. Let un =
∑n

i=1 λ
n
i ⊗T ni be a representation

of un, then

ι̃(un)(h) =
n∑
i=1

λni ⊗ (T ni (h)) ∈ E∗ ⊗ G ⊂ E∗⊗̂εG,

for all h ∈ H. Note that if we denote by H1 the unit sphere in H, then

‖ι̃(un − um)‖L (H,E∗⊗̂εG) = sup
h∈H1

‖ι̃(un − um)(h)‖E∗⊗̂εG =

sup
h∈H1, ξ∈E1

∥∥∥∥ n∑
i=1

λni (ξ)T ni (h)−
m∑
i=1

λmi (ξ)Tmi (h)

∥∥∥∥
G

= sup
ξ∈E1

‖(un − um)(ξ)‖L (H,G) −−−−→
n,m→∞

0,

which implies that (ι̃(un))n∈N ⊂ L (H, E∗⊗̂εG) is also a Cauchy sequence in L (H, E∗⊗̂εG)

and we denote the limit by Ψ(u), which is independent of the choice of the Cauchy sequence

that approximates u. Indeed, if (u1
n)n∈N, (u

2
n)n∈N ⊂ E∗⊗L (H,G) are two Cauchy sequences

such that

sup
ξ∈E1

‖u(ξ)− u1
n(ξ)‖L (H,G) −−−→

n→∞
0 and

sup
ξ∈E1

‖u(ξ)− u2
n(ξ)‖L (H,G) −−−→

n→∞
0,

then,

‖ι̃(u1
n − u2

n)‖L (H,E∗⊗̂εG) = sup
ξ∈E1

‖(u1
n − u2

n)(ξ)‖L (H,G) ≤

sup
ξ∈E1

‖(u1
n − u)(ξ)‖L (H,G) + sup

ξ∈E1

‖(u− u2
n)(ξ)‖L (H,G) −−−→

n→∞
0.

This discussion implies that we have a natural isometry Ψ : E∗⊗̂εL (H,G)→ L (H, E∗⊗̂εG)

onto the image of this map, which gives the desired identification.
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So, if ξ ∈ E then we can think of u(ξ) as an operator in L (E,L (H,G)) or if h ∈ H
then we can think of Ψ(u)(h) as an element in E∗⊗̂εG or as an operator in L (E,G) and we

will denote Ψ(u)(h) by u(h) for notational purposes. In order to avoid confusion with this

abuse of notation, which we need in order to keep the notation as clear as possible, we will

only denote by ξ elements in E, so the only case where u(ξ) is interpreted as an operator in

L (E,L (H,G)) will be when ξ is in the argument of u. Note that with this identification

we may write

u(ξ)(h) = u(h)(ξ) ∈ G,

for all ξ ∈ E and h ∈ H. Indeed, take an approximating sequence (un)n∈N ⊂ E∗ ⊗L (H,G)

for u as above, then

un(ξ)(h) =

( n∑
i=1

λni (ξ)T ni

)
(h) =

n∑
i=1

λni (ξ)T ni (h) =

( n∑
i=1

λni ⊗ T ni (h)

)
(ξ) = un(h)(ξ),

for all n ∈ N, ξ ∈ E and h ∈ H. Therefore, if ξ ∈ E1 \ {0} and h ∈ H1 \ {0} we get

‖u(ξ)(h)− u(h)(ξ)‖G ≤ ‖u(ξ)(h)− un(ξ)(h)‖G + ‖u(h)(ξ)− un(h)(ξ)‖G ≤

‖u(ξ)− un(ξ)‖L (H,G) + ‖u(h)− un(h)‖E∗⊗̂εG −−−→n→∞
0.

Moreover, note that whenever E is reflexive, the weak∗ injective tensor product and the

injective tensor product coincide, but the converse is not true in general, see Chapters 42

and 43 in Treves (1967) and Chapter 3 in Ryan (2002) for a discussion on the injective tensor

product and tensor products on locally convex vector spaces in general.

Furthermore, we endow E∗⊗̂εL (H,G) with the weak∗ topology O∗, that is the coarsest

topology such that the evaluation maps u 7→ u(ξ) ∈ L (H,G) corresponding to ξ ∈ E are

all continuous and we take the σ-algebra on E∗⊗̂εL (H,G) generated by this topology. Note

that for H = G = R, this is precisely the usual weak∗ topology on E∗. We will write

L0(Ω̄,P;E∗⊗̂εL (H,G)) instead of L0(Ω̄,P;E∗⊗̂εL (H,G), σ(O∗)) for notational purposes,

so a process X is of the class L0(Ω̄,P;E∗⊗̂εL (H,G)) if there is a sequence of P-measurable

E∗⊗̂εL (H,G)-valued step functions (Xn)n∈N ⊂ E (E∗⊗̂εL (H,G),P) such that

P

({
ω ∈ Ω

∣∣∣∣ ∃t ∈ R+ : Xt(ω)
w∗

6= lim
n→∞

Xn
t (ω)

})
= 0,

where the limit is taken with respect to the weak∗-topology. However, note that X is not

necessarily (P, σ(O))-measurable and limits in the class L0(Ω̄,P;E∗⊗̂εL (H,G)) need not

necessarily lie in this class.
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Suppose thatX =
∑n

i=1 1(si,ti]×Fiui ∈ E (E∗⊗̂εL (H,G)) is an R-measurableE∗⊗̂εL (H,G)-

valued step function, then, since Z is H-valued, we can define the following process∫ t

0

XsdZs(ω) :=
n∑
i=1

1Fi(ω)ui

(
Zt∧ti(ω)− Zt∧si(ω)

)
∈ E∗⊗̂εG.

This mapping will be extended to a suitable class of integrands taking values in E∗⊗̂εL (H,G)

such that the property ∫ t

0

XsdZs(ξ) =

∫ t

0

Xs(ξ)dZs,

holds for all ξ ∈ E and
∫
X(ξ)dZ coincides with the stochastic integral constructed in Section

2, this property will be called the weak∗ Fubini property.

This section is divided into five parts. The first part introduces a class of processes for

which the construction of this new stochastic integral is almost a pointwise extension of the

stochastic integral constructed in Section 2, we call this stochastic integral a weak∗ stochastic

integral. In part two and three we discuss the ambient space of the weak∗ stochastic integral

and some issues regarding well-definedness of the integral. Part four gives the main result of

this section, that is the construction of the integral and the statement and proof of the weak∗

Fubini property. In the last part of this section we discuss the subtle issue of measurability

for E∗⊗̂εF -valued processes and state a sufficient condition for strongly P-measurability

of an E∗⊗̂εRd-valued processes, which is relatively simple to verify for the case of the two-

parameter process.

3.1 The space Λ(E∗⊗̂εL (H,G))

Let A ∈ A (Z) be a control process for Z, τ ∈ T a stopping time such that E(A2
τ−) < ∞,

let γ ∈ l1+(N) := {γ ∈ l1(N)| ∀k ∈ N : γk > 0} and let ξ := {ξk}k∈N ∈ D(E1) be a dense

countable set in E1, we define

qAτ,γ,ξ : L0(Ω̄,P;E∗⊗̂εL (H,G))→ [0,∞]

X 7→
(∑

k∈N

γk E
(
Aτ−

∫ τ−

0

‖Xs(ξk)‖2
L (H,G) dAs

)) 1
2

,

and the vector space

ΛA
τ,γ,ξ(E

∗⊗̂εL (H,G)) :=

{
X ∈ L0(Ω̄,P;E∗⊗̂εL (H,G))

∣∣∣∣ qAτ,γ,ξ(X) <∞
}
.

Note that qAτ,γ,ξ(X)2 =
∑

k∈N γk q
A
τ (X(ξk))

2 is the γ-weighted sum of the processes (X(ξk))k∈N

with respect to the seminorm qAτ defined in the previous section, hence it is well-defined.
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Lemma 3.5. E (E∗⊗̂εL (H,G)) ⊂ ΛA
τ,γ,ξ(E

∗⊗̂εL (H,G))

Proof. Let X =
∑n

i=1 1Riui ∈ E (E∗⊗̂εL (H,G)) be an R-measurable L (H,G)-valued step

function . For any k ∈ N we have

‖ui(ξk)‖L (H,G) ≤ sup
ξ∈E1

‖ui(ξ)‖L (H,G) = ‖ui‖ε <∞,

hence if we set C := n2E(A2
τ−) max

1≤i≤n
‖ui‖2

ε we obtain

qAτ,γ,ξ(X)2 =
∑
k∈N

γkE
(
Aτ−

∫ τ−

0

‖Xs(ξk)‖2
L (H,G)dAs

)
=

=
∑
k∈N

γkE
(
Aτ−

∫ τ−

0

∥∥∥∥ n∑
i=1

1Riui(ξk)

∥∥∥∥2

L (H,G)

dAs

)
≤ C‖γ‖l1(N) <∞,

so X ∈ ΛA
τ,γ,ξ(E

∗⊗̂εL (H,G)).

Lemma 3.6. The mapping qAτ,γ,ξ defines a seminorm on ΛA
τ,γ,ξ(E

∗⊗̂εL (H,G)).

