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ON MODIFIED SCATTERING FOR 1D QUADRATIC KLEIN-GORDON

EQUATIONS WITH NON-GENERIC POTENTIALS

HANS LINDBLAD, JONAS LÜHRMANN, WILHELM SCHLAG, AND AVY SOFFER

Abstract. We consider the asymptotic behavior of small global-in-time solutions to a 1D Klein-
Gordon equation with a spatially localized, variable coefficient quadratic nonlinearity and a non-
generic linear potential. The purpose of this work is to continue the investigation of the occurrence
of a novel modified scattering behavior of the solutions that involves a logarithmic slow-down of the
decay rate along certain rays. This phenomenon is ultimately caused by the threshold resonance
of the linear Klein-Gordon operator. It was previously uncovered for the special case of the zero
potential in [50]. The Klein-Gordon model considered in this paper is motivated by the asymptotic
stability problem for kink solutions arising in classical scalar field theories on the real line.
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1. Introduction

We study the long-time behavior of small global-in-time solutions to the Cauchy problem for the
following (1 + 1)-dimensional Klein-Gordon equation

{
(∂2t − ∂2x +m2 + V (x))u = Pc

(
α(·)u2

)
on R

1+1,

(u, ∂tu)|t=0 = (Pcu0, Pcu1),
(1.1)

where the potential V (x) and the variable coefficient α(x) are sufficiently smooth and decaying,
where m > 0 is the mass parameter, and where the real-valued initial data (u0, u1) are small in
weighted Sobolev spaces. As a core assumption in this paper, we suppose that the Schrödinger
operator H = −∂2x + V (x) exhibits a zero energy resonance, i.e., a non-trivial bounded solution of
Hϕ = 0 that approaches 1 as x → ∞ and a non-zero constant as x → −∞, see Definition 2.4. In
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other words, we assume that the potential V (x) is non-generic. The projection onto the continuous
spectral subspace of L2(R) relative to H is denoted by Pc.

The goal of this work is to continue the investigation of the occurrence of a novel modified
scattering behavior of small solutions to (1.1) that features a logarithmic slow-down of the free
decay rate along certain rays. This phenomenon was recently discovered in [50] in the special case
V (x) = 0 and is ultimately caused by the threshold resonance of the linear operator −∂2x+m2+V (x).
In this regard it is worth to record that a peculiar feature of the Laplacian in one space dimension
– in contrast to higher odd space dimensions – is that it possesses a zero energy resonance, namely
the constant function 1. We also refer to the beginning of Section 2 for precise definitions of some
of the spectral theory terminology used in this introduction.

1.1. Motivation. Our interest in the model (1.1) stems from the asymptotic stability problem
for kink solutions arising in classical scalar field theory models on the real line. Kinks are special
soliton solutions to scalar field equations

(∂2t − ∂2x)φ = −W ′(φ) on R
1+1, (1.2)

where W : R → [0,∞) is a sufficiently regular scalar potential that features a double-well, i.e.,
there exist (at least) two consecutive (global) minima φ−, φ+ ∈ R of W with φ− < φ+, W (φ±) =
W ′(φ±) = 0, and W ′′(φ±) > 0. Trivial solutions to (1.2) are given by the constant functions
φ(t, x) = φ± for all t ∈ R. Correspondingly, φ− and φ+ are referred to as vacuum solutions. A
static solution ψ(x) to (1.2) that connects the two consecutive vacuua φ− and φ+ is called a kink
and satisfies {

∂2xψ =W ′(ψ) on R,

lim
x→±∞

ψ(x) = φ±.
(1.3)

Solutions to (1.3) are unique up to spatial translations. Moreover, the Lorentz invariance of (1.2)
gives rise to moving kinks upon applying a Lorentz boost.

Kinks are simple one-dimensional examples of topological solitons, see e.g. [6, 46, 56, 69]. A
fundamental question related to the dynamics of kinks is their asymptotic stability under small
perturbations. A perturbative approach to this problem generally consists in decomposing the
perturbed solution into the sum of a modulated kink, possibly discrete modes, and a dispersive
remainder term. One then studies the long-time dynamics of the associated sytem of ODEs and
PDEs. One of the key steps in that analysis is to conclude that the dispersive remainder term
decays to zero in a suitable sense. For concreteness, we now take a closer look at what this part of
the problem entails for two prime examples of classical scalar field models on the real line, namely
the φ4 model with

Wφ4(φ) :=
1

4
(1− φ2)2, ψφ4(x) = tanh( x√

2
),

and the sine-Gordon model1 with

WsG(φ) := 1− cos(φ), ψsG(x) = 4 arctan(ex).

To simplify matters, we do not take into account any modulational aspects. For perturbations of
the static kink ψφ4(x) in the φ4 model, the remainder term u(t, x) = φ(t, x) − ψφ4(x) satisfies

(
∂2t − ∂2x + 2− 3 sech2( x√

2
)
)
u = −3 tanh( x√

2
)u2 − u3, (1.4)

1The sine-Gordon model is completely integrable and the study of its dynamics is therefore amenable to inverse
scattering techniques, see, e.g., the recent work [4].
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while for perturbations of the static kink ψsG(x) in the sine-Gordon model, the remainder term
u(t, x) = ψ(t, x) − ψsG(x) is a solution to

(
∂2t − ∂2x + 1− 2 sech2(x)

)
u = sech(x) tanh(x)u2 +

1

6
u3 − 1

3
sech(x)u3 +

{
higher order

}
. (1.5)

The study of the decay and the asymptotics of small solutions to 1D Klein-Gordon equations such
as (1.4) and (1.5) encompasses several difficulties: Due to the slow dispersive decay of Klein-Gordon
waves in one space dimension, the quadratic and cubic nonlinearities cause long-range effects. In
particular, subtle resonance phenomena can occur in the interactions in the (variable coefficient)
quadratic nonlinearities. Moreover, the linearized operators may exhibit threshold resonances and
may have internal modes, i.e., positive gap eigenvalues below the continuous spectrum. The latter
are in fact an obstruction to decay at the linear level. We note that the linearized operators for the
φ4 model and the sine-Gordon model both exhibit threshold resonances, and that the linearized
operator for the φ4 model additionally features an internal mode.

Delicate resonance phenomena in the quadratic nonlinearities in 1D Klein-Gordon models such
as (1.4) and (1.5) may lead to novel types of modified scattering behaviors of the solutions that are
deeply related to the presence of a threshold resonance in the linearized operator. The purpose of
this work is to uncover a precise picture of such behavior for the simplified Klein-Gordon model (1.1),
building on the recent analysis of the flat case V (x) = 0 in [50].

1.2. Previous results. The study of the asymptotic stability of kinks and of the asymptotics of
solutions to nonlinear Klein-Gordon equations is a fascinating and vast subject that cannot be
reviewed in its entirety here. In this subsection we give an overview of previous works that are
closely related to the contents of this paper.

We begin with a brief review of orbital and asymptotic stability results for kinks. The orbital
stability of kinks for general scalar field models was studied in the classical work of Henry-Perez-
Wreszinski [26]. In [39,40] Komech-Kopylova proved the asymptotic stability of kinks with respect
to a weighted energy norm for a class of scalar field models with a certain flatness assumption on
the potential near the wells and under suitable spectral assumptions (no resonances, presence of
an internal mode). Kowalczyk-Martel-Muñoz [41] established the asymptotic stability of the kink
of the φ4 model locally in the energy space under odd finite energy perturbations. In this regard,
Delort-Masmoudi [12] very recently obtained long-time dispersive estimates for odd weighted per-
turbations of the kink of the φ4 model up to times T ∼ ε−4+c, for arbitrary c > 0, where ε is
the size of the initial data in a weighted Sobolev space. A sufficient condition for the asymptotic
stability locally in the energy space of (moving) kinks in general (1 + 1)-scalar field models under
arbitrary small finite energy perturbations has been introduced by Kowalczyk-Martel-Muñoz-Van
den Bosch [43]. Interestingly, the asymptotic stability properties of the kink of the sine-Gordon
model hinge delicately on the topology with respect to which the perturbations are measured. The
existence of special periodic solutions called wobbling kinks are an obstruction to asymptotic sta-
bility in the energy space, see for instance Alejo-Muñoz-Palacios [1] for a discussion. However, the
sine-Gordon kink is asymptotically stable under sufficiently strongly weighted perturbations, as has
recently been shown by Chen-Liu-Lu [4] by relying on the complete integrability of the model and
using the nonlinear steepest descent method. We also refer to the survey [42] and to references
therein.

Next, we give a survey of results on the dispersive decay and the asymptotics of small solutions to
one-dimensional Klein-Gordon equations with an eye towards Klein-Gordon models that are related
to the asymptotic stability problem for kinks. We note that the investigation of the long-time
behavior of small solutions to Klein-Gordon equations with constant coefficient nonlinearities (in
higher space dimensions) originates in the pioneering works of Klainerman [35,36] and Shatah [64].
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Due to the slow decay of Klein-Gordon waves in one space dimension, quadratic and cubic
nonlinearities exhibit long-range effects. Specifically, Delort [10,11]2 established modified scattering
of small global solutions to the one-dimensional Klein-Gordon equation

(∂2t − ∂2x + 1)u = α0u
2 + β0u

3 on R
1+1 (1.6)

with α0, β0 ∈ R in the sense that the solutions are shown to decay in L∞
x at the rate t−

1

2 of free
Klein-Gordon waves, but that their asymptotics feature logarithmic phase corrections with respect
to the free flow. An alternative physical space approach was later developed by the first and fourth
authors [52, 53] in the cubic case, providing a detailed asymptotic expansion of the solution for
large times. Subsequently, Hayashi-Naumkin [24, 25] removed the compact support assumptions
about the initial data required in [10, 52, 53], see also Stingo [68] and the work of Candy and the
first author [3].

The study of the asymptotics of small solutions to one-dimensional Klein-Gordon equations
with variable coefficient nonlinearities was initiated by the first and fourth authors [55] and by
Sterbenz [67] for the model

(∂2t − ∂2x + 1)u = α0u
2 + β0u

3 + β(x)u3 on R
1+1, (1.7)

where α0, β0 ∈ R and where β(x) is a spatially localized, variable coefficient. Surprisingly, the ad-
dition of a variable coefficient cubic nonlinearity in (1.7) leads to non-trivial difficulties of dealing
with the long-range nature of the (non-localized) constant coefficient quadratic and cubic nonlin-
earities. The latter typically requires to combine energy estimates for weighted vector fields with an
ODE argument and normal form methods. In the case of the Klein-Gordon equation, the Lorentz
boost Z = t∂x+x∂t is the only weighted vector field that commutes with the linear flow. However,
differentiation of the variable coefficient by a Lorentz boost produces a strongly divergent factor
of t, which seems to place corresponding slow energy growth estimates out of reach. In [55,67] the
main idea to overcome this issue is the introduction of a variable coefficient cubic normal form.
More recently, three of the authors [51] obtained an improvement of [55, 67] using local decay es-
timates for the Klein-Gordon propagator to overcome difficulties caused by the variable coefficient
nonlinearity.

In [50] three of the authors recently considered the quadratic Klein-Gordon equation

(∂2t − ∂2x + 1)u = α(x)u2 on R
1+1 (1.8)

with a spatially localized coefficient α(x) and uncovered a novel modified scattering behavior of
small solutions that involves a logarithmic slow-down of the free decay rate along certain rays. This
discovery provided the impetus for the present work. We note that the occurrence of a logarithmic-
type slow-down of the decay rate due to the presence of a space-time resonance was pointed out
by Bernicot-Germain [2] in a simpler setting of proving bilinear dispersive estimates for quadratic
interactions of 1D free dispersive waves. See also [13, 14] for higher-dimensional instances, where
the optimal pointwise decay cannot be propagated by the nonlinear flow (but where the obtained
decay rate is not asserted to be sharp). We emphasize that [50, Theorem 1.1] and Theorem 1.1
of the present work uncover a sharp picture of the asymptotics for one-dimensional nonlinear
Klein-Gordon models, where a logarithmic slow-down of the free decay rate occurs. In particular,
the origin of the logarithmic loss is precisely identified to stem from the contribution of an explicit
resonant source term that is deeply related to the threshold resonance of the Klein-Gordon operator.
Moreover, under the non-resonance assumption α̂(±

√
3) = 0, [50, Theorem 1.6] establishes that

small solutions to

(∂2t − ∂2x + 1)u = α(x)u2 + β0u
3 + β(x)u3 on R

1+1 (1.9)

2We point out that the results of [10, 11] pertain to more general quasilinear nonlinearities satisfying a null
condition. With an eye towards the asymptotic stability problem for kinks, here we emphasize the applicability
of [10,11] to the displayed Klein-Gordon model (1.6).
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decay in L∞
x at the free rate t−

1

2 and that their asymptotics feature logarithmic phase corrections
(caused by the constant coefficient cubic nonlinearity β0u

3).
Recently, Germain-Pusateri [20] studied the following general one-dimensional quadratic Klein-

Gordon equation with a linear potential

(∂2t − ∂2x + 1 + V (x))u = a(x)u2 on R
1+1, (1.10)

where a(x) is a smooth coefficient satisfying a(x) → ℓ±∞ as x→ ±∞ for arbitrary fixed ℓ±∞ ∈ R

(and is thus not necessarily localized) and where H = −∂2x + V (x) has no bound states. Under
the key assumption that the distorted Fourier transform of the solution ũ(t, 0) = 0 vanishes at
zero frequency at all times t ∈ R, [20, Theorem 1.1] establishes that small solutions to (1.10)

decay in L∞
x at the free rate t−

1

2 and that their asymptotics feature logarithmic phase corrections
(caused by the “non-zero limits” ℓ±∞ of the coefficient a(x)). We note that ũ(t, 0) = 0 holds
automatically for generic potentials, while in the case of non-generic potentials this condition only
holds for solutions that are “orthogonal” to the zero energy resonance of H (in the sense of an
L1
x–L

∞
x pairing). The latter can for instance be enforced by imposing suitable parity conditions.

As an application, [20, Corollary 1.4] yields the full asymptotic stability of kinks with respect to
odd perturbations for the double sine-Gordon problem in an appropriate range of the deformation
parameter.

For closely related results on modified scattering for nonlinear Schrödinger equations, we refer
to [5, 8, 9, 19,21,23,29,34,48,49,54,57,58,60,61] and references therein.

Finally, we anticipate that local decay estimates for the perturbed Klein-Gordon propagator

eit
√
m2+HPc play a major role in the proof of the main result in this paper. Such local decay

estimates for much larger classes of unitary operators originate in the works of Rauch [62], Jensen-
Kato [32], and Jensen [30, 31], see also [15, 17, 18, 22, 28, 33, 37, 38, 44, 47] as well as the survey [63]
and references therein.

1.3. Main result. We are now in the position to state the main result of this paper on the long-
time behavior of small solutions to (1.1). Without loss of generality we set the mass parameter

m = 1. We write 〈D̃〉 =
√
1 +H on the positive spectrum of H = −∂2x+V (x) and we denote by F̃

the distorted Fourier transform associated with H. We refer to the beginning of Section 2 for a
brief review of some basics of the spectral and scattering theory for Schrödinger operators H.

Given a solution u(t) to (1.1), we introduce the new variable

v(t) :=
1

2

(
u(t)− i〈D̃〉−1∂tu(t)

)

that satisfies the first-oder Klein-Gordon equation

(∂t − i〈D̃〉)v =
1

2i
〈D̃〉−1Pc

(
α(·)(v + v̄)2

)
on R

1+1

with initial datum v(0) = 1
2(Pcu0 − i〈D̃〉−1Pcu1). It suffices to derive decay estimates and asymp-

totics for the variable v(t) since we have that

u(t) = v(t) + v̄(t). (1.11)

We will occasionally use (1.11) as a convenient short-hand notation. The following theorem contains
the main result of this paper.

Theorem 1.1. Assume that the real-valued potential V ∈ L∞(R) ∩ C3(R) satisfies 〈x〉9V (ℓ)(x) ∈
L1(R) for all 0 ≤ ℓ ≤ 3, and that H = −∂2x + V (x) exhibits a zero energy resonance ϕ(x),
cf. Definition 2.4. Suppose that ‖〈x〉15α(x)‖H3

x
< ∞. Then there exists an absolute constant

0 < ε0 ≪ 1 such that for any initial condition v0 satisfying

ε := ‖〈x〉5v0‖H2
x
≤ ε0,
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there exists a global-in-time solution v ∈ C(R;H2
x) to

(∂t − i〈D̃〉)v =
1

2i
〈D̃〉−1Pc

(
α(·)(v + v̄)2

)
on R

1+1 (1.12)

with initial datum v(0) = Pcv0. Moreover, the solution v(t) exhibits the following asymptotic
behavior as t→ ∞:

• (Resonant Case) Suppose

F̃
[
αϕ2](

√
3) 6= 0 or F̃

[
αϕ2

]
(−

√
3) 6= 0.

Then it holds

‖v(t)‖L∞
x

.
log(1 + 〈t〉)

〈t〉 1

2

ε. (1.13)

In addition, v(t) admits a decomposition

v(t) = vfree(t) + vmod(t), t ≥ 1,

with the following properties:
(i) The component vfree(t) satisfies

‖vfree(t)‖L∞
x

.
ε

〈t〉 1

2

, t ≥ 1. (1.14)

Moreover, vfree(t) scatters to a free Klein-Gordon wave in H2
x in the sense that there exists

v∞ ∈ H2
x such that

∥∥vfree(t)− eit〈D̃〉v∞
∥∥
H2

x
.

ε2

〈t〉 1

2

, t ≥ 1. (1.15)

(ii) There exists a small amplitude a0 ∈ C, |a0| . ε, such that the component vmod(t) is given by

vmod(t) := c20
a20
2

∫ t

1
ei(t−s)〈D̃〉〈D̃〉−1Pc

(
αϕ2

)e2is
s

ds, (1.16)

where the real constant c0 only depends on the scattering matrix S(0) of the potential V (x)
at zero energy, cf. (2.10), and is explicitly given by

c0 =
1

(2π)
3

2

T (0)2

1 +R−(0)
. (1.17)

For arbitrary 0 < δ ≪ 1, there exists a constant Cδ ≥ 1 such that we have uniformly

∣∣vmod(t, x)
∣∣ ≤ Cδ

ε2

〈t〉 1

2

whenever |x| <
(√3

2
− δ

)
t or |x| >

(√3

2
+ δ

)
t, (1.18)

and along the rays x = ±
√
3
2 t the asymptotics of vmod(t) are given by

vmod

(
t,±

√
3

2
t
)
= c20

a20√
8
ei

π
4 ei

t
2 F̃ [αϕ2](∓

√
3)
log(t)

t
1

2

+OL∞
t

( ε2

t
1

2

)
, t≫ 1. (1.19)

In particular, the decay estimate (1.13) is sharp.
• (Non-Resonant Case) Suppose

F̃
[
αϕ2](

√
3) = 0 and F̃

[
αϕ2

]
(−

√
3) = 0.

Then it holds

‖v(t)‖L∞
x

.
ε

〈t〉 1

2

. (1.20)
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Moreover, v(t) scatters to a free Klein-Gordon wave in H2
x in the sense that there exists v∞ ∈ H2

x

such that
∥∥v(t)− eit〈D̃〉v∞

∥∥
H2

x
.

ε2

〈t〉 1

2

, t ≥ 1. (1.21)

We proceed with several remarks on Theorem 1.1:

(i) The amplitude a0 ∈ C in the statement of Theorem 1.1 is explicitly given by

a0 = 〈ϕ, v0〉+
1

2
〈ϕ,α(·)v20 〉 − 〈ϕ,α(·)|v0|2〉 −

1

6
〈ϕ,α(·)v20〉

+

∫ ∞

0
eis〈ϕ,α(·)∂s

(
e−isv(s)

)(
e−isv(s)

)
〉ds

−
∫ ∞

0
e−is〈ϕ,α(·)∂s

(
(e−isv(s))(eisv̄(s))

)
〉ds

− 1

3

∫ ∞

0
e−3is〈ϕ,α(·)∂s

(
eisv̄(s)

)(
eisv̄(s)

)
〉ds,

(1.22)

where we use the notation 〈f, g〉 :=
∫
R
f(x)g(x) dx.

(ii) We did not optimize the decay and regularity assumptions on the initial data and on the
potential. The proof of Theorem 1.1 given below can be improved to some extent to sharpen
these assumptions.

(iii) Under certain conditions, the nonlinear solution v(t) to (1.12) does not exhibit modified
scattering in the sense that it just scatters to a free Klein-Gordon wave. On the one hand,

this occurs in the non-resonant case F̃ [αϕ2](±
√
3) = 0 for arbitrary (sufficiently small)

initial data. On the other hand, this may also occur in the resonant case for initial data
satisfying certain parity conditions. From the explicit formula (1.22) for the coefficient a0
it is evident that a0 = 0 (and thus vmod(t) ≡ 0) if ϕ(x) is even and v(t) as well as α(x) are
odd, or if ϕ(x) is odd and v(t) as well as α(x) are even. Of course, a parity condition on
the solution v(t) to (1.12) in turn imposes corresponding parity conditions on the potential
V (x) and the eigenfunctions of H = −∂2x + V (x).

(iv) We expect that in the presence of a non-generic potential V (x), a slow-down of the decay
rate as uncovered in Theorem 1.1 should occur more generally for coefficients α(x) that
may also assume non-zero limits α(x) → α±∞ 6= 0 as x → ±∞. However, we would like
to emphasize that it is by far not straightforward to extend Theorem 1.1 to this more
general setting. The proof of Theorem 1.1 crucially exploits the spatial localization of the
coefficient α(x) in conjunction with the use of refined local decay estimates for the perturbed
Klein-Gordon propagator.

The extension of Theorem 1.1 (for arbitrary small initial data) to non-localized coefficients
α(x) likely requires to further advance normal form techniques in the presence of a non-
generic potential. The difficulty of this step is deeply related to a loss of regularity of the

distorted Fourier transform of the profile g(t) := e−it〈D̃〉v(t) of the solution to (1.12) caused
by the quadratic nonlinearity. This also manifests itself prominently in the difficulty to
derive slowly growing energy estimates for a Lorentz boost Z = t∂x + x∂t of the nonlinear
solution to (1.1) in the flat case V (x) = 0. Indeed, when the Lorentz boost falls onto the
variable coefficient of the quadratic nonlinearity, it produces a strongly divergent factor of t
that is hard to sufficiently compensate for.

For generic potentials as well as for non-generic potentials in the special case of solu-
tions that are “orthogonal” to the threshold resonance, these difficulties have very recently
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been overcome in the remarkable work of Germain-Pusateri [20]. We note that under the
assumptions of [20, Theorem 1.1], the nonlinear solutions to the model (1.10) decay in L∞

x

at the usual free decay rate t−
1

2 and their asymptotic behavior features logarithmic phase
corrections “caused by the non-zero limits” ℓ±∞ of the coefficient a(x) in (1.10) at spatial
infinity.

For a related discussion, we refer to Remark (6) following Theorem 1.1 in [20] and to the
remarks at the end of Subsection 2.3 in [20].

(v) The explicit expression (1.16) for vmod(t) indicates that we would have vmod(t) ≡ 0 for
generic potentials V (x), because their transmission coefficient vanishes at zero energy
T (0) = 0, whence c0 = 0.

(vi) The proof of Theorem 1.1 easily generalizes to arbitrary mass parameters m 6= 0 in the
Klein-Gordon model (1.1). Then the resonant case corresponds to the condition

F̃
[
αϕ2](

√
3m2) 6= 0 or F̃

[
αϕ2

]
(−

√
3m2) 6= 0,

and a logarithmic slow-down of the decay rate also occurs along the rays x = ±
√
3
2 t.

(vii) The Klein-Gordon model (1.1) considered in this paper is a simplified model for nonlinear
Klein-Gordon equations with non-generic potentials such as (1.4) and (1.5) that govern
the dynamics of the dispersive remainder term in a perturbative approach to the study
of the asymptotic stability of kinks. An important next step is to allow for non-localized
quadratic or even just non-localized cubic nonlinearities (for arbitrary small initial data and
non-generic potentials).

In this regard we note that the linearized Klein-Gordon equation around a (static) kink
solution to the scalar field equation (1.2) features a spatially localized variable coefficient
α(x) for the quadratic nonlinearity as in (1.1) if and only if the scalar potential W in (1.2)

satisfies W (3)(φ±) = 0. For example, this is the case for the sine-Gordon model, but not
for the φ4 model.

(viii) An inspection of the proof of Theorem 1.1 yields the observation that in the resonant case

the distorted Fourier transform of the profile g(t) := e−it〈D̃〉v(t) of the solution v(t) to (1.12)
diverges logarithmically at frequencies ξ = ±

√
3. Specifically, one has that

g̃(t,±
√
3) = c20

a20
4
F̃
[
αϕ2

]
(±

√
3) log(t) +O(ε), t≫ 1,

which indicates that the free L∞
x decay rate t−

1

2 cannot be expected for the solution v(t).

(ix) In the resonant case, the derivation of the asymptotics of vmod(t) in the proof of Theorem 1.1

along the special rays x = ±
√
3
2 t also applies to nearby rays x = λt with |λ− (±

√
3
2 )| ≪ 1.

One finds that uniformly for all |λ− (±
√
3
2 )| ≪ 1,

∣∣∣∣vmod(t, λt)− c20
a20
2

ei
π
4 ei(1−λ2)

1
2 t

(1− λ2)
1

4

F̃ [αϕ2]
(
− λ

(1− λ2)
1

2

)A(t, λ)
t
1

2

∣∣∣∣ ≤ C
ε2

t
1

2

, t≫ 1,

where the amplitude correction A(t, λ) is of the form

A(t, λ) :=

∫ t
1
2

1

eis(2−(1−λ2)−
1
2 )

s
ds.
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Clearly, along the special rays λ = ±
√
3
2 , this yields the asymptotics (1.19) featuring a

logarithmic slow-down of the decay rate, while we obtain uniformly for all nearby rays

λ 6= ±
√
3
2 that

|A(t, λ)| . 1

2− (1− λ2)−
1

2

, t ≫ 1.

