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ON POINTWISE DECAY OF WAVES

WILHELM SCHLAG

Abstract. This note introduces some of the basic mechanisms relating the behavior of the spec-
tral measure of Schrödinger operators near zero energy to the long-term decay and dispersion of
the associated Schrödinger and wave evolutions. These principles are illustrated by means of the
author’s work on decay of Schrödinger and wave equations under various types of perturbations
including those of the underlying metric. In particular, we consider local decay of solutions to the
linear Schrödinger and wave equations on curved backgrounds which exhibit trapping. A particular
application are waves on a Schwarzschild black hole space-time. We elaborate on Price’s law of local
decay which accelerates with the angular momentum, which has recently been settled by Hintz [42]
also in the much more difficult Kerr black hole setting. While the author’s work on the same topic
was conducted ten years ago, the global semiclassical representation techniques developed there
have recently found applications in a nonlinear setting [54].

1. Introduction

This note mainly serves as an introduction to the techniques used in the papers [27], [28], which
are concerned with the local decay of waves on a Schwarzschild background. The decay estimates
are obtained by separation of variables and the analysis of the flow for each angular momentum
in [27]. By means of a semiclassical WKB analysis involving a global Liouville-Green transform,
as well as semiclassical Mourre theory at energies near the top of the barrier, [28] sums up these
fibered estimates over all angular momenta incurring the loss of finitely many angular derivatives.
Note that [27], [28] are not entirely self-contained and rely in part on [72], [73], [26], [14], [15].
As shown in these references, the Schrödinger flow can be analyzed analogously. The original
motivation for [72, 73] was to study the long-term dispersive behavior of solutions to Schrödinger
and wave equations on specific non-compact manifolds exhibiting closed geodesics, such as the
hyperboloid of one sheet. In analogy with the unique periodic geodesic on such a hyperboloid,
which is exponentially unstable, the surface of closed geodesics around a Schwarzschild black hole
is known as photon sphere and corresponds to the collection of all periodic light rays. The photon
sphere is also unstable.

Recently, in joint work with Krieger and Miao [54], the semiclassical techniques leading to a
precise representation of the resolvent and the spectral measure for all energies and all small ~
developed in [14, 15], played a crucial role in a nonlinear asymptotic stability question of blowup
solutions to energy critical wave maps into the 2-sphere. In stark contrast to the linear case, modes
of fixed frequencies interact through the nonlinearities. Controlling these interaction naturally
leads to a paradifferential calculus involving several simultaneous semi-classical parameters. The
nonlinear work [54] served as the main motivation for writing this note, which should not be
mistaken for a general review. Numerous references are missing, which touch in one way or another
on the ensuing discussion. A survey of dispersive decay of Schrödinger, wave, and Klein-Gordon
evolutions involving electric, magnetic, and metric perturbations, including the semi-classical and
gravitational literature, would require many hundreds of citations. The scope and purpose of this
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communication is much more limited. For example, magnetic and time-dependent potentials are
not discussed in detail.

The author’s investigations in this area where largely motivated by Bourgain’s book [9] which
states at the end of page 27: On the other hand, it would be most interesting to prove that analogue
of (1.99) in low dimensions d = 1, 2. This is certainly a project of independent importance. Here
(1.99) refers to the pointwise decay of the Schr̈odinger evolution proved by Journé, Soffer and
Sogge [49], see the following section.

2. Lower order perturbations

The free Schrödinger evolution ψ(t) = eit∆ψ0 in R
d+1
t,x satisfies the basic estimates

‖ψ(t)‖Hs = ‖ψ0‖Hs(2.1)

‖ψ(t)‖∞ ≤ Ct−
d
2 ‖ψ0‖1(2.2)

as can be seen from the representation

ψ(t, x) = (2π)−d

∫

Rd

ei(t|ξ|
2+x·ξ)f̂(ξ) dξ = c(d)t−

d
2

∫

Rd

ei
|x−y|2

4t f(y) dy

respectively. For the wave equation ✷u = ∂2t u−∆u = 0 in d+ 1 dimensions one has constancy of
the energy

(2.3) E(u) = ‖∇u‖22 + ‖∂tu‖22
as well as the dispersive decay

(2.4) ‖u(t)‖∞ . t−
d−1

2 (‖u(0)‖
Ḃ

d+1
2

1,1

+ ‖∂tu(0)‖
Ḃ

d−1
2

1,1

)

where Ḃα
1,1 stands for the usual Besov space: ‖f‖Ḃα

1,1
=
∑

j∈Z 2
αj‖Pjf‖1 where Pj is the Littlewood-

Paley projection onto frequencies of size 2j . In odd spatial dimensions one can improve the right-
hand side to

‖u(0)‖
Ẇ

d+1
2

,1
+ ‖∂tu(0)‖

Ẇ
d−1
2

,1

where Ẇα,p stands for the homogeneous Sobolev spaces. To obtain (2.4), one considers a fixed
frequency shell {|ξ| ∼ 2j} and rescales to j = 0. Then

eit
√
−∆P0f(x) =

∫

R2d

ei((x−y)·ξ+t|ξ|)χ(ξ) dξ f(y) dy

where χ is a cut-off function corresponding to P0. Passing to polar coordinates and applying

stationary phase to integrals over spheres then yields the desired t−
d−1

2 decay.
While (2.1) and (2.3) are a result of the time-translation invariance of the underlying Lagrangians

(via Noether’s theorem) and therefore robust under perturbations that preserve this symmetry, (2.2)
and (2.4) follow from the form of the fundamental solutions and are therefore less stable. In fact,
much effort has been devoted to deriving similar dispersive estimates for perturbations of the free
Schrödinger and wave equations in the past thirty years. The starting point in these investigations
was to consider local decay estimates which are quite different from the global ones as in (2.2)
and (2.4) (as we shall see below). Local here refers to the fact that the decay is measured only in
weighted spaces rather than in a uniform sense.

2.1. Local decay for −∆+ V .
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2.1.1. The Schrödinger evolution. In [48] Jensen and Kato showed that for H = −∆ + V in the
three-dimensional case, with real-valued V which is bounded and decays at a sufficient polynomial
rate one has the local decay

(2.5) ‖〈x〉−σeitHPcf‖L2(R3) . 〈t〉− 3

2 ‖〈y〉σf‖L2(R3)

for some σ > 0 and with Pc = χ(0,∞)(H) the projection onto the continuous spectrum. Moreover,
one needs to assume that zero energy is neither an eigenvalue nor a resonance of H (which is also
referred to as zero energy being regular, the other case being singular).

This latter property refers to the validity of the bound

sup
Im z>0

‖〈x〉−σ(−∆+ V + z)−1〈x〉−σ‖2→2 <∞(2.6)

with σ > 0 sufficiently large. Alternatively, it is the same as the nonexistence of f 6≡ 0 with

Hf = 0, f ∈
⋂

ε>0

L2,− 1

2
−ε(R3)(2.7)

It was already observed by Rauch [68] for exponentially decaying potentials, that a zero energy
resonance or eigenvalue, i.e., in the case when (2.7) admits a nontrivial solution, destroys the
dispersive estimate. More specifically, one loses one power of t in the decay law in that case.

To see the relevance of zero energy resonances, one first shows that as z → 0 in Im z > 0,

(2.8) R(z) := (−∆+ V + z)−1 = z−1B−1 + z−
1

2B− 1

2

+B0 + z
1

2B 1

2

+ ρ(z)

where B−1, . . . , B1 are bounded in weighted L2(R3)-spaces, and with

‖〈x〉−σρ(z)f‖2 . |z|‖〈x〉σf‖2
for small z. Clearly, B−1 is the orthogonal projection onto the zero eigenspace, and zero energy is
regular for H iff B−1 = B− 1

2

= 0. In general, B−1, B− 1

2

are of finite rank. As an example, consider

the case V = 0 in three dimensions for which one has (with z = −ζ2)

(−∆− ζ2)−1(x, y) =
eiζ|x−y|

4π|x− y| , Im ζ > 0

and the Laurent expansion (2.8) is now obtained by Taylor expanding the exponential on the right-
hand side. It follows that zero energy is neither an eigenvalue nor a resonance in that case. In
contrast, the one-dimensional case satisfies

(−∆− ζ2)−1(x, y) =
eiζ|x−y|

2iζ
, Im ζ > 0

and zero is a resonance (but not an eigenvalue). We used here that (2.8) remains correct in all
odd dimensions, whereas in even dimensions a logarithm appears. Indeed, the free resolvent in
d-dimensions satisfies

(2.9) (−∆− ζ2)−1(x, y) = cd ζ
d−2

2 |x− y|− d−2

2 H+
d−2

2

(ζ|x− y|)

and the Hankel functions of integer order exhibit a logarithmic branch point at zero.
To pass to estimates on the evolution one now uses the Laplace transform (as in the Hille-Yosida

theorem) to conclude that

(2.10) eitHPc =
1

2πi

∫ p0+i∞

p0−i∞
etpR(ip)Pc dp

where p0 > 0 is arbitrary. Assuming for simplicity that V is compactly supported it follows from
the resolvent identity that the Green function R(ip)(x, y) admits a meromorphic continuation to
the left-half plane. One now deforms the contour in (2.10) as shown in Figure 1. The finitely
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Figure 1. Deforming the contour

many residues {ζj} of the resolvent in the left-half plane (which lie in C \ (−∞, 0]) contribute the
exponentially decaying expression

∑

ζj

eζjtPφj

where Pφj
is the projection onto the resonant states corresponding to the complex resonance at ζj

(the resonant states are commonly referred to as meta-stable states or quasinormal modes). The
more slowly decaying tail is a result of the branching of the resolvent at p = 0. More specifically,
it can be read off from (2.8) via the following standard result which is known as Watson’s lemma
(the notation ∼ denotes asymptoticity in the sense of Poincaré).

Lemma 2.1. Let f be a complex-valued function of a real variable x such that

• f is continuous on (0,∞)
• f(x) ∼

∑∞
n=0 an x

λn−1 as x→ 0+ with 0 < λ0 < λ1 < . . ..
• f(x) = O(ecx) as x→ ∞ for some1 c > 0

Then for every small δ > 0 one has
∫ ∞

0
e−xpf(x) dx ∼

∞
∑

n=0

an
pλn

Γ(λn)

as |p| → ∞ in | arg(p)| ≤ π
2 − δ.

Therefore, if B− 1

2

6= 0 in (2.8), then one obtains t−
1

2 local decay, whereas otherwise the rate is

t−
3

2 which is the same as in (2.2). Evidently, the global (i.e., L∞) decay can never be faster than
the local one — whence the need to exclude zero energy resonance and eigenvalues to preserve (2.2).
We remark that one can have B− 1

2

6= 0 even in case the only solutions to (2.7) are in L2 (in other

words, if zero energy is an eigenvalue but not a resonance). This implies that t−
3

2 does not result
from applying Pc to the evolution even when zero is not a resonance but only an eigenvalue.

Starting from the spectral representation

(2.11) eitHPc =
1

2πi

∫ ∞

0
eitλE(dλ)

instead of (2.10) with the spectral measure

E(dλ) = [R(λ+ i0) −R(λ− i0)]Pc dλ

1This condition can be removed since Watson’s lemma is really local on some interval (0, x0), but we choose to
state it in this global form.
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Jensen and Kato derive local decay estimates but under much less severe restrictions on the decay
of V and also on the notion of locality in the decay estimate. However, it is clear from (2.11) that
the main issue here is once again the contributions from λ = 0 coming from (2.8). Indeed, for
energies λ > λ0 > 0 where λ0 > 0 is arbitrary but fixed, one has the so-called limiting absorption
bounds

sup
λ>λ0

∥

∥〈·〉−σ∂kλR(λ± i0)〈·〉−σ
∥

∥ <∞

for all 0 ≤ k ≤ k0 and with σ > 0 depending on k (the value of k0 here depends on the decay of V ).
These bounds allow one to integrate by parts in (2.11) in the range λ > λ0 which leads to arbitrary
decay in time.