Proof. This argument is taken from the proof of Lemma 1.5 in Choulli/Schweizer (2013).

Denote by l2(N, γ) the l2-space with weights (γk)k∈N. If X ∈ ΛA
τ,γ,ξ(E

∗⊗̂εL (H,G)) then

qAτ,γ,ξ(X) can be interpreted as an l2-seminorm in the following way:

qAτ,γ,ξ(X) =

∥∥∥∥{E(Aτ− ∫ τ−

0

‖Xs(ξk)‖2
L (H,G)dAs

) 1
2
}
k∈N

∥∥∥∥
l2(N,γ)

= ‖{qAτ (X(ξk))}k∈N‖l2(N,γ),

which shows that qAτ,γ,ξ is a seminorm, since qAτ is a seminorm.

Lemma 3.7. The set of R-measurable E∗⊗̂εL (H,G)-valued step functions E (E∗⊗̂εL (H,G))

is dense with respect to qAτ,γ,ξ in the seminormed vector space ΛA
τ,γ,ξ(E

∗⊗̂εL (H,G)).

Proof. Let X ∈ ΛA
τ,γ,ξ(E

∗⊗̂εL (H,G)), then by separability of E1 and H the process ‖X‖ε is

P-measurable. Indeed, since ξ ⊂ D(E1) is dense in the unit ball E1, we can write for any

dense subset (hn)n∈N in the unit sphere of H

‖Xt(ω)‖ε := sup
n∈N
‖Xt(ω)(ξn)‖L (H,G) = sup

n,k∈N
‖Xt(ω)(ξn)(hk)‖G,

for all (t, ω) ∈ Ω̄, where we use the identifications described above. This shows that

‖X‖ε is P-measurable, since ‖X(ξn)(hk)‖G is P-measurable for all n, k ∈ N. Moreover,

‖(1{‖X‖ε≤K}Xs(ω) − Xs(ω))(ξ)‖L (H,G) −−−→
K→∞

0 for all (s, ω) ∈ Ω̄ and ξ ∈ E. Hence, by
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dominated convergence

∑
k∈N

γkE
(
Aτ−

∫ τ−

0

‖
(
1{‖X‖ε≤K}Xs −Xs

)
(ξk)‖2

L (H,G)dAs

)
−−−→
K→∞

0.

So without loss of generality we may assume sup
(s,ω)∈Ω̄

‖Xs(ω)‖ε ≤ K for some K ≥ 0. Choose

a sequence (Xn)n∈N ⊂ E (E∗⊗̂εL (H,G),P) of P-measurable E∗⊗̂εL (H,G)-valued step

functions such that

P

({
ω ∈ Ω

∣∣∣∣ ∃t ∈ R : Xt(ω)
w∗

6= lim
n→∞

Xn
t (ω)

})
= 0,

where the limit is taken with respect to the weak∗ topology and note that we may choose this

sequence such that ‖Xn‖ε ≤ K + 1, for instance by taking X̄n := 1{‖X−Xn‖ε≤1}X
n, which is

still a predictable step function and converges to X pointwise in the weak∗ topology, more

precisely for any (s, ω) ∈ Ω̄ and ξ ∈ E we have

‖(X̄n
s (ω)−Xs(ω))(ξ)‖L (H,G) −−−→

n→∞
0.

Therefore we obtain that

∑
k∈N

γkE

(
Aτ−

∫ τ−

0

‖Xs(ξk)−Xn
s (ξk)‖2

L (H,G)dAs

)
−−−→
n→∞

0,

by dominated convergence. Just as in the remark preceding Lemma 2.24 we can show

that E (E∗⊗̂εL (H,G)) is a qAτ,γ,ξ-dense subspace of E (E∗⊗̂εL (H,G),P), which finishes this

proof.

Analogously as in the previous section we introduce a class of processes that allow a

suitable increasing sequence of stopping times.

Lemma 3.8 (weak∗ Z-integrable processes). Suppose that X ∈ L0(Ω̄,P;E∗⊗̂εL (H,G))

is such that the process

λ
A,γ,ξ

t (X) :=
∑
k∈N

γkAt

∫ t

0

‖Xs(ξk)‖2
L (H,G)dAs <∞

is finite P -a.e. for any t > 0. Then, there is an increasing sequence of stopping times such

that lim
n→∞

τn
P -a.e.

= ∞ and for any n ∈ N we have E(A2
τ−n

) <∞ and X ∈ ΛA
τn,γ,ξ

(E∗⊗̂εL (H,G)).

Proof. Define for any n ∈ N the stopping time τn := inf {t ≥ 0|At ∧ λ
A,γ,ξ

t (X) ≥ n}. This

sequence is increasing, lim
n→∞

τn =∞ P -a.e. and it satisfies the desired properties.
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Hence, it is natural to consider as the space of integrands, which we call weak∗ Z-

integrable processes, the class

Λ(E∗⊗̂εL (H,G)) :=
⋃

A (Z)×l1+(N)×D(E1)

{
X ∈ L0(Ω̄,P;E∗⊗̂εL (H,G))

∣∣∣∣ λA,γ,ξ(X) <∞
}
,

where the union is taken over all control processes A ∈ A (Z), all sequences γ ∈ l1+(N) and

dense countable subsets ξ ∈ D(E1), where λA,γ,ξ(X) <∞ means that λ
A,γ,ξ

t (X) <∞ P -a.e.

for all t ≥ 0. Note that if E = R, then Λ(E∗⊗̂εL (H,G)) and Λ(L (H,G)) coincide, but

in general these two classes of integrands are different. Moreover, the class of weak∗ Z-

integrable processes as presented here is not as large as we would like it to be, for instance,

it is not clear if the pointwise limit of P -strongly P-measurable processes is still strongly

measurable. In part four of this section we will discuss a natural extension of the class of

allowed integrands.

3.2 The Space Π(E∗⊗̂εG)

Let A ∈ A (Z) be a control process, τ ∈ T a stopping time such that E(A2
τ−) < ∞,

ξ := {ξk}k∈N ∈ D(E1) a dense countable set in E1 and γ ∈ l1+(N). Define the space

Πτ,γ,ξ(E
∗⊗̂εG) :=

{
1[[0,τ))Y

∣∣∣∣ Y : Ω̄→ E∗⊗̂εG is RCLL, ∀ ξ ∈ E : Y (ξ) ∈ L0(Ω̄, F̄ ;G)

}
,

and the mapping

pτ,γ,ξ : Πτ,γ,ξ(E
∗⊗̂εG)→ [0,∞]

Y 7→
(∑

k∈N

γkE(sup
s<τ
‖Ys(ξk)‖2

G)

) 1
2

,

and note that pτ,γ,ξ(Y )2 =
∑

k∈N γkpτ (Y (ξk))
2. It is tempting to define in analogy to the

last section Πτ,γ,ξ(E
∗⊗̂εG) as the space consisting of processes of the form 1[[0,τ))Y such that

Y ∈ L0(Ω̄, F̄ ;E∗⊗̂εG) is RCLL. However, due to the lack of regularity of E∗⊗̂εG, we would

not be able, in general, to show that it is complete with respect to the seminorm pτ,γ,ξ,

since the pointwise limit of a sequence in L0(Ω̄,F ;E∗⊗̂εG) is not necessarily of that class.

Surprisingly (or not), the class of processes Y : Ω̄ → E∗⊗̂εG such that Y (ξ) ∈ L0(Ω̄,F ;G)

for all ξ ∈ E, which we will later call weak∗ measurable processes, are more well-behaved for

our purposes. We start by showing that pτ,γ,ξ is a seminorm and the weak∗ Fubini property

for step functions, which will later be extended to a larger class of processes after we show

that Πτ,γ,ξ(E
∗⊗̂εG) is a complete space.
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Lemma 3.9. The mapping pτ,γ,ξ defines a seminorm on Πτ,γ,ξ(E
∗⊗̂εG).

Proof. If Y ∈ Πτ,γ,ξ(E
∗⊗̂εG) then pτ,γ,ξ(Y ) = ‖{E(sups<τ ‖Ys(ξk)‖2

G)
1
2}k∈N‖l2(N,γ).

Lemma 3.10 (The weak∗ stochastic integral and the weak∗ Fubini property for

step functions). Consider E (E∗⊗̂εL (H,G)) together with the seminorm qAτ,γ,ξ and the space

Πτ,γ,ξ(E
∗⊗̂εG) with the seminorm pτ,γ,ξ, then the mapping

ΦA
τ,γ,ξ : E (E∗⊗̂εL (H,G))→ Πτ,γ,ξ(E

∗⊗̂εG)

X 7→ 1[[0,τ))

∫
XdZ,

is a bounded operator and it satisfies the weak∗ Fubini property, namely

1[[0,τ))

∫
XdZ(ξ) = 1[[0,τ))

∫
X(ξ)dZ,

for any ξ ∈ E and X ∈ E (E∗⊗̂εL (H,G)).