(x) It appears that the novel type of modified scattering behavior uncovered in Theorem 1.1 as
well as in [50, Theorem 1.1] is reminiscent of a new phenomenon observed in the remarkable
recent work of Delort-Masmoudi [12] on long-time dispersive estimates for odd perturbations
of the (odd) kink ψφ4(x) = tanh( x√

2
) in the φ4 model. We recall from (1.4) that the

corresponding remainder term u(t, x) = φ(t, x) − ψφ4(x) satisfies the equation
(
∂2t − ∂2x + 2− 3 sech2( x√

2
)
)
u = −3 tanh( x√

2
)u2 − u3. (1.23)

The linear operator −∂2x + 2− 3 sech2( x√
2
) exhibits an even threshold resonance

ϕ(x) = 1− 3

2
sech2

( x√
2

)
, (1.24)

and possesses an odd internal mode with eigenvalue µ2, µ =
√

3
2 , given by

Y (x) = 2−
3

43
1

2 tanh
( x√

2

)
sech

( x√
2

)
, 〈Y, Y 〉 = 1. (1.25)

Note that for odd perturbations one can disregard the even zero eigenfunction of the linear
operator stemming from the translation invariance of the model. To study the long-time
behavior of odd solutions to (1.23) one therefore enacts a spectral decomposition

u(t, x) = z(t)Y (x) + w(t, x), 〈Y,w(t)〉 = 0, (1.26)

where z(t) = 〈Y, u(t)〉 is the projection of u(t) onto the internal mode Y (x). The presence of
the internal mode is a major difficulty in the study of the asymptotic dynamics of u(t, x). In
fact, at the linear level it would be an obstruction to decay. However, for the nonlinear Klein-
Gordon equation (1.23), a coupling of the oscillations of the internal mode to the continuous
spectrum occurs through the so-called nonlinear Fermi Golden Rule, see Sigal [65] and
Soffer-Weinstein [66] for pioneering works in this direction. This mechanism was exploited
by Kowalczyk-Martel-Muñoz [41] to establish the decay of w(t) in a local energy sense and
the decay of z(t) in an integrated sense. Delort-Masmoudi [12] recently obtained explicit
decay rates for z(t) and for w(t) in L∞

x for times up to T ∼ ε−4+c for arbitrary c > 0, where
ε is the size of the initial data measured in a weighted Sobolev space.

It appears that the limitation to times O(ε−4) in [12] stems from a possible slow-down

of the decay rate of w(t, x) along the special rays x
t = ±

√
2
3 . The latter is caused by a

resonant source term in the nonlinear Klein-Gordon equation for w(t) whose contribution
can be thought of to have the following schematic Duhamel form

∫ t

1
e
i(t−s)

√
−∂2

x+2−3 sech2( x√
2
)
Pc

(
αY 2

)e2iµs
s

ds (1.27)

with α(x) = tanh( x√
2
) and Y (x) defined in (1.25). It arises from the quadratic contribution

of the long-time behavior of the projection z(t)Y (x) to the internal mode in the nonlinear
Klein-Gordon equation for w(t), see the spectral decomposition (1.26) above. Interestingly,
the structure of the source term (1.27) is reminiscent of the source term (1.16) defining
vmod(t) in the statement of Theorem 1.1. By the same mechanism described in Subsec-
tion 1.4 below on the ideas of the proof of Theorem 1.1, the source term (1.27) is resonant
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at the distorted frequencies ξµ satisfying
√

2 + ξ2µ = 2µ, i.e., ξµ = ±2, if F̃ [αY 2](±ξµ) 6= 0.

Correspondingly, one can expect a slow-down of the decay rate of w(t, x) along the associ-
ated rays

x

t
= − ξµ√

2 + ξ2µ

= ∓
√

2

3
.

In the context of the φ4 model, the resonance condition F̃ [αY 2](±ξµ) 6= 0 is referred to as
the nonlinear Fermi Golden Rule and it is in fact key for the projection z(t)Y (x) of u(t) to
the internal mode to decay at all as t→ ∞.

We stress that the displayed form (1.27) of the contribution of the resonant source term
is very schematic, and just serves here to highlight the intriguing resemblance of the source
term (1.16) defining vmod(t) in the statement of Theorem 1.1 and the source term (1.27)
appearing in the analysis of perturbations of the φ4 kink. While the source term (1.16) is
ultimately caused by a threshold resonance, the source term (1.27) is caused by the internal
mode of the φ4 model. Finally, we note that a possible slow-down effect of the decay rate of
w(t) in (1.26) due to the threshold resonance (1.24), similar to the result in Theorem 1.1, is
not expected for odd perturbations of the φ4 kink since these are “orthogonal” to the even
threshold resonance (1.24).

Remark 1.2. A natural question is whether the non-resonance condition F̃ [αϕ2](±
√
3) = 0 hap-

pens to hold in concrete applications to asymptotic stability problems for kink solutions. It turns out
that the sine-Gordon model features this miraculous vanishing property! Recall from (1.5) that the
equation for a perturbation of the static sine-Gordon kink involves the variable quadratic coefficient

α(x) = sech(x) tanh(x)

and the Schrödinger operator
H = −∂2x − 2 sech2(x).

The latter belongs to the family of Pöschl-Teller potentials, see for instance [16, Problem 39], and
admits a zero energy resonance that is explicitly given by

ϕ(x) = tanh(x).

It turns out that the distorted Fourier transform with respect to H of αϕ2 satisfies

F̃
[
αϕ2

]
(±

√
3) = 0. (1.28)

The authors are not aware of a reference in the literature for this observation3. Below we provide
a simple proof of (1.28) using contour integration.

Proof of (1.28). By direct computation one can verify that the Jost solutions of the Schrödinger
operator H = −∂2x − 2 sech2(x) are explicitly given by

f+(x, ξ) =
iξ − tanh(x)

iξ − 1
eixξ,

f−(x, ξ) =
−iξ − tanh(x)

−iξ + 1
e−ixξ.

The distorted Fourier basis associated with H therefore takes the form

e(x, ξ) :=
1√
2π





T (ξ)
iξ − tanh(x)

iξ − 1
eixξ for ξ ≥ 0,

T (−ξ) iξ − tanh(x)

iξ + 1
eixξ for ξ < 0,

3This observation has previously been made by Jacob Sterbenz (unpublished note).
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where T (ξ) denotes the transmission coefficient associated with H. Thus, in order to evaluate the

distorted Fourier transform of αϕ2 at frequencies ξ = ±
√
3,

F̃
[
αϕ2

]
(±

√
3) =

∫

R

e(x,±
√
3)α(x)ϕ(x)2 dx,

it suffices to evaluate the integrals

I± :=

∫

R

e±i
√
3x
(
±i

√
3− tanh(x)

) sinh3(x)
cosh4(x)

dx.

To this end we observe that the function

F±(z) := e±i
√
3z
(
±i

√
3− tanh(z)

) sinh3(z)
cosh4(z)

, z ∈ C,

is meromorphic on C with poles at zk = iπ2 (2k+1), k ∈ Z. It is easy to see that the integral I± can
be obtained from the contour integral of F± along the rectangle with vertices at ±ℓπ, ±ℓπ+ iℓπ as
ℓ→ ∞. By the residue theorem, it follows that

I± = 2πi

∞∑

k=0

Resz=zk(F±).

Using that cosh(zk + w) = i(−1)k sinh(w) and that sinh(zk + w) = i(−1)k cosh(w), we find that

F±(zk + w) = (−1)k−1ie∓
√
3π
2
(2k+1)

(
±i

√
3 e±i

√
3w cosh3(w)

sinh4(w)
− e±i

√
3w cosh4(w)

sinh5(w)

)
.

Then we compute

Resw=0

(
e±i

√
3w cosh3(w)

sinh4(w)

)
= ± i√

3
,

Resw=0

(
e±i

√
3w cosh4(w)

sinh5(w)

)
= −1.

Correspondingly, we obtain for all k ∈ Z that

Resz=zk(F±) = (−1)k−1ie∓
√
3π
2
(2k+1)

(
±i

√
3
(
± i√

3

)
− (−1)

)
= 0,

whence I± = 0, which implies the asserted vanishing property F̃
[
αϕ2

]
(±

√
3) = 0. �

1.4. Proof ideas. The analysis of the asymptotic behavior of small global solutions to the one-
dimensional quadratic Klein-Gordon equation

(∂t − i〈D̃〉)v =
1

2i
〈D̃〉−1Pc

(
α(·)(v + v̄)2

)
on R

1+1 (1.29)

under the assumptions of Theorem 1.1 begins with the observation that due to the spatial local-
ization of the coefficient α(x), the nature of the quadratic nonlinearity α(x)(v + v̄)2 is entirely
determined by the local decay of the nonlinear solution v(t).

It is therefore instructive to first study the interactions in the quadratic nonlinearity α(x)(v(t)+

v̄(t))2 when v(t) is replaced by a linear Klein-Gordon wave vlin(t) = eit〈D̃〉Pcv0. Since H = −∂2x +
V (x) is assumed to exhibit a zero energy resonance ϕ(x), the local decay of eit〈D̃〉Pcv0 (measured

in weighted spaces) is only of order t−
1

2 . Importantly, this slow local decay solely stems from
a contribution of the zero energy resonance ϕ(x) in the sense that upon subtracting a suitable

projection onto ϕ(x), the bulk of the linear Klein-Gordon wave eit〈D̃〉Pcv0 exhibits faster local
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decay. More specifically, one of the key local decay estimates for the Klein-Gordon evolution on
the line, which we establish in Subsection 2.3, reads

∥∥∥〈x〉−σ
(
eit〈D̃〉Pcv0 − c0

ei
π
4 eit

t
1

2

〈ϕ, v0〉ϕ
)∥∥∥

L2
x

.
1

t
3

2

‖〈x〉σv0‖L2
x
, t ≥ 1, (1.30)

where σ > 9
2 and the real constant c0 defined in (1.17) only depends on the scattering matrix S(0)

of the potential V (x) at zero energy. The local decay estimate (1.30) suggests that the leading
order behavior of α(x)(vlin(t) + v̄lin(t))

2 should be of the schematic form

c20α(x)ϕ(x)
2 1

t

(
ei

π
2 e2it(〈ϕ, v0〉)2 + 2|〈ϕ, v0〉|2 + e−iπ

2 e−2it(〈ϕ, v0〉)2
)
+OL∞

t

( 1

t2

)
, t ≥ 1.

Correspondingly, we can expect the asymptotic behavior of a solution vinh(t) to

(∂t − i〈D̃〉)vinh =
1

2i
〈D̃〉−1Pc

(
α(·)(vlin + v̄lin)

2
)
on R

1+1 (1.31)

to be determined by the contributions of three source terms given in Duhamel form by

c20
2i

∫ t

1
ei(t−s)〈D̃〉〈D̃〉−1Pc(αϕ

2)
1

s

(
ei

π
2 e2is(〈ϕ, v0〉)2 + 2|〈ϕ, v0〉|2 + e−iπ

2 e−2is(〈ϕ, v0〉)2
)
ds. (1.32)

Due to the non-integrable time decay s−1 of these source terms, the overall time oscillations in
the integrand ultimately determine the long-time behavior of vinh(t). This becomes particularly
transparent on the distorted Fourier side, where the overall oscillations in time s for the three
source terms in the parentheses in the integrand of (1.32) are respectively given by eis(2−〈ξ〉),

e−is〈ξ〉, and e−is(2+〈ξ〉), where 〈ξ〉 = (1+ ξ2)
1

2 . While the last two have good oscillatory behavior at

all frequencies, the phase of eis(2−〈ξ〉) vanishes when 2−〈ξ〉 = 0, i.e. at frequencies ξ = ±
√
3. In the

non-resonant case this is offset by the vanishing of F̃ [αϕ2](±
√
3) = 0 at these specific frequencies.

However, in the resonant case, where F̃ [αϕ2](
√
3) 6= 0 or F̃ [αϕ2](−

√
3) 6= 0, these observations

indicate that the long-time behavior of vinh(t) decomposes into the contribution of a resonant source
term of the form

c20
2i

∫ t

1
ei(t−s)〈D̃〉Pc(αϕ

2)
e2is

s
ds,

and a bulk term that can be expected to asymptotically behave like a free Klein-Gordon wave.
It turns out that the study of the asymptotic behavior of the nonlinear solution v(t) to (1.29) can

effectively be reduced to the above heuristics. The key step to achieve this reduction is to identify
the precise leading order behavior of the variable coefficient quadratic nonlinearity α(x)(v(t)+v̄(t))2.
To this end we introduce the function

w(t) := c0
ei

π
4 eit

t
1

2

〈ϕ, v0〉ϕ+
1

2i

∫ t−1

0
c0
ei

π
4 ei(t−s)

(t− s)
1

2

〈
ϕ,α(·)

(
v(s) + v̄(s)

)2〉
ϕds, t ≥ 1, (1.33)

that can perhaps be thought of as a “projection” of the nonlinear solution v(t) to the zero energy
resonance ϕ(x). Note that we may write w(t, x) = a(t)ϕ(x) with the time-dependent coefficient

a(t) := c0
ei

π
4 eit

t
1

2

〈ϕ, v0〉+
1

2i

∫ t−1

0
c0
ei

π
4 ei(t−s)

(t− s)
1

2

〈
ϕ,α(·)

(
v(s) + v̄(s)

)2〉
ds, t ≥ 1.

In a delicate bootstrap argument in Proposition 3.1 we establish several local decay bounds for the

nonlinear solution v(t), in particular, that v(t) has the slow local decay ‖〈x〉−σv(t)‖L2
x
. εt−

1

2 , but
that the difference v(t)− w(t) enjoys the faster local decay

‖〈x〉−σ(v(t)− w(t))‖L2
x
.
ε

t
, t ≥ 1.
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The proof of Proposition 3.1 crucially exploits the spatial localization of the coefficient α(x) in

conjunction with several local decay estimates for the Klein-Gordon propagator eit〈D̃〉Pc summarized
in Corollary 2.17, in particular (1.30).

The local decay bounds on v(t), in particular the faster local decay of the time derivative of
the “phase-filtered” component e−itv(t) given by ‖〈x〉−σ∂t(e

−itv(t))‖L2
x
. εt−1 then enables us in

Corollary 3.3 to extract the asymptotics of the time-dependent coefficient a(t) given by

a(t) = c0
ei

π
4 eit

t
1

2

a0 +OL∞
t

(1
t

)
, t ≥ 1,

with a0 defined in (1.22). This suggests that the leading order behavior of the quadratic nonlinearity
α(x)(v(t) + v̄(t))2 is of the form

α(x)ϕ(x)2(a(t) + ā(t))2 = c20α(x)ϕ(x)
2 1

t

(
ei

π
2 e2ita20 + 2|a0|2 + e−iπ

2 ā20
)
+OL∞

t

( 1

t
3

2

)
.

Analogously to the preceding discussion of the simplified equation (1.31), we are reduced to ana-
lyzing the asymptotic behavior of the contribution of the possibly resonant source term

vmod(t) := c20
a20
2

∫ t

1
ei(t−s)〈D̃〉〈D̃〉−1Pc

(
αϕ2

)e2is
s

ds,

and of the bulk term vfree(t) := v(t)− vmod(t).
The derivation of the asymptotic behavior of vmod(t) and vfree(t) asserted in Theorem 1.1 is

carried out in Section 4. It combines the local decay bounds for v(t) established in Proposition 3.1

and Corollary 3.2 with pointwise linear estimates and asymptotics for the propagator eit〈D̃〉Pc

established in Lemma 2.18 and in Lemma 2.19. In particular, in the resonant case a careful
stationary phase analysis of the asymptotics of vmod(t, x) reveals the logarithmic slow-down (1.19)

of the decay rate of vmod(t) along the rays
x
t = ∓

√
3
2 that are associated with the resonant frequencies

ξ = ±
√
3 for which the phase of eis(2−〈ξ〉) vanishes.

This concludes a sketch of some of the main ideas entering the proof of Theorem 1.1.

1.5. Notation and conventions. For non-negative X, Y we write X . Y or X = O(Y ) if
X ≤ CY for some constant C > 0. We employ the notation X .ν Y to indicate that the
implicit constant depends on a parameter ν and we write X ≪ Y if the implicit constant should be

considered as small. Further, we use the japanese bracket notation 〈x〉 = (1+x2)
1

2 , 〈t〉 = (1+ t2)
1

2 ,

and 〈ξ〉 = (1 + ξ2)
1

2 . For a real number b ∈ R we denote by b+, respectively by b−, a number that
is larger, respectively smaller, than b, but that can be taken arbitrarily close to a.

Throughout we denote by χ0(ξ) a smooth cutoff to |ξ| . 1, equal to 1 near ξ = 0. Moreover, we
denote by χ(ξ) a smooth bump function with support near |ξ| ≃ 1.

We denote the inner L2
x product by 〈f, g〉 :=

∫
R
f(x)g(x) dx, and we denote the “projection”

onto the resonance ϕ by

(ϕ⊗ ϕ)g := 〈ϕ, g〉ϕ. (1.34)

We use the notation f̃(ξ) = F̃ [f ](ξ) for the distorted Fourier transform associated with H =
−∂2x + V . Finally, we work with the following definition for the Sobolev spaces Hk

x(R), k = 1, 2,
given by

‖g‖Hk
x
:=

k∑

j=0

‖∂jxg‖L2
x
.
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2. Spectral and Scattering Theory

This section is devoted to the study of the linear flow generated by the Klein-Gordon equation
with a potential. In other words, we investigate the linear PDE (∂t − i〈D̃〉)v = Pcf with datum

v(0) = Pcv0 where v0 lies in suitable weighted Sobolev spaces. Recall that 〈D̃〉 is the nonnegative

operator with the property 〈D̃〉2Pc = (1 + H)Pc and H = −∂2x + V with V and finitely many of
its derivatives decaying at a sufficiently rapid polynomial rate. Moreover, Pc is the projection onto
the continuous spectrum of H. Throughout, we will focus on the case where H exhibits a 0 energy
resonance which is commonly referred to as the non-generic case. A 0 energy resonance simply
means that there is a globally bounded nontrivial solution of Hf = 0. Or, equivalently, that the
bounded solution as x→ −∞, which is unique up to a nonzero constant, is linearly dependent with
its cousin which remains bounded as x→ +∞. All of this is equivalent with the Laurent expansion
of the resolvent (H− z2)−1 around z = 0 in the upper half plane Im z > 0, starts with a z−1 power.
The Laurent expansion needs to be understood in the weighted L2(R) sense, and the coefficient
of z−1 is a rank-1 operator given by (1.34). In the generic case, there is no singular power in this
expansion.

The easier generic H is essentially a special case of our analysis and statements relevant to it can
be obtained by carrying out straightforward modifications. An important technical device in our
estimates is the distorted Fourier transform. This refers to the map f → f̃(ξ) :=

∫
f(x)e(x, ξ) dx,

and its inverse f(x) =
∫
f̃(ξ)e(x, ξ) dξ which holds for all f ∈ L1 ∩ L2(R) which are perpendicular

to all eigenfunctions of H. Here He(·, ξ) = ξ2e(·, ξ) suitably normalized so that Plancherel holds

with spectral measure dξ, i.e., ‖f‖2 = ‖f̃‖2. In the non-generic case the distorted Fourier basis is
discontinuous at ξ = 0. We therefore do not use it for small energies but rather directly work with
the resolvent (Green function).

2.1. Spectral theory and distorted Fourier transform. This subsection recalls the Jost solu-
tions, and the standard Volterra perturbation theory needed to construct them.

Definition 2.1. Fix two positive integers N0 and M0, both exceeding 2. We consider H = −∂2x +
V on the domain C2

comp(R) ⊂ L2(R) with real-valued continuous V ∈ L∞(R) ∩ CM0(R), and

〈x〉N0V (ℓ)(x) ∈ L1(R) for all 0 ≤ ℓ ≤ M0. The Friedrichs extension of H is self-adjoint with
domain H2(R).

For such V , it is a standard fact that the spectrum of H consists of [0,∞), which is essential
spectrum, and finitely many negative simple eigenvalues, more precisely the number of eigenvalues
must be less than or equal to 1+

∫
R
|x||V (x)|dx, see [7, p. 149]. Moreover, the spectrum on [0,∞)

is absolutely continuous, which follows from the usual explicit representation of the Green function,
i.e., the kernel of the resolvent (H − z2)−1 as Im z → 0+, see Lemma 2.6. As already mentioned,
0 energy occupies a special role here and the resolvent may or may not be singular around z = 0.
The latter is generic, whereas the former is non-generic. It is worth mentioning that 0 cannot be
an eigenvalue under our assumptions on V , since the solutions f of Hf = 0 can only approach
constants but not decay as x→ ±∞. It can only be a resonance.

We now begin the technical work by recalling basic notions of scattering theory on the line.
See [7] for much sharper statements. Throughout, constants of the form C(V ) depend on V only

via the norms ‖〈x〉N0V (ℓ)(x)‖L1 for 0 ≤ ℓ ≤ M0. Constants may also depend on the resonance
function ϕ, see Definition 2.4 below. The latter is only relevant for estimates involving 0 energy.

Lemma 2.2. Let V (x) be as in Definition 2.1. There exist unique solutions f±(x, ξ) for every
ξ ∈ R of

Hf±(·, ξ) = ξ2f±(·, ξ)
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satisfying f±(x, ξ) ∼ e±ixξ as x → ±∞. They are of the form f±(x, ξ) = e±ixξm±(x, ξ) where
m±(x, ξ) ∼ 1 as x → ±∞, and one has the bounds |∂ℓξ∂kxm±(x, ξ)| ≤ C for all 0 ≤ k ≤ M0,
0 ≤ ℓ ≤ N0 − 1 uniformly in ±x ≥ 0, ξ ∈ R.

Proof. We solve the ODEs

m′′
±(x, ξ) ± 2iξm′(x, ξ) = V (x)m±(x, ξ)

by means of the Volterra equation

m+(x, ξ) = 1 +

∫ ∞

x

∫ y−x

0
e2iξt dt V (y)m+(y, ξ) dy

= 1 +

∫ ∞

x

e2iξ(y−x) − 1

2iξ
V (y)m+(y, ξ) dy

(2.1)

By iteration one finds that for all x ≥ 0 and uniformly in ξ ∈ R

|m+(x, ξ)− 1| ≤ eγ(x) − 1, γ(x) :=

∫ ∞

x
y|V (y)| dy (2.2)

An analogous bound holds for |m−(x, ξ)− 1| on x ≤ 0. Next, differentiating (2.1) in ξ yields

∂ξm+(x, ξ) = 2i

∫ ∞

x

∫ y−x

0
e2iξt t dt V (y)m+(y, ξ) dy

+

∫ ∞

x

e2iξ(y−x) − 1

2iξ
V (y)∂ξm+(y, ξ) dy

(2.3)

whence, with |m+(x, ξ)| ≤M for all x ≥ 0 and ξ ∈ R,

|∂ξm+(x, ξ)| ≤
∫ ∞

x
(y − x)2|V (y)|M dy +

∫ ∞

x
(y − x)|V (y)||∂ξm+(y, ξ)| dy

≤ η(x)eγ(x), η(x) :=

∫ ∞

x
y2|V (y)| dy

(2.4)

where the last line follows by iteration. Similarly one checks that

|∂2ξm+(x, ξ)| ≤ C

∫ ∞

x
(1 + y3)|V (y)| dy

for all x ≥ 0, ξ ∈ R, and C = C(V ). The higher ξ derivatives are handled analogously. Note that
in particular f±(x, ξ) are continuous in (x, ξ) ∈ R

2. For the derivatives in x we compute

∂xm+(x, ξ) =

∫ ∞

x
∂x
e2iξ(y−x) − 1

2iξ
V (y)m+(y, ξ) dy

= −
∫ ∞

x
∂y
e2iξ(y−x) − 1

2iξ
V (y)m+(y, ξ) dy

=

∫ ∞

x

e2iξ(y−x) − 1

2iξ
(V ′(y)m+(y, ξ) + V (y)∂ym+(y, ξ)) dy

(2.5)

which implies the uniform boundedness of ∂xm+(x, ξ) in x ≥ 0, ξ ∈ R from yV ′(y) ∈ L1. The
higher x-derivatives follow by repeating this procedure. For the mixed derivatives, we combine the
two Volterra methods. �

Next, we establish symbol-type behavior for large ξ. Throughout, m′
± = ∂xm±.

Lemma 2.3. With V as in Definition 2.1, and with m± as in Lemma 2.2,

sup
±x≥0

|∂jξm±(x, ξ)| ≤ C(V, ξ0)|ξ|−1−j
(2.6)
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for all |ξ| ≥ ξ0 > 0 and 1 ≤ j ≤ N0. Furthermore, the same bound holds for x derivatives:

sup
±x≥0

|∂jξm′
±(x, ξ)| ≤ C(V, ξ0)|ξ|−1−j

(2.7)

for all |ξ| ≥ ξ0 > 0 and 1 ≤ j ≤ N0.