The most general results on local decay for the Schrödinger evolution were obtained by Mu-
rata [63]. He derived expansions in time for evolutions eitH in all dimensions and with elliptic
H = −p(D) + V where V is a compact operator in suitable weighted Sobolev spaces. As a general
rule, the coefficients in these expansions corresponding to nongeneric threshold behavior (i.e., slow
decay resulting from threshold eigenvalues or resonances) are finite rank operators which can be
computed in terms of the eigenfunctions and resonant states. As an example, the one-dimensional
free evolution satisfies

e−it∂2
xf(x) = ct−

1

2

∫

f(y) dy + ρ(t)f(x), ‖〈·〉−σρ(t)f‖2 . t−
3

2‖〈·〉σf‖2

The appearance of the projection f 7→
∫

f(y) dy onto the constant functions is natural in view of
the fact that the resonant function of −∂2x at zero energy is f ≡ 1. This also shows that one should

expect t−
3

2 local decay for one-dimensional operators without zero energy resonance (note that,

however, the global decay as in (2.2) is never faster than t−
1

2 if d = 1), at least assuming sufficient
decay of V . This is indeed the case, see [63]. In two dimensions, Murata obtained the faster local
L2(R2) decay t−1 log−2 t for operators without resonance. Erdogan, Green [32] established the more
difficult sharp weighted L1 → L∞ version of these global bounds in R2 assuming that 0 energy
is regular. These faster local decays (as compared to the global L∞ decay) play a crucial role in
certain applications to nonlinear stability results, see Buslaev, Perelman [12], Krieger, Schlag [55]
for the one-dimensional case, and Kirr, Zarnescu [53] for examples of two-dimensional applications.
Loosely speaking, the point here is that in contrast to the global decay rates these faster non-
resonant local rates are integrable in time which allows one to close certain bootstrap arguments
involving the Duhamel formula.

2.1.2. The wave evolution. Similar considerations apply to the wave equation. Indeed, let ✷u = 0,
with (u(0), ∂tu(0)) = (0, g) (initial data (f, 0) are then handled by differentiating in time). Then
instead of (2.10) one has

(2.12) u(t) =
sin(t

√
H)√

H
Pcg =

1

2πi

∫ p0+i∞

p0−i∞
etpR(p2)Pc gdp

where p0 > 0. In contrast to the Schrödinger case the resolvent R(p2) in odd dimensions is now
analytic around p = 0 (assuming that there is no zero energy resonance or eigenvalue) which results
in arbitrary local decay of u(t). More precisely, if V decays exponentially, thus allowing for analytic
continuation of the Green function to the left-half plane, one obtains exponential decay in weighted
L2 spaces, whereas for polynomial decay of V one has decay to any power of 1

t . This is of course a
consequence of the sharp Huyghens principle in odd dimensions which states that the fundamental
solution of the free wave equation is localized to a sphere with radius given by the time. We see
from this informal discussion that this principle is robust under perturbations (at least in the sense
that the perturbed wave u(t) will decay very rapidly at distances ≪ t from the origin, which of

5



course is far from being able to describe the fundamental solution). Note the stark contrast between
the strong local decay of the wave equation as compared to the specific global decay given by (2.4).

On the other hand, in even dimensions the resolvent will exhibit a log p singularity, see (2.9).
Due to this branching of the resolvent at p = 0, Watson’s lemma implies an explicit power law
depending on the dimension governing the tail of the wave near the origin. This is in agreement
with the fact that there is no sharp Huyghens principle in even dimensions.

To summarize this section, one sees that the local decay for both the Schrödinger and the wave
equation is entirely determined by the singularity (often but not necessarily by branching) of the
resolvent (−∆+V + z)−1 at p = 0 where z = −ip in the former case, and z = p2 in the latter case,
respectively.

2.2. Global decay for −∆+ V .

2.2.1. The Schrödinger evolution. The first result which proved (2.2) forH = −∆+V in dimensions
d ≥ 3 was obtained by Journé, Soffer, and Sogge [49]. Following unpublished work by Ginibre, we
now give a short proof of a simpler estimate, namely

(2.13) ‖eitHPcf‖L∞+L2(Rd) . 〈t〉− d
2 ‖f‖L1∩L2(Rd)

assuming that V has sufficient decay and that H has no zero energy eigenvalue or resonance. The
logic here is that the Duhamel formula allows one to upgrade local decay to global one. More
precisely, if

‖〈x〉−σeitHPcf‖L2(Rd) . 〈t〉− d
2 ‖〈y〉σf‖L2(Rd)

and if V decays sufficiently fast, then the same estimate holds without weights in the sense of (2.13)
(provided d > 2). More precisely, applying the Duhamel formula twice yields

eitHPc = e−it∆Pc + i

∫ t

0
e−i(t−s)∆V eisHPc ds

= e−it∆Pc + i

∫ t

0
e−i(t−s)∆V Pce

−is∆ ds +

∫ t

0

∫ s

0
e−i(t−s)∆V ei(s−s′)HPcV e

−is′∆ ds′ ds

Applying the local decay for eisH from the previous section (with |V | 12 acting as weight, say) as
well as the bound

‖e−it∆f‖L2+L∞(Rd) . 〈t〉− d
2 ‖f‖L1∩L2(Rd)

to this expression yields for ‖f‖L1∩L2(Rd) = 1

‖eitHPcf‖L∞+L2(Rd) . 〈t〉− d
2 +

∫ t

0
〈t− s〉− d

2 〈s〉− d
2 ds+

∫ t

0

∫ s

0
〈t− s〉− d

2 〈s− s′〉− d
2 〈s′〉− d

2 ds′ ds . 〈t〉− d
2

as claimed provided d ≥ 3. The main gist of [49] is now to remove the L2-piece from this argument.

This is subtle, as the free estimate involved (t− s)− d
2 which is not integrable at s = t. To overcome

this difficulty, Journé, Soffer, and Sogge used the bound

sup
1≤p≤∞

‖e−it∆V eit∆‖p→p ≤ ‖V̂ ‖1

The point here is that the left-hand side for V = eixη is a translation operator composed with a
unimodular factor and therefore Lp bounded.

Rodnianski and the author [69] proved that for all t > 0

(2.14) ‖eitHf‖L∞(R3) ≤ C(V )t−
3

2‖f‖L1(R3)
6



assuming that

(2.15) sup
x∈R3

∫

R3

|V (y)|
|x− y| dy < 4π

as well as that the so-called Rollnick norm of V is less than 4π. The left-hand side in (2.15) is
commonly referred to as the Kato norm ‖ · ‖K . The Rollnick condition precludes any spectral
problems such as eigenvalues and a zero energy singularity. The approach of [69] to the pointwise
bounds is based on an expansion into an infinite Born series followed by term-wise estimation of
the resulting kernels. The smallness condition on V guarantees convergence.

Remarkably, Beceanu and Goldberg [4] were able to show that the finiteness of the Kato norm
alone suffices. More precisely, they showed that (2.14) holds for eitHPc in three dimensions as-
suming (2.15) with 4π replaced by ∞ and that there are no imbedded eigenvalues and resonances
in the continuous spectrum. They accomplished this by means of Beceanu’s Wiener algebra tech-
niques, see [3]. Recall that Wiener’s classical theorem states that for any f ∈ L1(R) the equation

(δ0 + f) ∗ (δ0 + g) = δ0 has a (unique) solution with g ∈ L1(R) if and only if 1 + f̂ 6= 0 on R. The
relevance of this to the decay of solutions to

(i∂t −∆+ V )ψ = F, ψ(0) = ψ0

can be seen as follows: let V1V2 = V , |V1| = |V2| and set

(TV2,V1
F )(t) =

∫ t

0
V2e

i(t−s)H0V1F (s) ds

with H0 = −∆. Then, on the one hand, one has

V2ψ(t) = (δ0Id− iTV2,V1
)−1V2

(

eitH0ψ0 − i

∫ t

0
ei(t−s)H0F (s) ds

)

which is to be interpreted in the convolution algebra B(L2(R3),MtL
2(R3)) where Mt are the

complex measures on the line. On the other hand, T̂V2,V1
(λ) = iV2R

−
0 (λ)V1 with R−

0 (λ) = (H0 −
(λ − i0))−1. Hence, the invertibility of δ0Id − iTV2,V1

in B(L2(R3),MtL
2(R3)) is the same as

the pointwise invertibility of the Birman-Schwinger operator Id + V2R
−
0 (λ)V1. This equivalence is

delicate, and requires V ∈ L
3

2
,1(R3) the Lorentz space, whence V1, V2 ∈ L3,2(R3), and also the Keel-

Tao Strichartz endpoint [52]. For the abstract Wiener theorem in this context, see [3, Theorem 1.1]
and [4, Theorem 3].

An alternative and very general approach to proving Lp bounds on both wave and Schrödinger
evolutions was found by Yajima [79], [80] who proved Lp boundedness of the wave operators, with
the limit being taken in the strong L2-sense,

(2.16) W = lim
t→∞

e−itHe−it∆

for all 1 ≤ p ≤ ∞ and d ≥ 3. The fact that these operators exist and are isometries L2 →
Ran(Pc(H)) is a classical fact, see Kato [50]. They intertwine the free evolution with that of H in
the sense that (with H0 = −∆)

f(H)Pc(H) =Wf(H0)W
∗

for any Borel function f on R. In particular, eitHPc(H) = WeitH0W ∗ and (2.2) therefore implies
the bound

‖eitHPcf‖∞ ≤ Ct−
d
2 ‖f‖1

whenever W : L∞ → L∞, W ∗ : L1 → L1. Yajima obtains similar results on W k,p assuming more
regularity on V (the amount of regularity depends on k). In view of our discussions of the role
of zero energy resonances for local decay, it follows that Yajima’s result [79] can only hold under
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the assumption that zero energy is neither a resonance nor an eigenvalue. In three dimensions [79]
requires |V (x)| . 〈x〉−σ with σ > 5 and therefore improves on [49].

Yajima derives his Lp bounds by means of a finite Born series expansion with a remainder term
involving the perturbed resolvent. In case of small potentials, one can sum up the infinite Born
expansion leading to more precise results in terms of conditions on V . In view of the preceding
discussion of Wiener theorems as a means of summing divergent series, it is natural to ask if Yajima’s
theorem could be approached by means of a suitable Wiener algebra. Beceanu and the author [5]
carried this out and proved that the wave operators given by (2.16) in R3 are superpositions of

reflections and translations. In fact, assuming that |V (x)| . C〈x〉− 5

2
−ǫ, and that 0 energy is neither

an eigenvalue nor a resonance, they showed that there exists g(x, y, ω) ∈ L1
ωMyL

∞
x (with My being

finite Borel measures in y), i.e.,
∫

S2
‖g(x, dy, ω)‖MyL∞

x
dω <∞

such that for f ∈ L2(R3) one has the representation formula for the wave operator

(Wf)(x) = f(x) +

∫

S2

∫

R3

g(x, dy, ω)f(Sωx− y) dω.

where Sωx = x− 2(x · ω)ω is a reflection. This of course implies that W : X → X is bounded for
any function space X on R3 with a norm which is invariant under translations and reflections. The
proof of this representation formula in [5] is not entirely straightforward. On the one hand, the
algebra to which the Wiener theorem is applied is somewhat delicate and requires casting the finite
order Born series terms in Yajima’s work [79] (which involve only finitely many potentials and free
resolvents) in some iterative algebraic framework. In other words, one needs to find the correct
algebra A and composition law ⊛ as well as operator T to write the third Born term, say, in the
form T ⊛T ⊛T in A. Furthermore, the classical scattering theory based on weighted L2 spaces does
not suffice and it is necessary to invoke the the author’s work with Ionescu [47], which revisits the
classical Agmon-Kato-Kuroda theorem in the context of Fourier restriction and the Stein-Tomas
theorem, as well as the Keel-Tao endpoint [52]. This in turn relies on the Carleman theorems and
absence of imbedded eigenvalues obtained in [46]. It is not known whether a structure theorem
holds under a scaling invariant assumption on V , see however [6] for such a result, albeit involving
small scaling-invariant potentials.

