CHAPTER 1

Fourier Series: Convergence and Summability

Let T = R/Z be the one-dimensional torus (circle). We consider various function
spaces on it, namely C(T), C*(T), and LP(T). The space of complex Borel measures on
T will be denoted by M(T). Any p € M(T) has associated with it a Fourier series

[e.9]

e S ln)e(na)

n=—oo

where we let e(x) = €*™* and

(n) = / e(—nz) du(z)

We first consider the classical question of convergence of Fourier series. The partial sums
of f € L}(T) are defined as

/DN_ (v) dy

where Dy (z) = SN e(na) is the Dirichlet kernel.

EXERCISE 1. Check that
sin((2N + 1)7x)

D(x) = sin(mz)

and draw the graph of Dy.

One can also write

Snf(x) = (D * f) (x)
where f* g(x fT g(y) dy is the convolution of f and g. You should think of
f*g asan avemge of tmnslates of f.

EXERCISE 2. Prove the following properties of the convolution.:
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a) |f*gll, <N fllpllglls for all1 <p < oo, f € LP, g € L*. This is called Young’s
wequality. You should pay careful attention to the fact that the integral defining
f * g is not necessarily absolutely convergent for every x.

b) More generally, if f € C(T), p € M(T) then f * p is well defined. Show that,
Jor 1 <p < oo,

L pellp < (LAl el

which allows you to extend f * p to f € L.

¢) If f € LP(T) and g € L (T) where 1 < p < oo, and%—i—ﬁ =1 then f * g,
originally defined only almost every where, extends to a continuous function on
T and

1F glloo < £ llpllgllr -

Is this still true of p=1 or p=o00?
d) For f,g € LY(T) show that for alln € Z

fg(n) = f(n)gn) .

It is typically difficult to understand convergence of Sy f. This can be seen as an
instance of the fact that the Dirichlet kernel is not an approximate identity, see below.
One (standard) positive result is the following theorem.

THEOREM 1. If f € C(T), 0 < a < 1, then [|[Syf — flloo — 0 as N — oc.

PROOF. One has, with 6 > 0 to be determined,
1
S (@)= fa) = [ (@ =2) = F@)Dx (o) dy
-/ U =) = Sy dy )
y|<
[ (fw=9) = ) Dty dy.
ly|>d
There is the obvious bound

D (y)] < Cmin (N, ﬁ) .

Here and in what follows, C' will denote a numerical constant that can change from line
to line. The first integral in (1) can be estimated as follows

[ U@ = fe=ils v <l [ it dy < Clfl? @)
Iyl <5 yl lyl<6
where we have set
[f] = sup |f(l‘)—f<$—y)‘
“ Ty |y|a



To bound the second term in (1) one needs to exploit the oscillation of Dy (y). In fact,

. /|y>5(f(:v —y) = f(2))Dnly) dy =

= UG — y) = J(@) sin((2N + 1)7y) dy
ly|>6 sin(7y)
1
= - ha(y) sin((2N + D)7(y + ) dy
/y|>5 2N +1
ey —f()
where h,(y) : e

Therefore,

2B — /|y TSN + 1) dy

1
— i (y — ) sin((2N + 1)7y) dy
/|1/_21\71+1|>6 2N + 1

- /| () =ty ~ ) SN + 1)) dy

1 )
+ /_ L ha(y — N T 1)s.m((QN + 1)7y) dy
(-9, 6+2N+1]

_/ L ha(y — N T 1)sm((2N—|— )my) dy .
16,6+ 5]

These integrals are estimated by putting absolute values inside. To do so we use the
bounds

(o)) < Wl

) = -+ 7 < € (T 4 Wmpey)

if ly| > > 27.

In view of the preceding one checks

N=[fla , N7 fll
B| <
Bz (Ml ) B
provided § > . Choosing § = N~%/2 one concludes from (1), (2), and (3) that
(S F)@) = f@)] < O (N2 4 N7 6 N7 (|| oo + [la) |
which proves the theorem. 0

REMARK. We shall see later that the theorem fails for continuous functions i.e.,
a=0.



Better convergence properties are achieved by means of Cesaro means, i.e.,

| Nl
onf = N Z Snf .
n=0

Setting Ky = % Zg;ol D,,, which is called the Fejer kernel, one therefore has
O’Nf = KN * f

. 2
EXERCISE 3. Check that Ky (z) = + (Slsrfx(lj(\:;gf)) .

It s important to realize that I?N looks like a triangle, i.e., for alln € Z

+
~ n
KN<TL) = ( — %) .
The importance of Ky with respect to convergence properties lies with the fact that the

Fejer kernels form an approximate identity (abbreviated a.i.).

DEFINITION 1. {®n}X¥_; C L®(T) are an approximate identity provided

A1) [[®n(z) dr =1 for all N
A2) supy fol |®n(z)| de < oo
A3) for all 6 > 0 one has f‘x|>5 |y (z)|de — 0 as N — oo.

LEMMA 1. The Fejer kernels { Kn}%_, form an a.i.

PROOF. We clearly have fol Kn(z) dr =1 (why?) and Ky(x) > 0 so that Al) and
A2) hold. A3) follows from the bound |Ky(z)| < < min (N?, 5). O

LEMMA 2. For any a.i. {®n}3_; one has

a) If f € C(T), then || Py * f — flloo — 0 as N — o0
b) If f € LP(T) where 1 < p < oo, then || Py * f — f|l, — 0 as N — oc.

PROOF.

a) Since T is compact, f is uniformly continuous. Given € > 0, let § > 0 be such
that

sup sup |f(z —y) — f(z)| <e.
z |y|<d

Then, by A1)-A3),
@+ 1)) = )] = | [ (e =9) = )t ]

<supsup |f(z — y) — £(2) / | (6)|dt + /| PRI dy

z€T |y|<d

<Ce
provided N is large.



b) Let g € C(T) with || f — g/, < e. Then
[Pw o f = flly < [[®x* (f = 9)llp + 1 = glly + [[Px+ g — gl

< (s%pu%ul i 1) 1 = glly + 1% # g — gllc

where we have used Young’s inequality (Exercise 2 part a)) to obtain the first
term on the right-hand side. Using A2), the assumption on g, as well as part a)
finishes the proof.

O

COROLLARY 1.
a) Trigonmetric polynomials are dense in C(T), LP(T), 1 < p < oc.

b) For any f € L*(T) )
1715 =>_ 17 ()P

nez
¢) {e(nx)}nez form a complete orthonormal basis in L*(T).

D) Jr@1500) de=3, e sy For @l f9 € LX(T)

PROOF.

a) By Lemma 1, { Ky }%_; form an a.i. and Lemma 2 applies. Since onf = Ky * f
is a trigonometric polynomial, we are done.

b), ¢), d) are well-known to be equivalent by basic Hilbert space theory. The point to
make here is of course that

/01 en(2)em (1) dz = do(n — m)

(where 6o(j) = 1if j = 0 and do(j) = 0 otherwise). Generally speaking one thus has

Bessel’s inequality
D FmP < IIf1I3

and equality is equivalent to span {e,} being dense in L*(T). That, however, is guaran-
teed by part a). d

REMARK. Partsb), ¢), d) go under the name Plancherel, Riesz-Fischer, and Parse-
val.

COROLLARY 2. (uniqueness theorem): If f € L*(T) and f(n) = 0 for alln € Z, then
f=0.

PROOF. oy f =0 for all N by assumption and |onf — f|1 — 0. O
COROLLARY 3. (Riemann-Lebesque): If f € L*(T), then f(n) — 0 as n — oo
PROOF. Given € > 0, let N be so large that |jonf — f]|1 < e.

Then |f(n)| = loxf(n) — f(n)| < |loxf — fll1 < € for |n| > N. O
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Try to do problem 41 from the appendix.

We now return to the issue of convergence of the partial sums Sy f in LP(T) or C(T)
(observe that it makes no sense to ask about uniform convergence of Sy f for general
f € L*™(T) because uniform limits of continuous functions are continuous).

LEMMA 3. The following statements are equivalent: For any 1 < p < oo
a) For every f € LP(T) (or f € C(T) if p =)

I1Snf = fllp — 0

as N — oo.
b) supy [|Sn|lp—p < 0

PROOF. The implication b) = a) follows from the fact that trigonometric polynomi-
als are dense. The implication a) = b) can be deduced immediately from the uniform
boundedness principle of functional analysis. Alternatively, there is the following ele-
mentary argument (the method of the “gliding hump”): Suppose supy [[Sn|l,—p = 00.
For every positive integer ¢ one can therefore find a (large) integer N, such that

1SN, fellp > 2°

where f; is a trigonometric polynomial with ||f; ||, = 1. Now let
=1
f(0) = 3 elMer) ul)
=1

with some integers {M,} to be specified. Notice that

o0

1
£l < D7 5l el < o0

(=1

Now choose {M,} tending to infinity so rapidly that the Fourier support of

e(Mjz) f(x)

lies to the right of the Fourier support of

Jj—1 1
E_QG(MZ:L‘)JCZ(‘T)

=1
for every j > 2 (here Fourier support means those integers for which the corresponding
Fourier coefficients are non-zero). Then
2@
?
which — o0 as { — o0. On the other hand, since N, + M, — oo and
M, — N, — 1 — oo (why?), the left-hand side — 0 as { — oo. This contradic-
tion finishes the proof. 0

1
| (SNpat, = Snp—n—1) fllp = g—QHSNefer >

COROLLARY 4. Fourier series do not converge on C(T) and L*(T), i.e., there exists
f e C(T) so that ||[Snf — fllee = 0 and g € L*(T) so that ||Syg — g|l1 - 0 .
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PrOOF. By Lemma 3 it suffices to show that

sup ||Sn||co—oo = 00 and
N

sup | Sivlli1 = oo

N

Both properties follow from the fact that
||DN||1 Z ClOgN — OQ,
which you should check. To deduce (4) from this, notice that

1S3 lloc—o0 = sup || Dy * fllo
=1

> sup [(Dyxf)0)

=[xl -
Furthermore, with {K,}37_; being the Fejer kernels,
[Snlli—1 2 [[Dy * Karlls — ([ Dxls
as M — oo. U

EXERCISE 4. Show that ||Sy||co—oo = [|Sn||1—1 = || Dn]|1-

Much finer statements about failure of point-wise convergence of Fourier series are
known, see Katznelson. We shall see below that for 1 < p < oo

sup || Sy [lp—p < 00
N
so that
Snf — fin LP(T).
The case p = 2 is clear, see Corollary 1, but p # 2 is a deep result. We will develop the

theory of the conjugate function to obtain it.

Before doing so, we digress a little to present two basic results due to Bernstein. Both
introduce important ideas.

LEMMA 4. Let f be a trigonometric polynomial with f(k) = 0 if |k| > n. Then

1Nl < Cnllfll,
for any 1 < p < oo. The constant C' is absolute.

PROOF. Let V,,(z) = (1 +e(nz) + e(—nz))K,(x) be de la Vallée Poussin’s kernel. In
problem 14 in the appendix you are asked to check that

V(i) =1if |j| <n
and
Vol < Cn.
Then f =1V, x f and thus f' = V! * f so that by Young’s inequality
11l < VAl 1l < Crll £l
7



as claimed. O

REMARK. [t is known that one can take C =1 here.

The next lemma, also due to Bernstein, addresses the question when

S 1) < oo 5

n=—0oo

Applying Cauchy-Schwarz yields

D_Ifm)l < (Z |f<n>|2\n|1+6> (Zw-l—e)

n#0 n#0 n#0

1

so that

Z |f(n)Pn| < < (6)

is a sufficient condition for (5) to hold. It turns out that it is a better idea to apply
Cauchy-Schwarz only on dyadic blocks. This yields

THEOREM 2. For any f € C*(T) with a > % one has

Yo 1fm)] < oo

nez

PROOF. Let [f]o < 1. We claim that for every j > 0,

1

2

> P | <oz (7)

2 <|n|<2i+1

If (7) is true, then

D=

> I \<CZ Y. P 27

A0 23 <|nf<2it]
[oe)

< OZTﬂa_é) < o0
=0

To prove (7) we choose a kernel ¢; so that
?;(n) = 1if 27 <|n| < 27H!

and ' .
?;(n) = 0if |n| < 27 or |n| > 271!
(here < and > mean “much smaller” and “much bigger”, respectively). The point is of

course that then )
S IfmP <l = f13 (8)

27 <|n|<27+1



so that it remains to bound the right hand side. There are various ways to construct ¢;.

We use de la Vallée Poussin’s kernel for this purpose. Set
pi(r) = Vo () - (e((3- 277" = D) +e(—=(3- 27" = 1))

We leave it to the reader to check that

Pj(n) =1for 27 < |n| < 277!
and that ©;(0) =, 0 which is the same as

1
/ ;j(z)de=0.
0
Moreover, since ¢; is constructed from Fejer kernels one easily checks that
1. 0 1
lpj(@)] < OE min (2 7, W) .

Therefore,

K%*nuM:yA%@Xﬂx—m—f@»@\
sAwwmum—w—f@ﬂ@

1
gc/M%@MW@
0

S R T

ly[>277 ly|<2-3
<027,

The theorem now follows from this bound by means of (7) and (8).

O

REMARK. For a proof that avoids using the kernels {¢;}, see Katznelson. See the

1

same reference for the fact that the theorem fails for a = 3.

EXERCISE 5. Show that under the conditions of Theorem 2 the previous proof implies
that (6) holds for some ¢ > 0. Also show that for any a < % there exists f € C*(T) so

that 3 e Inl [ F ()] = oc.






CHAPTER 2

Harmonic Functions on the Disk and Poisson Kernel

There is a close connection between Fourier series and analytic (harmonic) functions
on the disc D := {z € C||z| < 1}. In fact, a Fourier series can be viewed as the “boundary
values” of a Laurent series

o0
Z anz” .

n=—oo

Alternatively, suppose we are given a function f on T and wish to find the harmonic
extension v of f into D, i.e.,

Au=0andu=fondD=T.

Since Az" = 0 and AzZ" = 0 for every integer n > 0, we are lead to defining

u(z) =Y f(n)z" + sum;l_ f(n)z" (9)
n=0
which at least formally satisfies u(e(8)) = S2°°___ f(n)e(nf) = f(6). Inserting z = re(f)

and f(n) = fol e(—ny) f(¢) do into (9) yields

u(re(6)) = / S rrle(n(® - ¢)) () dy

nez
EXERCISE 6. Check that, for 0 <r <1,

1 —r?
o [n| _
P (0) = Zr e(nf) = 1 — 2rcos(2mf) + 12~

nezZ

This is the Poisson kernel. Based on our (formal) calculation above, we therefore expect
to obtain the harmonic extension of a “nice enough” function f on T by means of

u(re(8)) = / PO~ 9)f(2) dy = (P, = F)(6) .
for0<r<1.

Note that P.(0), for 0 < r < 1, is a harmonic function of the variables x+1iy = re(6).
Moreover, for any finite measure pn € M(T) the expression (P,  u)(6) is not only well-
defined, but defines a harmonic function on D.

EXERCISE 7. Check that {P.}o<r<1 is an approzimate identity. The role of N € Z*
in Definition 1 is played here by 0 < r <1 and N — oo is replaced with r — 1.
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An important role is played by the kernel @,.(6) which is the harmonic conjugate of
P.(6). Recall that this means that P.(0) + iQ,(6) is analytic in z = re(f) and @y = 0.
In this case it is easy to find @Q,.(6) since

pr(e):mGZ)

1+z) 2r sin(270)
1—2) 1—2rcos(270)+r2"

and therefore

2.0 =3
EXERCISE 8.

a) Show that {Q,}o<r<1 is N0t an approrimate identity.
b) Check that Q1(0) = cot(nf). Draw the graph of Q1(0). What is the asymptotic
behavior of Q1(0) for 0 close to zero?

We will study conjugate harmonic functions later. First, we clarify in what sense the
harmonic extension P, x f of f attains f as its boundary values.

DEFINITION 2. For any 1 < p < oo define

1
hP(D) := {u : D — C harmonic | sup /0 lu(re(0))[PdO < oo} :

0<r<1

These are the “little” Hardy spaces with norm

[ulllp == sup [lu(re(-))||s() -
o<r<1

It is important to observe that P,(f) € h'(D). Observe that this function has “bound-
ary values” dy (the Dirac mass at § = 0) since P, = P, * dy.

THEOREM 3. There is a one-to-one correspondence between h*(D) and M(T), given
by uw € M(T) — F.(0) := (P, * u)(0). Furthermore,

lpll = sup [[Efly = lim [[F5 [y (10)
0<r<1 T—

and

a) p is absolutely continuous with respect to Lebesgue measure (< df) if and only
if {F,} converges in LY(T). If so, then du = f d where f = L*-limit of F,.
b) The following are equivalent for 1 < p < oo: du = fdf with f € LP(T)
< {F,}o<r<1 18 LP- bounded
<= {F,} converges in L* if 1 < p < oo and in c* sense in L™ if
p=ocoas r—1
¢) f is continuous < F extends to a continuous function on D < F, converges

uniformly as r — 1—.
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This theorem identifies h'(D) with M(T), and h?(D) with LP(T) for 1 < p < cc.
Moreover, h* (D) contains the subclass of harmonic function that can be extended con-
tinuously onto D; this subclass is the same as C(T). Before proving the theorem we
present two simple lemmas. In what follows we use the notation F,.(6) := F(re(9)).