Proof. Let X =
∑n

i=1 1(si,ti]×Fiui ∈ E (E∗⊗̂εL (H,G)). Since A ∈ A (Z) is a control process

for Z we get for any ξ ∈ E the inequality

E
(

sup
s<τ
‖
∫ s

0

X(ξ)dZ‖2
G

)
≤ E

(
Aτ−

∫ τ−

0

‖Xs(ξ)‖2
GdAs

)
.

Hence pτ,γ,ξ(Φ
A
τ,γ,ξ(X)) ≤ qAτ,γ,ξ(X) < ∞. To verify the weak∗ Fubini property let ξ ∈ E,

then ∫ t

0

XdZ(ξ) =
n∑
i=1

1Fiui(Zt∧ti − Zt∧si)(ξ) =
n∑
i=1

1Fiui(ξ)(Zt∧ti − Zt∧si) =

∫ t

0

( n∑
i=1

1(si,ti]×Fiui(ξ)

)
dZ =

∫ t

0

X(ξ)dZ,

where we use the identifications of E∗⊗̂εL (H,G) described above.

The notation ΦA
τ,γ,ξ is used to stress that this is a bounded operator when we endow

E (E∗⊗̂εL (H,G)) with the seminorm qAτ,γ,ξ, however as an algebraic map, the only A-

dependence is due to τ . In order to argue that ΦA
τ,γ,ξ has a unique extension we still need to

prove as announced before that the space Πτ,γ,ξ(E
∗⊗̂εG) is complete.
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Lemma 3.11. The space Πτ,γ,ξ(E
∗⊗̂εG) is complete for the seminorm pτ,γ,ξ.

Proof. Suppose that (Y n)n∈N ⊂ Πτ,γ,ξ(E
∗⊗̂εG) is a Cauchy sequence, that is

∑
k∈N

γkE
(

sup
s<τ
‖Y n

s (ξk)− Y m
s (ξk)‖2

G

)
−−−−→
m,n→∞

0.

Choose a subsequence (nm)m∈N such that the second inequality

P

( ⋃
k∈N

{
sup
s<τ
‖Y nm+1

s (ξk)− Y nm
s (ξk)‖2

G >
1

γk2m

})
≤

2m
∑
k∈N

γkE
(

sup
s<τ
‖Y nm+1

s (ξk)− Y nm
s (ξk)‖2

G

)
≤ 1

2m
,

holds for all m ∈ N. Hence, for all m, l ∈ N we obtain

P

( ⋃
k∈N

{
sup
s<τ
‖Y nm+l

s (ξk)− Y nm
s (ξk)‖2

G >
1

γk2m−4

})
≤ 1

2m−1
,

which follows from the fact that⋃
k∈N

{
sup
s<τ
‖Y nm+l

s (ξk)− Y nm
s (ξk)‖2

G >
1

γk2m−4

}
⊂

⋃
k∈N

l⋃
i=1

{
sup
s<τ
‖Y nm+i

s (ξk)− Y nm+i−1
s (ξk)‖2

G >
1

γk2m+i−1

}
.

Indeed, if ω /∈
⋃
k∈N

l⋃
i=1

{
sup
s<τ
‖Y nm+i

s (ξk)− Y nm+i−1
s (ξk)‖2

G >
1

γk2m+i−1

}
, then for all k ∈ N we

have the following chain of inequalities

sup
s<τ
‖Y nm+l

s (ω)(ξk)− Y nm
s (ω)(ξk)‖2

G ≤
( l∑

i=1

‖Y nm+i
s (ω)(ξk)− Y nm+i−1

s (ω)(ξk)‖G
)2

≤

( l∑
i=1

1√
γk2m+i−1

)2

≤ 1

γk2m−1

( ∞∑
i=1

1√
2i

)2

=
(1 +

√
2)2

γk2m−1
≤ 1

γk2m−4
,

and this in turn gives

P

( ⋃
k∈N

{
sup
s<τ
‖Y nm+l

s (ξk)− Y nm
s (ξk)‖2

G >
1

γk2m−4

})
≤
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l∑
i=1

P

( ⋃
k∈N

{
sup
s<τ
‖Y nm+i

s (ξk)− Y nm+i−1
s (ξk)‖2

G >
1

γk2m+i−1

})
≤

∞∑
i=1

1

2m+i−1
=

1

2m−1
,

which proves the claim we made above. The Borel-Cantelli lemma implies that

Ω \ Ω0 := lim sup
m→∞

⋃
k∈N

{
sup
s<τ
‖Y nm+l

s (ξk)− Y nm
s (ξk)‖2

G >
1

γk2m−4

}

is a null-set, in particular if ω ∈ Ω0 then

sup
s<τ(ω)

‖Y nm+l
s (ω)− Y nm

s (ω)‖2
E∗⊗̂εG = sup

s<τ(ω)

sup
k∈N
‖Y nm+l

s (ω)(ξk)− Y nm
s (ω)(ξk)‖2

G −−−→
m→∞

0,

which means that the functions s 7→ Y nm
s (ω) converge uniformly for all ω ∈ Ω0 on the interval

[0, τ(ω)) to a function s 7→ Ỹs(ω) ∈ E∗ ⊗ε G. Define the process Y := 1(R+×Ω0)∩[[0,τ))Ỹ , then

Y is RCLL, due to the uniform convergence, and Y (ξ) ∈ L0(Ω̄, F̄ ;G) for all ξ ∈ E by

Proposition 2.4 or more precisely Corollary 2.17, so Y ∈ Πτ,γ,ξ(E
∗⊗̂εG).

Corollary 3.12 (The local weak∗ stochastic integral). The mapping defined above

ΦA
τ,γ,ξ : E (E∗⊗̂εL (H,G))→ Πτ,γ,ξ(E

∗⊗̂εG) extends uniquely to a bounded linear operator

ΦA
τ,γ,ξ : ΛA

τ,γ,ξ(E
∗⊗̂εL (H,G))→ Πτ,γ,ξ(E

∗⊗̂εG)

X 7→ 1[[0,τ))

∫
XdZ,

which satisfies the inequality pτ,γ,ξ(Φ
A
τ,γ,ξ(X)) ≤ qAτ,γ,ξ(X) for any X ∈ ΛA

τ,γ,ξ(E
∗⊗̂εL (H,G)).

Hence the space

Π(E∗⊗̂εG) :=
⋃
I

Πτ,γ,ξ(E
∗⊗̂εG),

where I := {(A, τ, γ, ξ) ∈ A (Z)×T × l1(N)×D(E1)| E(A2
τ−) <∞}, is a natural ambient

space for this integral. In the next part we argue why it is possible to extend the stochastic

integral using an increasing sequence of stopping times in analogy to Section 2. The main

difficulty is that we have to prove prove independence of the choice of stopping times, inde-

pendence of the choice of weights γ ∈ l1+(N), independence of the choice of a dense countable

subset ξ ∈ D(E1), independence of the choice of control process A in a suitable way and fi-

nally paste all independence claims together, so that we are able to glue a stochastic integral

as in Section 2.
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3.3 The extension

Lemma 3.13 (Independence of stopping times). Let A ∈ A (Z) be a control process

for Z, γ ∈ l1+(N) and ξ ∈ D(E1) a dense countable subset. Suppose that τ , σ ∈ T are two

stopping times such that E(A2
τ−) <∞ and E(A2

σ−) <∞.

If X ∈ ΛA
τ,γ,ξ(E

∗⊗̂εL (H,G)) ∩ ΛA
σ,γ,ξ(E

∗⊗̂εL (H,G)) then

1[[0,τ∧σ))Φ
A
τ,γ,ξ(X) = 1[[0,τ∧σ))Φ

A
σ,γ,ξ(X) = ΦA

τ∧σ,γ,ξ(X).

Proof. The assumption X ∈ ΛA
τ,γ,ξ(E

∗⊗̂εL (H,G)) ∩ ΛA
σ,γ,ξ(E

∗⊗̂εL (H,G)) implies in partic-

ular that X ∈ ΛA
τ∧σ,γ,ξ(E

∗⊗̂εL (H,G)). Choose a sequence of R-measurable E ∗⊗̂εL (H,G)-

valued step functions (Xn
1 )n∈N ⊂ E (E∗⊗̂εL (H,G)) such that Xn

1

qAτ,γ,ξ
−−−→
n→∞

X. Note that

Xn
1

qAτ∧σ,γ,ξ
−−−−→
n→∞

X and for any n ∈ N we have the identity

1[[0,τ∧σ))Φ
A
τ,γ,ξ(X

n
1 ) = 1[[0,τ∧σ))1[[0,τ))

∫
Xn

1 dZ = 1[[0,τ∧σ))

∫
Xn

1 dZ = ΦA
τ∧σ,γ,ξ(X

n
1 ).