Proof. We freeze ξ0 > 0 and allow constants to depend on it. Returning to the Volterra equa-
tion (2.1), we compute

∂ξm+(x, ξ) = −
∫ ∞

x

e2iξ(y−x) − 1

2iξ2
V (y)m+(y, ξ) dy

+

∫ ∞

x

∂y e
2iξ(y−x)

2iξ2
(y − x)V (y)m+(y, ξ) dy +

∫ ∞

x

e2iξ(y−x) − 1

2iξ
V (y)∂ξm+(y, ξ) dy

= −
∫ ∞

x

e2iξ(y−x) − 1

2iξ2
V (y)m+(y, ξ) dy

−
∫ ∞

x

e2iξ(y−x)

2iξ2
∂y
[
(y − x)V (y)m+(y, ξ)

]
dy +

∫ ∞

x

e2iξ(y−x) − 1

2iξ
V (y)∂ξm+(y, ξ) dy

whence, by the bounds of Lemma 2.2, and Volterra iteration,

sup
x≥0

|∂ξm+(x, ξ)| ≤ C(V )ξ−2

Repeating this procedure yields

sup
x≥0

|∂2ξm+(x, ξ)| ≤ C(V )|ξ|−3

and similarly for the third and higher derivatives and m− on x ≤ 0. For the x-derivatives, we start
from (2.5) to conclude that

∂ξm
′
+(x, ξ) = −

∫ ∞

x

e2iξ(y−x) − 1

2iξ2
(V ′(y)m+(y, ξ) + V (y)m′

+(y, ξ)) dy

−
∫ ∞

x

e2iξ(y−x) − 1

2iξ2
∂y
[
(y − x)(V ′(y)m+(y, ξ) + V (y)m′

+(y, ξ))
]
dy

+

∫ ∞

x

e2iξ(y−x) − 1

2iξ
(V ′(y)∂ξm+(y, ξ) + V (y)∂ξm

′
+(y, ξ)) dy

(2.8)

This yields via Volterra iteration, our assumptions on V , and the bound on ∂ξm+(y, ξ), that

sup
x≥0

|∂ξm′
+(x, ξ)| ≤ Cξ−2

Taking higher ξ derivatives of (2.8) concludes the proof. �

The asymptotics of f+(x, ξ) as x→ −∞, are expressed via the scattering data. In fact,

T (ξ)f+(·, ξ) = f−(·,−ξ) +R−(ξ)f−(·, ξ)
T (ξ)f−(·, ξ) = f+(·,−ξ) +R+(ξ)f+(·, ξ)

(2.9)

where T (ξ)W (f+(·, ξ), f−(·, ξ)) = −2iξ with W = W (ξ) being the Wronskian. By Lemmas 2.2
and 2.3, W ∈ CN0−1(R). The scattering matrix

S(ξ) =

[
T (ξ) R−(ξ)
R+(ξ) T (ξ)

]
(2.10)

is unitary. We now formally introduce the class of non-generic potentials that we consider.
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Definition 2.4. We assume that H exhibits a 0-energy resonance, i.e., that H is non-generic.
This means that W (0) = 0, equivalently, T (0) 6= 0, and f+(x, 0) ∼ c 6= 0 as x → −∞. Thus, there
exists a nonzero solution of Hϕ = 0 with ϕ ∈ L∞(R), ϕ 6= 0, normalized so that ϕ(x) = f+(x, 0)
approaches 1 as x→ ∞ and a nonzero constant as x→ −∞.

The following lemma collects the analytic properties of the transmission and reflection coefficients
that are needed later.

Lemma 2.5. The transmission coefficient satisfies T ∈ CN0−1(R \ {0}) ∩ CN0−2(R) and

T (ξ) = 1 +O(ξ−1), |ξ| → ∞ (2.11)

where ∂jξO(ξ−1) = O(ξ−1−j) as |ξ| → ∞ for all 0 ≤ j ≤ N0 − 1. Furthermore, T 6= 0 everywhere,

T is bounded with its first N0 − 2 derivatives on R, and its first N0 − 1 derivatives on |ξ| ≥ ξ0 for
any fixed ξ0 > 0. The reflection coefficients satisfy R± ∈ CN0−1(R \ {0}) ∩CN0−2(R) and

R±(ξ) = O(ξ−1), |ξ| → ∞ (2.12)

where ∂jξO(ξ−1) = O(ξ−1−j) as |ξ| → ∞ for all 0 ≤ j ≤ N0 − 1. Additionally, R± is bounded with

its first N0 − 2 derivatives on R, and its first N0 − 1 derivatives on |ξ| ≥ ξ0 for any fixed ξ0 > 0.

Proof. Writing W (f+(·, ξ), f−(·, ξ)) =:W (ξ), we have (with m′
±(x, ξ) = ∂xm±(x, ξ))

W (ξ) = m+(0, ξ)(−iξm−(0, ξ) +m′
−(0, ξ)) −m−(0, ξ)(iξm+(0, ξ) +m′

+(0, ξ))

= −2iξm+(0, ξ)m−(0, ξ) +m+(0, ξ)m
′
−(0, ξ)−m−(0, ξ)m

′
+(0, ξ)

By Lemma 2.2, the final two terms are O(1) uniformly in ξ ∈ R, together with N0 − 1 derivatives
in ξ. Thus,

W (ξ) = −2iξ + 2iξ(1 −m+(0, ξ)m−(0, ξ)) +O(1)

1−m+(0, ξ)m−(0, ξ) = (1−m+(0, ξ))m−(0, ξ) + 1−m−(0, ξ)

By (2.1), we have

2iξ(1 −m+(0, ξ)) = −
∫ ∞

0

(
e2iξy − 1

)
V (y)m+(y, ξ) dy = O(1)

together with N0 − 1 derivatives in ξ. In conclusion,

W (ξ) = −2iξ +O(1)

as ξ → ±∞ with O(1) as above. Thus, (2.11) holds. Around ξ = 0 we have

W (ξ) = ξ

∫ 1

0
W ′(sξ) ds

whence T (ξ) = −2i
( ∫ 1

0 W
′(sξ) ds

)−1
. Since |T (ξ)| ≤ 1, we have W ′(0) 6= 0 and thus T ∈

CN0−2(R), and by T (ξ)W (ξ) = −2iξ, T 6= 0 everywhere. For large ξ, we write

T (ξ) =
[
1 + r(ξ)

]−1
, T (ξ) = 1− r(ξ)

1 + r(ξ)

r(ξ) := m+(0, ξ)m−(0, ξ)− 1 + (−2iξ)−1(m+(0, ξ)m
′
−(0, ξ) −m−(0, ξ)m

′
+(0, ξ))

By the preceding, r(ξ) = O(ξ−1) as ξ → ±∞, and r′(ξ) = O(ξ−2), r′′(ξ) = O(ξ−3), etc. which
concludes the treatment of the transmission coefficient.

Next we consider the reflection coefficient R−(ξ), the treatment of R+(ξ) being identical. Com-
puting the Wronskian of T (ξ)f+(·, ξ) and f−(·,−ξ) in two different ways using (2.9), we find that

R−(ξ)2iξ = T (ξ)W (f+(·, ξ), f−(·,−ξ)) = T (ξ)
(
m+(0, ξ)m

′
−(0,−ξ)−m′

+(0, ξ)m−(0,−ξ)
)
.

We may then infer the asserted regularity and decay properties of R−(ξ) by proceeding as above. �
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By the lemma, T ∈ CN0−2(R), T 6= 0 everywhere, and

f+(x, ξ) = T (ξ)−1
[
f−(x,−ξ) +R−(ξ)f−(x, ξ)

]

f−(x, ξ) = T (ξ)−1
[
f+(x,−ξ) +R+(ξ)f+(x, ξ)

] (2.13)

for all (x, ξ) ∈ R
2. We will use (2.13) for f+(x, ξ) on the half-axis x ≤ 0, respectively, for f−(x, ξ)

on x ≥ 0.
The Jost solutions f± give rise to the kernel of the resolvent on the real axis (approached from

the upper half plane), and by Stone’s formula, therefore also to the spectral measure on the positive
half-axis. The starting point is the expression

(H − (ξ2 + i0))−1(x, y) =
f+(x, ξ)f−(y, ξ)1[x>y] + f+(y, ξ)f−(x, ξ)1[y>x]

W (f+(·, ξ), f−(·, ξ))
(2.14)

for all x, y ∈ R and ξ ∈ R.

Lemma 2.6. The density of the spectral resolution E(d ξ2) of H on the continuous spectrum [0,∞)
has the kernel

E(d ξ2)

dξ
(x, y) =

|T (ξ)|2
2π

(f+(x, ξ)f+(y,−ξ) + f−(x, ξ)f−(y,−ξ)) (2.15)

for all x, y ∈ R and all ξ ∈ R. Alternatively,

E(d ξ2)

dξ
(x, y) =

1

π

{
Re

[
T (ξ)f+(x, ξ)f−(y, ξ)

]
x > y

Re
[
T (ξ)f+(y, ξ)f−(x, ξ)

]
x < y

(2.16)

and all ξ ∈ R.

Proof. By Stone’s formula, for x > y,

E(d ξ2)

dξ
(x, y) =

ξ

πi

(
(H − (ξ2 + i0))−1 − (H − (ξ2 − i0))−1

)
(x, y)

=
ξ

πi
(W (ξ)−1f+(x, ξ)f−(y, ξ)−W (−ξ)−1f+(x,−ξ)f−(y,−ξ))

=
1

2π
(T (ξ)f+(x, ξ)f−(y, ξ) + T (−ξ)f+(x,−ξ)f−(y,−ξ))

The final line here gives (2.16). On the other hand, using that T (−ξ) = T (ξ), R±(−ξ) = R±(ξ),
and the unitarity of the scattering matrix in (2.10), the last line here can be rewritten as

E(d ξ2)

dξ
(x, y) =

1

2π

[
T (ξ)f+(x, ξ)(T (−ξ)f+(y,−ξ)−R−(−ξ)f−(y,−ξ))

+ T (−ξ)(T (ξ)f−(x, ξ) −R+(ξ)f+(x, ξ))f−(y,−ξ)
]
.

which is the desired expression (2.15) for x > y. By self-adjointness, one has E(d ξ2)
dξ (x, y) =

E(d ξ2)
dξ (y, x) which concludes the proof. �

The definition of the distorted Fourier transform F̃ can now be read off from (2.15). Indeed, we
define the distorted Fourier basis as

e(x, ξ) :=
1√
2π

{
T (ξ)f+(x, ξ) ξ ≥ 0
T (−ξ)f−(x,−ξ) ξ < 0

(2.17)

and define f̃(ξ) = F̃f(ξ) = 〈e(·, ξ), f〉 for all f ∈ L1 ∩ L2(R). The reason for writing f−(x,−ξ)
rather than f−(x, ξ) is due to the map R → [0,∞), ξ 7→ ξ2 of multiplicity 2. We associate f+ with
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the second cover, so to speak, of [0,∞) from ξ > 0, and f− with the first cover by ξ < 0. Then,
one can read off from (2.15) that

〈f, g〉 = 〈F̃f, F̃g〉 ∀ f, g ∈ L1 ∩ L2
c(R)

where L2
c := PcL

2. In other words, Plancherel holds, F̃ : L2
c → L2 is an isometry, and F̃∗F̃ = IdL2

c
.

Explicitly, the inverse Fourier transform is given by

f(x) = 〈e(x, ·), f̃(·)〉
provided f̃ decays sufficiently for this inner product to exist. The reader will easily recover the
standard Fourier transform for V = 0. Note that for generic V , the Fourier basis vanishes at ξ = 0,
whereas in the non-generic case there is a discontinuity at zero energy.

2.2. Sobolev and product estimates. In this subsection we present several technical estimates,
in particular a weighted Sobolev estimate and a product estimate, that will be needed in the
nonlinear analysis in Sections 3 and 4.

Recall that we denote by χ0(ξ) a smooth cutoff to |ξ| . 1, equal to 1 near ξ = 0, and that we
denote by χ(ξ) a smooth bump function with support near |ξ| ≃ 1. We assume throughout that V
is non-generic, although the following results also hold generically.

Lemma 2.7 (Kernel bounds). Let N ≥ 1 and k ≥ 0 be integers, and let ν ∈ R. Assume that the

potential V (x) satisfies 〈x〉N+2V (ℓ) ∈ L1(R) for all 0 ≤ ℓ ≤ max(k − 1, 1). Then we have for all
x, y ∈ R that

∣∣[∂kx〈D̃〉νχ0(H)Pc

]
(x, y)

∣∣ ≤ C(V,N, ν, k)
∑

±

1

〈x± y〉N , (2.18)

and the same holds for the kernel of
√
Hχ0(H)Pc. Moreover, we have for all λ ≥ 1 and for all

x, y ∈ R that

∣∣[〈D̃〉νχ(D̃/λ)Pc

]
(x, y)

∣∣ ≤ C(V,N, ν)
∑

±
λν

λ

〈λ(x± y)〉N . (2.19)

∣∣[(
√
H)νχ(D̃/λ)Pc

]
(x, y)

∣∣ ≤ C(V,N, ν)
∑

±
λν

λ

〈λ(x± y)〉N . (2.20)

Proof. We have

[
〈D̃〉νχ0(H)Pc

]
(x, y) =

1

2π
1[x>y]

∫ ∞

−∞
T (ξ)f+(x, ξ)f−(y, ξ) 〈ξ〉νχ0(ξ

2) dξ

+
1

2π
1[x<y]

∫ ∞

−∞
T (ξ)f−(x, ξ)f+(y, ξ) 〈ξ〉νχ0(ξ

2) dξ

=: K1(x, y) +K2(x, y)

For the operator
√
Hχ0(H)Pc, we would have a similar expression but with ξχ0(ξ

2) in place of
〈ξ〉νχ0(ξ

2). This does not have any significant bearing on the subsequent arguments. If x ≥ 0, then
we write

K1(x, y) =
1

2π
1[x≥0>y]

∫ ∞

−∞
ei(x−y)ξm+(x, ξ)m−(y, ξ) 〈ξ〉νχ0(ξ

2)T (ξ) dξ

+
1

2π
1[x>y≥0]

∫ ∞

−∞
ei(x−y)ξm+(x, ξ)m+(y,−ξ) 〈ξ〉νχ0(ξ

2) dξ

+
1

2π
1[x>y≥0]

∫ ∞

−∞
ei(x+y)ξm+(x, ξ)m+(y, ξ) 〈ξ〉νR+(ξ)χ0(ξ

2) dξ

(2.21)
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Integrating by parts N times gives the desired bound on K1(x, y) provided 〈x〉N+2V (ℓ)(x) ∈ L1(R)
for ℓ = 0, 1, see Lemma 2.2. The reason for the N + 2 rather than N + 1, and with the need to
include V ′ here lies with the transmission and reflection coefficients being ratios of Wronskians,
see Lemma 2.5. The contributions of x < 0 and the kernel K2 are treated analogously. We now
consider k > 0 and without loss of generality ν = 0. The latter can be done since χ0 can be replaced

with any bump function supported near 0, and we may thus absorb 〈D̃〉ν into χ0. We compute

[
∂xχ0(H)Pc

]
(x, y) =

1

2π
1[x>y]

∫ ∞

−∞
T (ξ)∂xf+(x, ξ)f−(y, ξ) 〈ξ〉νχ0(ξ

2) dξ

+
1

2π
1[x<y]

∫ ∞

−∞
T (ξ)∂xf−(x, ξ)f+(y, ξ) 〈ξ〉νχ0(ξ

2) dξ

(2.22)

Notice that the ±δ0(x − y) singularities which arise by differentiating 1[x>y], resp. 1[x<y], cancel

each other. For k = 2 we could differentiate once more. However, we write ∂2x = V −H, whence
[
∂2xχ0(H)Pc

]
(x, y) =

[
(V (x)−H)χ0(H)Pc

]
(x, y)

The right-hand side satisfies the bounds in (2.18), multiplied by the factor 1 + ‖V ‖∞ ≤ 1 + ‖V ′‖1.
The bound (2.18) with k = 1 requires 〈x〉N+1V (ℓ) ∈ L1(R) for ℓ = 0, 1 by (2.22) and Lemma 2.2.
The higher order derivatives in x follow by iteration, for example

[
∂3xχ0(H)Pc

]
(x, y) = ∂x

[
(V (x)−H)χ0(H)Pc

]
(x, y)

[
∂4xχ0(H)Pc

]
(x, y) =

[
(V (x)−H)2χ0(H)Pc

]
(x, y)

with (V −H)2 = V 2 −HV − V H +H2 = V 2 − 2V H + V ′′ + 2V ′∂x +H2.
For (2.19) consider the operator

Mλ := λ−ν〈D̃〉νχ(D̃/λ), λ ≥ 1

with the distorted Fourier representation

MλPcg(x) =
1√
2π

∫ ∞

0
T (ξ)f+(x, ξ)λ

−ν〈ξ〉νχ(ξ/λ)g̃(ξ) dξ

+
1√
2π

∫ 0

−∞
T (−ξ)f−(x,−ξ)λ−ν〈ξ〉νχ(ξ/λ)g̃(ξ) dξ

(2.23)

Assuming x > 0 and inserting the expression for the distorted Fourier transform g̃ yields the explicit
kernel representation

M+
λ Pc(x, y)

=

∫ ∞

0
|T (ξ)|2ei(x−y)ξm+(x, ξ)m+(y,−ξ)θ+(y)λ−ν〈ξ〉νχ(ξ/λ) dξ

2π

+

∫ ∞

0
T (ξ)eixξm+(x, ξ)

(
e−iyξm−(y, ξ) +R−(−ξ)eiyξm−(y,−ξ)

)
θ−(y)λ

−ν〈ξ〉νχ(ξ/λ) dξ
2π

(2.24)

for the contribution of the positive frequencies ξ in (2.23). We leave the analogous contributions
of negative ξ to the reader. Combining the oscillatory integrals with phase (x− y)ξ and rescaling
ξ = λη leads to the estimate
∣∣∣λ

∫ ∞

0
eiλ(x−y)ηm+(x, λη)

{
|T (λη)|2m+(y,−λη)θ+(y) + T (λη)m−(y, λη)θ−(y)

}
λ−ν〈λη〉νχ(η) dη

2π

∣∣∣

≤ C(V )λ〈λ(x− y)〉−N

We integrated here by parts N times if |λ(x− y)| ≥ 1, otherwise just use the trivial bound λ. We
use the symbol type bounds on m±, T,R± in ξ as above, uniform in the respective regimes of x, y,
as well as that

λ−ν〈λη〉νχ(η) = (λ−2 + η2)
ν
2χ(η)
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is bounded with all its derivatives uniformly in λ ≥ 1. The treatment of the phase function (x+y)ξ
is essentially the same, leading to the kernel bound

C(V )λ〈λ(x+ y)〉−N

This concludes the proof of (2.19). These bounds require that 〈x〉N+1V ∈ L1.
The estimate (2.20) follows in essentially the same way. The only difference being that in (2.24)

the multiplier 〈ξ〉 is replaced with ξ. We leave the remaining details to the reader. �

Remark 2.8. In the nonlinear analysis in Sections 3 and 4, we will occasionally use without
further mentioning that the operators χ0(H)Pc and ∂xχ0(H)Pc are bounded on weighted Lp(R)
spaces, 1 ≤ p ≤ ∞, in the sense that

∥∥〈x〉−σχ0(H)Pcg
∥∥
Lp
x
+

∥∥〈x〉−σ∂xχ0(H)Pcg
∥∥
Lp
x
≤ C(V, p, σ)‖〈x〉−σPcg‖Lp

x

for σ ≥ 0. These bounds follow easily from the preceding kernel bounds (2.18) via Young’s inequality.

To carry out complex interpolation, it will be useful to also allow imaginary ν in Lemma 2.7.
The following lemma states the concrete estimate that we require for that purpose.

Lemma 2.9. Fix σ ∈ R and assume 〈x〉N+2V (ℓ) ∈ L1(R) for ℓ = 0, 1 where N > |σ| + 1 is an
integer. Then

‖〈x〉σ〈D̃〉isPc〈x〉−σ‖2→2 ≤ C(V, σ)〈s〉N (2.25)

for all s ∈ R. We also have

‖〈x〉−σ〈D̃〉H− 1

2 (1− χ0(H))Pc‖2→2 ≤ C(V, σ)

Proof. The limit

〈x〉σ〈D̃〉isPc〈x〉−σ = lim
L→∞

〈x〉σ〈D̃〉isχ0(H/L
2)Pc〈x〉−σ

=: lim
L→∞

AL

exists in the strong L2 sense. The kernel of the operator AL is of the form

AL(x, y) =
1

2π
1[x>y]

∫ ∞

−∞
T (ξ)f+(x, ξ)f−(y, ξ) 〈ξ〉isχ0(ξ

2/L2) dξ

+
1

2π
1[x<y]

∫ ∞

−∞
T (ξ)f−(x, ξ)f+(y, ξ) 〈ξ〉isχ0(ξ

2/L2) dξ

and we bound it as in the previous proof, i.e., after N integrations by parts we arrive at the upper
bound

〈x〉σ|AL(x, y)|〈y〉−σ ≤ C〈s〉N 〈x〉σ〈y〉−σ max
±

〈x± y〉−N
(2.26)

uniformly in L. Indeed, (2.21) now takes the form

K1(x, y) =
1

2π
1[x≥0>y]

∫ ∞

−∞
ei(x−y)ξm+(x, ξ)m−(y, ξ) 〈ξ〉isχ0(ξ

2/L2)T (ξ) dξ

+
1

2π
1[x>y≥0]

∫ ∞

−∞
ei(x−y)ξm+(x, ξ)m+(y,−ξ) 〈ξ〉isχ0(ξ

2/L2) dξ

+
1

2π
1[x>y≥0]

∫ ∞

−∞
ei(x+y)ξm+(x, ξ)m+(y, ξ) 〈ξ〉isR+(ξ)χ0(ξ

2/L2) dξ

Integrating by parts at least twice in these expressions produces an absolutely convergent integrand,
uniformly in L (note N ≥ 2). Via Schur’s test, (2.26) implies (2.25) for AL, and thus also in the
limit L→ ∞.



22 H. LINDBLAD, J. LÜHRMANN, W. SCHLAG, AND A. SOFFER

The final statement of the lemma is proved in exactly the same fashion, but with 〈ξ〉ξ−1(1 −
χ0(ξ

2))χ0(ξ
2/L2) in place of 〈ξ〉isχ0(ξ

2/L2). The same arguments go through with this symbol. �

As an application of these bounds, we can now give a self-contained argument for the equivalence
of weighted Sobolev norms defined via H, respectively, H0 = −∂2x.

Lemma 2.10 (Equivalence of norms). For k = 1, 2 and σ ≥ 0, there exists a constant C ≡
C(V, k, σ) such that

1

C

∥∥〈x〉σ〈D̃〉kPcg
∥∥
L2
x
≤ ‖〈x〉σPcg‖Hk

x
≤ C

∥∥〈x〉σ〈D̃〉kPcg
∥∥
L2
x
. (2.27)

The conditions on V are the same as in Lemma 2.9.

Proof. For k = 2 we use 〈D̃〉2Pc = (1 +H)Pc = (1 + V − ∂2x)Pc which gives
∥∥〈x〉σ〈D̃〉2Pcg

∥∥
L2
x
≤ (1 + ‖V ‖∞)‖〈x〉σPcg‖L2

x
+ ‖〈x〉σ∂2xPcg‖L2

x

≤ C(1 + ‖V ′‖1)‖〈x〉σPcg‖H2
x

with a constant C = C(σ). For the second inequality in (2.27) we first note that

‖〈x〉σPcg‖H2
x
. ‖〈x〉σ∂2xPcg‖L2

x
+ ‖∂x(〈x〉σPcg)‖L2

x
+ ‖〈x〉σPcg‖L2

x

. ‖〈x〉σ∂2xPcg‖L2
x
+ ε‖∂2x(〈x〉σPcg)‖L2

x
+ ε−1‖〈x〉σPcg‖L2

x

The middle term here on the last line we move to the left-hand side for sufficiently small ε, which
yields

‖〈x〉σPcg‖H2
x
. ‖〈x〉σ∂2xPcg‖L2

x
+ ‖〈x〉σPcg‖L2

x

. ‖〈x〉σ〈D̃〉2Pcg‖L2
x
+ ‖〈x〉σPcg‖L2

x

Now

‖〈x〉σPcg‖L2
x
= ‖R 〈x〉σ〈D̃〉2Pcg‖L2

x
. ‖〈x〉σ〈D̃〉2Pcg‖L2

x

since R := 〈x〉σ〈D̃〉−2Pc〈x〉−σ : L2(R) → L2(R) is bounded by Schur’s test and the previous lemma.
Indeed, performing a dyadic partition of unity, we can sum up the respective estimates in (2.18)
and (2.19) with ν = −2, provided N > σ + 1. This settles k = 2 of the lemma, while k = 1
follows by interpolation of this with k = 0. To be more specific, we use complex interpolation
which requires (2.27) on both the vertical lines is and 2 + is with s ∈ R with bounds that grow at
most exponentially (say) in s. In fact, Lemma 2.9 allows us to extend the previous bounds from 0,
resp. 2, to the entire vertical lines through those points, with at most polynomial growth in s. �

In the nonlinear analysis we will frequently use the following weighted Sobolev estimate.

Lemma 2.11 (Weighted Sobolev). Fix σ ≥ 0 and assume 〈x〉N+2V (ℓ) ∈ L1(R) for ℓ = 0, 1 where
N > σ + 1

2 is an integer. For any µ > 0 we have

‖〈x〉−σPcg‖L∞
x

≤ C(V, σ, µ)
(
‖〈x〉−σPcg‖L2

x
+ ‖〈x〉−σ(

√
H)

1

2
+µPcg‖L2

x

)
. (2.28)

Proof. We begin by decomposing

Pcg = χ0(H)Pcg +
∑

j≥0

χ(D̃/2j)Pcg. (2.29)

We first treat the low-energy piece. Observe that we have uniformly for all x, y ∈ R that

〈x〉−σ 1

〈x± y〉N 〈y〉σ . 〈x〉−σ 〈x± y〉σ + 〈x〉σ
〈x± y〉N .

1

〈x± y〉N−σ
.
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Hence, by the kernel bound (2.18) and by Young’s inequality, we obtain the desired estimate

∥∥〈x〉−σχ0(H)Pcg
∥∥
L∞
x

.
∑

±
sup
x∈R

∫

R

〈x〉−σ 1

〈x± y〉N 〈y〉σ〈y〉−σ|g(y)|dy

.
∑

±
sup
x∈R

∫

R

1

〈x± y〉N−σ
〈y〉−σ|g(y)|dy

.
∥∥〈·〉−(N−σ)

∥∥
L2
x
‖〈x〉−σg‖L2

x

. ‖〈x〉−σg‖L2
x
.