In higher dimensions, it turns out that one needs to assume some regularity of V in order for the
expected L1(Rd) → L∞(Rd) bounds to hold. Indeed, Goldberg, Visan [40] show that the dispersive

bound can fail in dimensions d > 3 for potentials that belong to the class C
d−3

2
−(Rd). The logic

here is that the free resolvent takes the form (in odd dimensions)

(2.17) (−∆− λ2 + i0)−1(r) =
eiλr

rd−2

d−3

2
∑

j=0

cj (λr)
j

and the highest power λ
d−3

2 here corresponds to a d−3
2 derivative loss on V . In the positive direction,

Erdoğan and Green [31] prove the dispersive bound in dimensions d = 5, 7 assuming that V ∈
C

d−3

2 (Rd) (zero energy resonances cannot arise in dimensions d ≥ 5).
The case of low dimensions d = 1 and d = 2 always requires a separate analysis since the free

resolvent in those cases exhibits a zero energy singularity (more precisely, there is a zero energy
resonance given by the constant state f = 1). We refer the reader to [39], Weder [78], d’Ancona,
Fanelli [21] for the one-dimensional case, and [71] for dispersive estimates for the two-dimensional
case provided zero energy is regular. Erdogan and Green [36] carried out a more complete analysis
of the dispersive decay in R2 allowing for s and p-wave resonances at zero energy. They showed
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that the s-wave resonance, which arises in the V = 0 case, leads to the same t−1 decay as in the free
evolution, whereas the p-wave behaves much worse. With Goldberg these authors also obtained
such a classification in R4. Finally, more recently Erdoğan, Green, and Toprak have applied spectral
methods to analyze the delicate dispersive decay of the Dirac operator, see [33].

2.2.2. The wave equation. Starting with Beals and Strauss [2], [1] many authors have considered
the problem of proving the dispersive estimate (2.4) for equations (✷+V )u = 0, (u, ∂tu)(0) = (f, g)
(it will suffice to set f = 0). In [2] and [1] the potential is assumed to be either nonnegative or
small (which excludes any spectral problems), as well as rapidly decaying and smooth. The result
is of the form (2.4) but with slightly more derivatives on the data. Georgiev, Visciglia [38] assume
that 0 ≤ V ≤ 〈x〉−2−ǫ in three dimensions and obtain (2.4) for energies away from zero as well as
Strichartz estimates for all energies. Cuccagna [17] proves Strichartz estimates in three dimensions
assuming that |∂αV (x)| . 〈x〉−3−ǫ for |α| ≤ 2 and that zero energy is regular. D’Ancona and

Pierfelice [23] prove global dispersive (2.4) for d = 3 assuming that ‖min(V, 0)‖K < 2π but with Ḃ1
1,1

on the right-hand side. Pierfelice [66] obtains the same result under the smallness assumption (2.15)
(the arguments in [56] yield the same but with ‖∇g‖1 instead of the Besov norm). D’Ancona,
Fanelli [22] consider the wave and Dirac equations in three dimensions

utt − (∇ + iA)2u+ V u = 0

iUt −DU +MU = 0

respectively. Assuming smallness of A,V,M but allowing nearly scaling-invariant singularities of

these functions both at zero and infinity (which are |x|−1, |x|−2, and |x|− 1

2 , respectively) the t−1

global decay is obtained but for data in weighted Soboloev and Besov spaces. By the aforementioned
results of Yajima et al. on the W k,p-boundedness of the wave operators one can obtain Lp decay
estimates for the wave equation from the free estimates (2.4). Note that the Besov spaces are then
defined relative to H rather than the free Laplacian, but it is often possible to pass between the
two. For a more recent reference on the integrated decay of waves, which also allows for magnetic
perturbations, see d’Ancona’s work [20].

2.2.3. The case of singular zero energy. Certain stability problems in physics lead to linear oper-
ators with a zero energy eigenvalue or resonance. Examples are the energy critical wave equation

✷u− u5 = 0 in R1+3 which admits the stationary solutions Wλ(x) := λ(1 + λ2|x|2/3)− 1

2 for λ > 0.
Linearizing aroundWλ leads to H = −∆−5W 4

λ which has ∂λWλ as a resonant mode of zero energy.
Another example is the critical Yang-Mills problem in dimensions 4 + 1. It is therefore necessary
to obtain dispersive bounds in this context as well. Note that the local decay of Section 2.1 easily
allows for this as the asymptotic expansions in time (as derived in [63], [48] for example) isolate the
contributions of the threshold singularities and identifies them as being of finite rank. In case of
L1 → L∞ this required some additional work, see [34], [35], and [81] for the case of the Schrödinger

evolution. Yajima [81] obtains explicit expressions for the term Bt−
1

2 which needs to be subtracted

to obtain the t−
3

2 decay of the bulk (explicit here means that B can be computed from the zero
energy and resonance states). The wave equation in three dimensions is analyzed in [56]. We recall
the main linear result from the latter reference.

Proposition 2.2. Assume that V is a real-valued potential such that |V (x)| . 〈x〉−κ where κ > 3
is fixed but arbitrary. If zero energy is regular for H, then

∥

∥

∥

sin(t
√
H)√

H
Pcf

∥

∥

∥

∞
. t−1‖f‖W 1,1(R3)

for all t > 0. Now assume that zero is a resonance but not an eigenvalue of H = −∆+ V . Let ψ
be the unique resonance function normalized so that

∫

V ψ(x) dx = 1. Then there exists a constant
9



c0 6= 0 such that

(2.18)
∥

∥

∥

sin(t
√
H)√

H
Pcf − c0(ψ ⊗ ψ)f

∥

∥

∥

∞
. t−1‖f‖W 1,1(R3)

for all t > 0.

Several results exist on the boundedness of the wave operators on Lp in case zero energy is
singular. However, they are limited to a smaller range of p (in d = 3 one needs 3

2 < p < 3), and

are less useful for nonlinear applications, at least in three dimensions. On the other hand, in R2,
Erdogan, Goldberg and Green [30] showed that the wave operators remain bounded in the full
range 1 < p <∞ if 0 energy exhibits only an s-wave resonance or only a zero energy eigenvalue.

For the Klein-Gordon equation on the line with a non-generic decaying potential (i.e., the asso-
ciated Schrödinger operator exhibits a zero energy resonance), an analogue of Proposition 2.2 was
obtained in [57], albeit for local decay. This is part of a larger body of work aiming at understanding
kink stability.

3. Metric perturbations

If one replaces −∆ by the elliptic operator H := −∑d
j,k=1 ∂j(ajk(x)∂k) then one encounters a

new obstruction to proving decay estimates in addition to the zero energy resonance or eigenvalue
of Section 2: the phenomenon of trapping, which is a large energy problem2. Trapping refers to the
possibility that the classical Hamiltonian

h(x, ξ) :=
1

2

d
∑

j,k=1

ajk(x)ξ
kξj

exhibits closed trajectories. More precisely, assuming symmetry ajk = akj one has the Hamiltonian
equations

ẋ :=
d
∑

j=1

aj·(x)ξ
j , ξ̇ =

1

2

d
∑

j,k=1

∇xajk(x)ξ
kξj

which might exhibit time-periodic trajectories. To understand the crucial effect of the existence of
closed geodesics, we consider the method of proving decay estimates using energy estimates:

d

dt
〈u,A(t)u〉 = 〈u, i[H,A(t)]u〉 + 〈u, ∂A(t)

∂t
u〉

where u = u(x, t) is the solution of the Schrödinger equation, with Hamiltonian H. A similar
identity can be applied for the wave equation, see [7]. Next, suppose the expectation of A(t) is
bounded from above, uniformly in t, by ‖u‖2 and moreover, that the commutator is positive, in
the sense that

i[H,A(t)] +
∂A(t)

∂t
≥ θB⋆B

for some θ > 0 and some operator B. Upon integration over time, we obtain an integrated decay
estimate for B:

∫ ∞

0
‖Bu‖2 dt ≤ c‖u(0)‖22

The operator family A(t) is variably called a multiplier, or a propagation observable, or an escape
function, or conjugate operator.

2This is common abuse of language. Of course trapping can occur for positive energies near zero, but this
terminology expresses the fact that trapping is not a property of the resolvent reflected by energies tending to zero.
Rather, it is associated with energies of arbitrary sizes.
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To illustrate this further, let h(x, ξ) be a classical Hamiltonian on R2d. If (x(t), ξ(t)) is an orbit
under the Hamiltonian flow of h, then

d

dt
a(x(t), ξ(t)) = {h, a}(x(t), ξ(t))

where the right-hand side is the Poisson bracket. For the Euclidean case, i.e., h(x, ξ) = 1
2ξ

2 +V (x)

one can take a(x, ξ) = x · ξ = {h, 12 |x|2} which gives {h, a} = 2h− 2V − x · ∇V . Now suppose that
−2V (x) − x · ∇V (x) ≥ 0 for |x| ≥ R > 0, say. Since h is conserved, we conclude that a trajectory
with h = α > 0 which remains in |x| ≥ R satisfies

d2

dt2
1

2
|x(t)|2 ≥ 2α

and therefore |x(t)| grows linearly in t. This indicates that (x(t), ẋ(t)) undergoes scattering like
a free particle. Under a short-range condition on V (x), i.e., |V (x)| ≤ C〈x〉−1−ǫ this is indeed the
case; i.e., all trajectories which are not trapped are asymptotically free. See the book by Derezinski
and Gerard [24] for a systematic development of these techniques in both classical and quantum
mechanics.

Positive commutator methods are also used to prove refined average decay estimates which hold
on subsets of the phase space. Such estimates for the wave and Schrödinger equation were first
derived by Morawetz, using the radial derivative operator and the generator of the conformal
group as multipliers. These multipliers also work if repulsive interactions are added. However,
modifications are needed if trapped geodesics are present, and usually only lead to weaker estimates.
A major step in this direction is the use of a sharp localization of the energy, due to Mourre [61]. The
energy estimate can be obtained by taking the derivative with respect to time of the expectation
value of some operator, also called propagation observable as in Sigal, Soffer [74]. The remarkable
paper by Hunziker, Sigal, and Soffer [44] presents a time-dependent approach to Mourre theory
based on the commutator expansion lemma of Sigal and Soffer. The latter refers to expressing
[f(A), B] through a series of Taylor type involving higher-order commutators between A and B.

A parallel development to this approach was based on ΨDO methods. In this approach one
constructs a function on the phase space which has positive Poisson bracket with the principal
symbol of the Hamiltonian. Then, one uses the quantized symbol of this function as a propagation
observable, and by means of ΨDO theory, and in particular, Garding’s inequality, passes to the
desired smoothing (or limiting absorption) bound. Some of the earliest implementations of this
approach are [13], [25] and since then a vast literature has developed in this direction.

The importance of a nontrapping condition is readily understood: it allows for the construction
of monotonic propagation observables, globally in the phase space. In the presence of closed trajec-
tories this is not possible. However, when the trajectories are closed but (strongly) unstable, there
is now substantial evidence that the decay estimates continue to hold in some sense.

On the level of the resolvents, one considers (H − z)−1 with H a variable coefficient operator as
above. Then the limiting absorption principle

(3.1) sup
Im z>0,Re z∈I

‖〈·〉−σ(H − z)−1χI(H)〈·〉−σ‖2→2 <∞

holds with I an interval closed on the left, I ⊂ (0,∞), σ > 0 sufficiently large and most importantly,
provided I does not contain any trapping energies, see Murata [62]. In fact, the nontrapping
condition is necessary, see Theorem 2 in loc. cit., and one also obtains (3.1) for derivatives in z of
the resolvent. The latter property then clearly implies local decay on the time-evolution restricted
to energies in I.