Moreover, the fact that Xn
1

qAτ∧σ,γ,ξ
−−−−→
n→∞

X, implies that ΦA
τ∧σ,γ,ξ(X

n
1 )

pτ∧σ,γ,ξ
−−−−→
n→∞

ΦA
τ∧σ,γ,ξ(X) by

Corollary 3.12, butXn
1

qAτ,γ,ξ
−−−→
n→∞

X in turn shows that 1[[0,τ∧σ))Φτ,γ,ξ(X
n
1 )

pτ,γ,ξ
−−−→
n→∞

1[[0,τ∧σ))Φτ,γ,ξ(X)

and the convergence also holds with respect to pτ∧σ,γ,ξ. Hence, by uniqueness we obtain

1[[0,τ∧σ))Φτ,γ,ξ(X) = ΦA
τ∧σ,γ,ξ(X),

in the seminormed vector space Πτ,γ,ξ(E
∗⊗̂εG). The same argument can be repeated for a

sequence (Xn
2 )n∈N such that Xn

2

qAσ,γ,ξ
−−−→
n→∞

X, which proves the claim.

Lemma 3.14 (Independence of weights and dense subsets). Let A ∈ A (Z) be a

control process and τ ∈ T a stopping time such that E(A2
τ−) < ∞. Suppose that γ1,

γ2 ∈ l1+(N) and ξ1, ξ2 ∈ D(E1). If X ∈ ΛA
τ,γ1,ξ1

(E∗⊗̂εL (H,G)) ∩ ΛA
τ,γ2,ξ2

(E∗⊗̂εL (H,G))

then

ΦA
τ,γ1,ξ1(X) = ΦA

τ,γ2,ξ2(X).

Proof. The ideas contained here can be found in the proof of Theorem 2.1 in Choulli/Schweizer

(2013). Define the interlaced sequence γ := (γ1
1 , γ

2
1 , γ

1
2 , γ

2
2 , . . . ) ∈ l1+(N) and the dense count-

able subset ξ := {ξ1
1 , ξ

2
1 , ξ

1
2 , ξ

2
2 , . . . } ∈ D(E1) in E1. Then

qAτ,γ,ξ(X)2 = qAτ,γ1,ξ1(X)2 + qAτ,γ2,ξ2(X)2,
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so X ∈ ΛA
τ,γ,ξ(E

∗⊗̂εL (H,G)). Choose a sequence (Xn)n∈N ⊂ E (E∗⊗̂εL (H,G)) of R-

measurable L (H,G)-valued step functions such that Xn
qAτ,γ,ξ
−−−→
n→∞

X, then both Xn
qA
τ,γ1,ξ1

−−−−→
n→∞

X

and Xn
qA
τ,γ2,ξ2

−−−−→
n→∞

X. Moreover, if Y ∈ Πτ,γ,ξ(E
∗⊗̂εG) then

pτ,γ,ξ(Y )2 = pτ,γ1,ξ1(Y )2 + pτ,γ2,ξ2(Y )2.

Hence, since ΦA
τ,γ,ξ(X

n)
pτ,γ,ξ
−−−→
n→∞

ΦA
τ,γ,ξ(X), we obtain that ΦA

τ,γ1,ξ1
(Xn)

pτ,γ1,ξ1

−−−−→
n→∞

ΦA
τ,γ,ξ(X), but

simultaneously we have ΦA
τ,γ1,ξ1

(Xn)
pτ,γ1,ξ1

−−−−→
n→∞

ΦA
τ,γ1,ξ1

(X), which by uniqueness of the extension

implies that

ΦA
τ,γ,ξ(X) = ΦA

τ,γ1,ξ1(X),

in the seminormed vector space Πτ,γ,ξ(E
∗⊗̂εG). Repeat the argument for the triplet (τ, γ2, ξ2)

to obtain the desired result.

Lemma 3.15 (Independence of control processes). Let γ ∈ l1+(N) and ξ ∈ D(E1)

a dense countable set in E1. Let A1, A2 ∈ A (Z) be two control processes and τ ∈ T a

stopping time such that E((A1
τ−)2) <∞ and E((A2

τ−)2) <∞.

If X ∈ ΛA1

τ,γ,ξ(E
∗⊗̂εL (H,G)) ∩ ΛA2

τ,γ,ξ(E
∗⊗̂εL (H,G)) then

ΦA1

τ,γ,ξ(X) = ΦA2

τ,γ,ξ(X) = ΦA1+A2

τ,γ,ξ (X).

Proof. Note that A1 + A2 ∈ A (Z) and X ∈ ΛA1+A2

τ,γ,ξ (E∗⊗̂εL (H,G)). Choose a sequence

of R-measurable L (H,G)-valued step functions (Xn)n∈N ⊂ E (E∗⊗̂εL (H,G)) such that

Xn
qA

1+A2

τ,γ,ξ

−−−−→
n→∞

X. Note that

ΦA1

τ,γ,ξ(X
n) = ΦA1+A2

τ,γ,ξ (Xn),

holds for any n ∈ N and ΦA1+A2

τ,γ,ξ (Xn)
pτ,γ,ξ
−−−→
n→∞

ΦA1+A2

τ,γ,ξ (X), which implies that the equality

ΦA1

τ,γ,ξ(X) = ΦA1+A2

τ,γ,ξ (X),

holds in Πτ,γ,ξ(E
∗⊗̂εG) with respect to pτ,γ,ξ. Repeating the same argument for ΦA2

τ,γ,ξ(X)

gives the desired equality.
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Corollary 3.16 (Independence). Let A1, A2 ∈ A (Z) be two control processes and τ ,

σ ∈ T two stopping times such that E((A1
τ−)2) <∞ and E((A2

σ−)2) <∞. Let γ1, γ2 ∈ l1+(N)

and ξ1, ξ2 ∈ D(E1).

Suppose that X ∈ ΛA1

τ,γ1,ξ1
(E∗⊗̂εL (H,G)) ∩ ΛA2

σ,γ2,ξ2
(E∗⊗̂εL (H,G)), then the following iden-

tity holds

1[[0,τ∧σ))Φ
A1

τ,γ1,ξ1(X) = 1[[0,τ∧σ))Φ
A2

σ,γ2,ξ2(X) = ΦA1+A2

τ∧σ,γ1,ξ1(X) = ΦA1+A2

τ∧σ,γ2,ξ2(X).

Proof. Note that X ∈ ΛA1+A2

τ∧σ,γ1,ξ1(E
∗⊗̂εL (H,G)) ∩ ΛA1+A2

τ∧σ,γ2,ξ2(E
∗⊗̂εL (H,G)), so the result

follows from the previous claims stated above.

3.4 The weak∗ Fubini property

Proposition 3.17 (The local weak∗ Fubini property). Let γ ∈ l1+(N), ξ ∈ D(E1) a

dense countable subset in E1, A ∈ A (Z) a control process and τ ∈ T a stopping time such

that E(A2
τ−) <∞. The mapping ΦA

τ,γ,ξ satisfies the weak∗ Fubini property, that is, whenever

ξ ∈ E then

1[[0,τ))

∫
XdZ(ξ) = 1[[0,τ))

∫
X(ξ)dZ,

for any X ∈ ΛA
τ,γ,ξ(E

∗⊗̂εL (H,G)).

Proof. Choose a sequence (Xn)n∈N ⊂ E (E∗⊗̂εL (H,G)) such that Xn
qAτ,γ,ξ
−−−→
n→∞

X. For any

n ∈ N we know by Lemma 3.10 that

ΦA
τ,γ,ζ(X

n)(ξ) = 1[[0,τ))

∫
Xn(ξ)dZ.

We may assume by linearity that ξ ∈ E1 and by density of the subset ξ ⊂ E1 we may also

assume that ξ ∈ ξ. Since ΦA
τ,γ,ξ(X

n)
pτ,γ,ξ
−−−→
n→∞

ΦA
τ,γ,ξ(X) = 1[[0,τ))

∫
XdZ we actually have that

E
(

sup
s<τ

∥∥∥∥ΦA
τ,γ,ξ(X

n)(ξ)− ΦA
τ,γ,ξ(X)(ξ)

∥∥∥∥2

G

)
−−−→
n→∞

0.

Hence, there is a subsequence (nk)k∈N such that

sup
s<τ

∥∥∥∥ΦA
τ,γ,ξ(X

nk)(ξ)− ΦA
τ,γ,ξ(X)(ξ)

∥∥∥∥
G

P -a.e.−−−→
k→∞

0.

Moreover, ΦA
τ,γ,ξ(X

nk)(ξ) = ΦA
τ (Xnk(ξ)) for all k ∈ N and ΦA

τ,γ,ξ(X
nk)(ξ)

pτ−−−→
n→∞

ΦA
τ (X(ξ)),
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where ΦA
τ (X(ξ)) = 1[[0,τ))

∫
X(ξ)dZ is the stochastic integral from Section 2, so

E
(

sup
s<τ

∥∥∥∥ΦA
τ (X(ξ))− ΦA

τ (Xnk)(ξ)

∥∥∥∥2

G

)
−−−→
n→∞

0.

Therefore, for a suitable subsequence also denoted by (nk)k∈N we obtain that

sup
s<τ

∥∥∥∥ΦA
τ (X(ξ))− ΦA

τ,γ,ξ(X)(ξ)

∥∥∥∥
G

P -a.e.

≤

P -a.e.