Next we turn to the high-energy estimate. In the following we prove that for any λ ≥ 1,
∥∥〈x〉−σχ(D̃/λ)Pcg

∥∥
L∞
x

. λ−µ
∥∥〈x〉−σ(

√
H)

1

2
+µPcg

∥∥
L2
x
. (2.30)

Then the asserted weighted Sobolev estimate (2.28) follows from the decomposition (2.29) and the
preceding bounds by summing over j ≥ 0. For the proof of (2.30) we write

〈x〉−σχ(D̃/λ)Pcg = 〈x〉−σ(
√
H)−

1

2
−µχ(D̃/λ)Pc(

√
H)

1

2
+µPcg.

Since we have uniformly for all x, y ∈ R and for all λ ≥ 1 that

〈x〉−σ 1

〈λ(x± y)〉N 〈y〉σ . 〈x〉−σ 〈x± y〉σ + 〈x〉σ
〈λ(x± y)〉N . 〈x〉−σ 〈λ(x± y)〉σ + 〈x〉σ

〈λ(x± y)〉N .
1

〈λ(x± y)〉N−σ
,

the kernel bound (2.20) for (
√
H)−

1

2
−µχ(D̃/λ)Pc together with Young’s inequality yields the desired

estimate
∥∥〈x〉−σχ(D̃/λ)Pcg

∥∥
L∞
x

.
∑

±
sup
x∈R

∫

R

λ−
1

2
−µ λ

〈λ(x± y)〉N−σ
〈y〉−σ

∣∣(
√
H)

1

2
+µPcg(y)

∣∣ dy

. λ
1

2
−µ‖〈λ·〉−(N−σ)‖L2

x

∥∥〈x〉−σ(
√
H)

1

2
+µPcg

∥∥
L2
x

. λ−µ
∥∥〈x〉−σ(

√
H)

1

2
+µPcg

∥∥
L2
x

and we are done. �

The nonlinear analysis will require that we interchange standard derivatives with powers of H.

Lemma 2.12 (Weighted derivative bound). Under the same assumptions as in Lemma 2.9 one
has ∥∥〈x〉−σ∂xPcg

∥∥
L2
x
. ‖〈x〉−σPcg‖L2

x
+ ‖〈x〉−σ

√
HPcg‖L2

x
. (2.31)

Proof. We claim that (2.31) follows from the case k = 1 of
∥∥〈x〉−σ∂kxPcg

∥∥
L2
x
. ‖〈x〉−σPcg‖L2

x
+ ‖〈x〉−σ〈D̃〉kPcg‖L2

x
. (2.32)

To see this, note that

‖〈x〉−σ〈D̃〉Pcg‖L2
x
≤ ‖〈x〉−σ〈D̃〉χ0(H)Pcg‖L2

x
+ ‖〈x〉−σ〈D̃〉(1− χ0(H))Pcg‖L2

x

≤ ‖〈x〉−σ〈D̃〉χ0(H)Pc〈x〉σ‖2→2‖〈x〉−σPcg‖L2
x

+ ‖〈x〉−σ〈D̃〉H− 1

2 (1− χ0(H))Pc‖2→2‖〈x〉−σ
√
HPcg‖L2

x

By Lemma 2.7 and Schur’s test, ‖〈x〉−σ〈D̃〉χ0(H)Pc〈x〉σ‖2→2 ≤ C(V, σ), while the operator norm
in the last line is finite by Lemma 2.9. We now perform the following further reduction with
H0 := −∂2x:∥∥〈x〉−σ∂xPcg

∥∥
L2
x
.

∥∥〈x〉−σ∂xχ0(H0)Pcg
∥∥
L2
x
+

∥∥〈x〉−σ∂x(1− χ0(H0))Pcg
∥∥
L2
x

.
∥∥〈x〉−σ∂xχ0(H0)Pc〈x〉σ

∥∥
2→2

‖〈x〉−σPcg
∥∥
L2
x
+

∥∥〈x〉−σ∂x(1− χ0(H0))Pcg
∥∥
L2
x
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The operator norm in the last line is bounded by the rapid off-diagonal decay of the kernel, and
Schur’s test. Therefore, it suffices to prove the k = 1 case of

∥∥〈x〉−σ∂kx(1− χ0(H0))Pcg
∥∥
L2
x
. ‖〈x〉−σPcg‖L2

x
+ ‖〈x〉−σ〈D̃〉kPcg‖L2

x
. (2.33)

Writing ∂2x = V −H, the estimate (2.32) is obvious with k = 2 since 〈D̃〉2 = 1 +H and
∥∥〈x〉−σ∂2xPcg

∥∥
L2
x
≤ ‖V ′‖1‖〈x〉−σPcg‖L2

x
+ ‖〈x〉−σHPcg‖L2

x

As before, we can introduce the cut-off 1−χ0(H0) on the left-hand side, hence (2.33) holds for k = 0
and k = 2. Moreover, these bounds extend to the vertical lines is, resp. 2 + is, on the left-hand
side only due to the fact that ‖〈x〉−σ∂isx (1−χ0(H0))〈x〉σ‖2→2 ≤ C(s) which grows polynomially as
|s| → ∞. Therefore, by complex interpolation we conclude that the desired bounds hold at k = 1
and we are done. �

We can now establish Leibnitz rules as they appear in the nonlinear estimates.

Corollary 2.13 (Product estimates). Fix σ ≥ 0. Assume that 〈x〉N+2V (ℓ) ∈ L1(R) for ℓ = 0, 1
where N > σ + 1 is an integer. Then we have

∥∥〈D̃〉Pc

(
α(Pcg)(Pch)

)∥∥
L1
x
. ‖〈x〉1+2σα‖W 1,∞

x

(
‖〈x〉−σPcg‖L2

x
+ ‖〈x〉−σ

√
HPcg‖L2

x

)
×

×
(
‖〈x〉−σPch‖L2

x
+ ‖〈x〉−σ

√
HPch‖L2

x

) (2.34)

and
∥∥〈D̃〉Pc

(
α(Pcg)(Pch)

)∥∥
L2
x
. ‖〈x〉2σα‖W 1,∞

x

(
‖〈x〉−σPcg‖L2

x
+ ‖〈x〉−σ

√
HPcg‖L2

x

)
×

×
(
‖〈x〉−σPch‖L2

x
+ ‖〈x〉−σ

√
HPch‖L2

x

)
.
(2.35)

Proof. We give the proof of the first product estimate (2.34), the proof of (2.35) being identical.
By Hölder’s inequality and by the equivalence of norms from Lemma 2.10, we have that

∥∥〈D̃〉Pc

(
α(Pcg)(Pch)

)∥∥
L1
x
. ‖〈x〉−1‖L2

x

∥∥〈x〉〈D̃〉Pc

(
α(Pcg)(Pch)

)∥∥
L2
x
.

∥∥〈x〉α(Pcg)(Pch)
∥∥
H1

x
.

Then by the standard product rule for the derivative and by Hölder’s inequality, we obtain
∥∥〈x〉α(Pcg)(Pch)

∥∥
H1

x
. ‖〈x〉1+2σα‖W 1,∞

x
‖〈x〉−σPcg‖L2

x
‖〈x〉−σPch‖L∞

x

+ ‖〈x〉1+2σα‖L∞
x
‖〈x〉−σ∂xPcg‖L2

x
‖〈x〉−σPch‖L∞

x

+ ‖〈x〉1+2σα‖L∞
x
‖〈x〉−σPcg‖L∞

x
‖〈x〉−σ∂xPch‖L2

x
.

(2.36)

The product estimate (2.34) now follows from the weighted Sobolev inequality in Lemma 2.11 and
the weighted derivative bound in Lemma 2.12. �

Our final technical lemma arises in that part of the nonlinear analysis dealing with the non-
resonant case of the main theorem.

Lemma 2.14. Fix σ ∈ R and assume 〈x〉N+2V (ℓ) ∈ L1(R) for ℓ = 0, 1 where N > |σ| + 1 is an
integer. Let 〈x〉σ+3g ∈ L2

x(R) and assume that

F̃ [g](±
√
3) = 0.

Then we have for m ∈ {0, σ} and ℓ = 0,±1 that
∥∥〈x〉m(2− 〈D̃〉)−1〈D̃〉ℓPcg

∥∥
L2
x
. ‖〈x〉m+3g‖L2

x
. (2.37)



ON MODIFIED SCATTERING FOR 1D QUADRATIC KG EQUATIONS WITH NON-GENERIC POTENTIALS 25

Proof. We introduce a smooth partition of unity 1 = χ2(ξ) +χ3(ξ), where χ2(ξ) vanishes outside a
small neighborhood of the set {3}, and equals to 1 near 3. Then

∥∥〈x〉m(2− 〈D̃〉)−1〈D̃〉ℓχ3(H)Pc〈x〉−mg
∥∥
L2
x
≤ C(V,m)‖g‖L2

x

by a small variant of the final statement in the proof of Lemma 2.9. It therefore suffices to prove
(2.37) for χ2(H)Pcg in place of Pcg on the left-hand side. One has

(2− 〈D̃〉)−1〈D̃〉ℓχ2(H)Pcg(x)

=
1√
2π

∫ ∞

0
T (ξ)f+(x, ξ)(2 − 〈ξ〉)−1〈ξ〉ℓχ2(ξ

2)(g̃(ξ)− g̃(
√
3)) dξ

+
1√
2π

∫ 0

−∞
T (−ξ)f−(x,−ξ)(2− 〈ξ〉)−1〈ξ〉ℓχ2(ξ

2)(g̃(ξ)− g̃(−
√
3)) dξ

≡ G+(x) +G−(x).

(2.38)

We denote by χ4(ξ) a slight fattening of the bump function χ2 such that χ4(ξ) = 1 on the support
of χ2(ξ

2) and such that χ4(ξ) = 0 in a neighborhood of zero. Clearly, we may freely insert χ4(ξ)
in the integrands on the right-hand side of (2.38). We now prove the bound (2.37) for G+(x), the

bound for G−(x) being analogous. Using the assumption g̃(
√
3) = 0, we write

χ4(ξ)g̃(ξ) = χ4(ξ)g̃(ξ)− χ4(
√
3)g̃(

√
3) = (ξ −

√
3)

∫ 1

0
(χ4g̃)

′(sξ + (1− s)
√
3) ds.

Then we observe that the function

(0,∞) ∋ ξ 7→ (2− 〈ξ〉)−1〈ξ〉ℓχ2(ξ
2)(ξ −

√
3) = −2 + 〈ξ〉√

3 + ξ
〈ξ〉ℓχ2(ξ

2)

is smooth and bounded on its support, with all of its derivatives bounded there as well. Hence,
integrating by parts in ξ for N = m+1 times in the integrand of G+(x) and using the symbol type
bounds on m±, T,R± in ξ uniformly in the respective regimes of x, we conclude that

|G+(x)| ≤ C(V,N)〈x〉−σ−1 sup
1≤n≤σ+2

∥∥∂nξ (χ4g̃)(ξ)
∥∥
L∞
ξ

≤ C(V,N)〈x〉−σ−1
∥∥〈x〉σ+2g

∥∥
L1
x
.

This implies (2.37) for G+(x), and finishes the proof of the lemma. �

2.3. Decay estimates for the Klein-Gordon propagator. We now establish local decay es-
timates as well as pointwise decay estimates for the linear Klein-Gordon flow relative to H =

−∂2x + V (x), i.e., the propagator of (∂2t +H + 1)u = 0. We write 〈D̃〉 =
√
1 +H on the positive

spectrum of H.

Lemma 2.15. Let V ∈ L∞(R) ∩ C1(R) be real-valued, and assume that 〈x〉6V (ℓ)(x) ∈ L1(R) for
all 0 ≤ ℓ ≤ 1. Let χ0(ξ

2) be a smooth cutoff to |ξ| . 1, equal to 1 near ξ = 0 and set w(x) = 〈x〉4.
With Pc the projection onto the continuous spectral subspace of H,

∥∥∥w−1
(
eit〈D̃〉χ0(H)Pc g − c0

ei
π
4 eit

t
1

2

(ϕ⊗ ϕ)g
)∥∥∥

L∞
x

≤ C

t
3

2

‖wg‖L1
x
, t ≥ 1, (2.39)

∥∥∥w−1∂x

(
eit〈D̃〉χ0(H)Pcg − c0

ei
π
4 eit

t
1

2

(ϕ⊗ ϕ)g
)∥∥∥

L∞
x

≤ C

t
3

2

‖wg‖L1
x
, t ≥ 1. (2.40)

The real constant c0 only depends on the scattering matrix S(0) of the potential V (x) at zero energy,
cf. (2.10), and is explicitly given by

c0 =
1

(2π)
3

2

T (0)2

1 +R−(0)
. (2.41)
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More generally, let ω = ω(ξ) be a function bounded on the support of χ0(ξ
2) with its derivatives up

to order four. Then
∥∥∥w−1

(
eit〈D̃〉ω(H)χ0(H)Pc g − c0ω(0)

ei
π
4 eit

t
1

2

(ϕ ⊗ ϕ)g
)∥∥∥

L∞
x

≤ C(ω)

t
3

2

‖wg‖L1
x
, t ≥ 1, (2.42)

∥∥∥w−1∂x

(
eit〈D̃〉ω(H)χ0(H)Pcg − c0ω(0)

ei
π
4 eit

t
1

2

(ϕ ⊗ ϕ)g
)∥∥∥

L∞
x

≤ C(ω)

t
3

2

‖wg‖L1
x
, t ≥ 1. (2.43)

Proof. Assume throughout that t ≥ 1. We first derive the local decay estimates (2.39) and (2.40).
Afterwards we comment on the proofs of the generalized versions (2.42) and (2.43). Fix g, h ∈
Ccomp(R). By Lemma 2.6, and using that T (−ξ) = T (ξ),

(
eit〈D̃〉χ0(H)Pcg

)
(x) =

1

π

∫ ∞

0

∫ x

−∞
eit〈ξ〉Re

[
T (ξ)f+(x, ξ)f−(y, ξ)

]
g(y) dy χ0(ξ

2) dξ

+
1

π

∫ ∞

0

∫ ∞

x
eit〈ξ〉Re

[
T (ξ)f−(x, ξ)f+(y, ξ)

]
g(y) dy χ0(ξ

2) dξ

=
1

2π

∫ x

−∞

∫ ∞

−∞
eit〈ξ〉T (ξ)f+(x, ξ)f−(y, ξ)χ0(ξ

2) dξ g(y) dy

+
1

2π

∫ ∞

x

∫ ∞

−∞
eit〈ξ〉T (ξ)f−(x, ξ)f+(y, ξ)χ0(ξ

2) dξ g(y) dy.

(2.44)

To isolate 0 energy we rewrite these expressions in the form

(
eit〈D̃〉χ0(H)Pcg

)
(x) =

1

2π

∫ x

−∞

∫ ∞

−∞
eit〈ξ〉T (ξ)χ0(ξ

2) dξ f+(x, 0)f−(y, 0)g(y) dy

+
1

2π

∫ ∞

x

∫ ∞

−∞
eit〈ξ〉T (ξ)χ0(ξ

2) dξ f−(x, 0)f+(y, 0)g(y) dy

+
1

2π

∫ x

−∞

∫ ∞

−∞
eit〈ξ〉T (ξ)χ0(ξ

2)F>(x, y; ξ) dξ g(y) dy

+
1

2π

∫ ∞

x

∫ ∞

−∞
eit〈ξ〉T (ξ)χ0(ξ

2)F<(x, y; ξ) dξ g(y) dy,

where

F>(x, y; ξ) = f+(x, ξ)f−(y, ξ) − f+(x, 0)f−(y, 0),

F<(x, y; ξ) = f−(x, ξ)f+(y, ξ) − f−(x, 0)f+(y, 0).
(2.45)

Taking the inner product with h, we obtain

〈h, eit〈D̃〉χ0(H)Pc g〉 =
1

2π

∫

R2

∫ ∞

−∞
eit〈ξ〉T (ξ)χ0(ξ

2) dξ f+(x, 0)f−(y, 0)g(y)h(x) 1[x>y] dy dx

+
1

2π

∫

R2

∫ ∞

−∞
eit〈ξ〉T (ξ)χ0(ξ

2) dξ f−(x, 0)f+(y, 0)g(y)h(x) 1[x<y] dy dx

+
1

2π

∫

R2

∫ ∞

−∞
eit〈ξ〉T (ξ)χ0(ξ

2)F>(x, y; ξ) dξ g(y)h(x) 1[x>y] dy dx

+
1

2π

∫

R2

∫ ∞

−∞
eit〈ξ〉T (ξ)χ0(ξ

2)F<(x, y; ξ) dξ g(y)h(x) 1[x<y] dy dx

≡ A> +A< +B> +B<.
(2.46)

By (2.9),

f−(x, 0) =
T (0)

1 +R−(0)
f+(x, 0) =: κϕ(x).
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Note that κ ∈ R and 1 +R−(0) 6= 0 due to |T (0)|2 + |R−(0)|2 = 1 and T (0) 6= 0. Then we have

A> +A< =
κ

2π
〈h, ϕ〉〈ϕ, g〉

∫ ∞

−∞
eit〈ξ〉T (ξ)χ0(ξ

2) dξ.

Setting k = 2 in [27, Theorem 7.7.5] yields
∫ ∞

−∞
eit〈ξ〉T (ξ)χ0(ξ

2) dξ =
eiπ/4√
2πt

eit T (0) +R(t), |R(t)| ≤ C0 t
− 3

2 , (2.47)

where C0 depends on the derivatives of T (ξ)χ(ξ2) up to and including fourth order. Thus,

A> +A< = c0〈h, (ϕ ⊗ ϕ) g〉
(eiπ/4√

t
eit +OL∞

t
(t−

3

2 )
)
, c0 =

κ

2π
√
2π
T (0), (2.48)

where the constants in the OL∞
t
(·) term depend on T (ξ). Applying [27, Theorem 7.7.5] to B> with

k = 2 and using that F>(x, y; 0) = 0 yields
∣∣∣B> − C1e

itt−
3

2

∫

R2

∂2ξ
(
T (ξ)χ0(ξ

2)F>(x, y; ξ)
)∣∣

ξ=0
1[x>y] g(y)h(x) dxdy

∣∣∣

≤ C2 t
−2

∫

R2

sup
ξ∈R

sup
ℓ≤4

∣∣∣∂ℓξ
(
T (ξ)χ0(ξ

2)F>(x, y; ξ)
)∣∣∣1[x>y]

∣∣g(y)h(x)
∣∣ dxdy

(2.49)

with some constants C1, C2. By (2.45) and (2.13),

sup
|ξ|.1

sup
ℓ≤4

∣∣∂ℓξF>(x, y; ξ)
∣∣ ≤ C〈x〉4〈y〉4.

The bound on B< is analogous. In summary,

∣∣∣〈h, eit〈D̃〉χ0(H)Pc g〉 − c0〈h, (ϕ ⊗ ϕ) g〉e
iπ/4

√
t
eit

∣∣∣ ≤ Ct−
3

2 ‖wh‖L1
x
‖wg‖L1

x
,

which implies the desired local decay estimate (2.39) given by
∥∥∥w−1

[
eit〈D̃〉χ0(H)Pc − c0 e

iπ/4t−
1

2 eit(ϕ⊗ ϕ)
]
g
∥∥∥
L∞
x

≤ Ct−
3

2 ‖wg‖L1
x
. (2.50)

Next, we turn to the proof of (2.40). From the representation (2.44), we obtain upon taking a
derivative in x that

∂x
(
eit〈D̃〉χ(H)Pcg

)
(x) =

1

2π

∫ x

−∞

∫ ∞

−∞
eit〈ξ〉T (ξ)(∂xf+)(x, ξ)f−(y, ξ)χ0(ξ

2) dξ g(y) dy

+
1

2π

∫ ∞

x

∫ ∞

−∞
eit〈ξ〉T (ξ)(∂xf−)(x, ξ)f+(y, ξ)χ0(ξ

2) dξ g(y) dy.

In order to isolate 0 energy, we then write

∂x
(
eit〈D̃〉χ(H)Pcg

)
(x) =

1

2π

∫ x

−∞

∫ ∞

−∞
eit〈ξ〉T (ξ)χ0(ξ

2) dξ (∂xf+)(x, 0)f−(y, 0) g(y) dy

+
1

2π

∫ ∞

x

∫ ∞

−∞
eit〈ξ〉T (ξ)χ0(ξ

2) dξ (∂xf−)(x, 0)f+(y, 0) g(y) dy

+
1

2π

∫ x

−∞

∫ ∞

−∞
eit〈ξ〉T (ξ)χ0(ξ

2)G>(x, y; ξ) dξ g(y) dy

+
1

2π

∫ ∞

x

∫ ∞

−∞
eit〈ξ〉T (ξ)χ0(ξ

2)G<(x, y; ξ) dξ g(y) dy

≡ I + II + III + IV

(2.51)



28 H. LINDBLAD, J. LÜHRMANN, W. SCHLAG, AND A. SOFFER

with

G>(x, y; ξ) := (∂xf+)(x, ξ)f−(y, ξ)− (∂xf+)(x, 0)f−(y, 0),

G<(x, y; ξ) := (∂xf−)(x, ξ)f+(y, ξ)− (∂xf−)(x, 0)f+(y, 0).

Using that f−(x, 0) = κf+(x, 0) with κ := T (0)
1+R−(0) and therefore (∂xf−)(x, 0) = κ(∂xf+)(x, 0), we

obtain for the first two terms that

I + II =
κ

2π

∫ x

−∞

∫ ∞

−∞
eit〈ξ〉T (ξ)χ0(ξ

2) dξ (∂xf+)(x, 0)f+(y, 0) g(y) dy

+
κ

2π

∫ ∞

x

∫ ∞

−∞
eit〈ξ〉T (ξ)χ0(ξ

2) dξ (∂xf+)(x, 0)f+(y, 0) g(y) dy

=
κ

2π

(∫ ∞

−∞
eit〈ξ〉T (ξ)χ0(ξ

2) dξ

)(∫

R

f+(y, 0)g(y) dy

)
(∂xf+)(x, 0).

Using (2.47), we find that

I + II = c0
ei

π
4 eit

t
1

2

〈ϕ, g〉(∂xϕ)(x) +R(t)〈ϕ, g〉(∂xϕ)(x), |R(t)| ≤ C0t
− 3

2 , t ≥ 1.

Thus, taking the inner product of (2.51) with h, we have

〈
h, ∂x

(
eit〈D̃〉χ0(H)Pcg − c0

ei
π
4 eit

t
1

2

(ϕ⊗ ϕ)g
)〉

= R(t)〈h, ∂xϕ〉〈ϕ, g〉

+
1

2π

∫

R2

∫ ∞

−∞
eit〈ξ〉T (ξ)χ0(ξ

2)G>(x, y; ξ) dξ g(y)h(x) 1[x>y] dy dx

+
1

2π

∫

R2

∫ ∞

−∞
eit〈ξ〉T (ξ)χ0(ξ

2)G<(x, y; ξ) dξ g(y)h(x) 1[x<y] dy dx.

Now using that G>(x, y; 0) = G<(x, y; 0) = 0, the fact that ∂xϕ ∈ L∞
x (R), and that

sup
|ξ|.1

sup
ℓ≤4

(∣∣∂ℓξG>(x, y; ξ)
∣∣ +

∣∣∂ℓξG<(x, y; ξ)
∣∣
)
≤ C〈x〉4〈y〉4,

we can conclude the proof of (2.40) by arguing as in the preceding proof of (2.39).
Finally, regarding the proofs of the generalized versions (2.42) and (2.43) involving the operator

ω(H), note that the conditions on ω are such that the preceding arguments still apply. �

The weights in Lemma 2.15 are most likely not sharp. We remark that a bound as in Lemma 2.15
cannot hold for large energies ξ. In fact, it is an immediate consequence of stationary phase that
derivatives of g are needed to bound the pointwise size of the evolution in (2.42). We will pursue
this in more detail below, but first establish local L2-decay for energies separated from 0. For the
following lemma, the distinction between V generic and non-generic is irrelevant. Moreover, we use
the notation 〈D̃〉 :=

√
1 +H on the positive spectrum of H.

Lemma 2.16. Let H = −∂2x + V (x) with real-valued V ∈ L∞(R) ∩ C3(R), and assume that
〈x〉6V (ℓ)(x) ∈ L1(R) for all 0 ≤ ℓ ≤ 3. Fix ξ0 > 0. Let χ0 be a smooth bump function such that
χ0(ξ) = 1 for |ξ| ≤ 1 and χ0(ξ) = 0 for |ξ| ≥ 2. Then

∥∥〈x〉−2eit〈D̃〉(1− χ0(H/ξ
2
0)
)
Pcg

∥∥
L2
x
≤ C〈t〉−2‖〈x〉2g‖L2

x
(2.52)

with some constant C > 0 depending on ξ0 and V . The same estimate holds with eit〈D̃〉 replaced by

eit〈D̃〉ω(H) where |∂ℓξω(ξ)| ≤ C(ξ0) for all |ξ| ≥ ξ0 and 0 ≤ ℓ ≤ 5.
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Proof. By (2.15) the distorted Fourier basis takes the form

e(x, ξ) :=
1√
2π

{
T (ξ)f+(x, ξ), ξ ≥ 0,

T (−ξ)f−(x,−ξ), ξ < 0.
(2.53)

Thus, the distorted Fourier transform of g = Pcg and its inverse are given by

g̃(ξ) =

∫

R

e(x, ξ)g(x) dx, g(x) =

∫

R

e(x, ξ)g̃(ξ) dξ

and Plancherel’s theorem reads ‖g‖L2
x
= ‖g̃‖L2

ξ
. The Klein-Gordon evolution therefore takes the

form
(
eit〈D̃〉(1− χ0(H/ξ

2
0)
)
Pcg

)
(x) =

∫

R

e(x, ξ)eit〈ξ〉
(
1− χ0(ξ

2/ξ20)
)
g̃(ξ) dξ.