LEMMA 5.

a) If F € C(D) and AF =0 in D, then F, = P, x Fy for any 0 <r < 1.

b) If AF =0 in D, then F,s = P, x Fy for any 0 <r,s < 1.

¢) As a function of r € (0,1) the norms || Fy||, are non-decreasing for any 1 < p <
0.

PROOF.

a) Let u(re(d)) := (P, x F1)(0) for any 0 < r < 1, §. Then Au = 0 in D. By
Lemma 2 a) and Exercise 7, ||u, — Fi]|c — 0 as 7 — 1. Hence, u extends
to a continuous function on D with the same boundary values as F. By the
maximum principle, u = F' as claimed.

b) Rescaling the disc sD to D reduces b) to a).

¢) By b) and Young’s inequality

1Esllp < WP sl = [1F5]]

as claimed.

O

LEMMA 6. Let F € h'(D). Then there exists a unique measure . € M(T) such that
F. =P, xp.

PROOF. Since the unit ball of M(T) is o*-compact there exists a subsequence r; —
1 with F,, — p in o*-sense to some p € M(T). Then, for any 0 <r <1,

P.xp= lim (F,, * P,) = lim F,. =F,
j—o0 j—o0
by Lemma 5, b). Let f € C(T). Then (F., f) = (P * p, f) = (u, P % f) — (i, f) as
r — 1 (where we again use Lemma 2 a). This shows that
p=o" —liH%Fr ) (11)

which implies uniqueness of . U

PROOF. If n € M(T), then P, x u € h'(D). Conversely, given F' € h'(D) then by
Lemma 6 there is a unique p so that F,. = P, % u. This gives the one-to-one correspon-
dence. Moreover, (11) and Lemma 5 ¢) show that

[pll < limsup [|[Fp [y = sup [[F[1 = lm [[Fy[] .
r—1 o<r<1 r—1

Since clearly also

sup [|Fpfly < sup [|P[af[pll = [lpll
0<r<1 0<r<1

13



(10) follows. If f € LY(T) and du = fdf, then Lemma 2 b) shows that F, — f in
LY(T). Conversely, if F, — f in the sense of L'(T), then because of (11) necessarily
dp = fdf which proves a), b), and ¢) are equally easy and we skip the details—simply
invoke Lemma 2 b) for 1 < p < oo and Lemma22 a) if p = oc. O

Next, we turn to the issue of almost everywhere convergence of P, * f to f asr — 1.
This is an instance of the general fact that radially bounded approximate identities are
dominated by the Hardy-Littlewood maximal function M f, see below. Recall that (with
|I| = mes (I) =Lebesgue measure of I)

MfG) = sw o 176 dy

xeICT
where I C T is an (open) interval. The basic fact here is

PROPOSITION 1.
a) M is bounded from L' to weak L, i.e

meslr € TIM f(x) > N < 2|1

for all X > 0.
b) For any 1 <p < oo, M is bounded on LP.

PRrROOF. Fix some A > 0 and any compact

K C {x|Mf(z) > \}. (12)
There exists a finite cover {I j}é\f:1 of T by open arcs I; such that
[ 11wl dy> i (13)
I

for each 7. We now apply Wiener’s covering lemma to pass to a more convenient sub-
cover: Select an arc of maximal length from {/;}; call it J;. Observe that any I, such
that I; N J; # () satisfies I; € 3-J; where 3 - J is the arc with the same center as J;
and three times the length (if 3 - J; has length larger than 1, then set 3-.J; = T). Now
remove all arcs from {/; }é\le that intersect J;. Let J; be one of the remaining ones with
maximal length. Continuing in this fashion we obtain arcs {J,}%_, which are pair-wise
disjoint and so that

In view of (12) and (13) therefore,
L

mes(K) < mes (U Jg) < 3Zmes (Jo)

3L
;Z/ ol dy < 211l
/=1

as claimed.



To prove part b), one interpolates the bound from a) with the trivial L> bound

1M flloo < (1 fllos -

by means of Marcinkiewicz’s interpolation theorem, see Stein-Weiss, Stein 1. O

DEFINITION 3. Let {®,}5°, be an approximate identity as in Definition 1. We say
that it is radially bounded if there exist functions {¥,}5°, on T so that the following
additional property holds:

A4) |D,| <V, U, is even and decreasing, i.e., ¥, (x) < U, (y) for0 <y <z <
for all n > 1. Finally, we require that sup,, |V, | < co.

1
27

Examples: Fejer-, Poisson-kernels, and the box kernels (with ¢ — 0 instead of n — 00)

5 X[-e¢d .
2e 0<€<%

LEMMA 7. If {®,}>, satisfies A4), then for any f € L*(T) one has
sup [(®n * f) ()] < sup [[Wn |1 M f(2)

forall z € T.

PROOF. It clearly suffices to show the following statement: let K : [—3, 1] — RTU{0}
be even and decreasing. Then for any f € L'(T)

(K + f)(@)] < | K[ Mf() . (14)
Indeed, assume that (14) holds. Then

Sup (@, % £)(z)| < sup(W, + |£)(@) < sup | ¥, 1M f ()

and the lemma follows. The idea behind (14) is to show that K can be written as an
average of box kernels, i.e., for some positive measure u

K(x) = / iyl (@) dia(y) (15)

We leave it to the reader to check that

D=

du:—dKnLK(%)é

is a suitable choice. Notice that (15) implies that

/OIK(:E) dz = /jgy du(y) .

15



Moreover, by (15),

(K |—|/ (55w 1) (920 dits)

fEAZMf@ﬂywww
= M f(2)[| K|
which is (14). O

This lemma establishes the uniform control that is needed for almost everywhere
convergence.

THEOREM 4. If{®,}>, satisfies A1)-A4), then for any f € L'(T) one has ®,xf —

f almost everywhere as n — oo.

PRrROOF. Pick ¢ > 0 and let g € C(T) with ||f — g|i < e. By Lemma 2 a), with
h = f — g one has

mes {az € T|limsup | (@, x f) (z) — f(x)] > \/E}

n——ao

<mes {x € T|limsup | (@, * h) (z)] > \/2/21 + mes [z € T|h(z)| > Ve/2]

n—oo

<mes {x € T|sup] (@, x h) (x)] > \/2/2] + mes [z € T||h(z)] > V¢€/2]

<mes [z € T|CMh(z) > \/€/2] + mes [z € T||h(z)| > Ve/2]
<Cye.

To pass to the final inequality we used Proposition 1 as well as Markov’s inequality
(recall [|h|]; < e). O

As a corollary we not only obtain the classical Lebesgue differentiation theorem, but
also almost everywhere convergence of the Cesaro means oy f, as well as of the Poisson
integrals P, * f to f for any f € L'(T). It is a famous theorem of Kolmogoroff that this
fails for the partial sums Sy f.

EXERCISE 9. [t is natural to ask whether there is an analogue of Theorem / for
measures pn € M(T). Prove the following:

a) If p € M(T) is singular with respect to Lebesgue measure (puLdf), then for a.e.
x € T (with respect to Lebesgue measure)

p(lr — e,z +€)
2¢

you should compare this with problems 6 and 9 from the appendiz.

—Qase—0
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b) Let {®,}5°, satisfy A1)-A4), and assume that the {V,}>°, from Definition 2
also satisfy

sup |V,(0)] — 0 as n — oo
5<|o]<2

for all 6 > 0. Under these assumptions show that for any p € M(T)
D, xpu— fae asn— o0

where dy = fdf+ dv, is the Lebesque decomposition, i.e., f € L*(T) and v,1d6.

17






CHAPTER 3

L' bounded analytic functions and the F. & M. Riesz theorem

We now turn to functions F' = u + iv € h'(D) which are analytic in D (note that
analytic functions are complex valued harmonic functions). These functions form the
class H' (D), the “big” Hardy space. We have shown that F,. = P, for some u € M(T).
It is important to note that by analyticity fi(n) = 0 if n < 0. A famous result by F. &
M. Riesz asserts that such measures are necessarily absolutely continuous. We shall
prove this theorem by means of subharmonic functions.

DEFINITION 4. Let Q C R? be a region (i.e., open and connected) and let f : Q —
RU{—o00}. We say that f is subharmonic if

a) [ is continuous
b) for all z € Q there exists r, > 0 so that

1
f(z) = / f(z+re(®)) df
0

for all 0 <r <r, (we refer to this as the “submean value property”).
LEMMA 8.
a) If f and g are subharmonic, then f\V g = max(f,g) is subharmonic.
b) If f € C*(Q) then f is subharmonic <= Af >0 in Q
¢) F analytic = log |F| and |F|* with o > 0 are subharmonic

d) If f is subharmonic and ¢ is increasing and convex, then ¢ o f is subharmonic
(we set p(—00) :=lim,_,_ p(z).

PROOF. 1) is immediate. For 2) use Jensen’s formula

/fz+re 6)) b — (= //D(Mloglw_z|Af( w) dm(w) (16)

where dm stands for two-dimensional Lebesgue measure and D(z,r) =
{w € Cllw — z| < r}. As an exercise, you should verify this formula (from Green’s
formula) for all f € C*(Q). If Af > 0, then the submean value property holds. If
Af(z9) < 0, then let 79 > 0 be sufficiently small so that Af < 0 on D(zg,ry) Since
log |wT_°Z0‘ > 0 on this disk, Jensen’s formula implies that the submean value property
fails. Next, we verify 4) by means of Jensen’s inequality:

@) <o ([ s re@) o) < [ otse+reto)) ao.
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The first inequality sign uses that ¢ is increasing, whereas the second uses convexity
of ¢ (this second inequality is called Jensen’s inequality). If F' is analytic, then log|F|
is continuous with values in R U {—oo}. If F(zy) # 0, then log|F(z)| is harmonic on
some disk D(zp,79). Thus, one has the stronger mean value property on this disk. If
F(zp) = 0, then log |F(z9)| = —o0, and there is nothing to prove. To see that |F|* is
subharmonic, apply 4) to log |F(z)| with ¢(z) = exp(ax). O

REMARK. [t is helpful to keep in mind that in one dimension “harmonic = linear”
and “subharmonic = convez”.

EXERCISE 10. Let u be subharmonic on a domain €2. Show that there exist a unique
measure (i on S such that p(K) < oo for every K CC Q (i.e., K is a compact subset of
Q) and so that

u(z) = [ [ og |2 = ¢l du(¢) + b2
where h is harmonic on Q. (This is “Riesz’s representation of subharmonic functions”).

EXERCISE 11. With w and p as in the previous exercise, show that
1 T D t
/ u(z + re(0)) df — u(z) = / M dt
0 0
for all D(z,r) C §Q (this is “Jensen’s formula”).

LEMMA 9. Let Q be a bounded region. Suppose f is subharmonic on Q, f € C(Q)

and let w be harmonic on Q, u € C(Q). If f <u on 0, then f <wu on Q.

PrOOF. We may take u = 0, so f < 0 on 0. Let M = maxg f and assume that
M > 0. Set
S=1{zeQ|f(z)=M}.
Then S C 2 and S is closed in Q. If z € S, then by the submean value property there
exists 7, > 0 so that D(z,r,) C Q. Hence S is also open. Since Q2 is assumed to be
connected, one obtains S = (2. This is a contradiction. O

The following lemma shows that the submean value property holds on any disk in 2.

LEMMA 10. Let f be subharmonic in §, zo € Q, D(zo,7) C Q2. Then

f(z) < /0 f(z0+re(8)) do .

PROOF. Let g, = max(f, —n), where n > 1. Without loss of generality z; = 0.
Define u,(z) to be the harmonic extension of g, restricted to dD(zy,r) where r > 0 is as
in the statement of the lemma. By the previous lemma,

f@ﬁ%@ﬁ%@—AwMWDW

the last equality being the mean value property of harmonic functions. Since

<
max un(z) < max f (2)
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the monotone convergence theorem for decreasing sequences yields

1
0 0)) do
£(0) < / f(re(6)) do
as claimed. OJ

COROLLARY 5. If g is subharmonic on D, then for all 0

g(rse(0)) < (P * g4)(0)
forany 0 <r,s<1.

PrOOF. If g > —o0 everywhere on D, then this follows from Lemma 9. If not, then
set g, = g Vn. Thus

g(rse()) < gn(rse(0)) < (P x (gn)s)(0) ,
and consequently

g(rse()) < limsup(F,  (gn)s)(0) < (P * g:)(0)

n——-:aoo

where the final inequality follows from Fatou’s lemma (which can be applied in the
“reverse form” here since the (g,)’s have a uniform upper bound). O

REMARK. If g, ¢ LY(T), then g = —oo on D(0,s) and so g = —co on D(0,1).
DEFINITION 5. Let F' be any function on D then F* : T — R s defined as
F*(0) = sup F(re(9)) .
0<r<1
We showed in the previous lecture that any u € h'(D) satisfies u* < CMu where p is
the boundary measure of u, i.e., u, = P, % .

PROPOSITION 2. Suppose g is subharmonic on D, g > 0 and g is L'-bounded, i.e.,

1
I[lglll1 :== sup / ,g(re(9)) do < oo .
0

0<r<1

Then
a) mes[f € T|g*(0) > A < 2[]|g]|]x for VA > 0.
b) If g is LP bounded, with 1 < p < 0o, then
g™l zremy < Colllglllp -

PROOF.

a) Let g,, — p € M(T) in the o*-sense. Then ||| < |||g]||1 and
gs%grnsggrn*PsHPS*u.
Thus, by Lemma 7,

g < sup Poxu<Mu,
0<s<1

and the desired bound now follows from Proposition 1.
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b) If |||gl|l, < oo, then % € LP(T) with |||, < [|g]|||, and thus
dp
*<COM (=) e LT
g < (d@) € L*(T)

by Proposition 1, as claimed.

O

We now present three versions of a well-known theorem due to F. & M. Riesz. You
should pay careful attention to the fact that the following result fails without analyticity.

THEOREM 5 (First Version of F. & M. Riesz Theorem). Suppose F € h'(D) is
analytic. Then F* € L'(T).

PROOF. |F|2 is subharmonic and L2-bounded. By Proposition 2 therefore |F|z* €
L2(T). But |F|2* = |F*|z and thus F* € L(T). O

Let FF € h'(D). By Theorem 3, F, = P, * u where u € M(T) has a Lebesgue
decomposition du = fdf + vy, v, singular and f € L'(T). By Exercise 9 b) one has
P oxpu— fae asr — 1. Thus, lim,_; F(re(d)) = f(0) exists for a.e. § € T. This
justifies the statement of the following theorem.

THEOREM 5 (Second Version). Assume F € h'(D) and F analytic. Let f(6) =
lim,_,; F(T@(Q)). Then F, = P, x [ for all0 <r < 1.

PROOF. We have F, — f a.e. and |F,| < F* € L' by the previous theorem. There-
fore, F, — f in L*(T) and Theorem 3 a) finishes the proof. O

THEOREM 5 (Third Version). Suppose u € M(T), i(n) =0 if n < 0. Then p < df.

PROOF. Since ji(n) = 0 for n € Z~ one has that F,. = P, * u is analytic on D. By the

second version above and the remark preceding it, one concludes that du = f df with
f=1lim,__ F(re(d)) € L*(T), as claimed. O

REMARK. The logic of this argument shows that if p1.df, then the harmonic extension
u,, of pu satisfies u, ¢ LY(T). It is possible to give a more quantitative version of this
fact. Indeed, suppose that p is a positive measure. Then for some absolute constant C,

C'Mp <u, <CMp (17)

where the upper bound is Lemma 7 (applied to the Poisson kernel) and the lower bound
follows from the assumption pu > 0 and the fact that the Poisson kernel dominates the box
kernel. Problem 9 from the appendiz therefore implies the quantitative non-L' statement

. C
mes[§ € Tl (6) 2 \] = |l

for uLdf, u > 0.
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The F. & M. Riesz theorem raises the following deep question: Given f € L*(T), how

can one decide if
Pox f+iQ, x f € h*(D) ?

We know that necessarily u; = (P, * f)* € LYT). A famous theorem by Burkholder-
Gundy-Silverstein, see Koosis, states that this is also sufficient (they proved this for the
non-tangential maximal function). It is important that you understand the difference
from (17), i.e., this is not the same as M f € L*(T) due to possible cancellation in f (it
is known that Mf € L}(T) <= |f|log(2 + |f]) € L', see Stein 1, page 23).

THEOREM 6 (Second F. & M. Riesz Theorem). Let F' be analytic on D and L'-
bounded, i.e., F € h'(D). Assume F # 0 and set f =lim,_,_ F,. Thenlog|f| € L'(T).

In particular, f does not vanish on a set of positive measure.