≤ sup
s<τ

∥∥∥∥ΦA
τ (X(ξ))− ΦA

τ,γ,ξ(X
nk)(ξ)

∥∥∥∥
G

+ sup
s<τ

∥∥∥∥ΦA
τ,γ,ξ(X

nk)(ξ)− ΦA
τ,γ,ξ(X)(ξ)

∥∥∥∥
G

P -a.e.−−−→
k→∞

0,

which shows in particular, that the processes 1[[0,τ))

∫
X(ξ)dZ and 1[[0,τ))

∫
XdZ(ξ) coincide

up to indistinguishability.

Theorem 3.18 (The weak∗ stochastic integral and the weak∗ Fubini property).

There is a well-defined mapping

Λ(E∗⊗̂εL (H,G))→ Π(E∗⊗̂εG)

X 7→
∫
XdZ,

called the weak∗ stochastic integral with respect to Z, that satisfies the weak∗ Fubini property.

Proof. Let X ∈ Λ(E∗⊗̂εL (H,G)). Let A ∈ A (Z) be a control process, γ ∈ l1+(N) and

ξ ∈ D(E1) such that λA,γ,ξ(X) < ∞. By Lemma 3.8. there is an increasing sequence of

stopping times (τn)n∈N ⊂ T such that X ∈
⋂
n∈N ΛA

τn,γ,ξ
(E∗⊗̂εL (H,G)). Define the process

Y A,γ,ζ by setting for any n ∈ N

Y A,γ,ξ
∣∣
[[0,τn))

:= ΦA
τn,γ,ξ(X).

Lemma 3.13 shows that Y A,γ,ξ is independent of the sequence of stopping times. Finally

Corollary 3.16 shows that if (A1, γ1, ξ1), (A2, γ2, ξ2) ∈ A (Z)× l1+(N)×D(E1) are two triplets

satisfying λA
1,γ1,ξ1(X), λA

2,γ2,ξ2(X) < ∞ then Y A1,γ1,ξ1 = Y A2,γ2,ξ2 , hence Y A,γ,ξ is indepen-

dent of the triplet (A, γ, ξ) ∈ A (Z)× l1+(N)×D(E1). So the process Y A,γ,ξ =:
∫
XdZ is well

defined and Proposition 3.17 shows that it satisfies the weak∗ Fubini property.

We finish this part by discussing an extension of the class of allowed integrands of the

weak∗ stochastic integral to a particular class of processes that preserves the weak∗ Fubini

property.
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Lemma 3.19 (The weak∗ stochastic integral and the weak∗ Fubini property for

the limit of strongly measurable processes). Let X : Ω̄→ E∗⊗̂εL (H,G) be a process

such that X(ξ) : Ω̄ → L (H,G) is P -strongly P-measurable for each ξ ∈ E. Suppose that

there is a control process A ∈ A (Z), an increasing sequence τn ↗ ∞ of stopping times

such that E(A2
τ−n

) < ∞ for all n ∈ N, a sequence γ ∈ l1+(N) and a dense countable subset

ξ ∈ D(E1) in E1 such that

∑
n∈N

γnE
(
Aτ−n

∫ τ−n

0

‖Xs(ξn)‖2
L(H,G)dAs

)
<∞.

If a sequence (Xn)n∈N ⊂ Λ(E∗⊗̂εL (H,G)) of weak∗ Z-integrable processes, satisfying the

condition λA,γ,ξ(X) < ∞, converges pointwise to X in the weak∗ topology, then the process∫
XdZ is a well-defined E∗⊗̂εG-valued process and satisfies the weak∗ Fubini property.

Proof. It suffices to construct the process
∫
XdZ locally, so let τ = τl for some l ∈ N. By

dominated convergence we obtain for any n ∈ N

∑
k∈N

γkE
(
Aτ−

∫ τ−

0

‖X(ξn)−Xm(ξn)‖2
L(H,G)dAs

)
−−−→
m→∞

0.

Therefore, the sequence (Xm)m∈N is a Cauchy sequence with respect to the seminorm qAτ,γ,ξ
and by Corollary 3.12 this implies that (

∫
XmdZ)m∈N is a Cauchy sequence in Πτ,γ,ξ(E

∗⊗̂εG),

which is a complete space by Lemma 3.11. We denote the limit in Πτ,γ,ξ(E
∗⊗̂εG) by

1[[0,τ))

∫
XdZ. Let ξ ∈ E, for each m ∈ N we know by Proposition 3.17 that∫

XmdZ(ξ) =

∫
Xm(ξ)dZ.

Hence, as in the proof of Proposition 3.17 we may choose a suitable subsequence (mk)k∈N

such that

sup
s<τ

∥∥∥∥∫ s

0

XdZ(ξ)−
∫ s

0

X(ξ)dZ

∥∥∥∥
G

P−a.e.

≤

sup
s<τ

∥∥∥∥∫ s

0

XdZ(ξ)−
∫ s

0

XmkdZ(ξ)

∥∥∥∥
G

+ sup
s<τ

∥∥∥∥∫ s

0

Xmk(ξ)dZ −
∫ s

0

X(ξ)dZ

∥∥∥∥
G

P−a.e.−−−−→
k→∞

0,

which shows the claim.

This last result is satisfactory in the sense that a reasonable pointwise limit of a sequence

in Λ(E∗⊗̂εL (H,G)) is weak∗ Z-integrable and satisfies the weak∗ Fubini property.
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3.5 A note on measurability

Let E and F be two Banach spaces and define E∗⊗̂εF as above as the closure of E∗ ⊗ F
as a subspace of L (E,F ) endowed with the σ-algebra generated by the weak∗ topology,

that is the coarsest topology on E∗⊗̂εF such that the evaluation maps u 7→ u(ξ) ∈ F

corresponding to ξ ∈ E are all continuous. Let (C,C ) be a measure space. Recall that a

function X : C → E∗⊗̂εF is strongly C -measurable with respect to the weak∗ topology if

it is the pointwise limit with respect to the weak∗ topology of C -measurable E∗⊗̂εF -valued

step functions. This property is in general very difficult to verify and during the case of the

two-parameter process we will need to argue that a process is strongly measurable. However,

we expect to simplify this task by obtaining a generalization of Pettis’ measurability theorem

(see Proposition 2.4) to this case. Recall that Pettis’ measurability theorem states that a

process is strongly measurable with respect to the norm topology if it is separably valued and

the dual pairing of the process with any linear form is measurable as an R-valued process.

A sufficient condition for the strong C -measurability with respect to the weak∗ topology

of a function X : C → E∗⊗̂εF should include X to be separably valued with respect to

the weak∗ topology and X(ξ) : C → F to be strongly C -measurable with respect to the

norm topology or equivalently (C ,B(F ))-measurable for all ξ ∈ E, where B(F ) is the Borel

σ-algebra generated by the norm topology on F . This is a guess based on the statement of

Pettis’ measurability theorem. Let us first introduce a name for these kind of functions that

behave well under the dual pairing.

Definition 3.20. A function X : (C,C )→ E∗⊗̂εF is called weak∗ C -measurable if for any

ξ ∈ E the function X(ξ) : (C,C ) → F is strongly C -measurable with respect to the norm

topology on F or equivalently (C ,B(F ))-measurable.

Recall that the proof of Pettis’ measurability theorem is a constructive approximation

argument with respect to the metric induced by the norm. However, we cannot expect a

separable subspace in E∗⊗̂εF to be metrizable. We therefore restrict ourselves to the much

simpler case when F = Rn, since we understand the weak∗ toplogy on E∗⊗̂εF better and

this is precisely the situation that will be encountered during the discussion of the two-

parameter process in the next section. If F = Rn then E∗⊗̂εRn ∼= (E∗)n, as explained above

for E∗ = M (X) (see Example 3.1). A reasonable choice of a metrizable subset of E∗⊗̂εF is

just a norm-closed ball of the form BE∗
r (0)

n
with r > 0. This basically follows directly from

the Tychonoff-Alaoglu theorem. However, as the proof will show, the mere existence of a

metric that generates the topology is not sufficient if we only want to assume the process

X to be weak∗ measurable, we actually need a concrete metric. The next result states this

intuition formally.
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Proposition 3.21. Suppose that E is a separable Banach space, let X : (C,C ) → (E∗)n

be a weak∗ C -measurable function and suppose that X takes its values in BE∗
r (0)

n
for some

r > 0. Then, X is strongly C -measurable with respect to the weak∗ topology.