In fact, while Doi [25], Murata [63] show that smoothing estimates and the usual decay estimates
do not hold in the presence of trapping, Ikawa [45] shows that one still obtains local decay estimates
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for the Laplacian dynamics on Rn with several convex obstacles removed. In the meantime, the
microlocal analysis on manifolds with unstable closed geodesics, of the resolvent of the Laplacian
on the one hand, and the Schrödinger evolution on the other hand, has grown into a vast area in
and of itself which is intimately connected to the semiclassical analysis of scattering resonances.
See for example the recent research monograph [8] on Resonances for homoclinic trapped sets, or
Dyatlov’s introduction to the fractal uncertainty principle [29].

In general relativity, unstable closed geodesics arise naturally in the study of the linear wave
evolution on the background of both Schwarzschild and Kerr black holes. A substantial amount
of work has accumulated around this topic, see for example the early works by Blue and Soffer,
see [7] as well the very recent study of Price’s law by Hintz [42]. The latter paper was preceded
by the work of Tataru [76], as well as the results by Donninger, Soffer and the author [28] on the
spatially local, but temporally global, decay of linear waves on Schwarzschild. Metcalfe, Tataru,
and Tohaneanu [60] subsequently established Price’s law on nonstationary spacetimes with sufficient
decay in a suitable sense. We now set out to describe the author’s results in more detail.

3.1. Asymptotically conical surfaces of revolution. A model case for the Schwarzschild man-
ifold, Soffer, Staubach and the author [72, 73] studied wave evolutions on surfaces of revolution
with conic ends. Let Ω ⊂ RN be an embedded compact d-dimensional Riemannian manifold with
metric ds2Ω and define the (d+ 1)-dimensional manifold

M := {(x, r(x)ω) | x ∈ R, ω ∈ Ω}, ds2 = r2(x)ds2Ω + (1 + r′(x)2)dx2

where r ∈ C∞(R) and infx∈R r(x) > 0. We say that there is a conical end at the right (or left) if

(3.2) r(x) = |x| (1 + h(x)), h(k)(x) = O(x−2−k) ∀ k ≥ 0

as x→ ∞ (x→ −∞).
Of course one can consider cones with arbitrary opening angles but this adds nothing of substance.

Examples of such manifolds are given by surfaces of revolution with Ω = S1 such as the one-sheeted
hyperboloid which satisfies r(x) =

√
1 + x2. They have the property that the entire Hamiltonian

flow on M is trapped on the set (x0, r(x0)Ω) when r′(x0) = 0. From now we will only consider
S1 as cross-section Ω for the sake of simplicity. The only difference from the general case is that
instead of

{

e±iℓθ, ℓ2
}∞
ℓ=0

one has a complete system {Yn, µn}∞n=0 of L
2-normalized eigenfunctions and

eigenvalues, respectively, of ∆Ω. In other words, −∆ΩYn = µ2nYn where 0 = µ20 < µ21 ≤ µ22 ≤ . . ..
Note that we do not specify the local geometry of M, but only the asymptotic one at the ends.

This allows for very different behaviors of the geodesics. For the case of the one-sheeted hyperboloid,
for example, the geodesic flow around the unique periodic geodesic is hyperbolic in the sense of
dynamical systems, whereas if we place a section of S2 in the middle of M then we encounter a
set of positive measure in the cotangent bundle leading to stable periodic geodesics. These two
scenarios are depicted in Figure 2. It is natural to ask to what extent this local geometry affects
the dispersion of the flow. The following result summarizes what is proved in [27], [28] for the case
of Ω = S1 (see those references for general compact Ω).

Theorem 3.1. Let M be a surface which is asymptotically conical at both ends as defined above.
For each ℓ ≥ 0 and all 0 ≤ σ ≤

√
2ℓ, there exist constants C(ℓ,M, σ) and C1(ℓ,M, σ) such that

for all t > 0

‖wσ e
it∆M f‖L∞(M) ≤

C(ℓ,M, σ)

t1+σ

∥

∥

∥

f

wσ

∥

∥

∥

L1(M)
(3.3)

‖wσ e
it
√
−∆M f‖L∞(M) ≤

C1(ℓ,M, σ)

t
1

2
+σ

(∥

∥

∥

∂xf

wσ

∥

∥

∥

L1(M)
+
∥

∥

∥

f

wσ

∥

∥

∥

L1(M)

)

(3.4)
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provided f = f(x, θ) = eiℓθf̃(x) where f̃ does not depend on θ. Here wσ(x) := 〈x〉−σ are weights
on M.

In (3.4) one can obtain somewhat finer results by distinguishing between cos(t
√
−∆M) and

sin(
√
−∆M)√

−∆M
, see [27] for statements of that kind. Needless to say, σ = 0 is the analog of the usual

dispersive decay estimate for the Schrödinger and wave evolutions on R2. We remark that as in the
case of the plane R2, the free Laplacian ∆M exhibits a zero energy resonance which is, however,
only visible at ℓ = 0 (this case is treated separately in [72], whereas [73] studies ℓ > 0).

Clearly, the local decay given by σ > 0 has no analog in the Euclidean setting and it also has
no meaning for ℓ = 0. The restriction

√
2ℓ is optimal in Theorem 3.1, at least for the Schrödinger

equation, and no faster decay can be obtained than the one stated in (3.3). The
√
2-factor comes

from the opening angle of π
4 and changing that angle leads to different constants, namely 1

cos(θ/2)

where θ is the opening angle of the asymptotic cone.
A heuristic explanation for the existence of this accelerated local decay is given by the geodesic

flow combined with the natural dispersion present in these equations. Indeed, the former will push
any nontrapped geodesics into the ends (with ℓ playing the role of the velocity of the geodesics),
whereas the latter will spread any data which is initially highly localized around a periodic geodesic
away from it thus making it susceptible to the mechanism we just described. What is not clear

Figure 2. Unstable versus stable geodesic flow

from this heuristic is whether or not the localized decay law should depend on the local geometry
(by which we mean the geometry which is not described by the asymptotic cones). Theorem 3.1
shows that this is not so, since the local decay is fixed and given by a specific power. Therefore, one
sees that the local geometry manifests itself exclusively through the constants C(ℓ,M, σ). This is
natural, as one would expect a much longer waiting time before the large t behavior of the theorem
sets in if M exhibits stable geodesics. In fact, the constant C(ℓ) grows exponentially in that case
as can be seen by solutions which are highly localized (microlocally) around a periodic geodesic,
see [75] and [70].

In contrast, the methods of [28] show that this constant grows like ℓC if the manifold M has
a unique periodic geodesic and is uniformly convex near it. This then allows one to sum up the
estimates for each angular momentum as described by the following theorem.
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Theorem 3.2. Let M be asymptotically conical at both ends as above and suppose that M has a
unique periodic geodesic and is uniformly convex near it. Then for all t > 0, and any ε > 0,

‖w1+εe
it∆M w1+εf‖L2(M) ≤

C(M, ε)

〈t〉
∥

∥(1− ∂2θ ) f
∥

∥

L2(M)
(3.5)

‖w1e
it∆M w1f‖L∞(M) ≤

C(M, ε)

t

∥

∥(1− ∂2θ )
2+ε f

∥

∥

L1(M)
(3.6)

provided f = f(x, θ) is Schwartz on M, say. For the wave equation one has

‖w 1

2
+εe

±it
√
−∆M w 1

2
+εf‖L2(M) ≤

C1(M, ε)

〈t〉 1

2

(

∥

∥(1− ∂2θ )
5

4 f ′
∥

∥

L2(M)
+
∥

∥(1− ∂2θ )
5

4 f
∥

∥

L2(M)

)

(3.7)

‖w 1

2
+εe

±it
√
−∆M w 1

2
+εf‖L∞(M) ≤

C1(M, ε)

t
1

2

(

∥

∥(1− ∂2θ )
9

4
+ε ∂xf

∥

∥

L1(M)
+
∥

∥(1− ∂2θ )
9

4
+ε f

∥

∥

L1(M)

)

(3.8)

The weights w1 and w 1

2
+ǫ appearing in (3.6) and (3.8), respectively, are a by-product of our

proof and can most likely be removed. The origin of the weights in our method will be explained
in Section 3.2 below. One also obtains the accelerated decay rates which are better by t−σ as in

Figure 3. Two planes joined by a neck

Theorem 3.1 provided one puts in the weights as before, makes the number of derivatives required on
the right-hand side depend on σ, and provided the data are perpendicular to eiℓθ for σ >

√
2ℓ ≥ 0.

We remark that one can think of the surfaces in Theorem 3.1 as two planes joined by a neck, see
Figure 3. On the other hand, the methods which are currently used to prove Theorems 3.1 and 3.2
do not extend to the case of more necks, as then there is no clear way of separating variables.

There is no reason to expect that the number of derivatives required on the data in Theorem 3.2
is optimal. However, it is not clear what the optimal number of derivatives is at this point.

Doi [25] proved that the presence of trapping destroys the so-called local smoothing estimate
for the Schrödinger evolution. More precisely, he showed that one loses (even locally in time) the
1
2 -derivative gain present in eit∆. Note that this does not constitute a contradiction to Theorem 3.2
as the latter does not claim any gain of regularity (on the contrary, we lose angular derivatives).
In a similar vein, Burq, Guillarmou, Hassell [11] proved that Strichartz estimates may remain valid
on metrics with trapping.

We now describe the method of proof leading to Theorem 3.1. Later we will discuss how to obtain
Theorem 3.2, which requires considerably more work. We will then also describe the result [28] for
linear waves on Schwarzschild, which is very close to Theorem 3.2.
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To begin with, let ξ be arclength along a generator of M. Then the Laplacian takes the form

∆M =
1

r(ξ)
∂ξ(r(ξ)∂ξ) +

1

r2(ξ)
∆S2

Now

e−iℓθr
1

2 (ξ)∆M(r−
1

2 (ξ)eiℓθf(ξ)) = Hℓf

with

(3.9) Hℓ = −∂2ξ + Vℓ, Vℓ(ξ) =
2ℓ2 − 1

4

〈ξ〉2 +O(〈ξ〉−3)

where each ξ-derivative of the O(·)-term gives one extra power of ξ as decay. We remark that the

Figure 4. Potentials corresponding to the surfaces in Figure 2

leading 〈ξ〉−2 decay is critical for several reasons. For us most relevant is the behavior of the Jost
solutions as the energy λ2 tends to zero; in fact these Jost solutions are continuous in λ around λ = 0
provided the decay of the potential is at least 〈ξ〉−2−ǫ for some ǫ > 0. At ǫ = 0 this property is lost
– which is precisely what allows for the accelerated decay of Theorem 3.1. To be more specific, one
first reduces Theorem 3.1 (at least the Schrödinger bound (3.3), the wave equation being similar)
via the spectral theorem to the point-wise bound

(3.10) sup
∞>ξ≥ξ′>−∞

(〈ξ〉〈ξ′〉)− 1

2

∣

∣

∣

∫ ∞

0
eitλ

2

Im
[f+,ℓ(ξ, λ)f−,ℓ(ξ

′, λ)

Wℓ(λ)

]

λdλ
∣

∣

∣
≤ Cℓ t

−1−σ

where Cℓ is a uniform constant. Here f±,ℓ are the (outgoing) Jost solutions, which satisfy Hℓf±,ℓ =

λ2f±,ℓ and f±,ℓ ∼ e±iλξ as ξ → ±∞. Moreover, Wℓ(λ) is the Wronskian of f+, f−. We remark that
the quantity inside the absolute values in (3.10) is exactly

∫ ∞

0
eitλ

2

E(dλ2)(ξ, ξ′)

where E(dλ2)(·, ·) is the kernel of the spectral resolution of Hℓ. As usual,

f+(ξ, λ) = eiξλ +

∫ ∞

ξ

sin(λ(ξ′ − ξ))