PRrOOF. The idea is that if F'(0) # 0, then

[ 101712 0g [ F(0)] > o0
T

Since log, |f| < |f| € LY(T) by Theorem 5, we should be done. Some care needs to
be taken, though, as F' attains the boundary values f only in the almost everywhere
sense. This issue can easily be handled by means of Fatou’s lemma: First, F* € L'(T),
so log, |F,| < F* implies that log, |f| € L'(T) by Lebesgue dominated convergence.
Second, by subharmonicity,

/ log |F,(0)] d0 > log |F(0)|
so that
/10g|f(9)| i — /nn}logm(eﬂ do > nmsup/mgm(en 40 > log | F(0)] .
r— r—1

If F(0) # 0, then we are done. If F(0) = 0, then choose another point z, € D for
which F'(zg) # 0. Now one either repeats the previous argument with the Poisson kernel
instead of the submean value property, or one composes I’ with an automorphism of the
unit disk that moves 0 to z5. Then the previous argument applies. 0]

Theorem 6 should of course be thought of as a version of the uniqueness theorem for
analytic functions.
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CHAPTER 4

The Conjugate Harmonic Function

DEFINITION 6. Let u be real-valued and harmonic in ID. Then we define u to be that
unique real-valued and harmonic function in D for which uw+1ia is analytic and a(0) = 0.

If u is complex-valued and harmonic, then we set @ := (Ru) + i(Su).

The following lemma presents some properties of the harmonic conjugate .
LEMMA 11.
a) If u is constant, then @ = 0.
b) If u is analytic in D and u(0) = 0, then & = —iu. If u is co-analytic (meaning
that u is analytic), then @ = iu.

¢) Any harmonic function u can be written uniquely as uw = c+ f+g with ¢ =constant,
f, g analytic, and f(0) = g(0) = 0.

PROOF. 1) and 2) follow immediately from the definition, whereas 3) is given by

1 1
u=u(0) + §(u —u(0) 4 1) + §(u —u(0) —ia) .
Uniqueness of ¢, f, g is also clear. 0

LEMMA 12. Suppose u is harmonic on D. Then for alln € Z, n # 0,
(i) (n) = —isign(n)i (n) (18)

PROOF. By Lemma 11 part 3) it suffices to consider u = constant, analytic, co-

analytic. We present the case u = analytic, u(0) = 0. Then 4 = —iu so that (a@,)(n) =
—it,(n) for all u € Z. But u,(n) = 0 for v < 0 and thus (18) holds in this case. O

COROLLARY 6. Let u € h*(D) be real. Then @ € h*(D). In fact,

1113 = llurllz = lu(0)]* .
Proor. By Cauchy’s theorem,
/l(ur +it1,)2(0)d0 = (u +i1)*(0) = u*(0) .
Since the right-hand sige is real, the left-hand side is also necessarily real and thus
u?(0) = /01 u?(0) do — /Olfaf(G) de ,

as claimed. ]
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COROLLARY 7. If u € h*(D), then lim,_, u(re(f)) exists for a.e. € T.
Proor. Combine Corollary 7 with Theorems 3 and 4. O

Now we consider the case of h!'(ID). The following theorem is a famous result due
to Besicovitch and Kolmogoroftf around 1920. The proof presented here is a well-known
argument involving harmonic measure.

THEOREM 7. Let u € h*(D). Then
_, C
mes[f € TJ|a*(0)] > Al < +l[ulllx

with some absolute constant C' (we get C' = %ﬁ).

ProoF. By Theorem 3, u, = P, * . Splitting p into real and imaginary parts, and
then each piece into its positive and negative parts, we reduce ourselves to the case u > 0.
Let E)\ = {0|a*(0) > A} and set F' = —@ + du. Then F is analytic and F'(0) = u(0).
Define a function

1 Y
== dt
W)\(:L" y) ™ /(‘—oo,—A)U()\,oo) (3j - t)2 + y2 ’

which is harmonic for y > 0 and non negative. The following two properties of w, will
be important:

a) wx(z,y) > 5 if |z] > A
< 2

b) wx(0,y)

For the first property compute

1 1 (MY dt
w,\(az,y)zl——/ %dtzl——/

2y
A"

) (@—1)?+y T oy T+ (E 1)
1 A - A 1

=1-— <arctan T —arctamaj ) > —
T Y Y 2

provided (z,y) lies outside the semi-circle with radius A and center 0. For the second
property compute

wA(O,y)zl/ Y dtggf isz—y,
s (—00,—A)U(X,00) t2+y2 T Xy 1+t2 7T/\

as claimed.

Observe that wy o F' is harmonic and that § € E) implies (wy o F) (re(@)) > % for
some 0 < r < 1. Thus

|Ey| < mes {9|(w,\oF)*(9)Zﬂ Sli/Qle)\oF‘HIa (19)

by Proposition 2. Since wy o F' > 0, the mean value property implies that

loro Pl = n o F)(0) = w(ino)) < 249 = 2 [l
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Combining this with (19) yields

|E\| < —

)
>

as claimed. O

The following result introduces the Hilbert transform and establishes a weak-L! bound
for it. Formally speaking, the Hilbert transform Hpy of p € M(T) is defined by

p= gy = lim(wy,), =2 Hp,

i.e., the Hilbert transform of a function on T is the boundary values of the conjugate
function of its harmonic extension. By Corollary 7 this is well defined if dy = fd6,
f € L*(T). We now consider the case f € L'(T).

COROLLARY 8. Given u € h'(D) the limit lim,_, a(re(f)) exists for a.e. 0. With
w= P, xu, p € M(T), this limit is denoted by Hu. There is the weak-L' bound

C
mes(0|| Hu(0)] > Al < —|lu]] -

PROOF. If du = fdf with f € L*(T) then lim uys(re(f)) exists for a.e. # by Corol-

lary 7. If f € L*(T) and € > 0, then let g € L?(T) such that || f — g|l1 < e. Denote, for
any 0 > 0,
Es = {0]lim sup |ug(re(0)) — uy(se(0))] > d}

and
Fs = {0|limsup |up(re(0)) — un(se(0))| > 6}

r,s—1

where h = f — g. In view of the preceding theorem and the L2-case,

|Es| = [ Fs| < mes [0](uy)*(0) > 6/2]
C C
< gll\uhHh < ng—ng — 0

as € — 0. This finishes the case where u < df. To treat singular measures, we first
consider measures p = v for which |supp(v)| = 0. Here supp(v) := T \ U{I C T|v(I) =
0}, I being an arc. Observe that for any 6 ¢ supp(v) the limit lim, _,; w,(0) exists since the
analytic function u + 4% can be continued across that interval J on T for which pu(J) =0
and which contains 6. Hence lim,_,; u, exist a.e. by the assumption [supp(v)| = 0.
If w € M(T) is an arbitrary singular measure, then use inner regularity to say that
for every € > 0 there is v € M(T) with ||u — v|| < € and |supp(v)| = 0. Indeed, set
v(A) == u(A N K) for all Borel sets A where K is compact and |u|(T\K) < e. The
theorem now follows by passing from the statement for v to that for g by means of the
same argument that was used in the absolutely continuous case above. 0

THEOREM 8 (Marcel Riesz). If 1 < p < oo, then ||Hf|, < Cpllfll,- Consequently, if
u € h?(D) with 1 < p < oo, then @ € h*(D) and |||a||], < Cpll|ul|l, -
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ProOF. By Corollary 6, ||[Hul|s < ||lul|s (with equality if and only if fol u(f) df = 0).
Interpolating this with the weak-L! bound from Corollary 8 by means of Marcinkiewicz
finishes the case 1 < p < 2. If 2 < p < oo, then we use duality. More precisely, if

f.g € LX(T), then
(f.Hg) = 3" f(m)Hg(n) = 3 isign(n) f(n)j(n

~—

=" -Hfm)gln) = —(Hf.g) .

This shows that H* = —H. Hence, if f € L?(T) C L*(T) and g € L*(T) c L”(T), then

[(Hf )| = [{F; HY| < [fllp[[H gl < Corll Fllpllgll -
and thus ||Hf|l, < Cy|lfll, as claimed. O

REMARK. Consider the analytic mapping F' = u + v that takes D onto the strip
{z||Rz] < 1}. Then u € h>*(D) but clearly v ¢ h>°(D) so that Theorem 8 has to fail on
L>°(T). By duality, it also fails on L'(T). The correct substitute for L' in this context
is the space of real parts of functions in H*(D). This is a deep result that goes much
further than the F. € M. Riesz theorem. The statement is that

IH fllx < Cllufllx (20)

where u} is the non-tangential mazimal function of the harmonic extension uy of f (by
the Burkholder-Gundy-Silverstein theorem the right-hand side in (20) is finite if and only
if [ is the real part of an analytic L*-bounded function), see Koosis.

Next, we turn to the problem of expressing H f in terms of a kernel. By Ezercise 8,
it 1s clear that one would expect that

(Hu)(6) = / cot(m(8 — ) du(p) (21)

for any p € M(T). This, however, requires justification as the integral on the right-hand
side is not necessarily convergent.

PROPOSITION 3. If n € M(T), then

limy cot(m (6 — ¢)) dp() = (Hu)(6) (22)

€—0 |0—p|>€

for a.e. § € T. In other words, (21) holds in the principal value sense.

PROOF. As an exercise you should check that the limit in (22) exists for all du =
f df + dv where f € C'(T) and mes(supp(v)) = 0 and that these measures are dense in
M(T). We will now obtain the theorem by representing a general measure as a limit of
such measures. As always, this requires a bound on an appropriate maximal function.
In this case the natural bound is of the form

sup gl (23)

0<e<%

mes [9 eT /|0 | cot(m(0 — ¢)) d,u(go)’ > )\]
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for all A > 0. We leave it to the reader to check that (23) implies the theorem. In order to
prove (23) we invoke our strongest result on the conjugate function, namely Theorem 7.
More precisely, we claim that

sup |(Qy # 1)(6) - / ok = ) )| < M) (24)

0<r<1
where My is the Hardy-Littlewood maximal function. Since

sup [(Qr % 1) (0)| =, (0)

(23) follows from (24) by means of Theorem 7 and Proposition 1. To verify (24) write
the difference inside the absolute value signs as (K, * u)(0), where
_f Qu(0) —cot(nd) if 1—r<|0] <3
K (6) = { Qu () it 6 <1—r.
By means of calculus one checks that (exercise!)
(1-r)? - _
K, (0)] < C %f 0] >1—r
Cl—r)~t if |9/ <1—7r.

This proves that {K,}o<,<1 form a radially bounded approximate identity and (24)
therefore follows from Lemma 7. 0

EXERCISE 12. Show by means of (22) that H is not bounded on L*(T). (Hint:
consider HX[O,%))'

The following proposition shows that H f is exponentially integrable for bounded f.
In Exercise 12, you should find that Hxj 1) has logarithmic behavior at 0 and % If you

2
find the precise asymptotics at those points it should show that the condition on « below
is sharp.

PROPOSITION 4. Let f be a real-valued function on T with |f| < 1. Then for any
0<a<?i
> 2

1 2
/ IO gg < 2
0

T cos

PROOF. Let u = uy be the harmonic extension of f to D and set F' = @ — iu. Then
|lu| <1 by the maximum principle and hence cos(au) > cos . Therefore,

R(e*) =R (e - e"*") = cos(au)e™™ > cos(a)e™™ (25)
By the mean value property,

1
R = O RO — con(auf0) < 1.
0

Combining this with (25) yields

Yo 1
/ e df <
0 COs «
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and by Fatou’s lemma therefore

1
/ N gg < L
0 o cosa
Since this inequality also holds for — f, the proposition follows. O

REMARK. In the next sections we will develop the real variable theory of singular
integrals which contains the results on the Hilbert transform obtained above. The basic
theorem, due to Calderon-Zygmund states that singular integrals are bounded on LP(R™)
for 1 < p < oo thus generalizing Theorem §.

The analogue of Proposition 4 for singular integrals is given by the fact that they
are bounded from L*> to BMO and that BMO functions are exponentially integrable
(John-Nirenberg inequality). The dual question of what happens on L' leads into the
real variable theory of Hardy spaces. The analogue of (20) is then that singular integrals
are bounded on H!(R"). Finally, we would like to point out that the dual space of H*
is BMO, a well-known theorem of Charles Fefferman. See Stein 2 for these deep results,
which will not be covered in these lectures.

We conclude the theory of the conjugate function by returning to the issue of LP(T)
convergence of Fourier series. Recall from Lecture 1 that this fails for p =1 and p = oo
but we will now deduce from Theorem 8 that it holds for 1 < p < oco.

THEOREM 9. Let Sy denote the partial sums of Fourier series. Then for any 1 <
p < 0o the partial sums are uniformly bounded on LP(T), i.e.,

sup || S [lp—p < 00
N

By Lemma 3 this implies convergence of Syf — f in LP(T), 1 < p < 0.

PRrROOF. The point is simply that Sy can be written in terms of the Hilbert transform.
Indeed, recall that

Hf(n) = —isign (n)f(n)
so that I A
Tf =5 +iH)f =) Xox(mfn)em).

In other words, on the Fourier side 7" is multiplication by x(9,.c) Whereas Sy is multi-
plication by x[—n,n]. It remains to write x—n,n) as the difference of two shifted x(o,o0),
ie.,
X[-N,N] = X(=N—-1,00) — X(N,00)
or in terms of H and T,
(Snf)(0) = e(=(N +1)0)[T(e((N + 1)) f)](0) — e(NO)[T(e(=N-) /)] (0) .
Hence, for 1 < p < o0
HSNHpHp < 2HTHpHp <1+ HHHIHP
uniformly in N, as claimed. O

EXERCISE 13.
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a) Show that, for any A >0

sup mes [0[[(Sn f)(0)]| > A] < %Hle
N

with some absolute constant C'.
b) What would such an inequality mean with the sup, inside, i.e.,

mes [f| sup |(Sy f) ()] > A] < %Hf”l
N

for all X\ > 07 Can this be true?

¢) Using a) show that for every f € L*(T) there exists a subsequence {N;} — oo
depending on f such that

Sy, f — f a.e.

REMARK. It is an open problem to decide whether or not one can choose {N;} in
part ¢) above in such a way that the growth of Nj is uniformly controlled, say N; < 27
for all 5. It is an old and easy result for Walsh series that Soif — f a.e. for every
f € LY(T) where Sy; is the 27 the partial sum of the Walsh series.

REMARK (Final). The complex variable methods developed in Sections 2,3, and j

equally well apply to the upper half plane instead of the disk. For example, the Poisson
kernel is 1 ¢

a2+ 2

P(z) = withzeR, t>0

and its conjugate is
1 =
r)=——F=.
Qi) a2+ t?

Observe that P,(z) +iQq(z) = + - = L with z = z + it, which should remind you of

T ztit T2
Cauchy’s formula. The Hilbert transform is now

1> fly)
Hf)(x)=— —d
) = [ Sy
in the principal value sense, the precise statement being just as in Proposition 3. You
can try to transfer various basic results from above to the half plane, or consult Koosis
or Garnett.
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CHAPTER 5

Calderon-Zygmund Theory of Singular Integrals

In this section we will present the basic result on singular integrals due to Calderon
and Zygmund.

DEFINITION 7. Let K : R"\{0} — C satisfy, for some constant B,

i) |K(z)| < Blz[™"
i) fr<|x‘<sK(x) dr =0 forall 0 <r < s < o0
1) f\fc|>2ly\ |K(x) — K(z —y)| de < B for all y # 0.

Then we define the singular integral operator with kernel K to be

Tf(z) = lim - K(z —y)f(y) dy (26)

for all f € CJ(R™).

EXERCISE 14.

a) Check that the limit (i.e., principal value) exists in (26) for all f € C}H(R")
(these are C! functions with compact support).
b) Check that the Hilbert transform is a singular integral operator.

There is a simple condition that guarantees iii) (which is the so-called “Hoérmander
condition”) given in the following lemma.

LEMMA 13. Suppose |VK (x)| < Blz|™! for all z # 0 and some constant B. Then

/H VK@) — K@ g ar < (27)
with C'= C(n).

PRrOOF. Fix z,y € R™ with |z| > 2|y|. Connect x and x — y by the line segment
x —ty, 0 <t < 1. This line segment lies entirely inside the ball B(z,|z|/2). Hence

K(z) — K(z—y)| = | - / VK (x — ty)y di]

1
< [ 19K @~ )yl de < B2 ey
0

Inserting this bound into the left-hand side of (27) yields the desired bound. U
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EXERCISE 15. Check that, for any fired 0 < o < 1, and all x # 0,
|K(z) — K(z —y)|

|y|*

sup < Blz[™"
lyl<'5t
also implies (27).
The cancellation condition ii) implies L*-boundedness of T, as shown in the following
proposition.

PROPOSITION 5. Let K be as in Definition 7. Then ||T||s—e < CB with C = C(n).