In view of the cutoff 1−χ0(ξ
2/ξ20) we can treat the regions ξ ≥ ξ0 and ξ ≤ −ξ0 separately. We also

introduce smooth cutoff functions θ±(x) such that θ+(x) + θ−(x) = 1 for all x ∈ R and such that
θ±(x) = 0 for ±x < −1. By symmetry, it suffices to consider the case ξ ≥ ξ0 which contributes the
following expression to the time evolution:∫ ∞

0
e(x, ξ)eit〈ξ〉

(
1− χ0(ξ

2/ξ20)
)
g̃(ξ) dξ

= θ+(x)

∫ ∞

0
T (ξ)f+(x, ξ)e

it〈ξ〉(1− χ0(ξ
2/ξ20)

)
g̃(ξ) dξ

+ θ−(x)
∫ ∞

0
T (ξ)f+(x, ξ)e

it〈ξ〉(1− χ0(ξ
2/ξ20)

)
g̃(ξ) dξ

=: I+ + I−.

We further rewrite the term I+ as

I+ = θ+(x)

∫ ∞

0
eixξeit〈ξ〉T (ξ)m+(x, ξ)

(
1− χ0(ξ

2/ξ20)
)
g̃(ξ) dξ

and using the identity

T (ξ)f+(x, ξ) = f−(x,−ξ) +R−(ξ)f−(x, ξ) = eixξm−(x,−ξ) +R−(ξ)e
−ixξm−(x, ξ),

we can express the term I− as

I− = θ−(x)
∫ ∞

0
eixξeit〈ξ〉m−(x,−ξ)

(
1− χ0(ξ

2/ξ20)
)
g̃(ξ) dξ

+ θ−(x)
∫ ∞

0
e−ixξeit〈ξ〉m−(x, ξ)

(
1− χ0(ξ

2/ξ20)
)
g̃(ξ) dξ.

(2.54)

Let us further consider the term I+. Using that ∂ξ(e
it〈ξ〉) = it ξ

〈ξ〉e
it〈ξ〉 and integrating by parts

once, we obtain

I+ = − 1

it
θ+(x)

∫ ∞

0
eit〈ξ〉∂ξ

(〈ξ〉
ξ
eixξT (ξ)m+(x, ξ)

(
1− χ0(ξ

2/ξ20)
)
g̃(ξ)

)
dξ

= − ix
it
θ+(x)

∫ ∞

0
eixξeit〈ξ〉

〈ξ〉
ξ
T (ξ)m+(x, ξ)

(
1− χ0(ξ

2/ξ20)
)
g̃(ξ) dξ

− 1

it
θ+(x)

∫ ∞

0
eixξeit〈ξ〉∂ξ

(〈ξ〉
ξ
T (ξ)m+(x, ξ)

(
1− χ0(ξ

2/ξ20)
))
g̃(ξ) dξ

− 1

it
θ+(x)

∫ ∞

0
eixξeit〈ξ〉

〈ξ〉
ξ
T (ξ)m+(x, ξ)

(
1− χ0(ξ

2/ξ20)
)
∂ξ g̃(ξ) dξ

=: I
(a)
+ + I

(b)
+ + I

(c)
+ .
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We view

t〈x〉−1I
(a)
+ = − x

〈x〉

∫ ∞

0
eixξ

(〈ξ〉
ξ
T (ξ)θ+(x)m+(x, ξ)χ̃{ξ≥ξ0/2}(ξ)

(
1− χ0(ξ

2/ξ20)
))
eit〈ξ〉g̃(ξ) dξ

as a pseudo-differential operator on the line (after introducing another smooth cutoff χ̃{ξ≥ξ0/2}(ξ))
with symbol

a(x, ξ) := − x

〈x〉
〈ξ〉
ξ
T (ξ)θ+(x)m+(x, ξ)χ̃{ξ≥ξ0/2}(ξ)

(
1− χ0(ξ

2/ξ20)
)

By the Calderon-Vaillancourt theorem, see for example [59, Proposition 9.4], we infer that

∥∥〈x〉−1I
(a)
+

∥∥
L2
x
.ξ0

1

t

∥∥eit〈ξ〉g̃(ξ)
∥∥
L2
ξ

≃ 1

t
‖g̃(ξ)‖L2

ξ
.

1

t
‖g‖L2

x
.

Lemmas 2.2 and 2.5 imply that the hypotheses of that theorem hold, i.e., that the symbol a satisfies

|∂jxa(x, ξ)|+ |∂kξ a(x, ξ)| ≤ C ∀ j, k = 0, 1, 2, 3 (2.55)

Note that it makes no difference in that lemma if we assume x ≥ 0 or x ≥ −10, say, for the

bounds on m+. The terms I
(b)
+ and I

(c)
+ can be handled analogously, together with the terms in the

identity (2.54) for I− since we now are dealing with m−(x, ξ) on x . 1. The L2 estimate of I
(c)
+

requires the bound

‖∂ξ g̃(ξ)‖L2(|ξ|≥ξ0) . ‖〈x〉g‖L2
x

(2.56)

which again follows from the Calderon-Vaillancourt theorem. Indeed, for ξ & ξ0, by (2.53),

∂ξ g̃(ξ) =

∫

R

∂ξe(x, ξ)g(x) dx

=

∫

R

∂ξe(x, ξ)θ+(x)g(x) dx +

∫

R

∂ξe(x, ξ)θ−(x)g(x) dx

=
1√
2π

∫

R

∂ξ(T (−ξ)f+(x,−ξ))θ+(x)g(x) dx

+
1√
2π

∫

R

∂ξ(f−(x, ξ) +R−(−ξ)f−(x,−ξ))θ−(x)g(x) dx

= S+(g)(ξ) + S−(g)(ξ)

(2.57)

where the last line follows from (2.13). On the one hand,

√
2π S+(g)(ξ) =

∫

R

∂ξ(T (−ξ)f+(x,−ξ))θ+(x)g(x) dx

=

∫

R

∂ξ(e
−ixξ T (−ξ)m+(x,−ξ))θ+(x)g(x) dx

=

∫

R

e−ixξ
[
− ixT (−ξ)m+(x,−ξ) + ∂ξ(T (−ξ)m+(x,−ξ))

]
θ+(x)g(x) dx

By Lemmas 2.2 and 2.5, the symbol

b+(x, ξ) :=
[
− ixT (−ξ)m+(x,−ξ) + ∂ξ(T (−ξ)m+(x,−ξ))

]
θ+(x)〈x〉−1
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satisfies the hypotheses of the Calderon-Vaillancourt theorem, cf (2.55), and we obtain the desired
L2 bound from the term S+(g)(ξ). On the other hand,

√
2π S−(g)(ξ) =

∫

R

∂ξ(f−(x, ξ) +R−(−ξ)f−(x,−ξ))θ−(x)g(x) dx

=

∫

R

∂ξ
[
e−ixξm−(x, ξ) +R−(−ξ)eixξm−(x,−ξ)

]
θ−(x)g(x) dx

=

∫

R

e−ixξ
[
− ixm−(x, ξ) + ∂ξm−(x, ξ)

]
θ−(x)g(x) dx

+

∫

R

eixξ
[
ixR−(−ξ)m−(x,−ξ) + ∂ξ(R−(−ξ)m−(x,−ξ))

]
θ−(x)g(x) dx

=

∫

R

e−ixξb−−(x, ξ)〈x〉g(x) dx +

∫

R

eixξb−+(x, ξ)〈x〉g(x) dx

The symbols b−−(x, ξ) and b−+(x, ξ) also satisfy the hypotheses of the Calderon-Vaillancourt the-
orem as before. In conclusion, we may again apply Calderon-Vaillancourt theorem which proves
(2.56), at least for positive ξ. However, the contributions by negative ξ is analogous. In summary,
we have only obtained t−1-decay at the expense of one power of x. Integrating by parts one more
time gives the desired t−2 estimate. The same proof which implied (2.56) also yields

‖∂2ξ g̃(ξ)‖L2(|ξ|≥ξ0) . ‖〈x〉2g(x)‖L2
x
.

The assumptions on V (x) are compatible with the requirements in this proof: integrating by

parts twice in ξ leads to ∂jξm±(x, ξ) with 0 ≤ j ≤ 2. For the Calderon-Vaillancourt theorem

one then needs three derivatives in x and ξ, but separately. For the final statement involving the
operator ω(H), note that the conditions on ω are such that the Calderon-Vaillancourt theorem still
applies. �

We can now state a complete list of local L2 decay estimates on the linear evolution eit〈D̃〉Pc that
will be needed in the nonlinear analysis.

Corollary 2.17. Let H = −∂2x + V (x) with real-valued V ∈ L∞(R) ∩ C3(R), and assume that

〈x〉6V (ℓ)(x) ∈ L1(R) for all 0 ≤ ℓ ≤ 3. Let ψ(ξ) be a smooth function with ψ(ξ) = 0 for |ξ| ≤ ξ0 for
some ξ0 > 0 and such that |∂ℓξψ(ξ)| ≤ C(ψ) for 0 ≤ ℓ ≤ 5. Then for σ > 9

2 and all t ∈ R,

∥∥〈x〉−σeit〈D̃〉Pcg
∥∥
L2
x
. 〈t〉− 1

2 ‖〈x〉σg‖L2
x
, (2.58)

∥∥〈x〉−σ
√
H〈D̃〉−1eit〈D̃〉Pcg

∥∥
L2
x
. 〈t〉− 3

2 ‖〈x〉σg‖L2
x
, (2.59)

∥∥∥〈x〉−σ 〈D̃〉 − 1

〈D̃〉
eit〈D̃〉Pcg

∥∥∥
L2
x

. 〈t〉− 3

2 ‖〈x〉σg‖L2
x
, (2.60)

∥∥〈x〉−σψ(D̃)eit〈D̃〉Pcg
∥∥
L2
x
. 〈t〉− 3

2 ‖〈x〉σg‖L2
x
. (2.61)

as well as

∥∥∥〈x〉−σ
(
eit〈D̃〉Pcg − c0

ei
π
4 eit

t
1

2

(ϕ⊗ ϕ)g
)∥∥∥

L2
x

. 〈t〉− 3

2‖〈x〉σg‖L2
x
, t ≥ 1, (2.62)

∥∥∥〈x〉−σ∂x

(
eit〈D̃〉χ0(H)Pcg − c0

ei
π
4 eit

t
1

2

(ϕ⊗ ϕ)g
)∥∥∥

L2
x

. 〈t〉− 3

2‖〈x〉σg‖L2
x
, t ≥ 1, (2.63)
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where c0 defined in (2.41) is an absolute constant that only depends on the the scattering matrix
S(0) of the potential V (x) at zero energy. Finally, we have the variants

∥∥〈x〉−σ〈D̃〉−1eit〈D̃〉Pcg
∥∥
L2
x
. 〈t〉− 1

2 ‖〈x〉σg‖L2
x
, (2.64)

∥∥〈x〉−σψ(D̃)〈D̃〉−1eit〈D̃〉Pcg
∥∥
L2
x
. 〈t〉− 3

2 ‖〈x〉σg‖L2
x
. (2.65)

∥∥∥〈x〉−σ
(
〈D̃〉−1eit〈D̃〉Pcg − c0

ei
π
4 eit

t
1

2

(ϕ⊗ ϕ)g
)∥∥∥

L2
x

. 〈t〉− 3

2 ‖〈x〉σg‖L2
x
, t ≥ 1, (2.66)

∥∥∥〈x〉−σ∂x

(
〈D̃〉−1eit〈D̃〉χ0(H)Pcg − c0

ei
π
4 eit

t
1

2

(ϕ⊗ ϕ)g
)∥∥∥

L2
x

. 〈t〉− 3

2 ‖〈x〉σg‖L2
x
, t ≥ 1. (2.67)

Proof. Lemmas 2.16 and 2.15 imply that (2.62) holds with σ > 9
2 . Lemma 2.15 also implies

that (2.63) holds with σ > 9
2 . Moreover, (2.61) with σ = 2 is a direct consequence of Lemma 2.16.

For 0 < t ≤ 1, (2.58) follows from L2 boundedness of the evolution, while for t ≥ 1 it follows from

(2.62). For the latter, we use that ‖〈x〉− 1

2
−(ϕ⊗ ϕ)f‖2 . ‖〈x〉 1

2
+f‖2.

Applying the more general version of Lemma 2.15 with ω(ξ) = ξ〈ξ〉−1, respectively, ω(ξ) =
〈ξ〉−1
〈ξ〉 = ξ2

〈ξ〉(1+〈ξ〉) , which both vanish at ξ = 0, eliminates the projection ϕ ⊗ ϕ from (2.62). By

the same argument as before, invoking the more general version of Lemma 2.16, we therefore
obtain (2.59) and (2.60). In the same way one derives the final estimates (2.64), (2.65), (2.66),
and (2.67). �

We expect the local decay estimates for the Klein-Gordon evolution eit〈D̃〉Pc established in this
paper to be of independent interest. In particular, the refined local decay estimates (2.62) and (2.63)
seem to not have appeared in the literature yet. Their proofs are inspired by the method of proof
of Proposition 9 in the joint work [45] of the third author with Krieger, where pointwise decay
estimates are established for a perturbed 3D wave evolution upon subtracting off a projection to
a resonance function. We refer to Komech-Kopylova [37], Kopylova [38], and Egorova-Kopylova-
Marchenko-Teschl [15] for prior results on local decay estimates for one-dimensional Klein-Gordon
equations with potential terms.

Next, we establish a pointwise bound on the evolution for all energies.

Lemma 2.18. Let H = −∂2x + V (x) with real-valued V ∈ L∞(R) ∩ C3(R), and assume that

〈x〉6V (ℓ)(x) ∈ L1(R) for all 0 ≤ ℓ ≤ 3. Then

‖eit〈D̃〉Pcg‖L∞
x

≤ C(µ, V )

t
1

2

‖〈D̃〉 3

2
+µg‖L1

x
(2.68)

for all t > 0 and µ > 0.

Proof. Throughout, g ∈ S(R). Let χ be a bump function supported on R \ {0} and fix any λ ≥ 1.
Using the distorted Fourier basis (2.53), consider the evolution

(
eit〈D̃〉χ(D̃/λ)Pcg

)
(x) =

∫

R

eit〈ξ〉e(x, ξ)χ(ξ/λ)g̃(ξ) dξ

=
1√
2π

∫ ∞

0
eit〈ξ〉T (ξ)f+(x, ξ)χ(ξ/λ)g̃(ξ) dξ

+
1√
2π

∫ 0

−∞
eit〈ξ〉T (−ξ)f−(x,−ξ)χ(ξ/λ)g̃(ξ) dξ

=: (Φ+
λ (t)g)(x) + (Φ−

λ (t)g)(x)

(2.69)
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Without loss of generality we assume x > 0. Then using θ± from the proof of Lemma 2.16,

(Φ+
λ (t)g)(x) =

1√
2π

∫ ∞

0
eit〈ξ〉T (ξ)eixξm+(x, ξ)χ(ξ/λ)g̃(ξ) dξ

=
1

2π

∫

R

∫ ∞

0
eit〈ξ〉|T (ξ)|2ei(x−y)ξm+(x, ξ)m+(y,−ξ)θ+(y)χ(ξ/λ) dξ g(y) dy

+
1

2π

∫

R

∫ ∞

0
eit〈ξ〉T (ξ)eixξm+(x, ξ)

(
e−iyξm−(y, ξ)

+R−(−ξ)eiyξm−(y,−ξ)
)
θ−(y)χ(ξ/λ) dξ g(y) dy

=:

∫

R

K+−
λ (t, x, y)g(y) dy +

∫

R

K++
λ (t, x, y)g(y) dy

with

K+−
λ (t, x, y) =

∫ ∞

0
eit[〈ξ〉+ξ(x−y)/t]ωλ(x, y, ξ) dξ

ωλ(x, y, ξ) :=
1

2π
T (ξ)m+(x, ξ)

[
T (−ξ)m+(y,−ξ)θ+(y) +m−(y, ξ)θ−(y)

]
χ(ξ/λ)

K++
λ (t, x, y) =

∫ ∞

0
eit[〈ξ〉+ξ(x+y)/t]ω̃λ(x, y, ξ) dξ

ω̃λ(x, y, ξ) :=
1

2π
T (ξ)R−(−ξ)m+(x, ξ)m−(y,−ξ)θ−(y)χ(ξ/λ)

There exists a constant C0 > 1 so that C−1
0 λ < |ξ| < C0λ on the support of χ(ξ/λ). By Lemmas 2.3

and 2.5, |∂ℓξωλ(x, y, ξ)| ≤ Cλ−ℓ for ℓ = 0, 1, 2 uniformly in x ≥ 0, and y, ξ ∈ R. By the same lemmas

the analogous bounds holds for ω̃λ(x, y, ξ). We rescale to obtain

K+−
λ (t, x, y) = λ

∫ ∞

0
eiλt[λ

−1〈λξ〉+ξ(x−y)/t]ωλ(x, y, λξ) dξ

One has the bound |K+−
λ (t, x, y)| ≤ Cλ uniformly in x ≥ 0, y ∈ R, t > 0, λ ≥ 1. If t ≥ λ, then we

claim the stronger bound

|K+−
λ (t, x, y)| ≤ Cλ

3

2 t−
1

2 . (2.70)

We write

K+−
λ (t, x, y) = λ

∫ ∞

0
eisϕ

+

λ
(ξ;t,x−y)ωλ(x, y, λξ) dξ (2.71)

with s := λ−1t and phase ϕ+
λ (ξ; t, x− y) := λ2[λ−1〈λξ〉+ ξ(x− y)/t]. Then

∂ξϕ
+
λ (ξ; t, x− y) = λ2

[ λξ
〈λξ〉 + (x− y)/t

]

∂2ξϕ
+
λ (ξ; t, x− y) =

λ3

〈λξ〉3 ≃ 1

∂3ξϕ
+
λ (ξ; t, x− y) = −3

λ5ξ

〈λξ〉5 ≃ 1

(2.72)

on the support I0 := [ξ1, ξ2] ⊂ (0,∞) of χ (recall λ ≥ 1). We distinguish the following two cases,
for fixed x, y, t, λ as above:

• (a) min |∂ξϕ+
λ (ξ; t, x− y)| & s−

1

2 on I0

• (b) min |∂ξϕ+
λ (ξ; t, x− y)| ≪ s−

1

2 on I0
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In the first Case (a), we deduce from the second derivative in (2.72) that

|∂ξϕ+
λ (ξ; t, x− y)| & s−

1

2 +min
{
|ξ − ξ1|, |ξ − ξ2|

}
∀ ξ ∈ I0

Integrating by parts once in (2.71) yields

|K+−
λ (t, x, y)| ≤ Cλs−1

∫

I0

( |∂2ξϕ+
λ (ξ; t, x− y)|

(∂ξϕ
+
λ (ξ; t, x− y))2

+
1

|∂ξϕ+
λ (ξ; t, x − y)|

)
dξ

≤ Cλs−
1

2

as claimed by (2.70). On the other hand, in Case (b) suppose the minimum of min |∂ξϕ+
λ (ξ; t, x−y)|

is attained at ξ∗ ∈ I0. Then we infer from the second derivative that

|∂ξϕ+
λ (ξ; t, x− y)| & |ξ − ξ∗| on ξ ∈ I0, |ξ − ξ∗| ≥ s−

1

2

Let ψ be a smooth bump function which equals 1 on [−1, 1]. Then with L := 1
i∂ξϕ

+

λ

∂ξ, We write

|K+−
λ (t, x, y)| ≤ λ

∣∣∣
∫ ∞

0
eisϕ

+

λ
(ξ;t,x−y)ωλ(x, y, λξ)ψ((ξ − ξ∗)s

1

2 ) dξ
∣∣∣

+ λs−2
∣∣∣
∫ ∞

0
eisϕ

+

λ
(ξ;t,x−y)(L∗)2

[
ωλ(x, y, λξ)

(
1− ψ((ξ − ξ∗)s

1

2 )
)]

dξ
∣∣∣

. λs−
1

2 + λs−2

∫

I0

1

[|ξ−ξ∗|≥s−
1
2 ]

(
|ξ − ξ∗|−4 + |ξ − ξ∗|−2s

)
dξ

. λs−
1

2

which establishes the claim (2.70). The analysis of K++
λ (t, x, y) is completely analogous, as is the

evolution of the negative frequencies given by Φ−
λ (t), see (2.69). In summary, for all λ ≥ 1, t > 0,

‖eit〈D̃〉χ(D̃/λ)Pcg‖L∞
x

≤ C(V, χ)t−
1

2λ
3

2‖g‖L1
x

(2.73)

For small energies we proceed as in the proof of Lemma 2.15, and write with a cutoff χ0 around
zero energies

(
eit〈D̃〉χ0(H)Pc g

)
(x)

=
1

2π

∫

R

∫ ∞

−∞
eit〈ξ〉T (ξ)f+(x, ξ)f−(y, ξ)χ0(ξ

2) dξ g(y)1[x>y] dy

+
1

2π

∫

R

∫ ∞

−∞
eit〈ξ〉T (ξ)f−(x, ξ)f+(y, ξ)χ0(ξ

2) dξ g(y)1[x<y] dy

=: Ψ>(t)Pcg(x) + Ψ<(t)Pcg(x)

(2.74)

We again restrict to x > 0 without loss of generality, and write Ψ>(t)Pcg(x) in the form

Ψ>(t)Pcg(x) =

∫

R

K>(t, x, y)g(y) dy

K>(t, x, y) =
1

2π
1[x>0>y]

∫ ∞

−∞
ei[t〈ξ〉+(x−y)ξ]T (ξ)m+(x, ξ)m−(y, ξ)χ0(ξ

2) dξ

+
1

2π
1[x>y>0]

∫ ∞

−∞
ei[t〈ξ〉+xξ]m+(x, ξ)[e

−iyξm+(y,−ξ) + eiyξR+(ξ)m+(y, ξ)]χ0(ξ
2) dξ

By Lemmas 2.3 and 2.5 the non-oscillatory integrands possess two ξ derivatives uniformly bounded
on their supports. The preceding stationary phase analysis therefore applies to K>(t, x, y) by
setting λ = 1, in particular s = t in this case, cf. (2.71). As a result one obtains

‖Ψ>(t)Pcg‖L∞
x

≤ Ct−
1

2‖g‖L1
x

∀t > 0 (2.75)
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and the same also holds for Ψ<(t)g by a similar argument. Performing a dyadic decomposition of
energies, and adding up all contributions from (2.73) and (2.75) yields

‖eit〈D̃〉Pcg‖L∞
x

≤ C(V )t−
1

2

(
‖χ0(H)Pcg‖L1

x
+

∞∑

j=0

23j/2‖χ(D̃/2j)Pcg‖L1
x

)

= C(V )t−
1

2

(
‖χ0(H)Pcg‖L1

x
+

∞∑

j=0

2−jµ‖ψj(H)Pc〈D̃〉 3

2
+µg‖L1

x

) (2.76)

with µ > 0 arbitrary and

ψj(H) := 2(
3

2
+µ)j〈D̃〉− 3

2
−µχ(D̃/2j), j ≥ 0.

Summing up (2.76) will complete the proof provided we have the operator bounds

‖χ0(H)Pcg‖L1
x
. ‖g‖L1

x
, sup

j≥0
‖ψj(H)Pcg‖L1

x
. ‖g‖L1

x (2.77)

with constants only depending on H. The latter operator bounds are immediate consequences of
the kernel bounds (2.18) and (2.19) with N = 2 established in Lemma 2.7. �

Finally, we present a result on the asymptotics of the linear Klein-Gordon evolution eit〈D̃〉Pcg
for initial conditions supported away from zero energy.

Lemma 2.19. Let H = −∂2x + V (x) with real-valued V ∈ L∞(R) ∩ C3(R), and assume that

〈x〉6V (ℓ)(x) ∈ L1(R) for all 0 ≤ ℓ ≤ 3. Let χ0(ξ
2) be a smooth cutoff to |ξ| . 1, equal to 1 near

ξ = 0. Set χ1(H) := 1− χ0(H). Then we have
∥∥∥eit〈D̃〉χ1(H)Pcg −

1

t
1

2

ei
π
4 eiρχ1(ξ

2
0)〈ξ0〉

3

2 g̃(ξ0)1(−1,1)(
x
t )
∥∥∥
L∞
x

≤ C(V, χ1)

t
2

3

‖〈x〉g‖H2
x
, t ≥ 1, (2.78)

where ρ ≡ ρ(t, x) :=
√
t2 − x2 and ξ0

〈ξ0〉 = −x
t .

Before we turn to the proof of Lemma 2.19, we record the useful relations

ξ0
〈ξ0〉

= −x
t

⇔ ξ0 = −x
ρ
, 〈ξ0〉 =

t

ρ
.

Proof of Lemma 2.19. We have

(
eit〈D̃〉χ1(H)Pcg

)
(x) =

1√
2π

∫ ∞

0
eit〈ξ〉T (ξ)f+(x, ξ)χ1(ξ

2)g̃(ξ) dξ

+
1√
2π

∫ 0

−∞
eit〈ξ〉T (−ξ)f−(x,−ξ)χ1(ξ

2)g̃(ξ) dξ

=: (E+(t)g̃)(x) + (E−(t)g̃)(x)

(2.79)

By reflection symmetry it suffices to assume that x ≥ 0. Then with φ±(ξ, u) := 〈ξ〉 ± uξ, u := x/t,

(E+(t)g̃)(x) =

∫ ∞

0
eitφ+(ξ,u)T (ξ)m+(x, ξ)χ1(ξ

2)g̃(ξ)
dξ√
2π

(E−(t)g̃)(x) =
∫ 0

−∞

(
eitφ+(ξ,u)m+(x, ξ) + eitφ−(ξ,u)R+(−ξ)m+(x,−ξ))χ1(ξ

2)g̃(ξ)
dξ√
2π

If x ≥ t ≥ 1, then

|∂ξφ±(ξ, u)| = |ξ〈ξ〉−1 ± u| ≥ 1− |ξ|〈ξ〉−1 ≥ 〈ξ〉−2/2

∂2ξφ±(ξ, u) = 〈ξ〉−3
(2.80)
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We break up the integration in E+(t) by means of the smooth partition of unity 1 = χ1(ξ
2/t) +

χ0(ξ
2/t) and integrate by parts in the latter integral. Using (2.80) and the bounds on m+, T from

above yields

|(E+(t)g̃)(x)| .
∫ ∞

0
χ1(ξ

2/t)|g̃(ξ)|dξ + t−1

∫ ∞

0

|∂2ξφ+(ξ, u)|
∂ξφ±(ξ, u)2

χ0(ξ
2/t)χ1(ξ

2)|g̃(ξ)|dξ

+ t−1

∫ ∞

0
|∂ξφ±(ξ, u)|−1

∣∣∣∂ξ
[
T (ξ)m+(x, ξ)χ0(ξ

2/t)χ1(ξ
2)g̃(ξ)

]∣∣∣ dξ

. t−
3

4

(
‖〈ξ〉2g̃(ξ)‖L2

ξ
+ ‖〈ξ〉2∂ξ g̃(ξ)‖L2

ξ

)
(2.81)

By analogous calculations one derives the same bound on (E−(t)g̃)(x). Now suppose |x| < t. The
phases φ±(ξ0, u) have stationary points given by ξ±0 = ∓〈ξ±0 〉u or ξ±0 = ∓u√

1−u2
. In either case one

has φ±(ξ
±
0 , u) =

√
1− u2 which implies tφ±(ξ

±
0 , u) =

√
t2 − x2 = ρ.