Proof. Without loss of generality assume that n = 1. Since E is separable, the weak∗

topology restricted to BE∗
r (0) is metrizable. Hence BE∗

r (0) is separable, as it is a compact

metric space. Let {λk}k∈N be a weak∗ dense countable subset of BE∗
r (0) and {ξk}k∈N a dense

subset of the unit ball E1 of E. Recall that the metric defined by

d : BE∗
r (0)×BE∗

r (0)→ [0,∞)

(λ1 , λ2) 7→
∑
k∈N

1

2k

∣∣∣∣λ1(ξk)− λ2(ξk)

∣∣∣∣,
induces the weak∗ topology on BE∗

r (0). This can be seen by noting that the function

f : BE∗
r (0)→

∏
k∈N

BR
r (0)

λ 7→ (λ(ξk))k∈N,

is weak∗ continuous and injective, hence a topological embedding and the standard metric

on the product space induces then the metric d defined above. For any λ ∈ BE∗
r (0) the

function

C → [0,∞)

c 7→ d(X(c), λ),

is C -measurable, since each X(ξk) is C -measurable and d(X(c), λ) is the pointwise limit of

C -measurable functions. Note that we do not assume X to be C -measurable, hence it is

a priori not clear whether for any metric d the process d(X,λ) is C -measurable. For each

m ∈ N and λ ∈ BE∗
r (0) define

km(λ) := min

{
1 ≤ k ≤ m

∣∣∣∣ d(λ, λk) = min
1≤i≤m

d(λ, λi)

}
,

and note that d(λkm(λ), λ) −−−→
m→∞

0 by density of {λk}k∈N. Define the function

Xm : C → E∗

c 7→ λkm(X(c)),
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and notice that Xm has finite range. Moreover, for each 1 ≤ k ≤ m the sets

Cm,1
k =

{
c ∈ C

∣∣∣∣ d(Xm(c), λk) = min
1≤i≤n

d(Xm(c), λi)

}
and

Cm,2
k =

{
c ∈ C

∣∣∣∣ ∀1 ≤ l ≤ k − 1 : d(Xm(c), λl) > min
1≤i≤n

d(Xm(c), λi)

}
,

are C -measurable and Cm
k = {c ∈ C

∣∣Xm(c) = λk} = Cm,1
k ∩ Cm,2

k . Hence,

Xm =
m∑
k=1

1Cmk
λk ∈ E (E∗,C ).

is a C -measurable E∗-valued step function that converges to X pointwise for any c ∈ C in

the weak∗ topology, that is for any c ∈ C we have Xm(c)
w∗−−−→

m→∞
X(c).

This proof relies on the assumption that E is separable and F is finite dimensional. With

more effort, one could (probably) weaken the assumption that F is finite dimensional and

replace it with separability. However, F has to be separable as noted above. Previously we

worked with F = L (H,G), where H and G are separable Hilbert spaces, but L (H,G) is in

general not separable (for instance let H = G = l2(N), then l∞(N), which is not separable,

can be isometrically embedded in L (H,G)). As we explained before, we will need to check

in the next section whether a process X is P -strongly measurable in the special case where

F = Rn. The following result gives a condition that is simple to verify and is tailor-made

for the case of the two-parameter process we discuss in the next section.

Proposition 3.22. Suppose C ⊂ B(R+)⊗F is a sub-σ-algebra and X : (Ω̄,C )→ (E∗)n a

weak∗ C -measurable process such that

P

({
ω ∈ Ω

∣∣∣∣ ∃t ∈ R+ : Xt(ω) /∈ BE∗
r (0)

n
})

= 0,

for some r > 0. Then, X ∈ L0(Ω̄,C ; (E∗)n) is P-strongly C -measurable with respect to the

weak∗ topology.

Proof. Let Ω0 ⊂ Ω be a conull subset such that for any ω ∈ Ω0 and t ∈ R+ we have

Xt(ω) ∈ BE∗
r (0)

n
. Hence X̄t(ω) := 1R+×Ω0(t, ω)Xt(ω), which is indistinguishable from X,

is a weak∗ C -measurable process and X̄t(ω) ∈ BE∗
r (0)

n
for any (t, ω) ∈ Ω̄. By Proposition

3.21 we can find a sequence (Xn)n∈N ⊂ E (E∗,C ) of C -measurable step functions such that

Xn w∗−−−→
n→∞

X̄ pointwise, which implies that

P

({
ω ∈ Ω

∣∣∣∣ ∃t ∈ R+ : Xt(ω)
w∗

6= lim
n→∞

Xn
t (ω)

})
≤ P (Ωc

0) = 0.
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4 Applications

4.1 A natural setting

Let (Ω,F , (Ft)t∈R+ , P ) be a filtered probability space satisfying the usual assumptions. We

consider now the special case H = Rd, G = R and E = C(X), where X is a compact

Hausdorff space. Then, L (H,G) = Rd and C(X)∗ ∼= M (X) is the Banach space of Radon

signed measures on X, where the norm is the variation norm, so if µ ∈ M (X) then the

variation norm of µ is given by

‖µ‖V := sup

{∫
X

fdµ

∣∣∣∣ f ∈ BC(X)
1

}
= sup

{ n∑
i=1

|µ(Bi)|
∣∣∣∣ B1, . . . , Bn ∈ B(X) disjoint

}
,

where B(X) denotes the Borel σ-algebra on X. Moreover, by definition of the weak∗ injective

tensor product we may identify M (X)⊗̂εRd ∼=
⊕d

k=1 M (X) = M (X)d (see Example 3.4).

Let Z ∈ S (Rd) be an Rd-valued semimartingale. Suppose that µ ∈ Λ(M (X)d) is a

weak∗ Z-integrable process and consider a control process A ∈ A (Z), a sequence γ ∈ l1+(N),

a dense countable subset f ∈ D(C(X)1) in the unit ball of C(X) and τn ↗∞ a sequence

of stopping times such that E(A2
τ−n

) < ∞ and µ ∈ ΛA
τn,γ,ξ

(M (X)d) for each n ∈ N. The

process
∫
µdZ is M (X)-valued and for any continuous function f ∈ C(X) we have the

Fubini property ∫
X

fd

(∫ t

0

µsdZs

)
=

∫ t

0

(∫
X

fdµs

)
dZs.

A suitable class of integrands that extends the Fubini property to bounded measurable

functions is the following:

Proposition 4.1. Let µ ∈ Λ(M (X)d) be as above and suppose in addition that there is a

sequence of constants Cn > 0 such that for any continuous function g ∈ C(X) and n ∈ N we

have qAτn(
∫
X
gdµ) ≤ Cn‖g‖∞. Let f ∈ L∞(X) be a bounded measurable function, then the

process
∫
X
fd
( ∫

µ dZ
)

exists and satisfies the weak∗ Fubini property, that is∫
X

fd

(∫
µ dZ

)
=

∫ (∫
X

fdµ

)
dZ.

Proof. The argument contained here is adapted from the proof of Theorem 2.3 in Choulli

and Schweizer (2013). Let f ∈ L∞(X) be a bounded measurable function and suppose

without loss of generality that ‖f‖∞ ≤ 1. It suffices to show the existence of the process

and the weak∗ Fubini property locally, so let τ = τl and C = Cl for some l ∈ N. Choose

a subsequence (fnk)k∈N ⊂ f such that fnk −−−→
k→∞

f pointwise and assume without loss of
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generality that ‖fnk‖∞ ≤ 1 + ‖f‖∞ for all k ∈ N. First note that for P -a.e. ω ∈ Ω, if t ≥ 0

then

λAt

(∫
X

fdµ

)
(ω) = At(ω)

∫ t

0

∣∣∣∣ ∫
X

fdµs(ω)

∣∣∣∣2dA(ω)s ≤

3At(ω)

∫ t

0

∣∣∣∣ ∫
X

f − fnkdµs(ω)

∣∣∣∣2dA(ω)s + 3At(ω)

∫ t

0

∣∣∣∣ ∫
X

fnkdµs(ω)

∣∣∣∣2dA(ω)s <∞,

for all nk ∈ N large enough, by dominated convergence. This implies that the process∫
X
fdµ ∈ Λ(Rd) is Z-integrable in the sense of Section 2. The property qAτ (

∫
X
fnkdµ) ≤ C‖fnk‖∞

ensures by dominated convergence that 1[[0,τ))

∫
(
∫
X
fnkdµ)dZ converges with respect to pτ

to 1[[0,τ))

∫
(
∫
X
fdµ)dZ in Πτ (R). Indeed, note by Fatou’s lemma, that

E
(
Aτ−

∫ τ−

0

∣∣∣∣ ∫
X

fdµs

∣∣∣∣2dAs) = E
(
Aτ−

∫ τ−

0

lim
k→∞

∣∣∣∣ ∫
X

fnkdµs

∣∣∣∣2dAs) ≤
E
(
Aτ− lim inf

k→∞

∫ τ−

0

∣∣∣∣ ∫
X

fnkdµs

∣∣∣∣2dAs) ≤ lim inf
k→∞

E
(
Aτ−

∫ τ−

0

∣∣∣∣ ∫
X

fnkdµs

∣∣∣∣2dAs) ≤ C,

therefore we may argue using Lemma 2.26 and dominated convergence, that

E
(

sup
t<τ

∣∣∣∣ ∫ t

0

(∫
X

(fnk − f)dµs

)
dZs

∣∣∣∣2) ≤ E
(
Aτ−

∫ τ−

0

∣∣∣∣ ∫
X

(f − fnk)dµs
∣∣∣∣2dAs) −−−→k→∞

0.