PrRooFr. Fix 0 < r < s < oo and consider

rsf / K X[r<|y|<s]( )f( ) d

let
mr,s(f) = / 6_2m$‘£X[r<|x|<s]K(x) dr

be the Fourier transform of the restricted kernel. By Plancherel’s theorem it suffices to
prove that
sup ||mysllec < CB-.. (28)

0<r<s

Indeed, if (28) holds, then
HTT,SH2*>2 = Hmr,sHoo < CB
uniformly in 7, s. Moreover, for any f € C}(R") one has

Tf(z) = lim (T, f)(z)
pointwise in z € R". Fatou’s lemma therefore implies that [|T'f]s < CB]|f]|2 for any
f € C}(R™). To verify (28) we split the integration in the Fourier transform into the
regions |z| < [¢|7! and |z| > [£|7!. In the former case

/ e K (1) da / (e7?™=¢ 1)K (x) dz
r<lz|<|gl r<|z|<[¢]

<[ emleleliK(@) o <
lz|<|€]~1

< 2rl¢] Blz| ™ dv < CBIElg| ™ < OB,
=<1
as desired. Notice that we used the cancellation condition ii) in the first equality sign. To
deal with the case |z| > |£|~! one uses the cancellation in e~27¢ which in turn requires
smoothness of K, i.e., condition iii) (but compare Lemma 13). Firstly, observe that

. o pt—S .
/ K(z)e ™8 dg = —/ K(z)e ST (29)
s>[z[>[¢]

s>[z|>[¢]~1

- _/ K(x — 3 5) e 2T dy (30)
s>lo- g &zl>lel-? 2[¢]
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Denoting the expression on the left-hand side of (29) by F' one thus has

f —2mix-
oF = /MN| (K@) - K- W))e € 4z +0(1) (31)

The 0(1) term here stands for a term bounded by CB. Its origin is of course the difference
between the regions of integration in (29) and (30). We leave it to the reader to check
that condition ¢) implies that this error term is really no larger than CB. Estimating the
integral in (31) by means of iii) now yields

2= /a:|>|s|1 )= K(x - QéP)

as claimed. We have shown (28) and the Proposition follows. O

dz +CB < CB,

Our next goal is to show that singular integrals are bounded on weak-L!. This re-
quires the following basic decomposition lemma due to Calderon-Zygmund for L! func-
tions. The proof uses a stopping time argument.

LEMMA 14. Let f € L'(R"™) and X\ > 0. Then one can write f = g+ b where |g| <
and b= 3", xq[ where the sum runs over a collection B = {Q} of disjoint cubes such
that for each @) one has

A<@/|f|gm. (32)

Furthermore,

; (U @) <<l (33)

QeB

PROOF. For each ¢ € 7Z we define a collection D, of dyadic cubes by means of
D, = {Hﬁzl[ngi,Qe(mi + 1))‘m1 = Z} .

Notice that if @ € D, and Q' € Dj, then either QN Q' =0 or Q C Q' or Q' C Q. Now

pick ¢y so large that
: /
|f] dz < A
Ql Jo

TL((

for every ) € Dy,. For each such cube consider its 2" “children” of size 21, Any such

cube @’ will then have the property that either

@ ] dz < A o ’Q//|f|dx>)\ (34)

In the latter case we stop, and include @’ in the family B of “bad cubes”. Observe that

in this case
@l 1= =

where @) denotes the parent of Q. Thus (32) holds. If, however, the first inequality in
(34) holds, then subdivide @’ again into 1ts chlldren of half the size. Continuing in this
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fashion produces a collection of disjoint (dyadic) cubes B satisfying (32). Consequently,
(33) also holds, since

1 1
mes (Lé)@) S%:meS(QKZB:X/QIﬂSX ViE

R"

Now let 29 € R™\ Uz @. Then z; is contained in a decreasing sequence {Q;} of dyadic

cubes each of which satisfies

1
— [ |fldz < \.
|QJ| Qj

By Lebesgue’s theorem |[f(zo)| < A for a.e. such xp. Since moreover R™\ Up ) and
R™\ Up @ differ only by a set of measure zero, we can set

g9=1Ff-> xaf
QeB
so that |g| < A a.e. as desired. O

We can now state the crucial weak-L! bound for singular integrals.

PROPOSITION 6. Let K be as in Definition 7. Then for every f € Cj(R") there is

the weak-L* bound

B
mes[x € R"||Tf(x)] > \] < CTHle

where C'= C(n).

PROOF. Dividing by B if necessary, we may assume that B = 1. Now fix f € Cj(R")
and let A > 0 be arbitrary. By Lemma 14 one can write f = g + b with this value of \.

We now set
1
hi=g+ x—/fdw
' 2 “1Ql Jo

QeB
1
fo=b= xo—= [ fdz=Y T
? %Qm/@ %Q

where we have set

1
fo 1=XQ<f—@/Qfd$> :
Notice that f = fi + fa, [[fillo < O f]l1, If2lls < 20 f |1 [[f2lls < 2[[f]]1, and

/QdexZO

for all € B. We now proceed as follows

mes[z € R"||(Tf)(z)| > A] < mes[az|(Tf1)(x)| > %} + mes [x||(Tf2)(:B)| > %}
< SITAIE + mes[el| () (@)] > 5] (35)
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The first term in (35) is controlled by Proposition 5:

C C C C
§||Tf1||§ < ﬁHﬁH% < §||f1||oo\|f1|’1 < XHle :

To estimate the second term in (35) we define, for any @ € B, the cube Q* to be the
dilate of @ by a fixed factor depending only on the dimension (i.e., @* has the same
center as ) but side length equal to b times that of ¢ with b = b(n)). Thus

mes | z||(T f2)(x)] > %} < mes(UpQ") + mes [x € R"\ Up Q*||(T f2)(z)| > é]

2
< CZmes(Q) + ; /R”\UQ* (T fo) ()| du

__Hful"')\Z/nQ* (Tfo)(x)| dx .

QeB

The crucial point of this entire proof is the fact that fo has mean zero which allows one
to exploit the smoothness of the kernel K. More precisely, for any = € R™\Q*,

(T5e)(e) = | Ko=) Sols) d (36)
_ /Q [K(x —y) - K(z - yo)lfaly) d

where yo denotes the center of (). Thus

/RH\Q* (Tf)(@)| du < / o /Q K (x =) = K(x = yo)ll foly)| dy dx

S/Q|fQ(y)|dy§2/Q|f(y)|dy-

To pass to the second inequality sign we used condition iii) in Definition 7. Hence the
second term on the right bound side of (36) is no larger than

C C
T2 [ sl < Si
Q

and we are done. O

REMARK. The assumption f € C3(R™) in the previous proposition was for conve-
nience only. It ensured that one could define Tf by means of (26). However, observe
that Proposition 5 allows one to extend T to a bounded operator on L?. This in turn
implies that the weak-L' bound in Proposition 6 holds for all f € L' N L*(R"). Indeed,
inspection of the proof reveals that apart from the L* boundedness of T, see (35), the
definition of T in terms of K was only used in (36) where x and y are assumed to be
sufficiently separated so that the integrals are absolutely convergent.

THEOREM 10 (Calderon-Zygmund). Let T' be a singular integral operator as in Def-
inition 7. Then for every 1 < p < oo one can extend T to a bounded operator on LP(R™)
with the bound ||T|,—, < CB with C' = C(p,n).
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PROOF. By Proposition 5 and 6 (and the previous remark) one obtains this statement
for the range 1 < p < 2 from the Marcinkiewicz interpolation theorem. The range
2 < p < oo now follows by duality. Indeed, we leave it to the reader to check that for
f,g € CL(R™) one has

(Tf,9) = (},T"g) where T"g(z) = lim - K*(z —y)g(y) dy
xr—y|>€
and K*(z) := K(—z). Since K* clearly verifies conditions i)—4ii) in Definition 77, we
are done. 0

REMARK. [t is important to realize that the cancellation condition ii) was only used
to prove L? boundedness, but did not appear in the proof of Proposition 6. Therefore, T
is bounded on LP(R™) provided it is bounded for p = 2 and conditions i) and iii) hold.

We now present some of the most basic examples of singular integrals. Consider the
equation Au = f in R"® where f € C°(R"), n > 2. Then it is well-known that the unique
bounded solution is given by, if n > 3, (and similarly with a logarithmic potential if
n=2)

u(@) =Cy | |z =y f(y) dy (37)
]Rn
with some dimensional constant C,,. We would like to express the second derivatives
9%u
Ox;0x;

in terms of f.
EXERCISE 16.

a) With u as in (37), show that for f € C3(R")

0*u
G )= Cu (=20 = 1) [ Kyfe =) 1(0) dy

i the principal value sense, where

|jjf+’2 if 1#]
Kij($) = Liz2 . .

z‘:,3|7TLL+2 it 1=7.

b) Verify that K;; as above are singular integral kernels. Also show that K;(x) =
MICCTiH 15 a singular integral kernel.

The operators R; and R;; defined in terms of the kernels K; and K;; respectively, from
above are called the Riesz transforms or double Riesz transforms respectively. By Exer-
cise 16

Dy
(D) =
for any ¢ € CZ(R").
COROLLARY 9. Let u € CZ(R™). Then
82
sup_ |55l se) < Cpll St (30)
1<ij<n

for any 1 < p <n. Here C,,, only depends on p and n.
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ProOOF. This is an immediate consequence of (38) and Theorem 10. O

This is the most basic formulation of many results in elliptic equations that state that
solutions of elliptic PDE are two derivatives better than the inhomogeneity, see Gilbarg-
Trudinger. In fact, most of those statements, at least on LP, follow from Corollary 9.
The reader should appreciate the depth of Corollary 9 in view of its failure on L' and
L>. We now indicate why (39) fails on L'. The idea is simply to take u to be the
fundamental solution of A in R”, i.e., u(z) = c|z|* ™ if n > 3 and u(z) = log |z| if n = 2.
Then Au = &, which, at least heuristically, belongs to L!(R"). However, one checks that
8225;], ¢ L'(B(0,1)) for any 7, j. Indeed, see the kernels K;; form Exercise 16). This can
be made precise in the usual way, i.e., by means of an approximate identity.

EXERCISE 17.

a) Let ¢ > 0 be in CP(R™) with [, ¢ dv = 1. Set p () := e "p(£) for any
0 < e < 1. Clearly, {¢c}oce<1 form an approzimate identity provided the latter
are defined analogously to Definition 1 on R™. Moreover, let x € C3°(R") be
arbitrary with x(0) # 0. Verify that, with T,,(x) = |z[*™ forn > 3 and Ty(x) =
log |z|, uc(z) := (pe x I'y)(z)x(x) has the following properties:

sup ||Auel|r < 0o
e>0

and

. 0*u,.
lim sup || e |1 = oo

e—0 axla’)?j
for any 1 <i,j <n. Thus Corollary 9 fails on L*(R™).
b) Now show that Corollary 9 also fails on L.

We conclude this section by addressing the question whether a singular integral oper-
ator can be defined by means of formula (26) even if f € LP(R") rather than f € Cj(R™).
This question is the analogue of Proposition 3 and should be understood as follows: For
1 < p < oo we defined T “abstractly” as an operator on LP(R™) by extension from
C3(R™) via the a priori bounds ||Tf|, < Cp.|lfll, for all f € C3(R™) (the latter space
is dense in LP(R")—cf. Lemma 2). We now ask if the principal value (26) converges al-
most everywhere to this extension T for any f € LP(R"). Clearly, resolving this question

requires controlling the maximal operator
T.f(x) = sup| K(y)f(z—y) dyl .
e>0 |y‘>5
In what follows we shall need the Hardy-Littlewood maximal function
1
M) =swp o 1) dy
zeB |B| B

where the supremum runs over all balls B containing x. M satisfies basically the same
bounds as in Proposition 1 (check!).
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We prove the desired bounds on T, only for a subclass of kernels, namely the ho-
mogeneous one. This class includes the Riesz transforms from above. More precisely,
set

a(z)
[
where Q : "' — C, Q € C'(S"") and [y, Q(z)do(z) = 0 where o is the surface

measure on S"!. Observe that K (tx) =t "K(x).

K(z) =

for x#0 (40)

EXERCISE 18. Check that any such K satisfies the conditions in Definition 7.

PROPOSITION 7. Suppose K is of the form (40). Then T, satisfies
(T f)(@) < CIM(T f)(x) + M f(z)]

with some absolute constant C. In particular, T, is bounded on LP(R"™) for 1 < p < cc.
Furthermore, T, is also weak-L' bounded.

PROOF. Let K (z) := K()x{/>1) and more generally K, (z) = e_”K(f) = K(2)X[jz|>q-
Pick a smooth bump function ¢ € C§°(R™), ¢ > 0, [o. ¢ dz = 1. Define ® := px K — K.
Observe that ¢ * K is well-defined in the principal value sense. For any function F' on
R" let Fi(z) := e "F (%) be its L'-normalized rescaling. Then K, = K, K, = (K)., and
thus &, = (¢ x K). — K. = Y x K, — K. = Ve x K — K.. Hence, for any f € Cj(R™),
Kexf=@ex (Kxf)— & f. We will now invoke the analogue of Lemma 7 for radi-
ally bounded approximate identities. This of course requires that {®.}.-¢ from such a
radially bounded a.i., which can be easily deduced (the case of @, is obvious). Indeed,
we leave it to the reader to verify that

|®(2)] < Cmin(1, |2[™"7),
which implies the desired property. Therefore,
T.f <CM(Tf)+Mf),

as claimed. The boundedness of T, on LP(R") for 1 < p < oo now follows from that of T
and M. The proof of the weak-L' boundedness of T}, is a variation of the same property
of T', of Proposition 6. We shall not present the details, see Stein 1. O

COROLLARY 10. Let K be a homogeneous singular integral kernel as in (40). Then
for any f € LP(R™), 1 < p < oo, the limit in (26) exists almost everywhere.

PRrOOF. Let
A(f)(x) = [lmsup(7, f)(x) = lim inf (7, f) ()] -

e—0

Observe that A(f) < 2T.f. Fix f € L? and let f € C3(R") so that ||f — fil, < d for a
given small 6 > 0. Then A(f) = A(f — f1) and therefore ||Af|, < C||A(f — f1)ll, < Co
if 1 <p < oo. Hence, Af =0. We leave the similar case p = 1 to the reader. O
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CHAPTER 6

Almost Orthogonality; Schauder Estimates

In this section we present further results on singular integrals. Needless to say, the
subject has undergone vast development beyond the material of the previous section, (see
Christ’s book and Stein 2). We are not able to cover much of it, but will discuss two issues
here namely an alternative approach to L? theory and the fact that singular integrals
are bounded on Holder spaces. This latter fact predates the Calderon-Zygmund theorem
from the previous section, at least for the special case of the double Riesz transform.

Let us start with some very simple comments about LP bounds, which explain why
one is mainly concerned with L? — LP bounds.

EXERCISE 19.

a) Show that a homogeneous kernel as that in (40) can only be bounded from
L(RY) — LI(RY) if p = g.

b) Show that for any translation invariant non-zero operator T: LP(R™) — L4(R™)
one necessarily has g > p.

The proof of the L? bound in the previous section was based on the Fourier transform.
This is very restrictive as it requires translation invariance. Although we do not develop
non translationally invariant singular integrals here (see Christ or Stein 2), we now
present a very useful tool that avoids the Fourier transform. The idea is to break up the
singular integral operator T into a sum » i 1; (usually by a partition of K over dyadic
shells). A trivial estimate would be [|T'lla—2 < > . [|Tj[[2—2, but this is useless. Much
rather, we want something like

1 T]|2—2 < sup | Tj[2— -
j

In analogy with block matrices, with the T} being blocks with pair-wise disjoint rows and
columns, we would want the ranges and co-ranges to be perpendicular, i.e., for j # k

TiT, =0and T;T; =0. (41)

EXERCISE 20. Show that under condition (41) one has
N

1> Tilas < sup [|ITy]5s -
1<j<N

J=1

For applications conditions (41) are usually too strong. The point of the following lemma
(the Cotlar-Stein lemma) is to show that it is enough if they hold “almost” (hence “almost
orthogonality” ).
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LEMMA 15. Let {T]};\f:1 be operators on L? such that, for some function v :7Z — R,
T7Tll < 72 = k), 1T < %G5 — k) for any j, k. Let

Z Yl) =A< 0.
f=—00
Then | S, Tyl < A.

PROOF. For any positive integer n,

Z T T 15Ty, - .. T) T,

..... Jn=1
N ]
Therefore, with sup, ;< || T5|| =: B
N
1
T < > W2 I T2 I T T -
Jlsees Jn=1
ki,..kn=1
1 1
-~||T1cn T3 ABIT; T, 2 1T ) 2

< Z VB — k) y(ky — Ga)v(Ga — ka) - (kg — Gn)¥(in — ka)VB

Since T*T is self-adjoint, the spectral theorem implies that |[(T*T7)"| = ||T*T||" =
|7'|]*™. Hence,

I7)l < (N BA™= - A
Letting n — oo yields the desired bound. 0

We will now give an alternative proof of L?(R™) boundedness of singular integrals for
kernels which satisfy

VK (z)] < Blz|™" 7,

of Lemma 13. This requires a certain standard partition of unity which we now present.

LEMMA 16. There ezists v € C§°(R™) with the property that supp v C R"\{0} and
that

oo

> w@Ir) =1 (42)

j=—00
for any x # 0. Moreover, 1) can be chosen to be a radial function, nonegative function
and no more than two terms in (42) are nonzero for any given £ # 0.

PROOF. Let x € C§°(R") so that y(z) =1 for all |z| < 1 and x(z) = 0 for |z| > 2,
say.

42



Set ¥(z) := x(x) — x(2x). Clearly, for any positive IV,

S $(27a) = x(27Va) — x(2¥a) |

j=—N
If # # 0 is given, then we take N so large that x(27Vxz) = 1 and x(2¥*'z) = 0. This
implies (42), as desired (note that the sum in (42) is finite for any x # 0). O

The point of the following corollary is the method of proof rather than the statement
(which is weaker than the one in the previous section).

COROLLARY 11. Let K be as in Definition 7 with the additional assumption that
VK (z)| < Blz|™""t. Then
|7l < CB
with C' = C(n).