We now claim that the bounds (2.80) continue to hold (up to multiplicative constants) for all
ξ ∈ R \ I(ξ±0 ) where

I(ξ±0 ) := [ξ±0 − 〈ξ±0 〉/100, ξ±0 + 〈ξ±0 〉/100]
In fact,

|∂ξφ±(ξ, u)| = |∂ξφ±(ξ, u) − ∂ξφ±(ξ
±
0 , u)| = |ξ〈ξ〉−1 − ξ0〈ξ0〉−1|

=
|ξ2 − ξ20 |

(〈ξ〉〈ξ0〉)2|ξ〈ξ〉−1 + ξ0〈ξ0〉−1|
(2.82)

where we dropped the ± superscript for simplicity. Without loss of generality, assume ξ0 ≥ 0. Then
if ξ ≥ ξ0 + 〈ξ0〉/100, (2.82) implies that

|∂ξφ±(ξ, u)| & 〈ξ0〉−2 & 〈ξ〉−2

while for ξ ≤ ξ0 − 〈ξ0〉/100 one has |∂ξφ±(ξ, u)| & 〈ξ〉−2. Setting

ω±
u (ξ) := χ

(
C0(ξ − ξ±0 )〈ξ±0 〉−1

)

for some large constant C0, and repeating the arguments leading to (2.81) therefore yields
∣∣∣
(
eit〈D̃〉χ1(H)Pcg

)
(x)−

∫ ∞

0
eitφ+(ξ,u)T (ξ)m+(x, ξ)χ1(ξ

2)ω+
u (ξ)g̃(ξ)

dξ√
2π

−
∫ 0

−∞
eitφ+(ξ,u)m+(x, ξ)χ1(ξ

2)ω+
u (ξ)g̃(ξ)

dξ√
2π

−
∫ 0

−∞
eitφ−(ξ,u)R+(−ξ)m+(x,−ξ)χ1(ξ

2)ω−
u (ξ)g̃(ξ)

dξ√
2π

∣∣∣

. t−
3

4

(
‖〈ξ〉2g̃(ξ)‖L2

ξ
+ ‖〈ξ〉2∂ξ g̃(ξ)‖L2

ξ

)

(2.83)

which holds uniformly in t ≥ 1 and x ≥ 0. Note that χ1(ξ
2)ω+

u (ξ) = 0 on ξ ≥ 0, χ1(ξ
2)ω−

u (ξ) = 0
on ξ ≤ 0 if C0 is large. Thus, only the second integral in (2.83) contributes, and we denote it by
(Ψ(t)g̃)(x). To analyze it, we write (again suppressing superscripts ±)

φ+(ξ, u)− φ+(ξ0, u) = 〈ξ〉+ uξ − 〈ξ0〉 − uξ0

=
(ξ − ξ0)

2

〈ξ0〉(1 + ξξ0 + 〈ξ〉〈ξ0〉)
=: η2

The change of variables ξ 7→ η is a diffeomorphism on the support of ω+
u (ξ) given by

η =
ξ − ξ0√

〈ξ0〉(1 + ξξ0 + 〈ξ〉〈ξ0〉)
,

dη

dξ
≃ 〈ξ0〉−

3

2
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Therefore, using the standard Fourier transform,

(Ψ(t)g̃)(x) =
eiρ√
2π

∫ ∞

−∞
eitη

2

G(η; t, x) dη

=
eiρei

π
4

2π
√
2t

∫ ∞

−∞
e−

iy2

4t Ĝ(y; t, x) dy (2.84)

G(η; t, x) = m+(x, ξ)χ1(ξ
2)ω+

u (ξ)g̃(ξ)
dξ

dη

1

2π

∫ ∞

−∞
Ĝ(y; t, x) dy = G(0; t, x) = m+(x, ξ0)χ1(ξ

2
0)ω

+
u (ξ0)g̃(ξ0)

dξ

dη
(ξ0)

=
√
2m+(x, ξ0)χ1(ξ

2
0)〈ξ0〉

3

2 g̃(ξ0) (2.85)

By (2.2), |m+(x, ξ0) − 1| . 〈x〉−5 with an implicit constant depending only on V . If χ1(ξ
2
0) = 1,

then |ξ0| & 1, and |x/t| = |ξ0|〈ξ0〉−1 & 1. Therefore,

(2.85) =
√
2χ1(ξ

2
0)〈ξ0〉

3

2 g̃(ξ0) +O(t−5χ1(ξ
2
0)〈ξ0〉

3

2 g̃(ξ0))

and inserting this into (2.84),

(Ψ(t)g̃)(x) =
eiρei

π
4

√
t
χ1(ξ

2
0)〈ξ0〉

3

2 g̃(ξ0) +O(t−
11

2 χ1(ξ
2
0)〈ξ0〉

3

2 g̃(ξ0))

+O
(
t−

1

2

∫ ∣∣e−
iy2

4t − 1
∣∣ |Ĝ(y; t, x)|dy

) (2.86)

The integral in the last line is estimated as follows:
∫ ∣∣e−

iy2

4t − 1
∣∣ |Ĝ(y; t, x)|dy . t−

1

2

∫

[|y|2≤t]
|y| |Ĝ(y; t, x)|dy +

∫

[|y|2≥t]
|Ĝ(y; t, x)|dy

. t−
1

4 ‖y Ĝ(y; t, x)‖L2
y
. t−

1

4‖∂ηG(η; t, x)‖L2
η

By definition,
∫ ∣∣∂ηG(η; t, x)

∣∣2 dη =

∫ ∣∣∣dξ
dη

∣∣∣
∣∣∂ξ

[
m+(x, ξ)χ1(ξ

2)ω+
u (ξ)g̃(ξ)

dξ

dη

]∣∣2dξ

.

∫ ∣∣∂ξ
[
m+(x, ξ)χ1(ξ

2)ω+
u (ξ)g̃(ξ)

dξ

dη

]∣∣2〈ξ〉 3

2dξ

Now we note that by complex interpolation of the preceding bound with
∫ ∣∣G(η; t, x)

∣∣2 dη .

∫ ∣∣m+(x, ξ)χ1(ξ
2)ω+

u (ξ)g̃(ξ)
dξ

dη

∣∣2〈ξ〉− 3

2dξ

we obtain that for all 1
2 < β ≤ 1,

∫ ∣∣e−
iy2

4t − 1
∣∣ |Ĝ(y; t, x)|dy . t

1

4
−β

2

∥∥|y|β Ĝ(y; t, x)
∥∥
L2
y

. t
1

4
−β

2 ‖(−∂2η)
β
2G(η; t, x)‖L2

η

. t
1

4
−β

2

(∫ ∣∣(−∂2ξ )
β
2

[
m+(x, ξ)χ1(ξ

2)ω+
u (ξ)g̃(ξ)

dξ

dη

]∣∣2〈ξ〉− 3

2
+3βdξ

) 1

2

On the one hand,

(∫ ∣∣m+(x, ξ)χ1(ξ
2)ω+

u (ξ)g̃(ξ)
dξ

dη

∣∣2dξ
) 1

2

.
( ∫

|g̃(ξ)|2〈ξ〉3dξ
) 1

2
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and, on the other hand,

( ∫ ∣∣(−∂2ξ )
1

2

[
m+(x, ξ)χ1(ξ

2)ω+
u (ξ)g̃(ξ)

dξ

dη

]∣∣2dξ
) 1

2

.
(∫ [

|g̃(ξ)|2〈ξ〉+ |∂ξ g̃(ξ)|2〈ξ〉3
]
dξ

) 1

2

In conclusion, we can bound with β = 5
6 ,

∫ ∣∣e−
iy2

4t − 1
∣∣ |Ĝ(y; t, x)|dy . t−

1

6

(∫ [
|g̃(ξ)|2 + |∂ξ g̃(ξ)|2

]
〈ξ〉4dξ

) 1

2
(2.87)

Combining (2.81), (2.83), (2.86), and (2.87) yields

∣∣∣
(
eit〈D̃〉χ1(H)Pcg

)
(x)− eiρei

π
4√
t
χ1(ξ

2
0)〈ξ0〉

3

2 g̃(ξ0)1[|x/t|<1]

∣∣∣

. t−
11

2 χ1(ξ
2
0)〈ξ0〉

3

2 |g̃(ξ0)|+ t−
2

3

(
‖〈ξ〉2g̃(ξ)‖L2

ξ
+ ‖〈ξ〉2∂ξ g̃(ξ)‖L2

ξ

)

. t−
2

3

(
‖〈ξ〉2g̃(ξ)‖L2

ξ
+ ‖〈ξ〉2∂ξ g̃(ξ)‖L2

ξ

)
(2.88)

which holds uniformly in t ≥ 1 and x ≥ 0. The t−
11

2 -term on the second line is estimated by
Sobolev, and ξ0 = ξ+0 = − x√

t2−x2
. We may of course assume that g̃(ξ) = 0 for |ξ| . 1. It remains

to prove that for all Schwartz functions g,

‖〈ξ〉2χ1(ξ
2)g̃(ξ)‖L2

ξ
+ ‖χ1(ξ

2)〈ξ〉2∂ξ g̃(ξ)‖L2
ξ
. ‖〈·〉g‖H2

x

This follows again by means of Calderon-Vaillancourt, see (2.57). The estimate (2.56) controls
‖χ1(ξ

2)∂ξ g̃(ξ)‖L2
ξ
by ‖〈x〉g(x)‖L2

x
. To incorporate the ξ2 factor, we compute

ξ2g̃(ξ) =

∫

R

ξ2e(x, ξ) θ+(x)g(x) dx+

∫

R

ξ2e(x, ξ) θ−(x)g(x) dx

= − 1√
2π

∫

R

∂2x(e
−ixξ)T (−ξ)m+(x,−ξ)θ+(x)g(x) dx

− 1√
2π

∫

R

(∂2x(e
−ixξ)m−(x, ξ) +R−(−ξ)∂2x(eixξ)m−(x,−ξ))θ−(x)g(x) dx

Integrating by parts in x, and multiplying by χ1(ξ
2), we can then apply Calderon-Vaillancourt as

in (2.57). �

3. Local Decay Bounds

The main goal of this section is to establish global existence and local decay bounds for the
solution v(t) to (1.12). The key ingredient for the proof are the local L2

x decay estimates for the

Klein-Gordon propagator eit〈D̃〉Pc ≡ eit
√
1+HPc established in Corollary 2.17.

Proposition 3.1 (Global existence and local decay bounds). Assume that V (x) and α(x) are as
in the statement of Theorem 1.1, and let σ = 5. There exists a small absolute constant ε0 > 0 so
that for any initial datum v0 with

ε := ‖〈x〉σv0‖H2
x
≤ ε0,

there exists a global-in-time solution v ∈ C(R;H2
x) to (1.12) satisfying the uniform bounds

sup
t∈R

{
〈t〉−(0+)‖v(t)‖H2

x
+ 〈t〉 1

2 ‖〈x〉−σv(t)‖L2
x
+ 〈t〉‖〈x〉−σ(1− χ0(H))v(t)‖L2

x

+ 〈t〉‖〈x〉−σ
√
Hv(t)‖L2

x
+ 〈t〉‖〈x〉−σ∂t(e

−itv(t))‖L2
x

}
. ε.

(3.1)



ON MODIFIED SCATTERING FOR 1D QUADRATIC KG EQUATIONS WITH NON-GENERIC POTENTIALS 39

Proof. By time reversal symmetry, it suffices to argue forward in time. Assuming that the absolute
constant 0 < ε0 ≪ 1 is sufficiently small, by a standard contraction mapping argument, we obtain a
local solution v ∈ C([0, T0];H

2
x) on a time interval [0, T0] for some T0 ≥ 1. In order to then conclude

that v(t) exists globally in time, it is enough to show that the H2
x norm of v(t) does not blow up

in finite time. We now establish global existence and the uniform bounds (3.1) via a bootstrap
argument. For any 0 < T ≤ T0 we consider the bootstrap quantity

M(T ) := sup
0≤t≤T

{
〈t〉−(0+)‖v(t)‖H2

x
+ 〈t〉 1

2‖〈x〉−σv(t)‖L2
x
+ 〈t〉‖〈x〉−σ(1− χ0(H))v(t)‖L2

x

+ 〈t〉‖〈x〉−σ
√
Hv(t)‖L2

x
+ 〈t〉‖〈x〉−σ∂t(e

−itv(t))‖L2
x

}
.

Since the absolute constant 0 < ε0 ≪ 1 can be chosen sufficiently small, in what follows we may
freely assume that T ≥ 1, and thatM(T ) ≤ 1 to simplify the bookkeeping for some of the nonlinear
estimates. We also recall that under the assumptions of Theorem 1.1, we have that v(t) = Pcv(t)
for all t ∈ [0, T0]. Moreover, we stress that we will frequently use that by the weighted Sobolev
estimate from Lemma 2.11,

‖〈x〉−σv(t)‖L∞
x

. ‖〈x〉−σv(t)‖L2
x
+ ‖〈x〉−σ

√
Hv(t)‖L2

x
≤ M(T )

〈t〉 1

2

, 0 ≤ t ≤ T. (3.2)

In order to derive bounds on all components of the bootstrap quantity M(T ), we work with
Duhamel’s formula for the solution v(t) given by

v(t) = eit〈D̃〉Pcv0 +
1

2i

∫ t

0
ei(t−s)〈D̃〉〈D̃〉−1Pc

(
α(·)u(s)2

)
ds.

Growth bound for the H2
x norm of v(t): We begin with a growth bound for the H2

x norm of the

solution v(t). Using the equivalence of norms from Lemma 2.10 and the product estimate (2.35),
we obtain from Duhamel’s formula for v(t) for any 0 ≤ t ≤ T that

‖v(t)‖H2
x
. ‖〈D̃〉2v(t)‖L2

x
. ‖〈D̃〉2Pcv0‖L2

x
+

∫ t

0

∥∥〈D̃〉Pc

(
α(·)u(s)2

)∥∥
L2
x
ds

. ‖v0‖H2
x
+

∫ t

0
‖〈x〉2σα‖

W 1,∞
x

(
‖〈x〉−σv(s)‖L2

x
+ ‖〈x〉−σ

√
Hv(s)‖L2

x

)2
ds

. ‖v0‖H2
x
+

∫ t

0

M(T )2

〈s〉 ds

. ‖v0‖H2
x
+ log(1 + 〈t〉)M(T )2.

Local decay for ∂t(e
−itv(t)): Now we derive an improved local decay bound for the time derivative

of the phase-filtered component ∂t
(
e−itv(t)

)
. To this end we compute that

∂t
(
e−itv(t)

)
= e−it

(
(〈D̃〉 − 1)eit〈D̃〉Pcv0 +

1

2i
〈D̃〉−1Pc

(
α(·)u(t)2

)

+
1

2

∫ t

0

〈D̃〉 − 1

〈D̃〉
ei(t−s)〈D̃〉Pc

(
α(·)u(s)2

)
ds

)
.

(3.3)
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By the local decay estimate (2.60) for the Klein-Gordon propagator, it then follows for 0 ≤ t ≤ T

∥∥〈x〉−σ∂t
(
e−itv(t)

)∥∥
L2
x

.
‖〈x〉σ〈D̃〉Pcv0‖L2

x

〈t〉 3

2

+ ‖〈x〉2σα‖L2
x
‖〈x〉−σv(t)‖2L∞

x

+

∫ t

0

∥∥∥∥〈x〉
−σ 〈D̃〉 − 1

〈D̃〉
ei(t−s)〈D̃〉Pc〈x〉−σ

∥∥∥∥
L2
x→L2

x

∥∥〈x〉3σα
∥∥
L2
x
‖〈x〉−σv(s)‖2L∞

x
ds

.
‖〈x〉σv0‖H1

x

〈t〉 3

2

+
M(T )2

〈t〉 +

∫ t

0

1

〈t− s〉 3

2

M(T )2

〈s〉 ds

.
1

〈t〉
(
‖〈x〉σv0‖H1

x
+M(T )2

)
.

Local decay for (1− χ0(H))v(t): Next, we conclude an improved local decay bound for the high-

energy part (1−χ0(H))v(t) of the solution v(t). Observe that (1−χ0(H))v(t) is given in Duhamel
form by

(1− χ0(H))v(t) = (1− χ0(H))eit〈D̃〉Pcv0 +
1

2i

∫ t

0
(1 − χ0(H))ei(t−s)〈D̃〉〈D̃〉−1Pc

(
α(·)u(s)2

)
ds.

Using the improved local decay estimates (2.61) and (2.65) for the Klein-Gordon propagator away
from zero energy, it is straightforward to obtain for 0 ≤ t ≤ T the desired bound

‖〈x〉−σ(1− χ0(H))v(t)‖L2
x

.
‖〈x〉σ(1− χ0(H))Pcv0‖L2

x

〈t〉 3

2

+

∫ t

0

∥∥∥〈x〉−σ(1− χ0(H))〈D̃〉−1ei(t−s)〈D̃〉Pc〈x〉−σ
∥∥∥
L2
x→L2

x

∥∥〈x〉σ
(
α(·)u(s)2

)∥∥
L2
x
ds

.
‖〈x〉σv0‖L2

x

〈t〉 3

2

+

∫ t

0

1

〈t− s〉 3

2

‖〈x〉3σα‖L2
x
‖〈x〉−σv(s)‖2L∞

x
ds

.
‖〈x〉σv0‖L2

x

〈t〉 3

2

+

∫ t

0

1

〈t− s〉 3

2

M(T )2

〈s〉 ds

.
1

〈t〉
(
‖〈x〉σv0‖L2

x
+M(T )2

)
.

Local decay for
√
Hv(t): In a similar manner we obtain an improved local decay bound for

√
Hv(t).

Note that
√
Hv(t) is given in Duhamel form by

√
Hv(t) =

√
Heit〈D̃〉Pcv0 +

1

2i

∫ t

0

√
H〈D̃〉−1ei(t−s)〈D̃〉Pc

(
α(·)u(s)2

)
ds.
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Using the improved local decay estimate (2.59) for the Klein-Gordon propagator, we easily obtain
for 0 ≤ t ≤ T the desired bound

‖〈x〉−σ
√
Hv(t)‖L2

x

.
‖〈x〉σ〈D̃〉Pcv0‖L2

x

〈t〉 3

2

+

∫ t

0

∥∥∥〈x〉−σ
√
H〈D̃〉−1ei(t−s)〈D̃〉Pc〈x〉−σ

∥∥∥
L2
x→L2

x

∥∥〈x〉σ
(
α(·)u(s)2

)∥∥
L2
x
ds

.
‖〈x〉σv0‖H1

x

〈t〉 3

2

+

∫ t

0

1

〈t− s〉 3

2

‖〈x〉3σα‖L2
x
‖〈x〉−σv(s)‖2L∞

x
ds

.
‖〈x〉σv0‖H1

x

〈t〉 3

2

+

∫ t

0

1

〈t− s〉 3

2

M(T )2

〈s〉 ds

.
1

〈t〉
(
‖〈x〉σv0‖H1

x
+M(T )2

)
.

Local decay for v(t): Finally, the derivation of the local decay bound for v(t) requires a much more
careful argument. The first step is to determine the leading order behavior of the variable coefficient
quadratic nonlinearity. To this end we introduce the function

w(t) := c0
ei

π
4 eit

t
1

2

〈ϕ, v0〉ϕ+
1

2i

∫ t−1

0
c0
ei

π
4 ei(t−s)

(t− s)
1

2

〈
ϕ,α(·)u(s)2

〉
ϕds, t ≥ 1, (3.4)

with c0 defined in (2.41). Then we may write

w(t, x) = a(t)ϕ(x), t ≥ 1,

with the time-dependent coefficient

a(t) := c0
ei

π
4 eit

t
1

2

〈ϕ, v0〉+
1

2i

∫ t−1

0
c0
ei

π
4 ei(t−s)

(t− s)
1

2

〈
ϕ,α(·)u(s)2

〉
ds.

The key property of the function w(t) is that the difference v(t)−w(t) has faster local decay in the
sense that uniformly for all 1 ≤ t ≤ T

∥∥〈x〉−σ
(
v(t) −w(t)

)∥∥
L2
x
.

1

〈t〉
(
‖〈x〉σv0‖L2

x
+M(T )2

)
. (3.5)

To prove (3.5) we write for any 1 ≤ t ≤ T

v(t)− w(t) =

(
eit〈D̃〉Pcv0 − c0

ei
π
4 eit

t
1

2

〈ϕ, v0〉ϕ
)

+
1

2i

∫ t−1

0

(
ei(t−s)〈D̃〉〈D̃〉−1Pc

(
α(·)u(s)2

)
− c0

ei
π
4 ei(t−s)

(t− s)
1

2

〈
ϕ,α(·)u(s)2

〉
ϕ

)
ds

+
1

2i

∫ t

t−1
ei(t−s)〈D̃〉〈D̃〉−1Pc

(
α(·)u(s)2

)
ds.

Then we use the improved local decay estimates (2.62) and (2.66) to bound the first two terms on
the right-hand side, while the standard local decay estimate (2.58) suffices to estimate the third
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term on the right-hand side. Specifically, we obtain for 1 ≤ t ≤ T that

∥∥〈x〉−σ
(
v(t)− w(t)

)∥∥
L2
x
.

‖〈x〉σv0‖L2
x

〈t〉 3

2

+

∫ t−1

0

1

〈t− s〉 3

2

∥∥〈x〉σα(x)u(s)2
∥∥
L2
x
ds

+

∫ t

t−1

1

〈t− s〉 1

2

∥∥〈x〉σα(x)u(s)2
∥∥
L2
x
ds

.
‖〈x〉σv0‖L2

x

〈t〉 3

2

+

∫ t−1

0

1

〈t− s〉 3

2

∥∥〈x〉3σα
∥∥
L2
x
‖〈x〉−σv(s)‖2L∞

x
ds

+

∫ t

t−1

1

〈t− s〉 1

2

∥∥〈x〉3σα
∥∥
L2
x
‖〈x〉−σv(s)‖2L∞

x
ds

.
‖〈x〉σv0‖L2

x

〈t〉 3

2

+

∫ t−1

0

1

〈t− s〉 3

2

M(T )2

〈s〉 ds+

∫ t

t−1

1

〈t− s〉 1

2

M(T )2

〈s〉 ds

.
1

〈t〉
(
‖〈x〉σv0‖L2

x
+M(T )2

)
.

This yields the desired faster local decay bound (3.5), which suggests that the leading order behavior
of the variable coefficient quadratic nonlinearity α(x)(v+ v̄)2 is governed by α(x)(w+ w̄)2. In order
to further analyze the latter, we will need the following estimates related to w(t) that hold uniformly
for all 1 ≤ t ≤ T ,

‖w(t)‖L∞
x

.
log(1 + 〈t〉)

〈t〉 1

2

(
‖〈x〉σv0‖L2

x
+M(T )2

)
, (3.6)

|a(t)| . log(1 + 〈t〉)
〈t〉 1

2

(
‖〈x〉σv0‖L2

x
+M(T )2

)
, (3.7)

|∂t(e−ita(t))| . 1

〈t〉
(
‖〈x〉σv0‖L2

x
+M(T )2

)
. (3.8)

These estimates follow directly from the definitions of w(t) and a(t). Indeed, from the definition of
w(t) we obtain uniformly for all 1 ≤ t ≤ T that

‖w(t)‖L∞
x

.
1

t
1

2

∥∥〈ϕ, v0〉ϕ(x)
∥∥
L∞
x
+

∫ t−1

0

1

(t− s)
1

2

∥∥〈ϕ,α(·)u(s)2〉ϕ(x)
∥∥
L∞
x
ds

.
‖v0‖L1

x

〈t〉 1

2

+

∫ t−1

0

1

(t− s)
1

2

‖〈x〉2σα‖L1
x
‖〈x〉−σv(s)‖2L∞

x
ds

.
‖〈x〉σv0‖L2

x

〈t〉 1

2

+

∫ t−1

0

1

(t− s)
1

2

M(T )2

〈s〉 ds

.
log(1 + 〈t〉)

〈t〉 1

2

(
‖〈x〉σv0‖L2

x
+M(T )2

)
.

This proves (3.6). Similarly, from the definition of a(t) we infer uniformly for all 1 ≤ t ≤ T that

|a(t)| . |〈ϕ, v0〉|
〈t〉 1

2

+

∫ t−1

0

1

(t− s)
1

2

‖〈x〉2σα(x)‖L1
x
‖〈x〉−σv(s)‖2L∞

x
ds

.
‖v0‖L1

x

〈t〉 1

2

+

∫ t−1

0

1

(t− s)
1

2

M(T )2

〈s〉 ds

.
log(1 + 〈t〉)

〈t〉 1

2

(
‖〈x〉σv0‖L2

x
+M(T )2

)
,
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which yields (3.7). Finally, to prove (3.8) we compute

∂t
(
e−ita(t)

)
=− 1

2
c0
ei

π
4

t
3

2

〈ϕ, v0〉+
1

2i
c0e

iπ
4 e−i(t−1)〈ϕ,α(·)u(t − 1)2〉

− 1

4i

∫ t−1

0
c0
ei

π
4 e−is

(t− s)
3

2

〈ϕ,α(·)u(s)2〉ds.