λ
V (ξ′)f+(ξ

′, λ) dξ′

From this formula, one immediately sees the aforementioned discontinuity at λ = 0 since ξV (ξ) 6∈
L1(0,∞). Setting ξ = ξ′ = 0, (3.3) of Theorem 3.1 reduces to the standard stationary phase type
bound (with ν :=

√
2 ℓ)

∣

∣

∣

∫ ∞

0
eitλ

2

λ1+2νχ(λ) dλ
∣

∣

∣
≤ Ct−1−ν
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where χ is a smooth cut-off function to the interval [0, 1], say. To see why the spectral measure
should be as flat as λ1+2ν dλ, let us first give an informal proof of the fact that

(3.11) Wℓ(λ) = cλ1−2ν(1 + o(1)) λ→ 0

where c 6= 0. Since this Wronskian appears in the denominator of the resolvent, it at least serves as
an indication that the spectral measure might be this small for small λ (one has to be very careful
here, since the numerator is of the same size – however, the imaginary part of the resolvent has
the desired size O(λ2ν)). To begin with, recall from basic scattering theory that the Wronskian is
given by

(3.12) W (λ) =
−2iλ

T (λ)

where T (λ) is the transmission coefficient, see Figure 5 (in that figure the dashed line is supposed to
indicate an energy level k2, and the turning points are defined as the projections of the intersection
of the graph with that line). By the so-called WKB approximation, one has to leading order that

T (λ) = e−S(λ) with the action S given by

S(λ) =

∫ x1

x0

√

ν2〈y〉−2 − λ2 dy

with x0 < 0 < x1 being the turning points which are defined as V (x0) = V (x1) = λ2. Note that
we modified the potential by removing the cubic corrections as well as the −1

4〈ξ〉−2 part of the
potential (the latter obviously requiring some justification). As a result,

S(λ) = 2ν| log λ|(1 + o(1)) λ→ 0

which then gives (3.11) to leading order. To justify the removal of the 1
4〈ξ〉−2-part of the poten-

tial Vℓ, we simply note that the usual WKB ansatz for the zero energy solutions of Hℓ, viz. Hℓf = 0
is the approximate equality

f(ξ) ≃ V
− 1

4

ℓ (ξ)e±
∫ ξ

1

√
Vℓ(η) dη

In view of (3.9) one obtains the asymptotic behavior ξ
1

2
±
√

ν2− 1

4 as ξ → ∞. On the other hand, the
exact solutions of

−f ′′(ξ) + ν2 − 1
4

ξ2
f(ξ) = 0

are of the form ξ
1

2
±ν . The WKB approximation can therefore only be correct provided the −1

4ξ
−2

term is removed from the potential Vℓ (for a precise rendition – with control of error terms – of
this heuristics discussion see Section 2 of [73]). Another important comment concerning Vℓ is that
(3.12), while true to leading order semi-classically as ~ → 0, provided the energy λ > λ0 > 0 (where
the latter is fixed), does not necessarily hold as λ→ 0. The key property here is that Hℓ does not
have a zero energy resonance which means of course that there is no globally recessive solution.

Re−ixk

eixk
T eixk

Figure 5. Reflection and transmission coefficients
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While our discussion has been largely heuristic, we emphasize that (3.11) is proved in [73] by
means of an asymptotic description of the Jost solutions as λ → 0. Moreover, it is shown there
that the constant c in (3.11) vanishes in case of a zero energy resonance which shows that the
WKB approximation fails in that case as λ→ 0. Finally, we emphasize that the only natural small
parameter in [73] for fixed ℓ ≥ 1 is the energy λ. This is in contrast to the summation problem in ℓ
where ~ := ℓ−1 represents another (and most important) small parameter. In fact, for large ℓ the
errors in the WKB approximations are controlled in terms of this small parameter rather than in
terms of the small energy (we will return to this matter below).

The rigorous proof of (3.11) proceeds by means of a classical matching method. To be more
specific, consider the Schrödinger operator on the line (for notational convenience we write x instead
of ξ)

Hν = −∂2x + (ν2 − 1

4
)〈x〉−2 − Uν(x),

dkUν(x)

dxk
= O(x−3−ℓ)

for all k ≥ 0 as x→ ±∞ and with ν > 0 fixed. To decribe the Jost solution f+,ν(x) on the interval
x ≥ 1 we start from the zero energy solutions

u+0,ν(x) = x
1

2
+ν(1 +O(x−α)), u+1,ν(x) = x

1

2
−ν(1 +O(x−1)) as x→ ∞

which form a fundamental system of Hνf = 0 (and with α := min(1, 2ν)). Next, one perturbs
these solutions with respect to the energy λ. More specifically, one shows via Volterra iteration
that there is a basis {u+0,ν(x, λ), u+1,ν(x, λ)} of solutions to the equation Hνf = λ2f which satisfy

(at least for ν > 1)

(3.13) u+j,ν(x, λ) = u+j,ν(x)(1 +O(λ2x2))

on the interval 1 ≤ x≪ λ−1 (we are only considering small λ for now). Clearly, one has

f+,ν(x, λ) = a+,ν(λ)u
+
0,ν(x, λ) + b+,ν(λ)u

+
1,ν(x, λ)

where the coefficients are given by

(3.14) a±,ν(λ) = −W (f±,ν(·, λ), u±1,ν(·, λ)), b±,ν(λ) =W (f±,ν(·, λ), u±0,ν(·, λ))

The aforementioned matching means nothing else than computing these Wronskians. The point
where they are computed is chosen to be λ−1+ǫ with ǫ > 0 small and fixed. On the one hand, this
choice guarantees that the errors in (3.13) are O(λ2ǫ), which is admissible. On the other hand, it
requires that we obtain a sufficiently accurate description of the Jost solutions on [λ−1+ǫ,∞). The
latter is accomplished by comparing the outgoing Jost solution of the operator Hν to that of H0,ν

given by

H0,ν := −∂2x + (ν2 − 1

4
)x−2

The outgoing Jost solution of this operator on ξ ≥ 1 equals
√

π

2
ei(2ν+1)π/4

√

ξλH(+)
ν (ξλ)

which is asymptotic to eiξλ as ξ → ∞. Here H
(+)
ν (z) = Jν(z) + iYν(z) is the usual Hankel

function. Carrying out the perturbative analysis with H0,ν as giving the leading order allows
one to approximate f+(ξ, λ) with small errors on the interval (λ−1+ǫ,∞). With this asymptotic
representation in hand, one now has the following result, see Proposition 3.12 in [73].
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Proposition 3.3. Let βν :=
√

π
2 e

i(2ν+1)π/4. With nonzero real constants α+
0,ν , β

+
0,ν , and some

sufficiently small ε > 0,

(3.15)
a+,ν(λ) = λ

1

2
+νβν(α

+
0,ν +O(λε) + iO(λ(1−2ν)ε))

b+,ν(λ) = iλ
1

2
−νβν(β

+
0,ν +O(λε) + iO(λ(1+2ν)ε))

as λ → 0+ with real-valued O(·) which behave like symbols under differentiation in λ. The

asymptotics as λ → 0− follows from that as λ → 0+ via the relations a+,ν(−λ) = a+,ν(λ),

b+,ν(−λ) = b+,ν(λ).

Analogous expressions hold for a−,ν and b−,ν which of course refers to the solutions on x ≤ −1.
From these expansions, one then concludes the following statement for the Wronskian between
f+(·, λ) and f−(·, λ):

Wν(λ) = ieiνπ λ1−2ν(W0,ν +OC(λ
ε)) as λ→ 0+

Here W0,ν is a real constant and OC(λ
ε) is complex valued and of symbol type (meaning that each

derivative loses one power). Most importantly, W0,ν = 0 if and only if zero is a resonance of Hν .
For the case of surfaces of revolutions, it is easy to exclude zero energy resonances of the associated
Schrödinger operator, at least for ℓ ≥ 1. In fact, with Hℓ denoting the operator obtained for fixed
angular momentum ℓ ≥ 1,

Hℓ(r
1

2 e±ℓy) = 0, y(ξ) =

∫ ξ

0

dη

r(η)

Because y is odd, the smaller branch at ξ = ∞ has to be the larger one at ξ = −∞ which places us
in the nonresonant case. It is perhaps worth mentioning that the potentials arising from surfaces
of revolution do not need to be nonnegative (for positive potentials it is evident that zero is not a
resonance). In fact, if M has very large curvature then the potential can be negative. We remark
that for ℓ = 0 it is proved in [72] that

W0(λ) = 2λ

(

1 + ic3 + i
2

π
log λ

)

+O(λ
3

2
−ε) as λ→ 0+

On a technical level, the logarithmic term in λ makes the ℓ = 0 case somewhat harder to analyze
than the cases ℓ > 1. Not surprisingly, in proving dispersive estimates for −∆R2+V one encounters
similar logarithmic issues, see [71].

In conclusion, we would like to stress that the estimates in [73] produce constants that grow

very rapidly in ℓ, somewhat faster than eℓ
2

, to be precise. This is due to a number of sources.
First, for the small energy analysis we just described to work, one needs to chose the energy cut-
off λ0 = λ0(ℓ) to depend on ℓ which already introduces large constants into the proof. Second,
for energies λ > λ0(ℓ) > 0 one uses a very crude method, namely termwise estimation of a Born
series which cannot distinguish the sign of the potential. Even replacing the crude Born series by
something more elaborate would not make much of a difference. Indeed, by the preceding discussion
the two manifolds in Figure 2 behave very differently as far as the dependence of the constant on ℓ
is concerned.

Since the small energy matching method outlined above cannot easily distinguish between these
manifolds, we shall now discuss an approach that is capable of differentiating between them, albeit
only for large ℓ. For this reason, the finite ℓ analysis of [72] and [73] is needed in the proof of
Theorem 3.2.
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3.2. Summation over all angular momenta. We shall now prove Theorem 3.2. We will fol-
low [28] and sketch how to obtain (3.5) and (3.6), with the case of the wave equation being similar.
With Vℓ as in (3.9), we claim the following bound:

(3.16)

∫ ∞

−∞
〈ξ〉−2

∣

∣eitHℓu(ξ)
∣

∣

2
dξ . 〈t〉−2ℓ4

∫ ∞

−∞
〈ξ〉2|u(ξ)|2 dξ

The proof of (3.16) will be discussed below. Taking it for granted, suppose that f is a Schwartz
function on M and write

f(ξ, θ) =
∞
∑

ℓ=−∞
eiℓθfℓ(ξ) =

∞
∑

ℓ=−∞
eiℓθr−

1

2 (ξ)uℓ(ξ)

Then

eit∆Mf =

∞
∑

ℓ=−∞
eit∆M

[

eiℓθr−
1

2 (ξ)uℓ(ξ)
]

=

∞
∑

ℓ=−∞
eiℓθr−

1

2 (ξ)
[

eitHℓuℓ
]

(ξ)

whence

∥

∥w1e
it∆Mf

∥

∥

2

L2(M)
=

1

2π

∫ ∞

−∞

∫ 2π

0
w2
1(ξ)

∣

∣

∣

∞
∑

ℓ=−∞
eiℓθr−

1

2 (ξ)
[

eitHℓuℓ
]

(ξ)
∣

∣

∣

2
r(ξ) dξdθ

.

∞
∑

ℓ=−∞

∫ ∞

−∞
〈ξ〉−2

∣

∣

∣
eitHℓuℓ(ξ)

∣

∣

∣

2
dξ

.