PROOF. Let ¢ be a radial function as in Lemma 16 and set K;(z) = K(x)y (277 x).
It is easy to see that these kernels have the following properties:

/Kj(x) dx =0, VK|l < C277277" forall j€Z,

Sup/ |K;(z)| de < 0o, and SupQ_j/|x||Kj(x)| dr < oo .
jez €z
Define

(T3 f)(x) = . Ki(z —y)f(y) dy .

Observe that this integral is absolutely convergent for any f € L} .(R™). We shall now
check the conditions in Lemma 15. Let K;(x) := K;(—x). Then it is easy to see that

(T3 Tf) (@) = / (R, % Ki) ) f(z — ) dy

n

and

(T,TL ) () = / (K, % R) ) f(x —y) dy

Hence, by Young’s inequality,
IT; Tello—2 < (1K * K

and N
[T5T5 |22 < [ K| -
It suffices to consider the case j > k. Then, using [ Kx(y) dy = 0, since obtains

Ry« Ko@) = | [ Koty —o)Ketwdds| = | [ Ky =) = Fy(=a)] Kily) do]

< IV K oolyl| Ki(y)| dy < C B%29—7i9—ingk
Rn

Since
supp (K * K) C supp(K;) + supp(Kx) C B(0,C - 27) |
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we have
|K; « K|, < CB*2¥7 = ¢ 2271k
Therefore, Lemma 15 applies with
v () = cB?27 1
and the corollary follows. O

EXERCISE 21.

a) In the previous proof it suffices to consider the case j > k = 0. Provide the
details of this reduction.

b) Observe that Corollary 11 covers the Hilbert transform. In that case, you should
draw the graph of K (x) = 1 and also K;(z) = 1¢(277z) and explain the previous

argument by means of pictures.

Next, we turn to the question of boundedness of singular integrals on Holder spaces.
At this point you are strongly encouraged to try problem 16 from the appendiz. You
should not use the Fourier transform for this problem.

We will now show in the full generality of Definition 7 that singular integrals are
bounded on C*(R"), 0 < o < 1. This requires a little bit of knowledge of tempered
distributions. Recall that S(R") is the Schwartz space of functions f € C> for which
for any «, 8

sup [2°]|0% f (2)] < o0

zeR”
where o = (o, ..., ), 8= (01,...,[s) are multi-indices and
P n
=zt o 0= ———— |f] = B -

EXERCISE 22. Show that the Fourier transform takes S onto S. The dual space S’
of S is called the space of tempered distributions, see Rudin 2. If u € §' and f € S,

then 4 is defined via (u, f) := (u, f) In what follows we work with the projections A\;
defined via

Aju = (i) =1 xu (43)
for any w € 8'. Here 1;(€) := (279) for any j € Z where v is as in Lemma 16. You
should pay attention to the fact that (43) is meaningful since u € &' — u € §' =
i e S = (Y;a)Y € S'. The final equality in (43) is a simple fact about distributions
that we leave to the reader to check.

We require a characterization of C*(R") for 0 < @ < 1 in terms of the A;. The
reader should realize that the proof of the following lemma is reminiscent of the proof of
Bernstein’s Theorem 2.
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LEMMA 17. Let |f| < 1. Then f € C*(R") for 0 < o < 1 if and only if
sup 2| A flloo < A (44)
Z

je
Moreover, the smallest A for which (44) holds is comparable to [f],.

PROOF. Set v;(x) = 27" )(2x) =: p;(x).

Hence ]
il = ¥l for all j€Z
and

/ ;i(z)x dr =0

for all multi-indices 7. First assume f € C*. Then

8,5l < [ 156 =)~ F@ el dy
< [ 1elsl*lesto)l dy

=27fla [ lyI*ld(y)| dy .
]Rn
Hence A < C|[f]a, as claimed.

Conversely, for any positive integer ¢ define
gle)= Y (D)) .
—<j<t
We need to show that, for all y € R",

sup [ge(+ — y) — gr(w)| < CAJy[*
with some constant C' = C(n).

Now fix y # 0 and estimate
> (D@ < > Az <cape (45)
ly|—t<27<2¢ 27>y ~!
Secondly, observe that
8 f (@ —y) = 85 f (@) < IVA; fllclyl < O A fllsoly] (46)
< €207 Ay

where we invoked Bernstein’s inequality (Lemma 18 below, with |y| = 1) to pass to the
second inequality sign. Combining (45) and (46) yields

gz —y) —ge@)| < D (Aifle—y) - L@+ Y 204fll
27620yl ly| <27 <2¢

< Y CAYITy 4 YT 242770 < CAJyl*

27<y|~1 ly|—1<2i

(47)
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uniformly in ¢ > 1.

So {g¢ — 9¢(0)}32, are uniformly bounded on C*(K) for any compact K. By the
Arzela-Ascoli theorem one concludes that
9e — 9:(0) — g

uniformly on any compact set and therefore [g], < C'A by (47) (strictly speaking, we
should pass to a subsequence {/;}, but we suppress this detail). It remains to show that
f has the same property. This follows from the

Claim: f = g+ constant.

To verify this, note that g, — g¢(0) — ¢ is §’. Thus, also g, — dpge(0) — ¢ in S’ which
is the same as

ST w(27E) f(€) — G0ge(0) — Gin S

—£<j<t
So if h € S with supp(h) € R™\{0}, then (f — g, h) = 0, i.e., supp(f — §) = {0}.
By an elementary theorem about tempered distributions, therefore
(f=g)@)= ) Cya, (48)
lyl<M
See Theorem 6.25 in Rudin 2. On the other hand, since g(0) = 0,
((f = 9)(@)| < [[fllee + [g(x) — g(0)]
<1+ CAlz|*.

Since a < 1, comparing this bound with (48) shows that the polynomial in (48) has to
have degree zero. Thus, f — g = constant, as claimed. 0

LEMMA 18 (Bernstein’s inequality). Suppose f € LP(R™) with 1 < p < oo satisfies

~

supp (f) € B(0,R). Then
1D fllp < CLRMI £,

for any multiindex v where C,, = C(n, 7).

PRrROOF. Let x € S(R™) with supp ¥ C B(0,2) and X(§) = 1 on || < 1. Then

~ -~

f(&) =X(&/R)f(&) so that f = R"x(R-) * f. Hence, by Young,
1D f[l, < ROV R (D7) (R) | [l £ 11
= LR £l

as claimed. O

We now present a proposition that might seem a little unmotivated for now. Never-
theless, it is not only very natural, but will also allow us to conclude the desired Holder
bound for singular integrals. We postpone the proof of the proposition.
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PROPOSITION 8. Let K be a singular integral kernel as in Definition 7. For any
n €S with [, n(z) de =0 one has

ITn| < C(n)B
with a constant depending on 7).

THEOREM 11. Let K be as in Definition 7 and 0 < o < 1. Then for any
feL*NC*R") one has Tf € C*(R™) and

[Tf], < CaB|fla
with C, = C(a,n).

PrROOF. We use Lemma 17. In order to do so, notice first that
1T flloo < CB([fla + [Ifll2)

which we leave to the reader to check. Therefore, it suffices to show that
sup 2| AT flloo < OB|fla - (49)
j

Let Aj be defined as
A= (97)ie) .
where ¢ € C2°(R™\{0}) and ¢¢) = 1, cf. (43). Thus, AjAj = A;. Hence,
18T Flloe = 185857 Flloo = 12,72 |l
< AT oomocll 2 1loe
< AT oo Clf1a2
It remains to show that sup; ||AJT||OO_>OO < OB, see (49). Clearly, the kernel of AjT is
27m4)(27.) % K so that
12T oo < 127(27) % K
= Pw2ma (27 ) (50)
<(CB
by Proposition 8. Indeed, set n :{; in that proposition so that

| @)z =0 =0,

as required. Furthermore, we apply Proposition 8 with the kernel 277" K (277.). As this
kernel satisfies the conditions in Definition 7 wuniformly in j, one obtains (50) and the
theorem is proved. O

[t remains to show Proposition 8, which will be accomplished by means of two lemmas.

LEMMA 19. Let f € L®(R") with € f(z) de = 0, supp (f) € B(0,R) and
| flloos < R™™. Then
ITflh <CB.
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ProoFr. By Cauchy-Schwarz,

/ @D de < s,oRS

< CB|f|2R? <CBR "R:*R> =CB.

Furthermore,

/ (Tf)(@)| de < / / K(x —y) — K(2)] delf(y)] dy < BIfll <CB .
|z|>2R m Sz >2]y|

as desired. 0

REMARK. A function f as in Lemma 19 is called an H'-atom. The next lemma is
an instance of an atomic decomposition.

LEMMA 20. Let n € S(R"), [z, n(x) dz =0. Then one can write

o0

n= Z Cey

=1
with [, ae(x) dz =0, ||laglle < €77, supp(ag) C B(0;¢) for all £ > 1 and

Z lce] < C(n)
=1
with a constant C(n) depending on n.

PROOF. In this proof, we let

1
@s = 5 / o(z) dz

for any g € L'(R") and S C R™ with 0 < |S| < co. Moreover, B, := B(0,/) for £ > 1,
and x;, = xp, (indicator of By). Define

fi=m=Os)x1,m=n—h
and set inductively

feor = (e — (M) Byy) Xeya  and (51)
N1 = N — fon

for £ > 1 (one can take this also with £ = 0 and 79 := 7).

Observe that

M
772771+f1=f1+f2+772=---22fe+77M+1~ (52)
=1

We need to show that we can pass to the limit M — oo and that
E—TL
[ felloo
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have the desired properties. By construction, for all £ > 1,
/ ag(r) dv =0, supp(ar) C By,

and [|a¢llooc < €7™. It remains to show that

Cp = ganZHoo (54)
satisfies Y~ ¢, < 0o and that ||na41]/e0 — 0, see (52). Clearly,

— <n>B1 on Bl
i on R™\Bj.

Hence,

o e o0 B
2 m=mn on R"\Bj.

By induction, for ¢ > 1, one checks that

<77£>Be+ on By
= ! 55
Ne+1 { n on Rn\BéJrl' ( )

Moreover, induction shows that
/ ne(x) de =0 (56)

for all £ > 0. Indeed, this is assumed for g = n. Since [ fy(z)dx = 0 for £ > 1 by
construction, one now proceeds inductively via the formula

Ne41 = Me — fog1 -

Property (56) implies that

1
‘<W>Be+1‘ < Bt Jans [ne(x)| do
L (57)
<3 / n(a)] dz < CO-2
+1 JR™\ By
since 7, = n on R™\ By, see (55), and since 1 has rapid decay. (57) implies that
Hn€+1||oo < Cg—QOn )
see (55), and also
[ feralloo < CE2
see (51). We now conclude from (52)—(54) that
n= Z fe= Z CoQy
=1 =1
with, see (54) and (53),
D led =) Cfelle <D CUM < 00,
=1 =1 =1
and the lemma follows. U
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PROOF OF PROPOSITION 8. Let n be as in the statement of the proposition. By

Lemma 20,
n= Z Celuy
=1

with ¢, and a, as stated there. By Lemma 19,
[T (cea)llr < leoll|Tally < CBlel
for £ > 1. Hence,
> T (car)h < CyB

=1
and this easily implies that ||T'n||; < C,B, is claimed. O

A typical application of Theorem 11 is to the so-called “Schauder estimate”. More
precisely, one has the following corollary.

COROLLARY 12. Let f € C2*(R"). Then

i } < Cloy )Ml (58)

sup
1<i,j<n {3%3%

forany 0 < a < 1.

PROOF. As in the L case, see Corollary 9, this follows from the fact that

O Rii(Af) for 1<i,j<
= R;; or 1<,5<n
&rzax j J J
where R;; are the double Riesz transforms. Now apply Theorem 11 to R;;. U

This in turn implies estimates for elliptic equations on a region ) C R", i.e.,

> ey () = ) in

ij=1
where a;;&;¢; > M¢|? and a;; € C%(Q). By “freezing z”, one concludes from (58) that
0 f }
su <C(a,n, K o+ o
o (e, < Clam 0 1)

for any compact K C €). See Gilbarg-Trudinger for this estimate and much more.

REMARK. (58) fails for a =0 and o = 1. Try to show this—it follows immediately
from the failure of the LP bounds for p = cc.
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CHAPTER 7

LP-multipliers, Mikhlin theorem and Littlewood-Paley theory

One of the central concerns of harmonic analysis is the study of multiplier operators,
i.e., operators 1" which are of the form

T = [ emimie) fe) de (59)

where m : R" — C is bounded. By Plancherel’s theorem ||T'||s—2 < [[m||o. In fact,
one has equality here, see Davis and Chang. The same reference contains other basic
theorems on operators of the form (59), for example: There is a distribution K € S’ so

that Tf = K * f for any f € S (of course K = ). Secondly, T" is bounded on L' if and
only if the associated kernel is in L!, in which case

1Tl = [ -

There are many cases, though, where K ¢ L'(R™) but still |T]|,—., for some (or all)
1 < p < oo. The Hilbert transform is one such example. We shall now discuss one of
the basic results in the field, which describes a large class of multipliers m that give rise
to LP bounded operators for 1 < p < .

THEOREM 12 (Mikhlin). Let m : R"\{0} — C satisfy, for any multi-index v of
length |y] < n +2

D m(€)] < B¢
for all £ # 0. Then for any 1 < p < oo there is a constant C' = C(n,p) so that

lm ) ll, < CBII £l
forall f €S.

PRrROOF. Let v give rise to a dyadic partition of unity as in Lemma 1616. Define for
any j € Z

m;(€), = $(277€)m(€)

and set K; = m;. Now fix some large positive integer N and set

K(z)= Y Kjx).

j=—N
We claim that under our smoothness assumption on m one has
|K(z)] < CB|z|™ and |VK(x)| < CBlz|™" !, (60)
where C' = C(n). One then applies the Calderon-Zygmund theorem and lets N — oo.
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We will verify the first inequality in (60). The second one is similar, and will be only
sketched. By assumption, ||[D¥m;|l < CB27M and thus
||D7mj||1 S CBQ_]IW‘ZJ.”
for any multi-index |y| < n + 2. Similarly,
| DY (&my)]l < C B2 (hl=1)9in
for the same . Hence,
|27 112 (2)] 00 < C' B2i(n=1D)
and
|27 Drinj(2)] 0o < CB2I =0
Since |z|* < C(k,n) 2=k |27 one concludes that
()] < CB2P|z|~* (61)
and ‘
| Dy ()] < CB2HP|| (62)

forany 0 < k <n+2andall j € Z, x € R"\{0}. We shall use this with £ = 0 and
k =n+ 2. Indeed,

K@) <) Iy < Y Img@)l+ Y ()]
J 20 <|z|—1 20> |z|~1
<CB ) 2"+CB >  2"(2x]) "
29 <[z] 1 29> [a] -1
< CB|z|™" + CBlx*|x| " * = OB|z|™,
as claimed. To obtain the second inequality in (60) one uses (62) instead of (61). Oth-

erwise the argument is unchanged. Thus we have verified that K satisfies the con-
ditions ¢) and 4ii) of Definition 7, see Lemma 13. Furthermore, ||m|. < B so that

|(mf)"||2 < BJ|f|l2. By Theorem 10, and the remark following it, one concludes that

1m )1l < Clon)lIf 1y
forall f € S and 1 < p < o0, as claimed. O
REMARK. The conditions in Theorem 12 can be relaxed. Indeed, it suffices to assume

the derivative bounds on m for all |y| < [g} + 1, see Stein 1. The point is to verify the
Hormander condition directly rather than going through Lemma 15.

COROLLARY 13. Under the same assumptions as in Theorem 12 one has

[(mf)"]a < CaB[fla
for any 0 < a <1 and f € C*(R"™) N L*(R").

PRrROOF. This is really a corollary of the proof of Theorem 12. Indeed, we verified
there that K = 1 is a kernel that satisfies i) and #ii) from Definition 7. The Holder
theory from the previous section does not require 4i), but only L?-boundedness of f
(mf)¥. As ||m|ls < B this holds and the corollary therefore follows from (60) and
Theorem 11. U
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EXERCISE 23. Provide all details in the previous proof.

Theorem 12 and Corollary 13 allow one to give proofs of Corollaries 9 and 12 without
going through Exercise 16. Indeed, one has

Pu G —

Since m(&) = %&5 satisfies the conditions of Theorem 1212 (this is obvious, as m is

homogeneous of degree 0 and smooth away from £ = 0), we are done.

Observe that this example shows that Theorem 12 and Corollary 13 fail if p = 1 or
p = o0, see Exercise 17.

We now present an important application of Mikhlin’s theorem, namely to Littlewood-
Paley theory. With ¢ as in Lemma 16 set ¢;(£) = 1(27¢) so that

L= (9 if ¢#£0.
€z
As above, we define A; f = (¢ £)V. Then by Plancherel,
CTHFIZ < D NDGF115 < I3 (63)
€z

for any f € L*(R"). Observe that the middle expression is equal to ||Sf||3 with

Sf= (Z!Ajf\2>

This is called the Littlewood-Paley square-function. It is a famous result of theirs that
(63) generalizes to

CHf Nl < IS llp < ClIF Il

for any f € LP(R™) provided 1 < p < oo and with C' = C(p,n). We shall now derive this
result by means of a standard randomization technique. In what follows we let {r;} be
a sequence of independent random variables with P[r; = 1] = P[r; = —1] = £, for all j
(in other words, the r; are a coin tossing sequence).