So in particular for a subsequence also denoted by (nk)k∈N we obtain∫ t

0

(∫
X

fnkdµs

)
dZ(ω)s −−−→

k→∞

∫ t

0

(∫
X

fdµs

)
dZ(ω)s,

for P -a.e. ω ∈ Ω and all t ∈ [0, τ(ω)). On the other hand 1[[0,τ))

∫
µdZ ∈ Πτ (M (X)) is a

signed measure valued process, so

1[[0,τ))(t, ω)

∫
X

fnkd

(∫ t

0

µsdZ(ω)s

)
−−−→
k→∞

1[[0,τ))(t, ω)

∫
X

fd

(∫ t

0

µsdZ(ω)s

)
,

for all (t, ω) ∈ Ω̄ by dominated convergence. This implies that

1[[0,τ))(t, ω)

∫
X

fd

(∫ t

0

µsdZ(ω)s

)
= 1[[0,τ))(t, ω)

∫ t

0

(∫
X

fdµs

)
dZ(ω)s,

for P -a.e. ω ∈ Ω and all t ≥ 0, since for all k ∈ N we have by Proposition 3.17

1[[0,τ))(t, ω)

∫
X

fnkd

(∫ t

0

µsdZ(ω)s

)
= 1[[0,τ))(t, ω)

∫ (∫
X

fnkdµs

)
dZ(ω)s.
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Let µ ∈ Λ(M (X)d) be a process as in Proposition 4.1 and B ∈ B(X) a Borel set, then∫ t

0

µsdZs(B) =

∫ t

0

µs(B)dZs.

One interpretation of this equation can be given by the following observation: suppose that

ϑ ∈ Λ(Rd) is a Z-integrable process viewed as a strategy, then we may consider the measure-

valued process defined by

µ : R+ × Ω→M ([0, 1])d

(t, ω) 7→ λ⊗ ϑt(ω),

where λ is the Lebesgue measure on [0, 1]. Note that µ is predictable, weak∗ Z-integrable in

the sense described above, and for any f ∈ C([0, 1]) we have

qAτn

(∫
[0,1]

fdµ

)2

= E
(
Aτ−n

∫ τ−n

0

∣∣∣∣ ∫
[0,1]

fϑsdλ

∣∣∣∣2 dAs) ≤ ‖λ‖2
V ‖f‖2

∞q
A
τn(ϑ)2 ≤ C2

n‖f‖2
∞,

where Cn = qAτn(ϑ) < ∞, for some control process A ∈ A (Z) and τn ↗ ∞ a sequence of

stopping times such that both E(A2
τn−

) <∞ and ϑ ∈ ΛA
τn(Rd), which exist since we assumed

ϑ to be Z-integrable. Hence Proposition 4.1 yields

νt([0, 1]) =

∫ t

0

ϑt(ω)dZs,

where νt =
∫ t

0
µsdZs. So the value of a strategy at time t is the measure of [0, 1] for some

measure-valued predictable RCLL process ν at time t.

4.2 The case of a two-parameter process

Suppose that Z ∈ S (Rd) is an Rd-valued semimartingale and ϑ = (ϑt,s)t≥0,0≤s≤t an Rd-

valued two-parameter process. Assume that for any t ≥ 0 the process (ϑt,s)0≤s≤t and the

diagonal process (ϑs,s)s≥0 belong to the class of Z-integrable processes Λ(Rd), then we can

write ∫ t

0

ϑt,sdZs =

∫ t

0

ϑs,sdZs +

∫ t

0

(ϑt,s − ϑs,s)dZs.

Note in particular that under these assumptions,
∫
ϑs,sdZs is a well-defined R-valued semi-

martingale. Suppose furthermore that for each s ≥ 0, the process (ϑt,s)t≥0 is right-continuous

and of finite variation, where we set ϑt,s := 0 for any s > t. By Carathéodory’s extension

theorem the process defined by

µs([0, t]) := 1{t≥s}(ϑt,s − ϑs,s),
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for t ≤ T extends uniquely to an M ([0, T ])d-valued process for each T ≥ 0. Moreover, note

that the process (µs([0, t]))s∈R+ is P-measurable for any fixed t ≥ 0, which implies that

(
∫

[0,T ]
fdµs)s∈R+ is P-measurable for any continuous function f ∈ C([0, T ]) and this means

that µ = (µs)s∈R+ is a weak∗ P-measurable process. In particular, for any r > 0 the set

Pr :=

{
(s, ω) ∈ Ω

∣∣∣∣ ‖µs(ω)‖V ≤ r1

}
is P-measurable since C(X) is separable, where we set

‖µs(ω)‖V :=

 ‖µ
1
s(ω)‖V

...

‖µds(ω)‖V

 , 1 :=

 1
...

1

 ∈ Rd,

and the relation ‖µs(ω)‖V ≤ r1 is meant coordinate-wise. The weak∗ process 1Prµ is P -

strongly P-measurable with respect to the weak∗ topology by Proposition 3.22 for all r > 0.

Furthermore, 1Pr(s, ω)µs(ω)
w∗−−−→
r→∞

µs(ω) for all (s, ω) ∈ Ω̄ in the weak∗ topology. However,

we cannot argue that such a limit is P -strongly P-measurable again, but we can make use

of Lemma 3.19 under an extra assumption, which we now describe.

Fix s ∈ R+ and denote by V ar(ϑ·,s(ω), [0, t]) the total variation of (ϑr,s(ω))r∈R on the

interval [0, t], that is

V ar(ϑ·,s(ω), [0, t]) :=

 V ar(ϑ1
·,s(ω), [0, t])

...

V ar(ϑd·,s(ω), [0, t])

 ,

where

V ar(ϑk·,s(ω), [0, t]) := sup

{ n∑
i=1

|ϑti+1,s(ω)− ϑti,s(ω)|
∣∣∣∣ n ∈ N, 0 ≤ t0 < t1 < · · · < tn ≤ t

}
,

is the total variation on the interval [0, t] of the k-th coordinate, which is finite P -a.e. by

assumption. Note that for all (s, ω) ∈ Ω̄ we have ‖µs(ω)‖V ≤ V ar(ϑ·,s(ω), [0, t]), where

the relation is again to be understood coordinate-wise. If in addition we assume that the

variation process V ar(ϑ·,s(ω), [0, T ]) on [0, T ] is Z-integrable, then for any f ∈ C([0, T ])

E
(
Aτ−n

∫ τ−n

0

∣∣∣∣ ∫
[0,T ]

fdµs

∣∣∣∣2dAs) ≤ ‖f‖2
∞E
(
Aτ−n

∫ τ−n

0

∣∣∣∣V ar(ϑ·,s, [0, T ])

∣∣∣∣2dAs) <∞,

for some control process A ∈ A (Z) and an increasing sequence of stopping times τn ↗ ∞
such that the process (V ar(ϑ·,s(ω), [0, t]))s∈R+ ∈ ΛA

τn(Rd) is locally Z-integrable in the sense
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of Section 2. In particular this inequality implies that the process 1Prµs ∈ Λ(M ([0, T ])d) is

weak∗ Z-integrable for any r > 0, where the control process is A, the sequence of stopping

times is (τn)n∈N, and the dense countable set f ∈ D(C(X)1) and the sequence γ ∈ l1+(N) can

be chosen arbitrarily. Lemma 3.19 implies then, that the M ([0, T ])-valued process
∫
µdZ is

well-defined, satisfies the weak∗ Fubini property and by Proposition 4.1, with constants Cn

given by

Cn = E
(
Aτ−n

∫ τ−n

0

∣∣∣∣V ar(ϑ·,s, [0, t])

∣∣∣∣2dAs) <∞,

the weak∗ Fubini property extends to all bounded measurable functions on [0, T ]. Therefore

we obtain for any u ≥ 0 and t ∈ [0, T ](∫ u

0

µsdZs

)
[0, t] =

∫ u

0

(
µs([0, t])

)
dZs.

In particular for u = T we observe that the process D = (Dt)0≤t≤T defined by

Dt :=

(∫ T

0

µsdZs

)
[0, t],

is adapted, RCLL and of finite variation, since
∫ T

0
µsdZs is M ([0, T ])-valued, hence a semi-

martingale. Schweizer/Choulli (2013) show that D is even predictable. This proves the

following result:

Theorem 4.2 (Choulli, Schweizer). Let Z ∈ S (Rd) be an Rd-semimartingale. Let

(ϑt,s)t,s≥0 be a two-parameter Rd-valued process satisfying the following properties:

i) For all s > t the process (ϑt,s)t∈R+ satisfies ϑt,s = 0.

ii) The diagonal process (ϑs,s)s∈R+ is Z-integrable,

iii) For any s ≥ 0, the process (ϑt,s)t∈R+ is right-continuous and of finite variation,

iv) The variation process (V ar(ϑ·,s, [0, T ])s∈R+ on [0, T ] is Z-integrable for all T > 0.

Then,

(∫ t

0

ϑt,sdZs

)
t∈R+

is an R-valued semimartingale.