∞
∑

ℓ=−∞
〈t〉−2〈ℓ〉4

∫ ∞

−∞
〈ξ〉2|fℓ(ξ)|2r(ξ) dξ

. 〈t〉−2
∞
∑

ℓ=−∞

∫ ∞

−∞
〈ℓ〉4w−1(ξ)

2
∣

∣

∣

∫ 2π

0
f(ξ, θ)e−iℓθ dθ

∣

∣

∣

2
r(ξ) dξ

. 〈t〉−2‖w−1(1− ∂2θ )f‖2L2(M)

which is (3.5). To prove (3.16), it is clear from Theorem 3.1 that it suffices to consider ℓ large, say
|ℓ| ≥ ℓ0 ≫ 1. Fixing such an ℓ, one switches to a semi-classical representation, via the identity

eitHℓ = ei
t

~2
H(~), H(~) := −~

2∂2ξ + ~
2Vℓ

where Vℓ is as in (3.9) and with ~ := ℓ−1. By construction, V (ξ, ~) := ~2Vℓ(ξ) has the property that
its maximal height is now essentially fixed at Vmax(~) = Vmax(0) + O(~2) with Vmax(0) ≃ 1. The
essential property of the potential is that it has a unique nondegenerate maximum, i.e., it looks
like the one on top in Figure 4.

For the remainder of this section, ~ will be small. From the spectral representation one has

(3.17) ei
t

~2
H(~) =

2

π
~
−2

∫ ∞

0
ei

t

~2
E2

Im
[ f+(x,E; ~)f−(x′, E; ~)

W (f+(·, E; ~), f−(·, E; ~))

]

E dE

with f± being the outgoing Jost solutions for the semi-classical operator H(~) which means that

(−~
2∂2x + V (x; ~))f±(x,E; ~) = E2f±(x,E; ~)

f±(x,E; ~) ∼ e±
i
~
Ex x→ ±∞
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With ǫ > 0 fixed and small (independently of ~), one now considers energies 0 < E < ǫ (low),
ǫ < E < 100 (intermediate), and E > 100 (large) separately. The middle interval is further split
into energies ǫ < E < Vmax(0) − ǫ, Vmax(0) − ǫ < E < 100, respectively. The latter interval is to
some extent the most important of all as it contains the nondegenerate maximum of the potential
V (~). We shall see that it is precisely this maximum which determines the number of derivatives
lost in the process of summing over ℓ.

The easiest region is E > 100. Indeed, for these energies the potential is essentially negligible and
a classical WKB approximation reduces matters to the free case. This means (again heuristically)
that (3.5) is a consequence of the L1 → L∞(R2) bound on eit∆R2 which explains the weights w1+ǫ.

3.2.1. WKB in the doubly asymptotic limit ~ → 0 and E → 0. The low-lying energies 0 < E < ǫ
are also treated by means of WKB, but there one faces the difficulty that the WKB approximation
of the generalized eigenfunctions needs to be accurate in the entire range 0 < E < ǫ and 0 < ~ < ~0.
There exists an extensive literature on the validity of the WKB approximation provided the energy
stays away from zero, i.e., E > E0 > 0 uniformly in ~, see for example [65] or Ramond [67].
However, the issue of controlling all errors in the WKB method uniformly in small ~ and small E
does not seem to have been considered before. For the problem of sending E → 0 it is of course
most relevant that the potential has the (critical) inverse square decay, as was already apparent in
the discussion of the matching method in the previous section.

This lead Costin, Schlag, Staubach, and Tanveer [14] to carry out a systematic analysis of this
two-parameter WKB problem for inverse square potentials. More specifically, they considered the
scattering matrix

Σ(E; ~) =

[

t(E; ~) r−(E; ~)
r+(E; ~) t(E; ~)

]

=

[

Σ11(E; ~) Σ12(E; ~)
Σ21(E; ~) Σ22(E; ~)

]

for the semiclassical operator

P (x, ~D) := −~
2 d

2

dx2
+ V (x)

with inverse square V (asymptotically, as |x| → ∞) and obtained the following result.

Theorem 3.4. Let V ∈ C∞(R) with V > 0 and V (x) = µ2±x
−2 + O(x−3) as x → ±∞ where

µ+ 6= 0, µ− 6= 0 and ∂kxO(x−3) = O(x−3−k) for all k ≥ 0. Denote

(3.18) V0(x; ~) := V (x) +
~2

4
〈x〉−2

and let E0 > 0 be such that for all 0 < E < E0 and 0 < ~ < 1, V0(x; ~) = E has a unique pair of
solutions, which we denote by x2(E; ~) < 0 < x1(E; ~). Define

S(E; ~) :=

∫ x1(E;~)

x2(E;~)

√

V0(y; ~) − E dy

T+(E; ~) := x1(E; ~)
√
E −

∫ ∞

x1(E;~)

(
√

E − V0(y; ~)−
√
E
)

dy

T−(E; ~) := −x2(E; ~)
√
E −

∫ x2(E;~)

−∞

(
√

E − V0(y; ~) −
√
E
)

dy

(3.19)

as well as T (E; ~) := T+(E; ~) + T−(E; ~). Then for all 0 < ~ < ~0 where ~0 = ~0(V ) > 0 is small
and 0 < E < E0

(3.20)
Σ11(E; ~) = e−

1

~
(S(E;~)+iT (E;~))(1 + ~σ11(E; ~))

Σ12(E; ~) = −ie− 2i
~
T+(E;~)(1 + ~σ12(E; ~))
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where the correction terms satisfy the bounds

(3.21) |∂kE σ11(E; ~)| + |∂kE σ12(E; ~)| ≤ Ck E
−k ∀ k ≥ 0,

with a constant Ck that only depends on k and V . The same conclusion holds if instead of (3.18)
we were to define V0 as V0 := V + ~2V1 with V1 ∈ C∞(R), V1(x; ~) =

1
4〈x〉−2 +O(x−3) as x→ ±∞

with ∂kxO(x−3) = O(x−3−k) for all k ≥ 0 and uniformly in 0 < ~ ≪ 1.

Note the correction of the original potential by ~2

4 〈x〉−2 in (3.18). Without this correction the
errors σ11 etc. diverge as E → 0. The proof of this result of course requires a careful analysis of
the Jost solutions which is then needed in the analysis of the stationary phase analysis of (3.17).

The analysis of the Jost solutions is based on the Liouville-Green transform, which we now
recall (see [65]). Given any second order equation f ′′(x) = Q(x)f(x) on some interval I, and any

diffeomorphism w : I → J onto some interval J , define g(w) := (w′(x))
1

2 f(x) where w = w(x).

Then by the chain rule, f ′′ = Qf is the same as g′′(w) = Q̃(w)g(w) where

Q̃(w) :=
Q(x)

(w′(x))2
− (w′(x))−

3

2 ∂2x(w
′(x))−

1

2

=
Q(x)

(w′(x))2
− 3

4

(w′′(x))2

(w′(x))4
+

1

2

w′′′(x)
(w′(x))2

To apply this transformation, one chooses w so that

(3.22)
Q(x)

(w′(x))2
= Q0(w)

where Q0 is some normal form. Then the problem becomes

(3.23) g′′(w) = Q0(w)g(w) − V (w)g(w), V (w) :=
3

4

(w′′(x))2

(w′(x))4
− 1

2

w′′′(x)
(w′(x))2

where V is treated as a perturbation. This is only admissible if Q0 is in some suitable sense close
to Q. The determination of Q0 is done on a case by case basis. For example, if Q does not vanish
on I, then one can take Q0 = sign(Q) which leads to the classical WKB ansatz, i.e.,

Q− 1

4 (x)e
±

∫ x

x0

√
Q(y) dy

or |Q|− 1

4 (x)e
±i

∫ x

x0

√
|Q|(y) dy

depending on whether Q > 0 or Q < 0, respectively. If Q does vanish at x0 ∈ I with Q′(x0) 6= 0,
then one maps x0 to w = 0 and chooses Q0(w) = w. In other words, the comparison equation is
the Airy equation. The equation for w in that case is w(x)w′(x)2 = Q(x) which yields

(3.24) w(x) = sign(x− x0)
∣

∣

∣

3

2

∫ x

x0

√

|Q(y)| dy
∣

∣

∣

2

3

which is known as the Langer transform [65]. It is easy to check that w is (locally around x0)
smooth (or analytic) provided Q is smooth (or analytic). It is precisely this Langer transform
which is used in [14], where it is written as

ζ = ζ(x,E; ~) := sign(x− x1(E; ~))
∣

∣

∣

3

2

∫ x

x1(E;~)

√

|V0(x; ~) −E| dη
∣

∣

∣

2

3

, x ≥ 0

with x1(E; ~) > 0 being the unique turning point (for E small). The equation transforms as follows.

Lemma 3.5. There exists E0 = E0(V ) > 0 so that for all 0 < E < E0 one has the following
properties: the equation V0(x; ~)−E = 0 has a unique (simple) solution on x > 0 which we denote
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by x1 = x1(E; ~). With Q0 := V0 − E

(3.25) ζ = ζ(x,E; ~) := sign(x− x1(E; ~))
∣

∣

∣

3

2

∫ x

x1(E;~)

√

|Q0(u,E; ~)| du
∣

∣

∣

2

3

defines a smooth change of variables x 7→ ζ for all x ≥ 0. Let q := −Q0

ζ . Then q > 0, dζ
dx = ζ ′ =

√
q,

and

−~
2f ′′ + (V − E)f = 0

transforms into

(3.26) − ~
2ẅ(ζ) = (ζ + ~

2Ṽ (ζ,E; ~))w(ζ)

under w =
√
ζ ′f = q

1

4 f . Here ˙ = d
dζ and

Ṽ :=
1

4
q−1〈x〉−2 − q−

1

4
d2q

1

4

dζ2

The asymptotic description of the Jost solutions is found by matching the Airy approximations
at the turning point w = 0. A fundamental solution of the transformed equation (i.e., in the ζ
variable) to the left of the turning point is described in terms of the Airy function Ai,Bi by the
following result from [14].

Proposition 3.6. Let ~0 > 0 be small. A fundamental system of solutions to (3.26) in the range
ζ ≤ 0 is given by

φ1(ζ,E, ~) = Ai(τ)[1 + ~a1(ζ,E, ~)]

φ2(ζ,E, ~) = Bi(τ)[1 + ~a2(ζ,E, ~)]

with τ := −~−
2

3 ζ. Here a1, a2 are smooth, real-valued, and they satisfy the bounds, for all k ≥ 0
and j = 1, 2, and with ζ0 := ζ(0, E),

(3.27)
|∂kEaj(ζ,E, ~)| . E−k min

[

~
1

3 〈~− 2

3 ζ〉 1

2 , 1
]

|∂kE∂ζaj(ζ,E, ~)| . E−k
[

~
− 1

3 〈~− 2

3 ζ〉− 1

2χ[−1≤ζ≤0] + |ζ| 12χ[ζ0≤ζ≤−1]

]

uniformly in the parameters 0 < ~ < ~0, 0 < E < E0.

Note that from the standard asymptotic behavior of the Airy functions, viz.,

Bi(x) = π−
1

2x−
1

4 e
2

3
x

3
2
[

1 +O(x−
3

2 )
]

as x→ ∞
Bi(x) ≥ Bi(0) > 0 ∀ x ≥ 0

Ai(x) =
1

2
π−

1

2x−
1

4 e−
2

3
x

3
2
[

1 +O(x−
3

2 )
]

as x→ ∞
Ai(x) > 0 ∀ x ≥ 0

the action integral appears naturally in this context, cf. (3.25). To the right of the turning point
one has the following oscillatory basis.

Proposition 3.7. Let ~0 > 0 be small. In the range ζ ≥ 0 a basis of solutions to (3.26) is given by

ψ1(ζ,E; ~) = (Ai(τ) + iBi(τ))[1 + ~b1(ζ,E; ~)]

ψ2(ζ,E; ~) = (Ai(τ)− iBi(τ))[1 + ~b2(ζ,E; ~)]
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with τ := −~−
2

3 ζ and where b1, b2 are smooth, complex-valued, and satisfy the bounds for all k ≥ 0,
and j = 1, 2

(3.28)
|∂kE bj(ζ,E; ~)| ≤ Ck E

−k〈ζ〉− 3

2

|∂ζ∂kEbj(ζ,E)| ≤ Ck E
−k

~
− 1

3 〈~− 2

3 ζ〉− 1

2 〈ζ〉−2

uniformly in the parameters 0 < ~ < ~0, 0 < E < E0, ζ ≥ 0.