LEMMA 21. For any positive integer N and {a;}}_, € C one has

1
N N 2
P[> e > (Daﬁ) (64
j=1 j=1

for all X > 0.

PROOF. Assume first that a; € R. Then
Ee"N =11} E (e”j“j> = 1Y, cosh(tay)
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N
where we have set Sy =) .",

rja;. Now invoke the calculus fact
coshz < /2 forall z € R
to conclude that

N
Eetv < H§V:1€t2a§/2 = exp (tQZa§/2> .

J=1

: N
Hence, with 02 =Y " | a?

J=1"5
IP’[SN > Aa} < e’ 0?20
< e_/\Q/ 2
where the final inequality follows by minimizing in ¢, i.e., = % Similarly,

P[Sy < —Ao] < e N/2

so that
P[|Sx| > Ao] < 2e2/2

The case of a; € C now follows by means of a decomposition into real and imaginary
parts. O

The appearance of the Gaussian on the right-hand side of (64) should be very natural
to anybody who is familiar with the central limit theorem. It should also explain why
the following lemma holds (Khinchin’s inequality).

LEMMA 22. For any 1 < p < oo there exist constants C' = C(p) so that

N 5 N N 5
p
e (Lot <23 onaf <o (3wr) &
j=1 j=1 j=1

for any choice of positive integer N and {a;}}_, € C.

PROOF. We start with the upper bound in (65). It suffices to consider the case
Z;V:l la;|? = 1. Setting Zjvzl a;r; = Sy one has

E|Sy|P = / P[|Sy| > ApX\?~! d) < / 4e X 2pAP1 g\ = O(p) < 00 .
0 0

For the lower bound it suffices to assume that 1 < p < 2, in fact, p = 1. By Hoélder’s
inequality,
E[Sn[* = E|S,[*?|Sw[*

< (E|Sw])**(E|Sa )"

< C(E|Sn|)**(E, |Sn[})*?
where the final inequality follows from the case 2 < p < oo just considered. This implies
that

E|Sn[* < C(E|Sn)?,

and we are done. O
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REMARK. Khinchin’s inequality is usually formulated for the Rademacher functions,
which are a concrete realization of the sequence {r;} on the interval [0,1]. The explicit
form of the Rademacher functions allows for a different proof of Khinchin’s inequality,
but those proofs are somewhat less transparent.

We are now ready to prove the Littlewood-Paley theorem.

THEOREM 13 (Littlewood-Paley). For any 1 < p < oo there are constants
C = C(p,n) such that

CHIf Nl < IS Fllp < ClIf Il
forany f €S.

PROOF. Let {r;} be as above. The proof rests on the fact that
N
m(&) = Y riti(€)
j=—N

satisfies the conditions of the Mikhlin multiplier theorem uniformly in N and uniformly
in the realization of the random variables {r;}. Indeed, for any 7,

Dm(E)l < 37 1D ()

<C ) BTl

=
<Clg.

To pass to the final inequality one uses that only an absolutely bounded number of terms
is non-zero in the sum preceding it for any & # 0. Hence, in view of Lemma 22,
N

/n (Sf)(x)‘p dxﬁC’limsupE/R Z Tj(Ajf)(m)‘p dx

N—00

<ClAl7

as desired.

To prove the lower bound we use duality: choose a function 1; so that 1; =1 on
supp (¢) and ¥ is compactly supported with supp ¢ C R\ {0}. Defining Aj like A;
with 1) instead of v yields {AJ} satisfying AjAj = A\,. Therefore, for any f,g € S, and
any 1 < p < o0,

[(f,9)] = |Z<Ajf, Ajg)

< /R (Z!AW)

J
< 1S flpl1Sglly < CISFllpllglly -
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Thus, ||fll, < C|Sf]lp, as claimed (observe that the argument for the upper bound
equally well applies to S instead of .S). O

REMARK. Theorem 12 is formulated as an a priori inequality for f € S. In that case
mf € 8 sothat (mf)¥ € S'. The question arises whether or not (mf)¥ is meaningful for
felP(RY). If1 <p<2, then f € L+ L®(R") (in fact f € L” by Hausdorff-Young),
so that mf € 8' and therefore (mf)" € 8’ is well-defined. If p > 2, however, it is known
that there are f € LP(R™) such that f € S' has positive order (see Theorem 7.6.6 in

Hérmander). For such f it is in general not possible to define (mf)v in 8'. Similarly,
it is desirable to formulate Theorem 13 on LP(R™) rather than on S. This is done in the
following corollary. Observe that Sf is defined pointwise if f € S'(R™).

COROLLARY 14.

i) Let 1 < p < oo. Then for any f € LP(R™) one has Sf € LP and

Conll flo < IS Fllp < Conll £l -

i) Suppose that f € S and that Sf € LP(R™) with some 1 < p < oo. Then
f =g+ P where P is a polynomial and g € LP(R™). Moreover, Sf = Sg and

Conll S 1o < gl < ConllS£1l, -

PrOOF. To prove part i), let fi, € S so that ||fy — f]l, — 0 as k — oo. We claim
that

T [1Sfi ~ Sf], = 0. (66)
If (66) holds, the passing to the limit k — oo is
Conll filly < ISy < Cpnll filly
implies part 7).
To prove (66) one applies Fatou repeatedly. Fix z € R™. Then

1Sfir(z) = Sf(@)| = [[{A fe(@) sl — [{A f (@) 152 _oolle2]
< {4 fr(m) = L f(2) 372 oo lle
= S(fi = /)(z) <liminf S(fy = fin)(z) .
Therefore,

IS fi— SFlly < limint [S(fi — fun)lly < Coo liminf | — firl,

The claim (66) now follows by letting & — oo. For the second part we rely on the following
fact about distributions in & (see the proof of Lemma 17 as well as Theorem 6.25 in
Rudin 2): Let u,v € &’ with (u, ¢) = (v, ¢) for all ¢ € § with supp ¢ C R*"\{0}. Then

u—v=~P
for some polynomial P.
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We now argue as in the proof of the lower bound in Theorem 13: Let f € & and
h € S with sup h € R¥\{0}. Then

(£, 1)1 < CollSFIlNShlly < CollSFllplIAlly

where S is the modified square function from the proof of Theorem 13. By the Hahn-
Banach theorem there exists g € LP so that (f,h) = (g, h) for all h as above satisfying
lgll, < CullSfll,- By the above mentioned fact about distributions, f = g+P. Moreover,
Sf=Sgand

151> = 15gll, < Cllglly
by part 7). O

EXERCISE 24.

a) Show that Theorem 13 fails for p = 1. The intuition is of course to take f = dy.
For that case you should check that

(Sf)(x) ~ |z,
so that Sf ¢ LY(R™). Now transfer this to L*(R™) by means of approzimate
identities.
b) Show that Theorem 13 fails for p = oo

It is natural to ask at this point whether one can develop a Littlewood-Paley theory
for square functions defined in terms of sharp cut-offs rather than smooth ones as above.
More precisely, suppose we set

newf Z‘ X[2i- 1<|§\<27 (5))\/‘2 :
JEL
Is it true that

Co 1 llp < NS fllp < Coll £l (67)
forl<p<oo?

It is a relatively easy consequence of the LP-boundedness of the Hilbert transform
that the answer is “yes” for the case n =1 (one dimension). On the other hand, it is
a very non-trivial and famous result of Charles Fefferman that the answer is “no” for
dimensions n > 2. This latter result is based on the existence of Kakeya sets and will
not be discussed in this lecture, see Davis-Chang and the notes by Tom Wolff.

For the courageous reader we have presented the proof of (67) for n = 1 as an exercise.
Alternatively, look into Davis-Chang, Christ.

EXERCISE 25. In this exercise n = 1.

a) Deduce (67) from Theorem 13 by means of the following “vector-valued” inequal-
ity: Let {I;};ez be an arbitrary collection of intervals. Then for any 1 < p < oo

{008)} Lo = N L) T, < Gt ibarer 69

where { f;};ez are an arbitrary collection of functions in S(R'), say.
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b) Now deduce (68) from Theorem 8 by means of Khinchin’s inequality (Hint:
express the operator f — (x1f)Y by means of the Hilbert transform via the same
procedure which was used in the proof of Theorem 9).

¢) By similar means prove the following Littlewood-Paley theorem for functions in
LP(T): For any f € L*(T) let

sf= (Y 105fP)
=0
where
L NO) = > fn)e(nd)
29-1<|n|<2J
for 7 >1 and Nof(0) = f(0). Show that, for any 1 < p < oo
Co M A erery < IS Fllzeery < Collfllzeer) (69)

for all f € LP(T).
d) As a consequence of (67) with n =1 show the following multiplier theorem: Let
m : R\{0} — C have the property that, for each j € Z

m(&) =m; = constant

for all 2971 < |¢| < 2. Then, for any 1 < p < co
l(mf) @) < Gy Sup ml[ s
J

for all f € S(R). Prove a similar theorem for LP(T) using (69).

We now prove the “fractional Leibnitz rule” as an application of the Littlewood-Paley
theorem.

THEOREM 14. Let (V) denote the Fourier multiplier operator with symbol (1+|€?)2,
and similarly for (V)* for every real number s. Then the following “fractional Leibnitz
rule” holds for s > 0: For any Schwartz functions f,g € S(R?)

V) (o)l < C(s, . p, p1, P2, 23, 2a) [IKV)* Fllpi L9l + 1(V)" Fllps 911 (70)

where 1 <p < oo and ;= -+ - = =+ - p1,pa,p3, pa € (1,00).

In the notation of (fractional) Sobolev spaces W*P(R?), the inequality (70) is of
course the same as

I£gllwsr < C(s,d,p, pr,p2, P3, a) [ f Ilwr 19l e + 1 f llwss 19115 ]

The idea of the proof of Theorem 14 is as follows: Let {A,};cz be the Littlewood-Paley
multipliers as above. Since the multiplier of (V) is smooth around £ = 0, we will not need
to worry about small frequencies and therefore replace Ay with the entire sum ), -, Ay.
Now represent the functions f, g in the form: -

F=Y 0, 9= Mg.
>0 k>0
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Then
VY (falllo = || D (V)*(A; FArg)||,

73,k>0
= DA ra] DD (A AL+ DD (VA A
7,k>0 3,k>0 4,k>0
k<j—10 j<k—10 li—k|<10
= P1 + PQ + P3.

It should be possible to bound P; by means of the Littlewood-Paley theorem as follows,
at least heuristically:

Az X el ()
k<j—10
< [[(2iaure) vag| s || (2 as) | hatall
7<0 p 7>0 p1
< 1 Fllwesn g2 )

Here M is the Hardy-Littlewood maximal operators, which is bounded on LP? because
of po > 1. The expression in (71) is an example of a so-called “paraproduct”. To pass
from (71) to the line below is a simple fact using convolutions, whereas the inequality
sign in (71) should be a rather direct consequence of the Littlewood-Paley theorem since
the Fourier support of

D V)(AfAvg)

k<j—10

for fixed j > 0 is a shell of size 2/. That this is indeed so (even without the restriction
s > 0), will be shown in Lemma 23. The term P, is the same, whereas P is different in
the sense that for fixed j the summand

D V(A fAkg)

|k—3j]<10

no longer has Fourier support in a shell, but rather in a ball of size 27. Nevertheless,
because of s > 0 one would expect to still be able to estimate

<X 2iaia |

li—k|<10

< <ZJ: 22js|Ajf|2> : <Z |A’“g|2> : Hp
S,

<|| (S 2iar)’
To pass to the second line here, we use the Cauchy-Schwartz inequality.

Py

S 1 llwsri[lgllp,
J

EXERCISE 26. Use the following Lemma 23 in order to make these estimates for
Py, Py, P5 rigorous. Hint: For Ps, do not use Cauchy-Schwartz, but rather resort to M

59



again as follows:

| 3 ramsal <]( 2 =iasriaar)],
li—k[<10 \] k|<10

1
s) 2
S||(S2210P) Mg < 15w gl
j=>0

The following lemma is the main ingredient in the proof of Theorem 14.

LEMMA 23. Fiz some constant L > 1. Then the following properties hold:

i) Let {fx}uso be Schwartz functions so that supp(f,) € {L12F < |¢| < L2%} if k > 1
and supp(fo) C {|¢| < L}. Then

H<V>52fk , < C(s,p,d, L)H (Z 22sk|fk‘2)é p
k>0 <

if 1 <p<ooands€R. Conversely, if f, = Arf for some f € S(R?), then the converse

holds, 1i.e.,
[(21s)’], < ctomaliwys,

k>0
if 1l <p<ooandseR.

i) If {futeso are Schwartz functions such that supp(fp) C {|¢| < L2} for all k > 0,
then

ka”p < C(s,p,d, L) H( 223k‘fk|2)§

k>0

ifs>0and1<p< .

PROOF. Fix a positive integer v so that 2 > L2. This insures that

dist (supp(fe), supp(frsr)) > L2*
for all £ > 0. Also, let ¢; be an even Schwartz function with the property that

supp(¢y) C {€ € RY | L71/2 < |¢] < 2L}, i(€)=1if L7 < |¢| < L

and define 1, via ¥,(§) = ¥ (27FHE) for all £ > 1, whereas 1)y is some Schwartz
functions so that supp () is compact and 1y(€) = 1if || < L™'. Then, by construction,

fr = z/ﬂ; x fr for all k£ > 0. We split the sum into congruence classes modulo v. Thus,

kanp ZH kaH —ZHZ Vit 2|
—Zum“ Vs
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where

Fj = Z stfk

k=j
ma () =Y (1+ [€[)F27F0 (€).
k=j

Since v, is obtained by scaling, it is easy to check that m ; is a Mikhlin multiplier and
we therefore have by the Mikhlin and Littlewood-Paley theorems

kanp,sz” m F; IIpSZHFHpSZH ST .
k>0 Jj=
QPRI

k>0

<

~Y

as claimed. To prove the converse, let f, = Apf = @//);* f, where now 1, are the standard
Littlewood-Paley functions, cf. Lemma 16. In particular, the supports of ¢ are disjoint
if & runs through all even or odd integers, respectively. Define 1, to be “fattened up”
versions of ¥y, i.e., Ypr = Y and supp(vy) and supp(e,) are disjoint if & — ¢ > 3.
Observe that this implies that

Ve Z Vi = Yethy = (73)

for every j = 0,1,2 provided ¢ = j. Here congruences are to be undestood modulo 3.
Finally, we can assume that ¢, (€) = 91 (27%71¢) for all & > 1. Hence,

(248,

k>0
T =~ o
<ZH( 2HAP) ]| =3[ 2 MA@ )
k>0 P k>0 P
k=j ‘mod 3 k=j mod 3
2
(Y 1aEmE) s Znan, (74)
7=0 k>0
k=j mod 3

by the Littlewood-Paley theorem and with the definition
F’j = Z 288 &g * f

£>0
/=7 mod 3

Equality in (74) holds because of (73), since the latter implies that Ay (F;) = 23'% * f.
It remains to show that

1E5llp < A1 [[wer (75)
for each 0 < j < 2. To this end define

mas(€) = S 2R+ e B2
k>0
k=j mod 3
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so that
EA \Y%
Fy = [my;(1+1€[*)2f()] "
In order to prove (75) it suffices to show that m,; is a Mikhlin multiplier. In fact, it is
easy to check that ||m,]|ee < 1 and [0%m,(€)] < Cu(1 + |€])7121 Indeed,

V()] € Y1+ 1607 H (1 + )2 M| + 2274 (V) 274
SA+Eh
and similarly for higher derivatives. This finishes the proof of part (i).

Remark for (i7), what about s = 07

?
p=25=0, > fills <D IIfill:
k k

would be true only if there was some orthogonality, not in general. (e.g., take fk =
?

X[0,1] 7N2 5 Na HO.)

Proof of (ii). Use fact that weight (1 + |£[?)3 is bigger at the endpoints of the interval
[—Co2%, Cy2%] in 1-D.

From (7),

I Al 5 (2 Alszffnp
k>0
=122t ’%l*?’ffk\ )l

>0 k>1

<121 ) o

k>0 | |2

is the statement

?
1T ({wr}i=o) lzoazy S IH{wktesoll ez

T({witrso) = { D 22 xwihiso

k>1>0

— vector-valued singular integral.

By Hilbert space-valued Calderon-Zygmund theory,

a) T:L*(1%) — L*(¢*) bounded

B3)  kernel matrix element K, = 25U=k)a)y,,
|K (@)l e < Bla]

7) IVE(2)|lep < B.|z|~*!

why ) is needed, 1/|x| x f does not make sense.
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C2-theorem: a), 5), 7) = ||T||Lp(f2)*>Lp(£2) S Cd,pB

l<p<oo
Show «)
7wl = [ (2] 2 Kkl*wk] ) dz
>0 k>1>0
2
=Y [[E i) d

>0 k>1

S [l 0 S e de
>0 k>l k>l

<C <Cl(s)

< C(s)J{wi}rzoll 722 -
Show (3): Schur’s test
Sup pLETE)] <B. |~
k>l
Sup > [ Ku(x |<B|$’ =

k>1>0

(1) Y2 P(a)]

K>l
C(s) ()| = C(s)2e(2'w)]
< Cy(s)2"(1+2%2))™ N big.
|z~ for 2!|z| < 1
QUA=N)| 2| =N < |z|=® for 2!|z| > 1.