Choulli/Schweizer (2013) assume (translated to our setup) that there is a sequence Cn > 0

such that

E
(
Aτ−n

∫ τ−n

0

∣∣∣∣ ∫
[0,T ]

fdµs

∣∣∣∣2dAs) ≤ ‖f‖2
∞Cn <∞,

for any f ∈ C([0, T ]). The previous discussion implies, that under the assumption that the

variation process as we described above is integrable, there is a sequence Cn, namely

Cn = E
(
Aτ−n

∫ τ−n

0

∣∣∣∣V ar(ϑ·,s, [0, t])

∣∣∣∣2dAs) <∞.
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The previous result implies Theorem 3.2 in Protter (1985) and in particular we do not

need the assumption that the derivative is Lipschitz continuous.

Corollary 4.3 (Protter). Let Z ∈ S (Rd) be an Rd-valued semimartingale and let (ϑt,s)t,s≥0

be a process satisfying i), ii) and iii) in Theorem 4.2. Suppose that t 7→ ∂
∂t
ϑt,s(ω) exists and

is locally bounded uniformly in t, that is we assume that for all t0 ≥ 0 there is δ := δ(t0) > 0

and K := K(t0) > 0 such that for all s ≥ 0 and ω ∈ Ω∣∣∣∣ ∂∂tϑt,s(ω)

∣∣∣∣ < K,

for all t ≥ 0 such that |t− t0| < δ0. Then,

(∫ t

0

ϑt,sdZs

)
t∈R+

is an R-valued semimartingale.

Proof. We do this for the case d = 1. Let ω ∈ Ω, s ∈ R+ and T ≥ s, then

V ar(ϑ·,s(ω), [0, T ]) := sup

{ n∑
i=1

|ϑti+1,s(ω)−ϑti,s(ω)|
∣∣∣∣ n ∈ N, 0 ≤ t0 < t1 < · · · < tn ≤ T

}
=

sup

{ n∑
i=1

|ϑti+1,s(ω)− ϑti,s(ω)|
∣∣∣∣ n ∈ N, s ≤ t0 < t1 < · · · < tn ≤ T

}
,

since ϑr,s = 0 for s > r. Let s ≤ t0 < · · · < tn ≤ T , then

n∑
i=1

|ϑti+1,s(ω)− ϑti,s(ω)| =
n∑
i=1

∣∣∣∣ ∂∂tϑri,s(ω)

∣∣∣∣(ti+1 − ti),

for some ri ∈ [ti−1, ti]. A compactness argument gives a constant K > 0 such that∣∣∣∣ ∂∂tϑr,s(ω)

∣∣∣∣ ≤ K,

for all s ≤ r ≤ T . More precisely⋃
0≤t0≤T

(r0 − δ(r0), r0 + δ(r0)) ∩ [0, T ],

is an open cover of [0, T ] and compactness yields finitely many r1, . . . , rk such that

[0, T ] =
k⋃
i=1

(ri − δ(ri), ri + δ(ri)) ∩ [0, T ],
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finally set K := max
1≤i≤k

K(ri) > 0. This implies that

n∑
i=1

|ϑti+1,s(ω)− ϑti,s(ω)| =
n∑
i=1

∣∣∣∣ ∂∂tϑri,s(ω)

∣∣∣∣(ti+1 − ti) ≤ K(T − s),

for any s ≤ t0 < · · · < tn ≤ t and therefore

V ar(ϑ·,s(ω), [0, t]) ≤ K(T − s) <∞.

Note that if A ∈ A (Z) is any control process for Z, then

λAt (V ar(ϑ·,s(ω), [0, T ])) = At

∫ t

0

V ar(ϑ·,s(ω), [0, T ])2dAs ≤

At(ω)2K2

∫ t

0

(T − s)2dAs(ω) ≤ At(ω)2K2T 2 <∞,

So (V ar(ϑ·,s, [0, T ]))s∈R+ is Z-integrable in the sense of Métivier. The result follows now by

Theorem 4.2.

The previous proof shows that we just need to assume an integrability condition for the

bounding constant, so the corollary above is just a special case of the following result.

Corollary 4.4. Let Z ∈ S (Rd) be an Rd-valued semimartingale and let (ϑt,s)t,s≥0 be a

process satisfying i), ii) and iii) in Theorem 4.2. Suppose that t 7→ ∂
∂t
ϑt,s(ω) exists for all

s ≥ 0 and P -a.e. ω ∈ Ω. Furthermore, assume that for all t0 ≥ 0 there is δ := δ(t0) > 0 and

a mapping (s, ω) 7→ K(t0, s, ω) > 0 satisfying the bounding condition∣∣∣∣ ∂∂tϑt,s(ω)

∣∣∣∣ < K(t, s, ω)

for all |t − t0| < δ0, s ≥ 0 and P -a.e. ω ∈ Ω and satisfying the following integrability

condition: there is a control process A ∈ A (Z) such that for all t0 ≥ 0 and t ≥ 0,

At(ω)

∫ t

0

K(t0, s, ω)2dAs(ω),

exists and is finite for P -a.e. ω ∈ Ω. Then,

(∫ t

0

ϑt,sdZs

)
t∈R+

is an R-valued semimartin-

gale.
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Proof. Let T > 0, ω ∈ Ω, T ≥ s ≥ 0, then

V ar(ϑ·,s(ω), [0, T ]) ≤ (T − s) max
1≤i≤k

K(ri, s, ω),

for suitable r1, . . . , rk ∈ [0, T ] as in the previous proof. Let A ∈ A (Z) be a control process

as in the statement, then

λAt (V ar(ϑ·,s(ω), [0, T ])) = At(ω)

∫ t

0

V ar(ϑ·,s(ω), [0, T ])2dAs(ω) ≤

T 2At(ω)

∫ t

0

max
1≤i≤k

K(ri, s, ω)2dAs(ω) ≤ T 2

k∑
i=1

At(ω)

∫ t

0

K(ri, s, ω)2dAs(ω) <∞,

for P -a.e. ω ∈ Ω, so (V ar(ϑ·,s, [0, T ]))s∈R is Z-integrable and the conclusion follows by

Theorem 4.2

5 Conclusion

This work gives a positive answer to the intuition stated in Choulli/Schweizer (2013) that

their approach generalizes to general semimartingales. The techniques used here in Section

3 are basically the same as in their paper, so the presentation does not become significantly

longer and technical once we view semimartingales in the spirit of Métivier as controlled

processes.

The discussion in Section 2 and at the end of Section 3 concerning measurability issues

of Banach valued functions and processes deserves more attention. The literature regarding

measurable Banach valued functions where the σ-algebra is not the Borel σ-algebra generated

by the norm topology is nearly non-existing. In particular the case where the σ-algebra is

generated by the weak∗-topology should be studied further, as these kind of measurable

processes arise naturally and a generalization of Proposition 3.21 should be feasible.

The construction of the weak∗ stochastic integral can easily be generalized to general

locally convex vector spaces and dual pairs. Resulting for instance in an integral that allows

a weak Fubini property instead of the weak∗ Fubini property we proved, which may be of

independent interest.

Finally we remark that a generalization of Corollary 4.4 to the case where the derivative is

only a weak derivative should be feasible. However, this would probably make the statement

and the proof more technical.
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torräumes sind”, Fundamenta Mathematicae, vol. 20, pp. 262-276.

[5] J. J. M. Chadwick (1982), “On the definition of measurability for vector valued functions

”, Irish Math. Soc., Newsletter No. 6 Dec. 1982, 24-35.

[6] T. Choulli, M. Schweizer (2013), “A new stochastic Fubini theorem via measure-valued

processes”.

[7] N. Dinculeanu (2000), “Vector integraction and stochastic integration in Banach spaces,

Wiley-Interscience.

[8] M. Emery (1980), “Equations différentielles stochastiques. La méthode de Métivier-

Pellaumail”, Springer Lecture Notes in Math. 784 118-124.

[9] H. Kunita (1970), “Stochastic integrals based on martingales taking their values in Hilbert

spaces”, Nagoya Math. J. 38, 41-52.

[10] M. Métivier (1977), “Reelle und vektorwertige Quasimartingale und die Theorie der

stochastischen Integration”, Lecture Notes in Mathematics, Springer.

[11] M. Métivier (1982), “Semimartingales. A course on stochastic processes”, de Gruyter.

[12] M. Métivier and J. Pellaumail (1979), “On a stopped Doob’s inequality and general

stochastic equations”, Ann. Prob., 7.

[13] M. Métivier and J. Pellaumail (1980), “Stochastic integration”, Academic Press.

[14] J. van Neerven and M. Veraar (2006), “On the stochastic Fubini theorem in infinite

dimensions”, Stochastic partial differential equations and applications VII, Volume 245

of Lect. Notes Pure Appl. Math., 323336. Chapman & Hall/CRC.

[15] J. van Neerven (2008), “Stochastic evolution equations”, ISEM Lecture Notes.

[16] B. Pettis (1938), “On integraction in vector spaces”, TAMS 44, 277 304.

54



[17] P. Protter (1985), “Volterra equations driven by semimartingales”, Annals of Probability

13, 519-530.

[18] P. Protter (2005), “Stochastic integration and differential equations”, 2nd ed. , Springer.

[19] M. Reiß, M. Riedle, and O. van Gaans (2007). “On Émerys inequality and a variation-
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