Hence, we obtain uniformly for all 1 ≤ t ≤ T

∣∣∂t(e−ita(t))
∣∣ . |〈ϕ, v0〉|

t
3

2

+
∥∥〈x〉2σα

∥∥
L1
x
‖〈x〉−σv(t− 1)‖2L∞

x

+

∫ t−1

0

1

(t− s)
3

2

‖〈x〉2σα‖L1
x

∥∥〈x〉−σv(s)‖2L∞
x
ds

.
‖v0‖L1

x

t
3

2

+
M(T )2

〈t− 1〉 +

∫ t−1

0

1

(t− s)
3

2

M(T )2

〈s〉 ds

.
1

〈t〉
(
‖〈x〉σv0‖L2

x
+M(T )2

)
.

We are now prepared to prove the local decay bound for v(t). For short times 0 ≤ t ≤ 1, using
the local decay estimates (2.58) and (2.64), we easily obtain

sup
0≤t≤1

‖〈x〉−σv(t)‖L2
x
. ‖v0‖L2

x
+M(T )2.

It therefore suffices to consider times t ≥ 1. We begin by decomposing the Duhamel formula for
v(t) into

v(t) = eit〈D̃〉Pcv0 +
1

2i

∫ t

0
ei(t−s)〈D̃〉〈D̃〉−1Pc

(
α(·)u(s)2

)
ds

= eit〈D̃〉Pcv0 +
1

2i

∫ 1

0
ei(t−s)〈D̃〉〈D̃〉−1Pc

(
α(·)u(s)2

)
ds

+
1

2i

∫ t

1
ei(t−s)〈D̃〉〈D̃〉−1Pc

(
α(·)

(
(v(s) + v̄(s))2 − (w(s) + w̄(s))2

))
ds

+
1

2i

∫ t

1
ei(t−s)〈D̃〉〈D̃〉−1Pc

(
α(·)(w(s) + w̄(s))2

)
ds

≡ I + II + III + IV.

(3.9)

Then the first two terms on the right-hand side of (3.9) can be easily estimated. Using the standard
local decay estimates (2.58) and (2.64), we have for any 1 ≤ t ≤ T

‖〈x〉−σI‖L2
x
=

∥∥〈x〉−σeit〈D̃〉Pcv0
∥∥
L2
x
.

‖〈x〉σv0‖L2
x

〈t〉 1

2
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and

‖〈x〉−σII‖L2
x
.

∫ 1

0

∥∥〈x〉−σ〈D̃〉−1ei(t−s)〈D̃〉Pc〈x〉−σ
∥∥
L2
x→L2

x

∥∥〈x〉σ
(
α(·)u(s)2

)∥∥
L2
x
ds

.

∫ 1

0

1

〈t− s〉 1

2

‖〈x〉3σα‖L2
x
‖〈x〉−σv(s)‖2L∞

x
ds

.

∫ 1

0

1

〈t− s〉 1

2

‖〈x〉3σα‖L2
x
M(T )2 ds

.
M(T )2

〈t〉 1

2

.

In order to estimate the third term on the right-hand side of (3.9), we combine the local decay
estimate (2.58) with the improved local decay bound (3.5) for the difference v(t) − w(t) and the
bound (3.6) for w(t) to obtain for any 1 ≤ t ≤ T that

‖〈x〉−σIII‖L2
x

.

∫ t

1

∥∥〈x〉−σ〈D̃〉−1ei(t−s)〈D̃〉Pc〈x〉−σ
∥∥
L2
x→L2

x

∥∥〈x〉σα(x)
(
(v(s) + v̄(s))2 − (w(s) + w̄(s))2

∥∥
L2
x
ds

.

∫ t

1

1

〈t− s〉 1

2

‖〈x〉3σα‖L∞
x
‖〈x〉−σ(v(s)− w(s))‖L2

x

(
‖〈x〉−σv(s)‖L∞

x
+ ‖〈x〉−σw(s)‖L∞

x

)
ds

.

∫ t

1

1

〈t− s〉 1

2

1

〈s〉
(
‖〈x〉σv0‖L2

x
+M(T )2

)(M(T )

〈s〉 1

2

+
log(1 + 〈s〉)

〈s〉 1

2

(
‖〈x〉σv0‖L2

x
+M(T )2

))
ds

.
1

〈t〉 1

2

(
‖〈x〉σv0‖L2

x
+M(T )2

)2
.

The estimate for the fourth term on the right-hand side of (3.9) is the most delicate due to the
slow time decay of α(x)(w(s) + w̄(s))2. We decompose the term further so that we can exploit the
time oscillations of w(s). To this end we introduce a cutoff function ψ ∈ C∞

c (R) that is supported
in small neighborhoods around ξ = ±

√
3 and such that ψ(ξ) = 1 for say |ξ− (±

√
3)| ≤ 10−2. Then

we write

IV =
1

2i

∫ t

1
ei(t−s)〈D̃〉〈D̃〉−1Pc

(
α(·)(w(s) + w̄(s))2

)
ds

=
1

2i

∫ t

1

(
ei(t−s)〈D̃〉〈D̃〉−1Pc

(
αϕ2

))
(a(s) + ā(s))2 ds

=
1

2i

∫ t

1

(
ψ(D̃)ei(t−s)〈D̃〉〈D̃〉−1Pc

(
αϕ2

))
(a(s) + ā(s))2 ds

+
1

2i

∫ t

1

((
1− ψ(D̃)

)
ei(t−s)〈D̃〉〈D̃〉−1Pc

(
αϕ2

))
(a(s) + ā(s))2 ds

≡ IV(a) + IV(b).

(3.10)

The first term on the right-hand side of (3.10) can be easily estimated using the improved local
decay estimate (2.65) for the Klein-Gordon propagator away from zero energy and the bound (3.7).
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Uniformly for all 1 ≤ t ≤ T we obtain that

‖〈x〉−σIV(a)‖L2
x
.

∫ t

1

∥∥∥〈x〉−σ
(
ψ(D̃)ei(t−s)〈D̃〉〈D̃〉−1Pc

(
αϕ2

))∥∥∥
L2
x

|a(s)|2 ds

.

∫ t

1

1

〈t− s〉 3

2

∥∥〈x〉σαϕ2
∥∥
L2
x

(
log(1 + 〈s〉)

)2

〈s〉
(
‖〈x〉σv0‖L2

x
+M(T )2

)2
ds

.
1

〈t〉1−
(
‖〈x〉σv0‖L2

x
+M(T )2

)2
.

To estimate the second term on the right-hand side of (3.10), we further expand it as

IV(b) =
1

2i

∫ t

1

((
1− ψ(D̃)

)
ei(t−s)〈D̃〉〈D̃〉−1Pc

(
αϕ2

))
e2is

(
e−isa(s)

)2
ds

+
1

i

∫ t

1

((
1− ψ(D̃)

)
ei(t−s)〈D̃〉〈D̃〉−1Pc

(
αϕ2

))∣∣e−isa(s)
∣∣2 ds

+
1

2i

∫ t

1

((
1− ψ(D̃)

)
ei(t−s)〈D̃〉〈D̃〉−1Pc

(
αϕ2

))
e−2is

(
e−isa(s)

)2
ds

≡ IV
(1)
(b) + IV

(2)
(b) + IV

(3)
(b) .

(3.11)

Then we integrate by parts in time s. Note that for the first term IV
(1)
(b) this could potentially be

problematic, because on the distorted Fourier side the phase of eis(2−〈ξ〉) vanishes at frequencies
ξ = ±

√
3. However, owing to the cutoff (1 − ψ(ξ)) the integrand is zero in a neighborhood of

ξ = ±
√
3. We only provide the details for the treatment of the term IV

(1)
(b) , the other terms being

easier. We find that uniformly for all 1 ≤ t ≤ T one has that

IV
(1)
(b) = −1

2

∫ t

1
eit〈D̃〉

( d

ds

(
eis(2−〈D̃〉)

)
(2− 〈D̃〉)−1〈D̃〉−1

(
1− ψ(D̃)

)
Pc

(
αϕ2

))(
e−isa(s)

)2
ds

= −1

2

(
(2− 〈D̃〉)−1〈D̃〉−1

(
1− ψ(D̃)

)
Pc

(
αϕ2

))
a(t)2

+
1

2
ei(t−1)〈D̃〉

(
(2− 〈D̃〉)−1〈D̃〉−1

(
1− ψ(D̃)

)
Pc

(
αϕ2

))
a(1)2

+
1

2

∫ t

1

(
ei(t−s)〈D̃〉(2− 〈D̃〉)−1〈D̃〉−1

(
1− ψ(D̃)

)
Pc

(
αϕ2

))(
e−isa(s)

)
∂s
(
e−isa(s)

)
ds.
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Then using the standard local decay estimate (2.58), the bounds (3.7) and (3.8) for the coeffi-
cient a(t), and Lemma 2.14, we finally obtain that

‖〈x〉−σIV
(1)
(b) ‖L2

x

.
∥∥∥〈x〉−σ

(
(2− 〈D̃〉)−1〈D̃〉−1

(
1− ψ(D̃)

)
Pc

(
αϕ2

))∥∥∥
L2
x

|a(t)|2

+
∥∥∥〈x〉−σei(t−1)〈D̃〉

(
(2− 〈D̃〉)−1〈D̃〉−1

(
1− ψ(D̃)

)
Pc

(
αϕ2

))∥∥∥
L2
x

|a(1)|2

+

∫ t

1

∥∥∥〈x〉−σ
(
ei(t−s)〈D̃〉(2− 〈D̃〉)−1〈D̃〉−1

(
1− ψ(D̃)

)
Pc

(
αϕ2

))∥∥∥
L2
x

∣∣e−isa(s)
∣∣∣∣∂s

(
e−isa(s)

)∣∣ds

.
∥∥∥
(
(2− 〈D̃〉)−1〈D̃〉−1

(
1− ψ(D̃)

)
Pc

(
αϕ2

))∥∥∥
L2
x

(
log(1 + 〈t〉)

)2

〈t〉
(
‖〈x〉σv0‖L2

x
+M(T )2

)2

+
1

〈t〉 1

2

∥∥∥〈x〉σ
(
(2− 〈D̃〉)−1〈D̃〉−1

(
1− ψ(D̃)

)
Pc

(
αϕ2

))∥∥∥
L2
x

(
‖〈x〉σv0‖L2

x
+M(T )2

)2

+

∫ t

1

1

〈t− s〉 1

2

∥∥∥〈x〉σ(2− 〈D̃〉)−1〈D̃〉−1
(
1− ψ(D̃)

)
Pc

(
αϕ2

))∥∥∥
L2
x

×

× log(1 + 〈s〉)
〈s〉 3

2

(
‖〈x〉σv0‖L2

x
+M(T )2

)2
ds

.
1

〈t〉 1

2

∥∥〈x〉σ+3αϕ2
∥∥
L2
x

(
‖〈x〉σv0‖L2

x
+M(T )2

)2
.

Putting all of the preceding estimates together (and using that we may freely assume that
M(T ) ≤ 1), we arrive at the estimate

M(T ) . ‖〈x〉σv0‖H2
x
+M(T )2.

The assertion of Proposition 3.1 now follows by a standard continuity argument. �

A key step in the derivation of the local decay bounds for the solution v(t) in Proposition 3.1 was
to isolate the leading order behavior of the variable coefficient quadratic nonlinearity α(x)(v+ v̄)2.
It is determined by α(x)(w + w̄)2, where

w(t) := c0
ei

π
4 eit

t
1

2

〈ϕ, v0〉ϕ+
1

2i

∫ t−1

0
c0
ei

π
4 ei(t−s)

(t− s)
1

2

〈
ϕ,α(·)u(s)2

〉
ϕds, t ≥ 1, (3.12)

with c0 defined in (2.41). We write

w(t, x) = a(t)ϕ(x), t ≥ 1,

with the time-dependent coefficient

a(t) := c0
ei

π
4 eit

t
1

2

〈ϕ, v0〉+
1

2i

∫ t−1

0
c0
ei

π
4 ei(t−s)

(t− s)
1

2

〈
ϕ,α(·)u(s)2

〉
ds, t ≥ 1.

From the local decay bounds established in Proposition 3.1, we infer two improved local decay
bounds for the difference χ0(H)v(t) − w(t) for t ≥ 1. These will be needed later in the proof of
Theorem 1.1.

Corollary 3.2. Under the assumptions of Proposition 3.1, we have
∥∥〈x〉−σ

(
χ0(H)v(t) − w(t)

)∥∥
L2
x
.

ε

〈t〉 , t ≥ 1, (3.13)

∥∥〈x〉−σ∂x
(
χ0(H)v(t) − w(t)

)∥∥
L2
x
.

ε

〈t〉 , t ≥ 1. (3.14)
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Proof. We present the details for the derivation of the second asserted local decay bound (3.14)
and leave the proof of the first local decay bound (3.13) to the reader. We proceed similarly as
in the proof of the preceding Proposition 3.1. By Duhamel’s formula for the solution v(t) and the
definition (3.12) of w(t), we have for t ≥ 1

∂x
(
χ0(H)v(t) − w(t)

)

= ∂x

(
eit〈D̃〉χ0(H)Pcv0 − c0

ei
π
4 eit

t
1

2

〈ϕ, v0〉ϕ
)

+
1

2i

∫ t−1

0
∂x

(
ei(t−s)〈D̃〉χ0(H)〈D̃〉−1Pc

(
α(·)u(s)2

)
− c0

ei
π
4 ei(t−s)

(t− s)
1

2

〈
ϕ,α(·)u(s)2

〉
ϕ

)
ds

+
1

2i

∫ t

t−1
∂x

(
ei(t−s)〈D̃〉χ0(H)〈D̃〉−1Pc

(
α(·)u(s)2

))
ds.

Using the local decay estimates (2.63) and (2.67) for the Klein-Gordon propagator along with the
local decay bounds for v(t) from Proposition 3.1 and the Sobolev estimate (3.2), we obtain for t ≥ 1

∥∥〈x〉−σ∂x
(
χ0(H)v(t) − w(t)

)∥∥
L2
x

.
‖〈x〉σv0‖L2

x

〈t〉 3

2

+

∫ t−1

0

1

〈t− s〉 3

2

∥∥〈x〉σα(x)u(s)2
∥∥
L2
x
ds+

∫ t

t−1

∥∥α(x)u(s)2
∥∥
L2
x
ds

.
‖〈x〉σv0‖L2

x

〈t〉 3

2

+

∫ t−1

0

1

〈t− s〉 3

2

‖〈x〉3σα‖L2
x
‖〈x〉−σv(s)‖2L∞

x
ds

+

∫ t

t−1
‖〈x〉2σα‖L2

x
‖〈x〉−σv(s)‖2L∞

x
ds

.
ε

〈t〉 3

2

+

∫ t−1

0

1

〈t− s〉 3

2

ε2

〈s〉 ds+
∫ t

t−1

ε2

〈s〉 ds

.
ε

〈t〉 ,

as desired. �

As a further corollary of the local decay bounds for v(t) from Proposition 3.1, we deduce the
asymptotics of the coefficient function a(t).

Corollary 3.3. (Asymptotics of a(t)) Under the assumptions of Proposition 3.1, the coefficient

a(t) := c0
ei

π
4 eit

t
1

2

〈ϕ, v0〉+
1

2i

∫ t−1

0
c0
ei

π
4 ei(t−s)

(t− s)
1

2

〈
ϕ,α(·)u(s)2

〉
ds, t ≥ 1,

has the asymptotics

a(t) = c0
ei

π
4 eit

t
1

2

a0 +OL∞
t

(ε2
t

)
, t ≥ 1, (3.15)

where

a0 = 〈ϕ, v0〉+
1

2
〈ϕ,α(·)v20 〉 − 〈ϕ,α(·)|v0|2〉 −

1

6
〈ϕ,α(·)v20〉

+

∫ ∞

0
eis〈ϕ,α(·)∂s

(
e−isv(s)

)(
e−isv(s)

)
〉ds

−
∫ ∞

0
e−is〈ϕ,α(·)∂s

(
(e−isv(s))(eisv̄(s))

)
〉ds

− 1

3

∫ ∞

0
e−3is〈ϕ,α(·)∂s

(
eisv̄(s)

)(
eisv̄(s)

)
〉ds.

(3.16)
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Proof. We proceed similarly to the proof of Proposition 3.2 in [50]. We begin by writing

a(t) = c0
ei

π
4 eit

t
1

2

(
〈ϕ, v0〉+

1

2i

∫ t−1

0

t
1

2

(t− s)
1

2

e−is〈ϕ,α(·)u(s)2〉ds
)
.

Then the main work goes into peeling off the leading order behavior of the second term in the
parentheses. To this end we insert the decomposition of u(s) into its “phase-filtered components”

u(s) = eis(e−isv(s)) + e−is(eisv̄(s))

to find that

1

2i

∫ t−1

0

t
1

2

(t− s)
1

2

e−is〈ϕ,α(·)u(s)2〉ds = 1

2i

∫ t−1

0

t
1

2

(t− s)
1

2

eis〈ϕ,α(·)
(
e−isv(s)

)2〉ds

+
2

2i

∫ t−1

0

t
1

2

(t− s)
1

2

e−is〈ϕ,α(·)
∣∣e−isv(s)

∣∣2〉ds

+
1

2i

∫ t−1

0

t
1

2

(t− s)
1

2

e−3is〈ϕ,α(·)
(
eisv̄(s)

)2〉ds

≡ 1

2i

(
I + II + III

)
.

Now we describe in detail how to peel off the leading order behavior of the term I, noting that the
other terms can be treated analogously. We first exploit the oscillations and integrate by parts in
time s to find that

I =

∫ t−1

0

t
1

2

(t− s)
1

2

eis〈ϕ,α(·)
(
e−isv(s)

)2〉ds

= −it 12 ei(t−1)〈ϕ,α(·)
(
e−i(t−1)v(t− 1)

)2〉
+ i〈ϕ,α(·)v(0)2〉

+
i

2

∫ t−1

0

t
1

2

(t− s)
3

2

eis〈ϕ,α(·)
(
e−isv(s)

)2〉ds

+ 2i

∫ t−1

0

t
1

2

(t− s)
1

2

eis〈ϕ,α(·)∂s
(
e−isv(s)

)(
e−isv(s)

)
〉ds

≡ I(a) + I(b) + I(c) + I(d).

Clearly, the term I(b) contributes to the leading order behavior of I. We now show that the terms
I(a) and I(c) decay as t → ∞, and we extract the leading order contribution from the term I(d).
Using the local decay bounds for v(t) from Proposition 3.1, we obtain that

|I(a)| . t
1

2‖〈x〉2σα(x)‖L∞
x
‖〈x〉−σv(t− 1)‖2L2

x
.

ε2

〈t〉 1

2

and

|I(c)| . t
1

2

∫ t−1

0

1

(t− s)
3

2

‖〈x〉2σα(x)‖L∞
x
‖〈x〉−σv(s)‖2L2

x
ds . t

1

2

∫ t−1

0

1

(t− s)
3

2

ε2

〈s〉 ds .
ε2

〈t〉 1

2

.
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Then we rewrite the last term I(d) as

I(d) = 2i

∫ t−1

0

t
1

2

(t− s)
1

2

eis〈ϕ,α(·)∂s
(
e−isv(s)

)(
e−isv(s)

)
〉ds

= 2i

∫ ∞

0
eis〈ϕ,α(·)∂s

(
e−isv(s)

)(
e−isv(s)

)
〉ds

− 2i

∫ ∞

t
2

eis〈ϕ,α(·)∂s
(
e−isv(s)

)(
e−isv(s)

)
〉ds

+ 2i

∫ t−1

t
2

t
1

2

(t− s)
1

2

eis〈ϕ,α(·)∂s
(
e−isv(s)

)(
e−isv(s)

)
〉ds

+ 2i

∫ t
2

0

(
t
1

2

(t− s)
1

2

− 1

)
eis〈ϕ,α(·)∂s

(
e−isv(s)

)(
e−isv(s)

)
〉ds

≡ I
(1)
(d) + I

(2)
(d) + I

(3)
(d) + I

(4)
(d) .

Using the local decay bounds from Proposition 3.1, in particular that ‖〈x〉−σ∂t(e
−itv(t))‖L2

x
has

faster decay, it is easy to see that the improper integral I
(1)
(d) converges and contributes to the

leading order behavior of the term I, while the other terms I
(2)
(d) , I

(3)
(d) , and I

(4)
(d) are of the order

OL∞
t
(ε2〈t〉− 1

2 ). Indeed, we find that

|I(1)(d) | .
∫ ∞

0
‖〈x〉2σα‖L∞

x
‖〈x〉−σ∂s(e

−isv(s))‖L2
x
‖〈x〉−σv(s)‖L2

x
ds .

∫ ∞

0

ε2

〈s〉 3

2

ds . ε2

and

|I(2)(d) | .
∫ ∞

t
2

‖〈x〉2σα‖L∞
x
‖〈x〉−σ∂s(e

−isv(s))‖L2
x
‖〈x〉−σv(s)‖L2

x
ds .

∫ ∞

t
2

ε2

〈s〉 3

2

ds .
ε2

〈t〉 1

2

.

Analogously, we obtain that

|I(3)(d) | .
∫ t−1

t
2

t
1

2

(t− s)
1

2

ε2

〈s〉 3

2

ds .
ε2

〈t〉 1

2

,

|I(4)(d) | .
∫ t

2

0

s

(t− s)
1

2 (t
1

2 + (t− s)
1

2 )

ε2

〈s〉 3

2

ds .
ε2

〈t〉 1

2

.

Thus, the leading order behavior of the term I is given by

I = i〈ϕ,α(·)v20 〉+ 2i

∫ ∞

0
eis〈ϕ,α(·)∂s

(
e−isv(s)

)(
e−isv(s)

)
〉ds+OL∞

t

(
ε2

〈t〉 1

2

)
.

Similarly, we compute that the leading order behaviors of the terms II and III are given by

II = −2i〈ϕ,α(·)|v0 |2〉 − 2i

∫ ∞

0
e−is〈ϕ,α(·)∂s

(
(e−isv(s))(e+isv̄(s))

)
〉ds+OL∞

t

(
ε2

〈t〉 1

2

)
,

III = − i

3
〈ϕ,α(·)v̄20 〉 −

2i

3

∫ ∞

0
e−3is〈ϕ,α(·)∂s

(
e+isv̄(s)

)(
e+isv̄(s)

)
〉ds+OL∞

t

(
ε2

〈t〉 1

2

)
.

Putting things together, we conclude that the asymptotic behavior of the coefficient a(t) is

a(t) = c0
ei

π
4 eit

t
1

2

a0 +OL∞
t

(ε2
t

)
, t ≥ 1,
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where

a0 = 〈ϕ, v0〉+
1

2
〈ϕ,α(·)v20 〉 − 〈ϕ,α(·)|v0|2〉 −

1

6
〈ϕ,α(·)v20〉

+

∫ ∞

0
eis〈ϕ,α(·)∂s

(
e−isv(s)

)(
e−isv(s)

)
〉ds

−
∫ ∞

0
e−is〈ϕ,α(·)∂s

(
(e−isv(s))(eisv̄(s))

)
〉ds

− 1

3

∫ ∞

0
e−3is〈ϕ,α(·)∂s

(
eisv̄(s)

)(
eisv̄(s)

)
〉ds.

(3.17)

This concludes the proof. �

4. Proof of Theorem 1.1

Now we are in the position to provide the proof of Theorem 1.1. We first consider the non-
resonant case. Afterwards we turn to the treatment of the more delicate resonant case. In the
course of the proof we will frequently invoke the local decay bounds established in Proposition 3.1
and Corollary 3.2. Throughout we let σ = 5.

Non-Resonant Case: We begin with the proof of the decay estimate (1.20). By time-reversal sym-
metry, it suffices to consider positive times t > 0. For short times 0 < t ≤ 1 we just use the Sobolev
estimate from Lemma 2.11 together with the local decay bounds (3.1). From Duhamel’s formula
we obtain that

sup
0≤t≤1

‖v(t)‖L∞
x

. sup
0≤t≤1

(
‖v(t)‖L2

x
+ ‖

√
Hv(t)‖L2

x

)

. ‖Pcv0‖L2
x
+ ‖

√
HPcv0‖L2

x
+

∫ 1

0
‖α(x)v(s)2‖L2

x
ds

. ‖v0‖H1
x
+

∫ 1

0
‖〈x〉2σα‖L2

x
‖〈x〉−σv(s)‖2L∞

x
ds

. ε.

Then for times t ≥ 1, we first peel off the leading order behavior of the variable coefficient quadratic
nonlinearity in Duhamel’s formula for v(t) by inserting the function w(t) defined in (3.12) as well as
the asymptotics for the coefficient a(t) from Corollary 3.3. Exploiting the non-resonance assumption

F̃ [αϕ2](±
√
3) = 0, we may then integrate by parts in time in the leading order term in Duhamel’s

formula to recast it into a more favorable form. Subsequently, we apply the dispersive decay
estimate (2.68) for the Klein-Gordon propagator to infer the decay estimate (1.20).

More specifically, we begin by writing for any t ≥ 1,

v(t) = eit〈D̃〉Pcv0 +
1

2i

∫ t

0
ei(t−s)〈D̃〉〈D̃〉−1Pc

(
α(·)u(s)2

)
ds

= eit〈D̃〉Pcv0 +
1

2i

∫ 1

0
ei(t−s)〈D̃〉〈D̃〉−1Pc

(
α(·)u(s)2

)
ds

+
1

2i

∫ t

1
ei(t−s)〈D̃〉〈D̃〉−1Pc

(
α(·)

(
(v(s) + v̄(s))2 − (w(s) + w̄(s))2

))
ds

+
1

2i

∫ t

1

(
ei(t−s)〈D̃〉〈D̃〉−1Pc

(
αϕ2

))
(a(s) + ā(s))2 ds

≡ I + II + III + IV.