We remark that the Langer transform is not the only possibility here. In fact, in [15] an alter-
native approach is used which reduces the potential to a Bessel normal-form. This is again done
by means of a suitable stretching, i.e., a Liouville-Green transform.

3.2.2. Intermediate energies and the top of the barrier. Intermediate energies, including the max-
imum energy of the potential, can be treated by means of an approximation of the generalized
eigenfunctions. This was carried out in detail by Costin, Park, and the author by means of a Li-
ouville Green transformation which reduces the potential near the maximum to a purely quadratic
normal form, see [16, Proposition 2]. In this way, one arrives at a perturbed Weber equation instead
of the Airy equation as above.

However, [28] follows a different route: a Mourre estimate followed by a semi-classical version of
the propagation bounds in [44]. Mourre [61] introduced the powerful idea that the quantum analog,
i.e.,

χI(H)i[H,A]χI (H) ≥ θχI(H) > 0

where H = −∆+ V , A = px+ xp, p = −i∇ and χI(H) localizes H to some compact interval I of
positive energies, entails a limiting absorption bound on the resolvent localized to I (which is some
form of scattering). Hunziker, Sigal, Soffer [44], developed a time-dependent and abstract approach
to Mourre theory by means of propagation estimates in the spirit of Sigal, Soffer [74]. The main
result of [44] is the following theorem.

Theorem 3.8. Let A,H be self adjoint operators on some Hilbert space and assume the Mourre
estimate

(3.29) EI i[H,A]EI ≥ θEI

where θ > 0 and I ⊂ R is some compact interval. Assume, furthermore, that all iterated commu-
tators of f(H) with A are bounded where f ∈ C∞

0 (R). Let χ± be the indicator functions of R±,
respectively. Then for any m ≥ 1,

‖χ−(A− a− θ′t)eiHtg(H)χ+(A− a)‖ ≤ C(m, θ, θ′) t−m

for any g ∈ C∞
0 (I), any 0 < θ′ < θ, uniformly in a ∈ R.

As simple consequence of this result is the following propagation estimate, which is clearly most
important in the context of Theorem 3.2:

(3.30) ‖〈A〉−αeiHtg(H)〈A〉−α‖ ≤ C(α) 〈t〉−α

for any α > 0. In application one typically takes A = 1
2(px + xp), the generator of dilations, or

some variant thereof. Taking α = 1 shows that one needs at least w1 in the Schrödinger case of
Theorem 3.2.

One needs to resolve two issues before applying this theory to Theorem 3.2:

• We require a semi-classical version of [44].
• The top of the barrier energy is trapping in the classical sense.
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While the first issue is a routine variant of [44], the second is not. In the nontrapping case, Graf [41]
and Hislop, Nakamura [43] showed that the classical nontrapping condition {a, h} > α > 0 on the
entire energy level {h = E0 > 0} implies the Mourre estimate (3.29) for I some small interval
around E0 (in the semi-classical case with ~ sufficiently small). In the case of surfaces of revolution
as in Theorem 3.2 this fact, together with Theorem 3.8, implies that one can handle energies in
the range ǫ < E < Vmax(0) − ǫ since they verify a classical nontrapping condition. On the other
hand, for energies near Vmax(0) this fails since the top energy is classically trapping. Nevertheless,
the Heisenberg uncertainty principle (or the semiclassical harmonic oscillator) guarantee (3.29).

Indeed, with V (x) = 1− 1
2〈Qx, x〉+O(|x|3) with Q positive definite,

{h, a} = ξ2 − x · ∇V = ξ2 + 〈Qx, x〉+O(|x|3) ≥ θ(ξ2 + x2)

for small x. However, p2+ q2 ≥ c > 0 by the uncertainty principle, which indicates that one should
expect that (3.29) continues to hold at a non-degenerate maximum. For a rigorous rendition of this
argument see Briet, Combes, Duclos [10], Nakamura [64], and [28].

Generally speaking, the problem of obtaining a representation of the resolvent and the spectral
measure, and of proving a limiting absorption principle for energies near a potential barrier has
received a lot of attention, see the monograph by Bony et al. [8] and the earlier literature cited
there such as the classical work by Helffer, Sjöstrand from the 80s.

This concludes our informal sketch of the proof of (3.5). As for (3.6), one proceeds analogously
by dividing energies into three regions, low, intermediate, and high. In the low and high cases, one
obtains pointwise bounds without weights from the WKB arguments outlined above, followed by
oscillatory integral estimates as in [73]. For the intermediate regime one uses the L2 bound (from
the Mourre-Hunziker-Sigal-Soffer estimates) which requires a weight w1 followed by the Sobolev
embedding theorem. Note that the latter costs one power of ℓ, whereas summation over ℓ requires
another weight of the form ℓ1+ǫ which explains the loss of (1−∂2θ )1+ǫ on the right-hand side of (3.6)
as compared to (3.5).

As a final remark, we would like to emphasize that the sketch of proof of Theorem 3.2 which we
just concluded is an adaptation of the argument which was developed for the Schwarzschild case
in [28].

3.3. The Schwarzschild case. The results on surfaces of revolution are relevant to another prob-
lem namely the decay of linear waves on a Schwarzschild black hole background. To be more
specific, choose coordinates such that the exterior region of the black hole can be written as
(t, r, (θ, φ)) ∈ R× (2M,∞) × S2 with the metric

g = −F (r)dt2 + F (r)−1dr2 + r2(dθ2 + sin2 θdφ2)

where F (r) = 1− 2M
r and, as usual, M > 0 denotes the mass. We now introduce the well–known

Regge–Wheeler tortoise coordinate r∗ which (up to an additive constant) is defined by the relation

F =
dr

dr∗
.

In this new coordinate system, the outer region is described by (t, r∗, (θ, φ)) ∈ R× R× S2,

(3.31) g = −F (r)dt2 + F (r)dr2∗ + r2(dθ2 + sin2 θdφ2)

with F as above and r is now interpreted as a function of r∗. Explicitly, r∗ is computed as

r∗ = r + 2M log
( r

2M
− 1
)

.

Generally, the Laplace–Beltrami operator on a manifold with metric g is given by

✷g =
1

√

|det(gµν)|
∂µ

(

√

|det(gµν)|gµν∂ν
)
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and thus, for the metric g in (3.31), we obtain

✷g = F−1

(

−∂2t +
1

r2
∂r∗
(

r2∂r∗
)

)

+
1

r2
∆S2 .

By setting ψ(t, r∗, θ, φ) = r(r∗)ψ̃(t, r∗, θ, φ) and writing x = r∗, the wave equation ✷gψ̃ = 0 is
equivalent to

(3.32) − ∂2t ψ + ∂2xψ − F

r

dF

dr
ψ +

F

r2
∆S2ψ = 0.

The mathematically rigorous analysis of this equation goes back to Wald [77] and Kay [51], who
established uniform boundedness of solutions. In the spirit of the positive commutator methods
outlined above, Dafermos and Rodniansk [19] found a robust approach based on carefully chosen
vector fields and multipliers. See Luk’s work [58, 59] which is in a similar spirit. As already noted,
Blue and Soffer [7] proved local decay estimates using Morawetz estimates. Dafermos and Rodni-
anski [18] proved Price’s t−3 decay law for a nonlinear problem but assuming spherical symmetry.

The purpose of this section is to discuss recent work of Donninger and the authors on pointwise
decay for solutions to Eq. (3.32). Different types of decay estimates have been proved before. Our
results differ from the above in certain respects: the methods we use are based on constructing the
Green’s function and deriving the needed estimates on it. Previous works in this direction include
mainly the series of papers by Finster, Kamran, Smoller and Yau, see for example [37], where the
first pointwise decay result for Kerr black holes was proved.

As in the case for surfaces of revolution, we freeze the angular momentum ℓ or, in other words,
we project onto a spherical harmonic. More precisely, let Yℓ,m be a spherical harmonic (that is, an
eigenfunction of the Laplacian on S2 with eigenvalue −ℓ(ℓ+1)) and insert the ansatz ψ(t, x, θ, φ) =
ψℓ,m(t, x)Yℓ,m(θ, φ) in Eq. (3.32). This yields the Regge–Wheeler equation

∂2t ψℓ,m − ∂2xψℓ,m + Vℓ,σ(x)ψℓ,m = 0

with σ = 1 where

Vℓ,σ(x) =

(

1− 2M

r(x)

)(

ℓ(ℓ+ 1)

r2(x)
+

2Mσ

r3(x)

)

is known as the Regge–Wheeler potential. The other physically relevant values of the parameter σ
are σ = −3, 0. For more background we refer the reader to the introduction of [27], or [18].

We immediately note some crucial features of Vℓ,σ: it decays exponentially as x → −∞, it
decays according to an inverse square law as x → +∞ provided ℓ > 0, and like an inverse cube if
ℓ = 0. Moreover, it has a unique nondegenerate maximum which is located at the photon sphere.
It consists of closed light rays and replaces the unique periodic geodesic which we encountered in
Theorem 3.2.

So we expect that at least some of the machinery that we described above in the surface case
applies here as well. However, the Regge-Wheeller potential is considerably more difficult to deal
with.

The main result of [27] is the following pointwise decay, which captures the so-called Price law
for fixed angular momentum. Strictly speaking, it is still off by one power of t from the sharpest
form of Price’s law which is t−2ℓ−3 whereas the following result proves t−2ℓ−2 (we shall comment on
that issue below). Note how the accelerated decay for higher values of ℓ mirrors what we saw for
the surfaces of revolution in Theorem 3.1. Hintz [42] recently closed the gap of the missing power
of t and thus finished the proof of Price’s law.
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Theorem 3.9. Let (ℓ, σ) /∈ {(0, 0), (0,−3), (1,−3)}, α ∈ N and 1 ≤ α ≤ 2ℓ+ 3. Then the solution
operators for the Regge–Wheeler equation satisfy the estimates

‖wα cos(t
√

Hℓ,σ)f‖L∞(R) ≤ Cℓ,α〈t〉−α

(

∥

∥

∥

∥

f ′

wα

∥

∥

∥

∥

L1(R)

+

∥

∥

∥

∥

f

wα

∥

∥

∥

∥

L1(R)

)

and
∥

∥

∥

∥

∥

wα
sin(t

√

Hℓ,σ)
√

Hℓ,σ

f

∥

∥

∥

∥

∥

L∞(R)

≤ Cℓ,α〈t〉−α+1

∥

∥

∥

∥

f

wα

∥

∥

∥

∥

L1(R)

for all t ≥ 0 where wα(x) := 〈x〉−α.

The values of (σ, ℓ) which we exclude here are precisely those where the Regge-Wheeler potential
gives rise to zero energy resonances. Physically speaking, they correspond to a gauge invariance,
such as changing the mass, and are therefore irrelevant.

The proof of Theorem 3.9 is based on representing the solution as an oscillatory integral in the
energy variable λ, schematically one may write

ψ(t, x) =

∫

U(t, λ)Im
[

Gℓ,σ(x, x
′, λ)

]

f(x′) dx′dλ

where U(t, λ) is a combination of cos(tλ) and sin(tλ) terms and Gℓ,σ(x, x
′, λ) is the kernel (Green’s

function) of the resolvent of the operator Hℓ,σ. In analogy with Theorem 3.1, Gℓ,σ(x, x
′, λ) is

constructed in terms of the Jost solutions and we obtain these functions in various domains of the
(x, λ) plane by perturbative arguments: for |xλ| small we perturb in λ around λ = 0, whereas for
|xλ| large we perturb off of Hankel functions. This is done in such a way that there remains a
small window where the two different perturbative solutions can be glued together. One of the
main technical difficulties of the proof lies with the fact that we need good estimates for arbitrary
derivatives of the perturbative solutions. This is necessary in order to control the oscillatory
integrals. The most important contributions come from λ ∼ 0 and we therefore need to derive the
exact asymptotics of the Green’s function and its derivatives in the limit λ → 0. For instance, we
prove that

Im [Gℓ,σ(0, 0, λ)] = λPℓ(λ
2) +O(λ2ℓ+1)

as λ → 0+ where Pℓ is a polynomial of degree ℓ − 1 (we set P0 ≡ 0) and the O–term satisfies

O(k)(λ2ℓ+1) = O(λ2ℓ+1−k) for all k ∈ N0.
As already noted before, for ℓ = 0 the Regge-Wheeler potential decays like an inverse cube as

x→ ∞. This case is covered by the following result of Donninger and the first author [26].