2) Y 20 P y(a) < On Y 2P (1 2 a|)N

k>1>0 k>1>0
s(l—k) old s(l—k) old (ol | .1\ =N
S Y 2Ry N 20k gl (olg))
k>1>0 <1 k>1>0 <1
2!z|<1 2! |z|>1
take N =d+1,
S| =4

N J/
g

-1
Safa=1 (1) =Ja|

Show 7) idem, 2! becomes 21@+1)  etc.

Note: Vector-valued C2 theory trivially follows from scalar C'2 theory.
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CHAPTER 8

Restriction of the Fourier transform, Stein-Tomas theorem,
Strichartz estimates

In the late 1960’s, Elias M. Stein posed the question whether it is possible to restrict
the Fourier transform f of a function f € (R™) with 1 < p < 2 to the sphere S"~! as a
function in L¢(S"!) for some 1 < g < co. In other words, is there a bound

1 1S Y nagsny < C| fllom) (76)

for all f € S(R™), with a constant C' = C(n,p,q)? As an example, take p =1, ¢ = 00
and C' = 1. On the other hand, p = 2 is impossible, as f is no better than a general
L?-function by Plancherel. Stein asked whether it is possible to find 1 < p < 2 so that
for some finite g one has the estimate (76). The following theorem settles the important
case q = 2.

THEOREM 15 (Tomas-Stein). For every dimension n > 2 there is a constant C(n)
such that for all f € LP(R™)

1 TS Yl 2sn-1y < C ()| fl|ocm) (77)

frac2n + 2n + 3. Moreover, this bound fails for p > p,.

—

The left-hand side in (77) is ( Jgn | f (w)\%o(w)) 5, where o is the surface measure

on S™ 1.

We shall prove this theorem in this section, but first some remarks are in order.
Firstly, there is nothing special about the sphere. In fact, if Sj is a compact subset of a
hypersurface S with nonvanishing Gaussian curvature, then

11 Sollz2(s) < C(n, So)LFI 2nzz (78)

n+3 (Rn)

for any f € S(R™). For example, take the truncated paraboloid

So = {(& €PN e R, ¢ < 1}
which is important for the Schrédinger equation. On the other hand, (78) fails for

So = A{(¢,1€NIg e R, 1< [¢'| <2}

since this piece of the cone has exactly one vanishing principal curvature, namely the
one along a generator of the one. This latter example is of course relevant for the wave
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equation, and we will need to find a substitute of (78) for the wave equation. A much
simpler remark concerns the range 1 < p < p,, in Theorem 15: for p = 1, one has

1F 15" lzsn-ty S IF TS ool S™ M2 < NI Il 5™z - (79)

Hence, it suffices to prove Theorem 15 for p = p,, since the cases 1 < p < p,, follows by
interpolation with (79). The Stein-Tomas theorem is more accessible than the general
restriction conjecture, see below, because of the appearance of L?(S™1) on the left-hand
side. This allows one to use duality in the proof. To do so, we need to identify the
adjoint of the restriction operator

R:f— fl1 5.
LEMMA 24. For any finite measure p in R™, and any f,g € S(R™) one has the
identity

| T©§©du(©) = | J(@)(Gx @)

PrOOF. We use the following elementary identity for tempered distributions: If u is
a finite measure, and ¢ € S, then

S = * fi.

Therefore,

| e

NaPY|
I
~
=N
=
N
I
T
=
0
Q>I>
=
2
QU
S
I

since § = 5 =g. 0
LEMMA 25. Let p be a finite measure on R", and g > 2. Then the following are
equivalent:

o) | fpllzageny < Clifllzzg for all f € S (R")
0) 119120y < Cligl Lo gy for all g € S (R™)
¢) [l fllzoeny < C?||fll Lo @ny for all f € S (R™).

PROOF. By the previous lemma, for any g € S(R"),

JRGIGLIGIEE

FeS Iz =1

I9llz2y = sup (80)

”f”LQ(H):LfES

| stz ds

Hence, if a) holds, then the right-hand side of (80) is no larger than ||g[/;« g, and

b) follows. Conversely, if b) holds, then the entire expression in (80) is no larger than
Cllgll o' (ny, which implies a). Thus a) and b) are equivalent with the same choice of C'.

Clearly, applying first b) and then a) with f = ¢ yields

190 o@ny < Cligll o @my
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for all g € S(R™). Since G = g(—-) * f1, ¢) follows.

/ o(2) (%) () de = / o) (uf) () di, = / GO)F(E) dpu(e) -

for any f,g € S(R™). Hence, if ¢) holds then

[ 405(©) 4w < st v

Now set f(z) = g(—z). Then

| 16 du(©) < Cllgllv g -

which is b). 0

Setting y = 0 = ggn-1, the surface measure of the unit sphere in R", one now obtains
the following:

COROLLARY 15. The following assertions are equivalent

a) The Stein-Tomas theorem in the “restriction form”:

1F 15" M 2y < Cllf o gy
for ¢ = 242 and all f € S(R")

n+3
b) the “extension form” of the Stein-Tomas theorem

|gosn |l Lan) < Cllgllr2(o)

for ¢ =222 and all g € S(R™).

¢) The composition of a) and b): for all f € S(R™)

[f * C@HLQ(RM < C2||f||Lq’(]R<")

with q = 22,

n—1

PROOF. Set 4t = ogn-1 = 0 in Lemma 21. U

EXERCISE 27. In general, a) and b) above remain true, whereas c) requires L*(c).
More precisely, show the following: The restriction estimate

17 15" iy < Cl iV € S
1s equivalent to the extension estimate
75 o) < Cllgll o ¥a €S
We now show via part b) of Corollary 15 that the Stein-Tomas theorem is optimal. This

18 the well-known Knapp example.

LEMMA 26. The exponent p, = % in Theorem 15 is optimal.

67



ProoOF. This is equivalent to saying that the exponent ¢ = % in part b) of the
previous corollary is optimal. Fix a small 6 > 0 and let ¢ € S such that ¢ = 1 on
B(en:V/0), g > 0, and supp(g) C B(en; 2v/6) where e, = (0,...,0,1)

Then

. omila e en (VT P-1) 9 /1 — [2'?)
195 (€)| = e 2milz" € +En (/1= |22 —1)]

1— |az:’|2

dz’

(81)

1 — /2
> /cos(27r(x’-§’+§n(,/1_|x/|2_ = \;\
—_ :El
m n—1
> — > (1
_COS4 /gdU_C' (\/5)

provided |¢'| < V)~ Cen] < 8 Indeed, under these assumptions, and for 4 > 0 small,

100 = 100"
5 —1 5—1 2
o€+ (VISR -1) [ <6 0 (v9)
100 100
1
< — ’
— 50
so that the argument of the cosine in (81) is smaller than 5 < 7 in absolute value, as
claimed.
Hence,

|75 pageny = €075 - (67557 - 671)°

_ -1t g

whereas ||g||z2p) < C6 T . It is therefore necessary that
n ; 1 < n g L nz—z 1

, as claimed. O

2n+2
orq> o

For the proof of Theorem 15 we need the following decay estimate for the Fourier
transform of the surface measure ogn-1:

|F51(9)] < C(L+ e~ (82)
This is a well-known fact that is most easily proved by means of the method of stationary

phase, see Tom Wolft’s notes, for example, or Homander’s book. It is easy to see that
(82) imposes a restriction on the possible exponents for an extension theorem of the form

| Fosmillzscery < Cllf v - (85)
Indeed, setting f = 1 implies that one needs
2n

>
9 n—1

by (82). On the other hand, one has
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EXERCISE 28. Check by means of Knapps’s example from Lemma 22 that (83) can
only hold for

> n+1p’. (84)

It is a famous congecture of Elias Stein that (83) holds under these conditions, i.e.,
provided

Observe that the Stein-Tomas theorem with q¢ = w and p = 2 is a partial result in this

direction. In two dimensions the conjecture was proved in the early 1970°s by Fefferman
and Stein. But in higher dimensions it appears to be a very difficult problem with only
little progress for n > 3. It is known, see Wolff’s notes, that the full restriction conjecture
implies the Kakeya conjecture on the Hausdorff dimensions of Kakeya sets in dimension
n > 3. This latter conjecture appears to be also very difficult.

PROOF OF THE STEIN-TOMAS THEOREM FOR p < 22, Let Y. ,1(277x) = for
x # 0 be the usual partition of unity. By (Lemma 21 and) Corollary 15 it is neces-
sary and sufficient to prove

1f % Gn=i [l ot gy < Cll oy
for all f € S(R™).
Firstly, let p(z) =1 — ZJZO@/)(Z*]@); clearly, ¢ € C§°(R"), and
r),+> (27x) forall zE€R".
Jj=0

Now observe that pag.—1 € C° so that

Hf*SOO?EHLp' kry < Cllfllorn) (85)
with C' = ||pGgn_i||z- where 1 —|— I+ —, ie., z% = 1. Tt therefore remains to control
K; = (2771)dgn-1(x) in the sense

1% 5l ey < O eV € SR (56)

for all 7 > 0 and some small € > 0. It is clear that the desired bound follows by summing
(85) and (86) over j > 0. To prove (86) we interpolate a 2 — 2 and 1 — oo bound as
follows:

1f % Kjllez = I Fll 21K e =
= 1 £l 12774(2-) % Tgn-1 | 1 (87)
< O fll=2" - 277070 = O f 12 .
To pass to the estimate (87) one basically uses that sup, ogn—1(B(z,r)) < Cr"L.

On the other hand,
1S Kjlloo < NIE Nl £ ]2

(-1 88
< i (35)
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since the size of K is controlled by (82). Interpolating (87) with (88) yields
If % Kjlly < 02775502000 £,

where ]% = £ 4 128 = 120 We thus obtain (86) provided
-1 1
0 <" 9—(1—9):”; o—1—
1 1 -1 1
SN (S Dl S
2 7 2 4
This is the same as p’ > % or p < 25:32, as claimed.
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CHAPTER 9

The endpoint for the Stein-Tomas theorem and Strichartz
estimates

The proof of the Stein-Tomas theorem in Chapter 88 fails because (86) leads to a
divergent series with ¢ = 0, which is the case of p = 271”—3 One therefore has to avoid
interpolating the operator bounds on each dyadic piece separately. The idea is basically
to sum first and then to interpolate, rather than interpolating first and then summing.
Of course, one needs to explain what it means to sum first: Recall that the proof of the
Riesz-Thorin interpolation theorem is based on the three lines theorem from complex
analysis. The key idea in our context is to sum the dyadic pieces T; : f — f x K;

together with complex weights w;(z) in such a way that
T. =) w(x)T,
j=0
converges on the strip 0 < Rz < 1 to an analytic, operator valued function with the
property that

T,: L' — L*>® for Rz =1

and

T,:L> — L[?for Rz =0

It then follows that Ty = LP(R") — L¥ (R") for pL =18

Although this describes the idea behind complex interpolation, it is rarely imple-
mented in this fashion. Rather, one tries to embed the operator under consideration into
an analytic family that is analytically tractable.

PROOF OF THE ENDPOINT FOR TOMAS-STEIN. We shall consider a surface of non-
zero curvature which can be written as a graph: &, = h(¢'), ¢ € R"L. Define

1

M.(6) = 5 (6 = (E€)) xa(€)xa (€ — h(E) (89)

where x; € CP(R™1), xo € C°(R) are smooth cut-off-functions, T' is the Gamma-
function, and Rz > 0. We will show that

T.f:= (sz)v (9())
can be defined by means of analytic continuation to Rz < 0. Moreover,
IT.|l2—2 < B(z) for Rz=1. (91)
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n—1
2
where A(z), B(z) grow now faster than e“1” as |Jz| — 0.

||Tz||1—>oo S A(Z) for Rz =—

Since one easily checks that
Mo (&) = x1(£)d0 (& — h(£')) d€” (93)
see (96), it follows from Stein’s complex interpolation theorem that
o Mo f

dent is bounded from LP? — L* where
1 0 1-0 n—1
4+ —

which implies that
1 n—1

p’ 2n + 2’
as desired. It remains to check (91)- (93) To do so, recall firstly that Z) is an entire
function with zeros at z =0, —1, —2 ,.... It has the product representation

1 s z
R vz 1 _> —z/v
['(2) = H ( t7)e ’

[ee]
<P [ ] {625*5'22@31} (94)

In particular, if z = 1, then

IML(E)] < (1+2)e e )% vy &)y (& — (&)
< e’ for all & .

Therefore, (91) holds with the stated bound on B(z). Now let ¢ € S(R"). Thus, for
Rz > 0,

M, ) d§ = h =14 d
[ M9t de - /R/ Xalthp(E't+ BENE dinale) de

(95)
/Rn 1/ i D) (&t + h(E))] 7 dix(¢) de’

Observe that the rlght—hand side is well-defined for Rz > —1. Furthermore, at z = 0,
using ZP(Z)‘z:o =1

Mo(§)@(8) dE = X2(0)@(&", h(€))xa (&) dE’

Rn Rn—1
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which shows that the analytic continuation of M, to z = 0 is equal to (setting x2(0) = 1)

Mo(8) = x1(&") d&'do(&n — R (E)) - (96)

Clearly, M, is proportional to surface measure on a piece of the surface

S ={(€.nE)E R} |

This is exactly what we want, since we need to bound og * f.

Now recall that (95) defined the analytic continuation to Rz > —1. Integrating by
parts again extends this to Rz > —2 and so forth. Indeed, the right-hand side of

[ nige© as = s [ [T

L Dxalt)o(€’ & + k(€))]at o

is well-defined for all Rz > —k.

Next we prove (92) by means of an estimate on HJ\/I\ZHOO This requires the following
preliminary calculation:

Let NV be a positive integer such that N > Rz + 1 > 0. Then we claim that

Ox L+ DY e
o (1 ) (97)

/ 6—27ritTtZX2(t> dt‘ S
0

To prove (97) we will distinguish large and small ¢7. Let ¢ € C§°(R) be such that
Y(t) =1 for |t| <1 and ¢(t) = 0 for [t| > 2. Then, since 0 < x5 <1,

/ h e 2T (t1) xo (1) dt‘ <
0

0o 2
g/ P=p(t]r]) dt < |7']§RZ1/ ™ dt (98)
0 0

|7_|—§Rz—1 )

< b
“Rz+1

If |7] < 1, then (98) is no larger than

/ Ry (t) dt < ¢
0

Rz+1°

Hence
C

14+ Rz
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in all cases. To treat the case t7 large, which implies that 7 is large, we exploit cancel-
lation in the phase. More precisely,

/0 h e HITEE (1 — (7)) xa (1) dt‘ <

1\
< (zm) |
<Cy <27r1|7-|> /0 dt[|2(z = 1) ..o (2 = N+ D[N (1 —(t7))xa(2)
FRE O )|V o (1) + 85 (1 = w(er) Y )]

1Y > C
<C -1)-...-(z—N+1 ARy Ep— T E Pl
= YN (27T|T|> |Z(Z ) (Z + )|[ + (27T|7'|)N|T| |7—|

L. ¢(t7))><z(t)]‘ i

drN

1
Ol [ ) e
0
(100)
<Cnllz(z=1) .- (= N+ D]+ 1]|r| =+ Cplr| V. (101)
Observe that the indefinite integral in (100) converges because of Rz — N < —1.

Moreover, the second term in (101) is < |7|®*~! by the same condition (recall that we
are taking 7 to be large). Hence (97) follows from(99) and (101). We now compute

]\//[\z(x) Let k be a positive integer with ®z > —k. Then

ir —2miz- 1 N\z—1 / / /
M (x) = / 6 = )T (€ a6, — H(E) ' d,

_1 - J s ’
e / 6—2F1$nttz—lx2 (t) dt/ 6—27”[.7,‘ f +$nh(§ )]Xl (5/) dgl
F<Z> 0 Rn—l
(~1)* ~ (102)
— —2mixTnt (k) ,2+k—1
B " t t dt-
F(Z)Z'(Z—l)-,,,.<z_k+1)/o (6 X2())
Rn—1
where the final expression is well-defined for 8z > —k. We are interested in Rz = _"T—l;

so pick k € Z" such that 1 — k <Rz < —k + 2, ie, "T“ <k< ”T“ + 1. Now apply (97)
with z + &k — 1 instead of z and with N = 2. Then the first integral (102) is bounded by

/ (e—QWixntXQ(t))(k) k=1 gy <
0

C(l |Z|)2 —Rz—k k

<C(1+ 21+ Jzal) 7
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On the other hand, the second integral in (102) is controlled by the stationary phase
estimate, cf. (82),

[ e ) dg| < o+ 1al) () (104)
R
Observe that the growth in |z, | for Rz = —21 is exactly balanced by the decay in
(104). One concludes that for Rz = (" Y and with k as in (103)
ITANEYe) 1 0.
MNz)z-(z—=1)-...-(z—k+1)
see (102)—(104). Thus (92) follows from the growth estimate (94). O
Now suppose we have the Schrodinger equation
[ %atu_‘_%ARnu = 0
u‘t:O = f .