(4.1)

The L∞
x bounds for the terms I and II in (4.1) are straightforward and we omit the details. We now

consider the term III, afterwards we estimate the delicate term IV . In the case of the term III
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in (4.1), we have by the dispersive decay estimate (2.68) (with µ = 1
2 ) for all t ≥ 1 that

‖III‖L∞
x

.

∫ t

1

∥∥∥ei(t−s)〈D̃〉〈D̃〉−1Pc

(
α(·)

(
(v(s) + v̄(s))2 − (w(s) + w̄(s))2

))∥∥∥
L∞
x

ds

.

∫ t

1

1

(t− s)
1

2

∥∥∥〈D̃〉Pc

(
α(·)

(
(v(s) + v̄(s))2 − (w(s) + w̄(s))2

))∥∥∥
L1
x

ds.

We now show that
∥∥∥〈D̃〉Pc

(
α(·)

(
(v(s) + v̄(s))2 − (w(s) + w̄(s))2

))∥∥∥
L1
x

.
ε2

〈s〉 3

2

, s ≥ 1,

which immediately implies the desired decay estimate

‖III‖L∞
x

.

∫ t

1

1

(t− s)
1

2

ε2

〈s〉 3

2

ds .
ε2

t
1

2

, t ≥ 1.

We may ignore the complex conjugates to simplify the notation and now prove that
∥∥∥〈D̃〉Pc

(
α(·)

(
v(s)2 − w(s)2

))∥∥∥
L1
x

.
ε2

〈s〉 3

2

, s ≥ 1. (4.2)

To this end we first further decompose v(s) into a low-energy and a high-energy part

v(s) = χ0(H)v(s) +
(
1− χ0(H)

)
v(s),

where we recall that χ0 denotes a smooth bump function supported on |ξ| . 1 with χ0(ξ) = 1 near
ξ = 0. We obtain

〈D̃〉Pc

(
α(·)

(
v(s)2 − w(s)2

))
= 〈D̃〉Pc

(
α(·)

(
(χ0(H)v(s))2 − w(s)2

))

+ 〈D̃〉Pc

(
α(·)

(
χ0(H)v(s)

)(
(1− χ0(H))v(s)

))

+ 〈D̃〉Pc

(
α(·)

(
(1− χ0(H))v(s)

)
v(s)

)

≡ III(a) + III(b) + III(c).

(4.3)

By exploiting the faster local decay of the high-energy component (1− χ0(H))v of the solution as

well as the faster local decay of
√
Hv established in Proposition 3.1, the product estimate (2.34)

already yields the desired bound for the last two terms on the right-hand side of (4.3),

‖III(b)‖L1
x
+ ‖III(c)‖L1

x
. ‖〈x〉1+2σα‖L∞

x

(
‖〈x〉−σv(s)‖L2

x
+ ‖〈x〉−σ

√
Hv(s)‖L2

x

)
×

×
(
‖〈x〉−σ(1− χ0(H))v(s)‖L2

x
+ ‖〈x〉−σ

√
Hv(s)‖L2

x

)

.
ε2

〈s〉 3

2

.

It remains to estimate the more subtle first term on the right-hand side of (4.3). By Hölder’s
inequality, the equivalence of norms from Lemma 2.10, and the usual product rule for the derivative,
we have

‖III(a)‖L1
x
.

∥∥∥〈x〉σ〈D̃〉Pc

(
α(·)

(
(χ0(H)v(s))2 −w(s)2

))∥∥∥
L2
x

.
∥∥〈x〉σα(x)

(
(χ0(H)v(s))2 − w(s)2

)∥∥
H1

x

. ‖〈x〉1+2σα‖
W 1,∞

x

∥∥〈x〉−σ
(
χ0(H)v(s)− w(s)

)∥∥
L2
x

∥∥〈x〉−σ
(
χ0(H)v(s) + w(s)

)∥∥
L∞
x

+ ‖〈x〉1+2σα‖L∞
x

∥∥〈x〉−σ∂x
(
χ0(H)v(s) −w(s)

)∥∥
L2
x

∥∥〈x〉−σ
(
χ0(H)v(s) + w(s)

)∥∥
L∞
x

+ ‖〈x〉1+2σα‖L∞
x

∥∥〈x〉−σ
(
χ0(H)v(s)− w(s)

)∥∥
L2
x

∥∥〈x〉−σ∂x
(
χ0(H)v(s) + w(s)

)∥∥
L∞
x
.
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The kernel bounds (2.18) and the local decay bound for v(s) imply

∥∥〈x〉−σ
(
χ0(H)v(s)

)∥∥
L∞
x
+

∥∥〈x〉−σ∂x
(
χ0(H)v(s)

)∥∥
L∞
x

. ‖〈x〉−σv(s)‖L2
x
.

ε

〈s〉 1

2

,

while the asymptotics for the coefficient function a(s) from Corollary 3.3 give

‖〈x〉−σw(s)‖L∞
x

+ ‖〈x〉−σ∂xw(s)‖L∞
x

. |a(s)|
(
‖ϕ‖L∞

x
+ ‖∂xϕ‖L∞

x

)
.

ε

〈s〉 1

2

.

Combining the preceding estimates with the faster local decay for (χ0(H)v(s) − w(s)) and for
∂x(χ0(H)v(s)− w(s)) from Corollary 3.2 given by

∥∥〈x〉−σ
(
χ0(H)v(s) −w(s)

)∥∥
L2
x
+

∥∥〈x〉−σ∂x
(
χ0(H)v(s)− w(s)

)∥∥
L2
x
.

ε

〈s〉 ,

we arrive at the desired bound ‖III(a)‖L1
x
. ε−2〈s〉− 3

2 for s ≥ 1.
Finally, we consider the delicate term IV in the decomposition (4.1) of Duhamel’s formula

for v(t). We further decompose it by inserting the asymptotics for the coefficient a(t) from Corol-
lary 3.3 and find that

IV = c20
a20
2

∫ t

1

(
ei(t−s)〈D̃〉〈D̃〉−1Pc

(
αϕ2

))e2is
s

ds

+ c20
|a0|2
i

∫ t

1

(
ei(t−s)〈D̃〉〈D̃〉−1Pc

(
αϕ2

))1
s
ds

− c20
ā20
2

∫ t

1

(
ei(t−s)〈D̃〉〈D̃〉−1Pc

(
αϕ2

))e−2is

s
ds

+
1

2i

∫ t

1

(
ei(t−s)〈D̃〉〈D̃〉−1Pc

(
αϕ2

))
OL∞

s

( ε2

s
3

2

)
ds

≡ IV(a) + IV(b) + IV(c) + IV(d).

(4.4)

We observe that the term IV(a) can be thought of to determine the leading order behavior of v(t),

because on the distorted Fourier side in the integrand of IV(a) the phase of e
is(2−〈ξ〉) vanishes when

2− 〈ξ〉 = 0, i.e. for ξ = ±
√
3. In contrast, the integrands in the terms IV(b) and IV(c) have better

oscillatory behavior in time (at all frequencies) and the term IV(d) has better decay in s of the

integrand anyway. However, thanks to the non-resonance assumption F̃ [αϕ2](±
√
3) = 0, we can

still integrate by parts in time s in the delicate term IV(a) and cast it into a better form. We find
that

IV(a) = c20
a20
2i

(2− 〈D̃〉)−1〈D̃〉−1Pc

(
αϕ2

)e2it
t

− c20
a20
2i

(
ei(t−1)〈D̃〉(2− 〈D̃〉)−1〈D̃〉−1Pc

(
αϕ2

))
e2i

+ c20
a20
2i

∫ t

1

(
ei(t−s)〈D̃〉(2− 〈D̃〉)−1〈D̃〉−1Pc

(
αϕ2

)) 1

s2
ds.

At this point we can infer the desired decay estimate for IV(a). For times 1 ≤ t ≤ 2 we just use
the Sobolev estimate from Lemma 2.11, while we invoke the dispersive decay estimate (2.68) (with
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µ = 1
2) and Lemma 2.14 to obtain uniformly for all times t ≥ 2 that

‖IV(a)‖L∞
x

.
|a0|2
t

∥∥(2− 〈D̃〉)−1〈D̃〉−1Pc

(
αϕ2

)∥∥
L∞
x

+
|a0|2

(t− 1)
1

2

∥∥(2− 〈D̃〉)−1〈D̃〉Pc

(
αϕ2

)∥∥
L1
x

+ |a0|2
∫ t

1

1

(t− s)
1

2

∥∥(2− 〈D̃〉)−1〈D̃〉Pc

(
αϕ2

)∥∥
L1
x

1

s2
ds

.
∥∥〈x〉σ+3αϕ2

∥∥
L2
x

|a0|2

t
1

2

.

The terms IV(b) and IV(c) can be estimated analogously after integrating by parts in time s, and
the term IV(d) can be bounded directly. This finishes the proof of the decay estimate (1.20) in the
non-resonant case.

In order to specify the asymptotic behavior of the solution v(t), we define the scattering data

v∞ := Pcv0 +
1

2i

∫ 1

0
e−is〈D̃〉〈D̃〉−1Pc

(
α(·)u(s)2

)
ds

+
1

2i

∫ ∞

1
e−is〈D̃〉〈D̃〉−1Pc

(
α(·)

(
(v(s) + v̄(s))2 − (w(s) + w̄(s))2

))
ds

+
1

2i

∫ ∞

1

(
e−is〈D̃〉〈D̃〉−1Pc

(
αϕ2

))
(a(s) + ā(s))2 ds.

(4.5)

Then by mimicking the preceding arguments, it follows that v∞ ∈ H2
x and that v(t) scatters in H2

x

to a free Klein-Gordon wave in the sense that

∥∥v(t)− eit〈D̃〉v∞
∥∥
H2

x
.

ε2

〈t〉 1

2

, t ≥ 1.

This concludes the treatment of the non-resonant case.

Resonant Case: We begin with the proof of the decay estimate (1.13). Again, it suffices to consider
positive times t > 0. For times 0 < t ≤ 1 we just use the Sobolev estimate from Lemma 2.11
together with the local decay bounds (3.1), as in the preceding treatment of the non-resonant case.
Then it remains to consider times t ≥ 1. To this end we combine the dispersive decay estimate (2.68)
for the Klein-Gordon propagator (with µ = 1

2) and the product estimate (2.34) with the local decay
bounds (3.1) for v(t), to infer from Duhamel’s formula for v(t) that uniformly for all t ≥ 1,

‖v(t)‖L∞
x

.
∥∥eit〈D̃〉Pcv0

∥∥
L∞
x
+

∫ t

0

∥∥ei(t−s)〈D̃〉〈D̃〉−1Pc

(
α(·)u(s)2

)∥∥
L∞
x
ds

.
‖〈D̃〉2Pcv0‖L1

x

t
1

2

+

∫ t

0

1

(t− s)
1

2

∥∥〈D̃〉Pc

(
α(·)u(s)2

)∥∥
L1
x
ds

.
‖〈x〉σ〈D̃〉2Pcv0‖L2

x

t
1

2

+

∫ t

0

1

(t− s)
1

2

‖〈x〉1+2σα‖W 1,∞
x

(
‖〈x〉−σv(s)‖L2

x
+ ‖〈x〉−σ

√
Hv(s)‖L2

x

)2
ds

.
‖〈x〉σv0‖H2

x

t
1

2

+

∫ t

0

1

(t− s)
1

2

ε2

〈s〉 ds

.
log(1 + 〈t〉)

t
1

2

ε.
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This proves the decay estimate (1.13).
Next, we consider the asymptotic behavior of the solution v(t). To this end, we first decompose

Duhamel’s formula for v(t) as in (4.1) and (4.4) to write for times t ≥ 1,

v(t) = eit〈D̃〉Pcv0 +
1

2i

∫ 1

0
ei(t−s)〈D̃〉〈D̃〉−1Pc

(
α(·)u(s)2

)
ds

+
1

2i

∫ t

1
ei(t−s)〈D̃〉〈D̃〉−1Pc

(
α(·)

(
(v(s) + v̄(s))2 − (w(s) + w̄(s))2

))
ds

+ c20
a20
2

∫ t

1

(
ei(t−s)〈D̃〉〈D̃〉−1Pc

(
αϕ2

))e2is
s

ds

+ c20
|a0|2
i

∫ t

1

(
ei(t−s)〈D̃〉〈D̃〉−1Pc

(
αϕ2

))1
s
ds

− c20
ā20
2

∫ t

1

(
ei(t−s)〈D̃〉〈D̃〉−1Pc

(
αϕ2

))e−2is

s
ds

+
1

2i

∫ t

1

(
ei(t−s)〈D̃〉〈D̃〉−1Pc

(
αϕ2

))
OL∞

s

( ε2

s
3

2

)
ds.

(4.6)

In what follows we show that the modified scattering behavior of the nonlinear solution v(t) is
caused by the fourth term on the right-hand side of (4.6), which we denote by

vmod(t) := c20
a20
2

∫ t

1

(
ei(t−s)〈D̃〉〈D̃〉−1Pc

(
αϕ2

))e2is
s

ds.

We group all other terms in Duhamel’s formula (4.6) for v(t) into

vfree(t) := v(t) − vmod(t).

Proceeding as in the proof of the decay estimate (1.20) for the non-resonant case, we obtain the
asserted decay estimate (1.14) for vfree(t) given by

‖vfree(t)‖L∞
x

.
ε

〈t〉 1

2

, t ≥ 1. (4.7)

Moreover, upon defining the scattering data

v∞ := Pcv0 +
1

2i

∫ 1

0
e−is〈D̃〉〈D̃〉−1Pc

(
α(·)u(s)2

)
ds

+
1

2i

∫ ∞

1
e−is〈D̃〉〈D̃〉−1Pc

(
α(·)

(
(v(s) + v̄(s))2 − (w(s) + w̄(s))2

))
ds

+ c20
|a0|2
i

∫ ∞

1

(
e−is〈D̃〉〈D̃〉−1Pc

(
αϕ2

))1
s
ds

− c20
ā20
2

∫ ∞

1

(
e−is〈D̃〉〈D̃〉−1Pc

(
αϕ2

))e−2is

s
ds

+
1

2i

∫ ∞

1

(
e−is〈D̃〉〈D̃〉−1Pc

(
αϕ2

))
OL∞

s

( ε2

s
3

2

)
ds,

we find by proceding as in the non-resonant case that v∞ ∈ H2
x and that vfree(t) scatters in H

2
x to

a free Klein-Gordon wave in the sense that

∥∥vfree(t)− eit〈D̃〉v∞
∥∥
H2

x
.

ε2

〈t〉 1

2

, t ≥ 1.
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Finally, we analyze the asymptotic behavior of vmod(t) for t ≫ 1. Here we follow relatively
closely the corresponding derivation in the proof of Theorem 1.1 in [50]. In what follows we use
the short-hand notation

Y := αϕ2.

Let ψ ∈ C∞(R) be a smooth bump function such that ψ(ξ) = 1 in a small neighborhood around
ξ = 0 and such that

ψ(ξ) = 0 for |ξ| ≥ δ̃ (4.8)

for some small δ̃ ≡ δ̃(δ) > 0, whose size will be specified further below. Then we decompose the

distorted Fourier transform Ỹ (ξ) of Y into

Ỹ (ξ) = Ỹ+(ξ) + Ỹ−(ξ) + Ỹnr(ξ)

with

Ỹ±(ξ) := ψ(ξ ∓
√
3)Ỹ (ξ).

Correspondingly, we define for times t ≥ 1,

vmod,±(t) := c20
a20
2

∫ t

1

(
ei(t−s)〈D̃〉〈D̃〉−1PcY±

)e2is
s

ds, (4.9)

vmod,nr(t) := c20
a20
2

∫ t

1

(
ei(t−s)〈D̃〉〈D̃〉−1PcYnr

)e2is
s

ds. (4.10)

Decay of vmod,nr(t): Since Ỹnr(±
√
3) = 0 by construction, we can integrate by parts in time s in

the Duhamel integral for vmod,nr(t). Then using the standard dispersive decay estimate for the
Klein-Gordon propagator from Lemma 2.18, we obtain uniformly for all t ≥ 1 that

‖vmod,nr(t)‖L∞
x

.
ε2

t
1

2

.

Decay of vmod,±(t) away from small conic neighborhoods of x = ±
√
3
2 t: It suffices to consider

vmod,+(t), the treatment of vmod,−(t) being analogous. Assume that x ≥ 0. Using the distorted

Fourier transform and noting that Ỹ+(ξ) is supported on (0,∞), we write

vmod,+(t, x) = c20
a20

2
√
2π

∫ t

1

∫

R

T (ξ)m+(x, ξ)e
i(xξ+(t−s)〈ξ〉)〈ξ〉−1Ỹ+(ξ) dξ

e2is

s
ds. (4.11)

The phase

φ(s, ξ; t, x) := xξ + (t− s)〈ξ〉
satisfies

∂ξφ(s, ξ; t, x) = x+ (t− s)
ξ

〈ξ〉 , ∂2ξφ(s, ξ; t, x) =
t− s

〈ξ〉3 .

For any given 0 < δ ≪ 1, we may choose the constant δ̃ ≡ δ̃(δ) > 0 in the definition (4.8) of the
cut-off funtion ψ above so small such that

∣∣∣ ξ〈ξ〉 −
(
±
√
3

2

)∣∣∣ ≤ δ

2
whenever Ỹ+(ξ) 6= 0.

Moreover, we have |∂2ξφ(s, ξ; t, x)| ≃ (t − s) on the support of Ỹ (ξ). We distinguish two cases.

Suppose x ≥
(√

3
2 + δ

)
t. Then on the support of Ỹ+(ξ) the phase satisfies

|∂ξφ| ≥ |x| − (t− s)
|ξ|
〈ξ〉 ≥

(√3

2
+ δ

)
t−

(√3

2
+
δ

2

)
(t− s) ≥ δ

2
t.
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Correspondingly, integrating by parts in ξ and using Lemma 2.3 as well as Lemma 2.5, we find

∣∣vmod,+(t, x)
∣∣ .δ,V

∫ t

1

1

t

ε2

s
ds .

ε2

t1−
.

Now suppose 0 ≤ x ≤
(√

3
2 − δ

)
t. We divide the time integration interval into two subintervals

[1, t] = [1, t1] ∪ [t1, t],

where

t1 :=
δ

2(
√
3 + δ)

t.

On the support of Ỹ+(ξ) the phase satisfies for 1 ≤ s ≤ t1 that

|∂ξφ| ≥ t
|ξ|
〈ξ〉 − |x| − s

|ξ|
〈ξ〉 ≥ t

(√3

2
− δ

2

)
− t

(√3

2
− δ

)
− δ

2(
√
3 + δ)

t
(√3

2
+
δ

2

)
=
δ

4
t.

Integration by parts in ξ therefore pays off for 1 ≤ s ≤ t1. Instead for times s ≥ t1 we can just

use the usual (t − s)−
1

2 dispersive decay of the retarded Klein-Gordon propagator ei(t−s)〈D̃〉 from

Lemma 2.18 and crudely bound 1
s ≤ 1

t1
.δ

1
t . Hence, in the case 0 ≤ x ≤

(√
3
2 − δ

)
t, we obtain that

|vmod,+(t, x)| .δ,V

∫ t1

1

1

t

ε2

s
ds+

∫ t

t1

1

(t− s)
1

2

ε2

t
ds .

ε2

t1−
+
ε2

t
1

2

.
ε2

t
1

2

. (4.12)

If instead x < 0, we start from the representation (4.11) for vmod,+(t, x) and first express T (ξ)f+(x, ξ)
in terms of f−(x, ·) using (2.9). Then we may proceed as above.

This concludes the derivation of the decay estimate (1.18) for vmod(t) away from small conic

neighborhoods of the rays x = ±
√
3
2 t, as asserted in the statement of Theorem 1.1.

Asymptotics of vmod,±(t, x) along the rays x = ±
√
3
2 t: We consider vmod,−(t, x) in detail, noting

that the treatment of vmod,+(t, x) proceeds analogously. First, we may restrict the time integration
in the definition of vmod,−(t, x) to times 1 ≤ s ≤ t − 1 at the expense of picking up a remainder

term of order OL∞
t

(
ε2t−1

)
. Moreover, by Lemma 2.19 on the asymptotics of the Klein-Gordon

propagator (and observing that t−
1

2 〈ξ0〉
3

2 〈ξ0〉−1 = ρ−
1

2 for ξ0 as in the statement of Lemma 2.19),
we have for 1 ≤ s ≤ t− 1 that
(
ei(t−s)〈D̃〉〈D̃〉−1PcY−

)(
±
√
3

2
t
)

=
ei

π
4 eiρ(t−s,±

√
3

2
t)

ρ(t− s,±
√
3
2 t)

1

2

Ỹ−

(
− ±

√
3
2 t

ρ(t− s,±
√
3
2 t)

)
1(−1,1)

(
x

t− s

)
+

1

(t− s)
2

3

O
(
‖〈x〉Y−‖H2

x

)
,

(4.13)

where

ρ(t− s,±
√
3
2 t) =

(
(t− s)2 − 3

4t
2
) 1

2 = t
2

(
1− 8s

t + 4s2

t2

) 1

2 .

Inserting the asymptotics (4.13) into (4.9) gives

vmod,−
(
t,±

√
3

2
t
)
= c20

a20
2

∫ t−
√

3

2
t

1

ei
π
4 eiρ(t−s,±

√
3

2
t)

ρ(t− s,±
√
3
2 t)

1

2

Ỹ−

(
− ±

√
3
2 t

ρ(t− s,±
√
3
2 t)

)
e2is

s
ds+OL∞

t

( ε2

t
2

3
−

)
.

Since Ỹ−(ξ) = 0 for ξ > 0, we have along the ray x = −
√
3
2 t that

vmod,−
(
t,−

√
3

2
t
)
= OL∞

t

( ε2

t
2

3
−

)
.
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Moreover, due to the sharp localization of the frequency support of Ỹ−(ξ) around ξ = −
√
3, for

t ≫ 1 the time integration in the last identity for vmod,−(t,
√
3
2 t) is in fact only over an interval

1 ≤ s ≤ ct for some small constant 0 < c≪ 1. Thus, along the ray x =
√
3
2 t one has that

vmod,−
(
t,

√
3

2
t
)
= c20

a20
2

∫ ct

1

ei
π
4 eiρ(t−s,

√
3

2
t)

ρ(t− s,
√
3
2 t)

1

2

Ỹ−

(
−

√
3
2 t

ρ(t− s,
√
3
2 t)

)
e2is

s
ds+OL∞

t

( ε2

t
2

3
−

)
. (4.14)

In view of the approximate identities

−
√
3
2 t

ρ(t− s,
√
3
2 t)

= −
√
3 +O

(s
t

)
,

1

ρ(t− s,
√
3
2 t)

1

2

=

√
2

t
1

2

+O
( s

t
3

2

)
,

it follows that

vmod,−
(
t,

√
3

2
t
)
= c20

a20√
2
ei

π
4 Ỹ (−

√
3)

1

t
1

2

∫ ct

1
ei(ρ(t−s,

√
3

2
t)+2s) 1

s
ds+OL∞

t

( ε2

t
1

2

)
. (4.15)

Now we observe that the phase

φ(s; t) := ρ
(
t− s,

√
3

2
t
)
+ 2s

is stationary at s = 0 and that its Taylor expansion about s = 0 is of the form

φ(s; t) =
t

2
+O

(s2
t

)
.

Thus, for times 1 ≤ s ≪ t
1

2 the phase φ(s; t) is essentially constant and the integrand in (4.15)
is effectively monotone, which leads to the buildup of a log(t) factor. In order to arrive at a
sharp formula for the asymptotics, we split the time integration interval into the two subintervals

1 ≤ s ≤ 10−3t
1

2 and 10−3t
1

2 ≤ s ≤ ct. For the interval 1 ≤ s ≤ 10−3t
1

2 we compute that

∫ 10−3t
1
2

1
eiφ(s;t)

1

s
ds = ei

t
2

∫ 10−3t
1
2

1

1

s
ds+

∫ 10−3t
1
2

1
O
(s
t

)
ds =

ei
t
2

2
log(t) +O(1).

Instead, on the interval 10−3t
1

2 ≤ s ≤ ct we integrate by parts. Since ∂sφ(s; t) = O
(
s
t

)
and

∂2sφ(s; t) = O
(
1
t

)
on that time integration interval, we find

∣∣∣∣
∫ ct

10−3t
1
2

eiφ(s;t)
1

s
ds

∣∣∣∣ .
∫ ct

10−3t
1
2

t

s3
ds+

∣∣∣∣
t

s2

∣∣∣
s=ct

s=10−3t
1
2

∣∣∣∣ . 1.

Hence, we obtain the asymptotics

vmod,−
(
t,

√
3

2
t
)
= c20

a20√
8
ei

π
4 ei

t
2 F̃ [αϕ2](−

√
3)
log(t)

t
1

2

+OL∞
t

( ε2

t
1

2

)
, t≫ 1.

This finishes the proof of Theorem 1.1.
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43. M. Kowalczyk, Y. Martel, C. Muñoz, and H. Van Den Bosch, A sufficient condition for asymptotic stability of

kinks in general (1 + 1)-scalar field models, Preprint arXiv:2008.01276.
44. J. Krieger and W. Schlag, Stable manifolds for all monic supercritical focusing nonlinear Schrödinger equations

in one dimension, J. Amer. Math. Soc. 19 (2006), no. 4, 815–920.
45. , On the focusing critical semi-linear wave equation, Amer. J. Math. 129 (2007), no. 3, 843–913.
46. G. L. Lamb, Jr., Elements of soliton theory, John Wiley & Sons, Inc., New York, 1980, Pure and Applied

Mathematics, A Wiley-Interscience Publication.
47. M. Larenas and A. Soffer, Abstract theory of decay estimates: perturbed Hamiltonians, Preprint arXiv:1508.04490.
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