Theorem 3.10. Let V ∈ C [α]+1(R) with V (x) = |x|−α[c±+O(|x|−β)] as x→ ±∞ where 2 < α ≤ 4,

β = 1
2(α − 2)2, c± ∈ R and |O(k)(|x|−β)| . |x|−β−k for k = 1, 2, . . . , [α] + 1. Denote by A the self–

adjoint Schrödinger operator Af := −f ′′ + V f in L2(R) and assume that A has no bound states
and no resonance at zero energy. Then the following decay bounds hold:

‖〈·〉−α−1 cos(t
√
A)f‖L∞(R) . 〈t〉−α

(

‖〈·〉α+1f ′‖L1(R) + ‖〈·〉α+1f‖L1(R)

)

and
∥

∥

∥

∥

∥

〈·〉−α−1 sin(t
√
A)√

A
f

∥

∥

∥

∥

∥

L∞(R)

. 〈t〉−α‖〈·〉α+1f‖L1(R)

for all t ≥ 0.
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In particular, this gives t−3 for α = 3 which is the sharp form of Price’s law for ℓ = 0. It is
important to realize that the decay of the waves in Theorems 3.9 and 3.10 is really a manifestation
of transport rather than of dispersion. Indeed, d’Alembert’s formula shows that any solution of

∂ttu− ∂xxu = 0, u(0) = f, ∂tu(0) = g

with Schwartz data (say) and3
∫

g(x) dx = 0 satisfies

‖〈x〉−αu(t)‖∞ ≤ C(α) t−α

for any α ≥ 0. Needless to say, the one-dimensional problem does not exhibit any sort of dispersion
but is governed by linear transport which leads to this arbitrary local decay of the waves. It is
very interesting to note (but perhaps not immediately clear) that the sharp Huyghens principle in
three dimensions is still visible in the local decay law of Theorem 3.9. In fact, we claim that the
sharp t−2ℓ−3 Price law (at least for ℓ ≥ 1) is a result of the correction term of the form log x

x3 in the
Regge-Wheeler potential rather than the leading inverse square decay as x→ +∞.

To clarify this point, we now present a simple model case from [15]. With a > 0,

H := −∂2x + V, V (x) =

{

0 if x ≤ −1
a2− 1

4

x2 if x ≥ 1

Moreover, V ∈ C∞(R) is such that H has no zero energy resonance which means that there does
not exist a globally subordinate (or recessive)4 solution Hf = 0 other than f ≡ 0. Then one has
the following local decay estimates for the wave equation with potential V .

Proposition 3.11. Under the above assumptions on H,

∥

∥

∥
〈x〉−σ sin(t

√
H)√

H
P(0,∞)(H)g

∥

∥

∥

∞
≤ C〈t〉−2a−1

∥

∥〈x〉σg
∥

∥

1

∥

∥

∥
〈x〉−σ cos(t

√
H)P(0,∞)(H)f

∥

∥

∥

∞
≤ C〈t〉−2a−2(

∥

∥〈x〉σf
∥

∥

1
+
∥

∥〈x〉σf ′
∥

∥

1
)

where σ > 0 is sufficiently large depending on a. These decay rates are optimal provided a 6∈ Z
+
0 + 1

2 .

In the latter case, one obtains decay t−N for any N (provided σ is taken sufficiently large depending
on N).

Proof. We prove the first bound, the second one being very similar. Thus, let ψ(t, x) be a solution
of the problem

∂2t ψ − ∂2xψ + V ψ = 0, ψ(0, x) = 0, ∂tψ(0, x) = g

where g is Schwartz, say, and set for Re (p) > 0

ψ̂(p, x) :=

∫ ∞

0
e−tpψ(t, x) dt

Then

(H + p2)ψ̂(p, ·) = g

3This vanishing mean condition can be attributed to the zero energy resonance for the free Laplacian in one
dimension.

4This refers to solutions of the slowest allowed growth which means here that f(x) = O(1) as x → −∞ and

f(x) = O(x
1

2
−a) as x → +∞.
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which has a unique bounded solution

ψ̂(p, x) =

∫ ∞

−∞
G(p;x, y) g(y) dy

=

∫ x

−∞

f+(x, p)f−(y, p)
W (p)

g(y) dy −
∫ ∞

x

f+(y, p)f−(x, p)
W (p)

g(y) dy

with constant Wronskian W (p) := f+(x, p)f
′
−(x, p) − f ′+(x, p)f−(x, p). Here f±(x, p) are the Jost

solutions

(H + p2)f±(·, p) = 0, f±(x, p) ∼ e∓xp as x→ ±∞
The goal is now to obtain the expansion of f±(x, p) in small p, as this then yields the large time
asymptotics of, with arbitrary p0 > 0,

(3.33) ψ(t, x) =
1

2πi

∫ ∞

−∞

∫ p0+i∞

p0−i∞
etp G(p;x, y) dp g(y) dy

via contour deformation and Watson’s lemma. By choice of potential V ,

f−(x, p) = epx for x ≤ −1

f+(x, p) =
πi

2
eaπi/2H(1)

a (ipx)
(2px

π

)
1

2 for x ≥ 1

One can continue f−(x, p) to the right of x = −1 which yields an entire function in p for each fixed x.

The nonresonance condition for p = 0 means that f−(·, 0) and x
1

2
−a are linearly independent at

x = 1. Since H
(1)
a = Ja + iYa and – up to constant factors –

Ja(u) ∼ ua(1 +O(u2)), Ya(u) ∼ u−a(1 +O(u2))

as u→ 0 with analytic O(u2) (at least provided a is not an integer), we conclude that

W (p) = c(V ) p
1

2
−a
[

1 +O(p2) + c̃(V ) p2a(1 +O(p2))
]

as p→ 0

with O(p2) analytic in a neighborhood of p = 0 and with c(V ) 6= 0. This is obtained by computing
W (p) at x = 1, say, and by noting that the most singular contribution to W (p) around p = 0 is

c(V ) p
1

2
−a. By inspection, c(V ) = 0 is the same as a zero energy resonance which is excluded. If a

is a positive integer, then

W (p) = c(V ) p
1

2
−a
[

1 +O(p2) + c̃(V ) p2a log(p)(1 +O(p2))
]

as p→ 0

For simplicity, let us first freeze x, y, say x = y = 1. Then one concludes from the preceding that

(3.34) G(p; 1, 1) = C(V ) p2a
[

1 +O(p2) + c̃(V ) p2a(1 +O(p2))
]

for small p ∈ C \ (−∞, 0], and analytic O(p2) around p = 0, whereas for the case of a ∈ Z,

G(p; 1, 1) = C(V ) p2a log(p)
[

1 +O(p2) + c̃(V ) p2a log(p)(1 +O(p2))
]

The stated decay law now follows via Watson’s lemma in a standard fashion. Note the special role
of integer but odd 2a (which is the exceptional case in the statement of the proposition): in that
case (3.34) is analytic in small p whence one can push the contour in (3.33) through p = 0 leading
to exponential decay (at least as far as the contribution of small p is concerned).
We now discuss the Watson lemma in more detail. First, we move the contour in (3.33) onto the
imaginary axis:

ψ(t, 1) =
1

2πi

∫ i∞

−i∞
etp G(p; 1, 1) dp
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The contribution due to 1− χ(p) is shown via integration by parts to decay faster than any power
of t (use that G(iE;x, y) = O(E−1) for large E, uniformly in x, y). On the other hand, for the
contribution of χ we retain only finitely many terms from G(p; 1, 1) with a remainder that is smooth
enough around p = 0 so as to yield the desired decay again by integration by parts. Finally, the
first remaining term is of the form (up to a constant factor C(V ))

∫ iε

−iε
etp p2aχ(p) dp

We also have a log p factor if a ∈ Z. One now extends this to

(3.35)

∫

γ
etp p2a dp

where γ is an curve which contains [−iε, iε] and is asymptotic to [0, eiθ∞] and [−eiθ∞, 0], respec-
tively, and the ends. Noting that the integrals we inserted here decrease like t−N for any N by
integration by parts. By Cauchy’s theorem this is the same as

2 sin(2aπ)

∫ ∞

0
e−tp p2a dp = 2 sin(2aπ)t−2a−1Γ(2a+ 1)

which is the decay rate stated in the proposition. Note that if a = ℓ + 1
2 then this term vanishes

leading to the exceptional behavior stated above. On the other hand, if a ∈ Z, then this contribution
does not vanish due to the log(p) factor. Finally, we need to remove the restriction x = y = 1.
However, we have set up our argument in such a way that this modification is easy. First, the
contribution of |p| > ε is again shown to decay at an arbitrary rate via integration by parts. Now
this procedure brings down as many powers of x, y as given by the desired power of t−1. Next,
the contribution of the finitely many terms involving p2a etc. is similar to before, and each one of
these terms comes with a corresponding weight in x and y. Finally, the remainder in G(p;x, y)
after subtracting that initial segment is again sufficiently smooth in p and therefore integration by
parts yields the desired decay leading to another instance of requiring large σ. �

The significance of this proposition lies with proximity of V to the Regge-Wheeler potential.
Indeed, we replaced the exponential tails on the left by zero, and retained the inverse square tails
on the right (ignoring the higher-order corrections). In case of the Regge-Wheeler potential one
has a2− 1

4 = ℓ(ℓ+1) which implies that a = ℓ+ 1
2 which is the exceptional case of Proposition 3.11.

Formally speaking 2a+ 1 = 2ℓ+ 2 corresponds exactly to the decay rate of Theorem 3.9, whereas
the Price law t−2ℓ−3 is therefore seen to be a result of the log x

x3 correction to the far field in Vℓ,σ. In

fact, it is shown in [15] that the Price law is due to the nonanalytic term p2a+1 log p instead of p2a

in (3.35). To accomplish this, one derives an expansion of f+(x, p) in small p taking into account
as many terms from Vℓ,σ as required for obtaining Price’s law and the next few corrections to it.
The route taken in [15] consists of a reduction of the Regge-Wheeler potential to a normal form by
means of a Liouville-Green transform. The normal form here consists of the potential without any

corrections to the leading ℓ(ℓ+1)
x2 decay. The branching around p = 0 then results from the change

of independent variable. Arguing as in the previous proof then yields the sharp t−2ℓ−3 Price law.
To conclude this survey, let us state the main local decay result from [28].

Theorem 3.12. The following decay estimates hold for solutions ψ of (3.32) with data ψ[0] =
(ψ0, ψ1):

‖〈x〉− 9

2
−ψ(t)‖L2 . 〈t〉−3‖〈x〉 9

2
+(/∇5∂xψ0, /∇5ψ0, /∇4ψ1)‖L2(3.36)

‖〈x〉−4ψ(t)‖L∞ . 〈t〉−3‖〈x〉4(/∇10∂xψ0, /∇10ψ0, /∇9ψ1)‖L1(3.37)
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where /∇ stands for the angular derivatives5. Here L2 := L2
x(R;L

2(S2)), L1 := L1
x(R;L

1(S2)), and
L∞ := L∞

x (R;L∞(S2)).

It is obtain by summation in ℓ following the same line of reasoning that lead to Theorem 3.2
above. The most significant complication is due to the asymmetry of the Regge-Wheeler potential:
while the inverse square potential for x→ ∞ is covered by [14] as before, the exponentially decaying
part on the left requires another WKB analysis. We refer the reader to [28] for the details.
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