Then
ult, z) = / PRI {6 de

= (fw"(t,)

where p is the measure in R"™! defined

L Fenduen = [ Pl de

for all F € CO(R™1).
Now let p € CP(R"), (&, 7) = 1if |¢{|+]|7| < 1. Then the endpoint of Stein-Tomas
applies and one has

(105)

1(for) "l Laqnsry < Cllfll 2o
where g = % =2+ %. In other words, if suppf C B(0,1), then

H(fu)vHLu%(RnH) < Ol fllzzemy = Cllf lzgeny - (106)

This X is the well-known Strichartz estimate under the additional condition
suppf C B(0,1). To remove it, one can rescale. Let

fa(z) = f(z/A) and
u(x,t) = u(z/\ t/N?) .
Then
%atU)\—F%AU)\ = 0
=
If suppf is compact, then suppfy C B(0,1) if A is large. Hence, in view of (105) and
(106),

Ux |t:0

[urllpa@nsry < CllAallL2@n) - (107)
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However,

I fallze@ey = A2 || fll2gn)
and »
lurllagn+ry = A9 [|ullpa = A2 [Jul| Lo -

Hence (107) is the same as
[l Lognsty < CllFll 2@y (108)

for all f € S will suppf compact. These functions are dense in L? (R™), and (108), which
is the Strichartz bound for the Schrodinger equation in n + 1 dimensions, follows for all

f e LX(R™).

For the inhomogeneous equation

15 1 —
- Ol + B} AR” u = F
5 ™ 109
{ s (109
use Duhamel’s principle and dispersive inequality for the free evolution, i.e.,
i _nel_ 1
le™ 2 fll o gy < CIE72 777 fll oy
for 1 < p < 2. Thus, if u solves (109), then
t
Jut, Y < [ Cle = s ED PG, ds
0
<C [ - sTEEPIRG Ol ds
Hence
[ull o @1y < ClF || Lognsry
provided
1 1 n/1 1
1+—=—+—<———> 110
P op 2\p P (110)
and
1 1
o<ﬁ<———,><1. (111)
q\p P
Now (110) is the same as
2 n 1_ 2\ n n
P2 ) 2 7
or . A
n /
i — 94
Yy 2(n+2)’ P *

and (111) also holds.

Hence, solutions of the general equation
%@u + % Au = F
uli=o = f
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satisfy
Il 2t gy < ClIFNz2@ny + IF] 2o ]

L n+4 (Rn+1)

for every n > 1.

The case of the wave equation:

Let ' = {z € R" |1 < |2'| = x, < 2} be a section of a light cone in R™. Since the
cone has one vanishing principal curvature, the Fourier transform of the surface measure
on I' decays as follows:

Gor(€)] <L+~ . (112)

It is not hard to see that (112) is optimal for all directions £ belonging to the dual
cone I'* (which is equal to T if the opening angle is 90°). It is quite clear that the complex
interpolation method from above therefore implies that there is the following restriction
estimate for I':

Hf [ FHL2(OT) < C”fHLp(Rn)
where p = nQ—fQ and n > 3.

THEOREM 16. Let T" be the cone in R™, n > 3, equipped with the measure dju(§) = T
Then
([ Fmé) < Ol ey (113

with p = n+2

PROOF. Let I" be the cone restricted to 1 < |€,] < 2. Then

1

( / o OF du(f))é < ( / \f(Aé)Pdu(Aé)) 5
<CA'7T y| (1 ) | e (rr) (114)

= ON T AT | flle@ny = CIF Nl Lon)

since
n—2 n n+2 n+2
—n+—-=— + =0.
2 P n n
To sum up (114) for A = 27 we use the Littlewood-Paley theorem: Since p < 2,

[ fllz2gy < € <Z 1A fH%p>
J
<cl(s10st) I,

< Clfllze@ny
which is (113). O
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Now suppose we have the wave equation
(8152 - AR’H) u = O

U |t:0 =0, atu|t:0 =f

then
u(t,z) = /ezm(t|£|+x£)f(§)ﬁﬁ€|+/em‘(—tlflﬁ.g)ﬂg)%ﬁﬂ
2 d
= (P (a.t) where P(&,l) = F(€). du(e. i) = 5

By the dual to Theorem 16,
ICF 1)l v @nsny < ClF |20 (115)

where p’ = 2042 Clearly,

o dEN?
P = ([ 1FOPE) =11,y

so that (115) implies that

which is the standard Strichartz estimate for the wave equation in n + 1 dimensions,
n > 2.

REMARK. We have followed the original derivation of the Strichartz estimates. The

are other ways of proving these inequalities which are perhaps somewhat simpler. For
example, let

T:LXR") — LP(R™)),  Tf:=e =2f
be the evolution operator of the free Schrodinger equation. Then it is easy to check that
the dispersive inequality for the free Schrodinger equation, viz.

54 fll ey < CLES 11 fll o
together with the fractional integration theorem implies that
TT* : IP (R™) — LP(R™)
provided p' = 2 + % and n > 1.
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CHAPTER 10

Some pointwise questions for Fourier series: the case of L!(T)

In this lecture we return to Fourier series on the circle. In contrast to the our
previous discussion in the first four lecture, which dealt with LP(T) convergence, we now
turn to pointwise questions. This area is regarded as hard. Indeed, a famous theorem of
Carleson [2] shows that Fourier series of L? functions converge almost everywhere. This
was extended by Hunt to LP(T), 1 < p < oo. Long before these results, Kolmogoroff
proved that Fourier series of functions on L*(T) do not converge almost everywhere. It
is this result which we discuss in Chapter 10. The proof strategy used in this chapter is
the standard one of Kolmogoroff, although the specific approach which we follow is due
to Stein [12]. The following lemma is a consequence of the Borel-Cantelli lemma.

LEMMA 27. Let {E,}52, be a sequence of measurable subsets of T such that

> B =00
n=1

Then there exists a sequence {x,}22, € T so that

> Xp (x4 3,) =00 (116)

for almost every x € T.

PROOF. View 2 := [ | T as a probability space equipped with the infinite product
measure. Given z € T, let A, C Q be the event characterized by (116). We claim that
P(A,)=1 VzxeT. (117)

By Fubini, it then follows that for almost every {x,}>, € Q, the event (116) holds for
almost every z € T. Hence fix an arbitrary x € T. Then

A, = {{xn}le |  belongs to infinitely many F,, (- + xn)}

— {{ggn};;o:l |z € ﬁ [OJ Em(‘+wm>}

N=1m=N
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where

wom (e e () Eal+a)

—{{o} | om € B +3) V= N

By definition of the product measure on {2, it therefore follows that

[e.9]

P(Ay) = [[ (1 —1E.) =0
m=N
by assumption (116). Hence (117) holds, and the lemma follows. O

It will come as no surprise to the reader that the theory of almost everywhere con-
vergence of Fourier series is intimately tied up with the theory of the maximal function
(known as Carleson maximal operator)

Cf(z) :=sup|Snf(z)] (118)

where S,, are the partial sum operators of Fourier series. Previously, we encountered
the Hardy-Littlewood maximal function, which controlled the almost everywhere con-
vergence of aproximate identities, see Theorem 4. Recall that the underlying bound on
the maximal function was the weak-L! bound. Stein [12] discovered that this property is
also necessary for almost everywhere convergence. More precisely, we have the following
fact. It will be formulated in greater generality than Fourier series.

LEMMA 28. Let T, be a sequence of operators, bounded on L'(T), and translation
wnvariant. Define

Mf(z) :=sup|T,.f(x)],

n>1

and assume that || M f||le < 0o for every trigonometric polynomial f on T. Now suppose
that for any f € LY(T),
HrxeT|Mf(x) <oo}| >0.

Then there exists a constant A so that
A
[{z € T Mf(z) > M = <[ flk
for any f € LY(T) and X > 0.

Proor. We will prove this by contradiction. Hence, assume that there exists a
sequence { f;}32, C L'(T) with [|f;]]; = 1 for all j > 1, as well as A; > 0 so that

E;:={x e T|Mf;j(z) > \}

satisfies '
E —2J
1>

for each 5 > 1. Be definition of M we then also have

. 2
lim [{x € T| sup |Txf;(z)| > A} > -
m—0co 1<k<m j
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for each j > 1. Hence there are M; < oo with the property that
27

e eT| sup |Tpfi(x)] > A} >+
1<k<M; J

for each j > 1. Let o denote the N* Cesaro sum, i.e., onf = Ky * f, where Ky is the
Fejer kernel. Since each T} is bounded on L', we conclude that
J

lim {z €T| sup [Tronfi(z)] > A} >
N—oo 1<k<M; Aj

Hence, we assume from now on that each f; is a trigonometric polynomial. Let m; be a
positive integer with the property that

s
m; < 2—; <m; +1.
Then
> mylBy| = oo
j=1

by construction. Counting each of the sets F; with multiplicity m;, the previous lemma
implies that there exists a sequence of points z;,, 7 > 1, 1 < ¢ < mj, so that

Z ZXE].(UU — Zjy) = 00 (119)
j=1 t=1
for almost every x € T. Let
0 = L
J JQm]
and define
Fl@) =3 #6;fi(w — w0 ,
j=1 =1

where the signs 4+ will be chosen randomly. First note that irrespective of the choice of
these signs,

o
£l <) myd; < oo.
=1

The point is now to choose the signs so that
Mf(z) =00

for almost every x € T. For this purpose, select x € T such that v € E; + z;, for
infinitely many j and ¢ = £(j) (just pick one such £(j) if there are more than one). Since
the T, are translation invariant, so is M. Hence

MfJ(ZL‘ — $j,£) > )‘j
for infinitely many j. We conclude that for those j there is a positive integer n(j, z) so
that
TG f5(@ = zj0)| > Aj.
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At the cost of removing another set of measure zero we may assume that
oo My

T.f(z) = Z Z +6; T, f(x — xj4)

j=1 t=1
for all positive integers n. In particular, we have that

oo My

Ty () = Z Z 6, Tijo) f (2 — 750)

j=1 £=1
which implies that
]P)HTn(j,x)f(x” > 5j)‘j] >

where the probability measure is with respect to the choice of signs +. Since 6;\; — o0,
we obtain that

DN | —

Pl| T2 f (2)] = o0] =

We claim that the event on the left-hand side is a tail event. Indeed, this holds since

N —

Mf(x) <y MSi(x)

and each summand on the right-hand side here is finite (f; is a trigonometric polynomial
and we are assuming that M is uniformly bounded on trigonometric polynomials). By
Kolmogoroft’s zero-one law we therefore have

Pl T f ()] = o0] = 1.
It follows from Fubini’s theorem that almost surely (in the choice of +)
Mf(z) = oo.

This would contradict our main hypothesis, and we are done. [l

The previous lemma, which is due to Stein, reduces Kolmogoroff’s theorem on the
failure of almost everywhere convergence of Fourier series of L' functions to disproving
a weak-L' bound for the Carleson maximal operator. More precisely, we arrive at the
following corollary.

COROLLARY 16. Suppose {S,, f}°°, converges almost everywhere for every f € L*(T).
Then there exists a constant A such that

o € T Cuta) > M} < 3l (120)

for any complex Borel measure p on T and A > 0, where C is as in (118).

PRrROOF. By the previous lemma, our assumption implies that there exists a constant
A such that

A
Hr e T[Cf(z) > A} < XHle
for all A > 0. This is the same as
A
Hoz e T|[Suf(z)] > A} < XHle
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for all n > 1 and A > 0. If i is a complex measure, then we set f = Vi * u, where Vi is
de la Vallée-Poussin’s kernel. It follows that

A
sup [{z € T S,[Viv * ul(x)| > A} < Sl
N>1

for all n > 1 and A > 0. Passing to the limit N — oo, we obtain our desired conclusion.
O

The idea behind Kolmogoroff’s theorem is to find a measure p which would vio-
late (120). This measure will be chosen to create resonances, i.e., so that the peaks of
the Dirichlet kernel all appear with the same sign. More precisely, for every positive
integer N we will choose

| N
[N = N;(S@,N (121)
where the z; x are close to . Then
N
(Sppun) (z Z Sin((2n + Jn(@ = i) (122)

sin(m(z — xjn))

If x is fixed, we will then argue that there exists n so that the summands on the right-
hand have the same sign (for this, we will need to make a careful choice of the z;n).
Thus, the size of the entire sum will be about

N

Z% = log N

j=1

because of the denominators in (122), which clearly contradicts (120).
The choice of the points z; y is based on the following lemma due to Kronecker.

LEMMA 29. Assume that (01,...,03) € T? is incommensurate, i.e., that for any
(n1,...,nq) € Z4\ {0} one has that

n191+...+nd9d€Z.

Then the orbit
{(nb:,...,n0;) mod Z*|neZ} C T (123)

is dense in T¢.

PRrooF. It will suffice to show that for any smooth function f on T¢

N
% Z f(nby,...,n0y) — [ f(z)dz. (124)
n=1

Td
Indeed, if the orbit (123) is not dense, then we could find f > 0 so that the set {T?|f > 0}
does not intersect it. Cleary, this would contradict (124). To prove (124), expand f into
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a Fourier series. Then

1 1
N;f(nelaaned)zﬁ

Z f(y)€2ﬂi9-u
1vezd

11— 627ri(N—|—1)(9~1/

=10+ > [Tz

vezd\{0}

n=

~

where the ratio on the right-hand side is well-defined by our assumption. Clearly, f(v)
is rapidly decaying in |v| since f € C°°(T¢). Thus, since
11— 627ri(N+1)041/
N 1 — e2mibv
forall N > 1, v # 0, it follows that

<1

‘ . 11— 627ri(N—|—1)6’-1/
J\Pinoo Z f(y)ﬁ 1 — e2mibv 0,

and we are done. O

We can now carry out our construction of the puy.

LEMMA 30. There exists a sequence puy of probability measures on T with the property
that

limsup (log N) ™| S,pun ()] >0

n—oo

for almost every x € T.

Proor. For every N > 1 and 1 < j < N choose z; 5y € T which satisfy
J _
TN — N' <N7?

and so that {z;y}}; € TV is an incommensurate vector. This can be done since
the commensurate vectors have measure zero. Clearly, the set of x € T such that
{2(z — 2;n)}L, € TV is a commensurate vector is at most countable. It follows that
for almost every z € T,

{{2n(z —2;5)}, mod Z" |neZ}

j=1
is dense in TV. Hence, for almost every € T,
{H{@n+1)(z— 2N}, mod ZV |n € Z}

is also dense in TV. It follows that for almost every x € T there are infinitely many
choices of n > 1 so that

1
sin((2n + D)7(x — xjn)) > 3
for all 1 < j < N. In particular, for those n the sum in (122) satisfies
1« 1 1 1
s, > , >0—3 > ClgN,
[Snpn ()] 2 QN; |sin(m(x — x;n))| — N;]/N =& 08
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as desired. O

Finally, combining Lemma 30 with Corollary 16 yields Kolmogoroff’s theorem.

THEOREM 17. There exists f € L'(T) so that S,f does not converge almost every-
where.

It is known that this statement also holds with everywhere divergence. There has
been considerable interest in the question of how much the condition f € L'(T) can be
relaxed for the conclusion of everywhere divergence of the Fourier series. It is known
that

/E|f(33)! log(1 + [ f(x)[) loglog(100 + [ f(x)]) dz < o0

is sufficient for a.e. convergence, see Sj6lin [11] (and Antonov [1] for a sharper condition),
whereas Konyagin [10] showed the following: Let ¢ : [0,00) — [0, 00) be non-decreasing
and satisfy ¢(u) = o(uy/logu/+/loglogu) as u — oo. Then there exists f € L*(T) so
that

[os@lis < oo

and limsup,, ., S f(z) = oo for all x € T.

EXERCISE 29. Consider the following variants of Lemma 28:

1) Let {pn}5°, be a sequence of positive measures on R supported in a common compact
set. Define

M f(x) = sup [(f * pn) ().

n>1
Let 1 < p < oo and assume that for each f € LP(R?)

Mf(x) < oo on a set of positive measure.
Then show that f — Mf is of weak-type (p,p).

2) Now suppose p, are complex measures of the form du,(z) = K,(x)dx, but again
with common compact support. Show that the conclusion of part 1) holds, but only for
I<p<2
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APPENDIX A

Homework Problems 1-41, Introduction to Harmonic Analysis

Some of these homework problems are quite challenging, and you should probably
only attempt them after you have worked through all eight lectures. Only very few of
the following problems are referred to in the text. Moreover, some of them are only
loosely connected with the contents of these lectures, like those on uniform distribution.
Generally speaking, it is not necessary to work through the problems to understand
the lectures, but they should be thought of as—hopefully interesting—extensions and
applications of the ideas in the lectures.

(1)

(2)

Let ¢ : [0,00) — [0,00) be a continuously differentiable and monotone function
with ¢(0) = 0. Prove

/X o(F (@) du(x) = / T Wue e X ¢ f(e) > 1)) di

where f >0, f € L'(X, u) and (X, i) is some o-finite measure space.
We say a sequence {f,}52, € L'(u) is uniformly integrable if for every ¢ > 0
there exists 0 > 0 such that
/ fn du
E

Suppose p is a finite measure. Let ¢ : [0,00) — [0, 00) be a continuous increasing

function with lim;_, @ = +00. Prove that

u(E) < § = sup <e€.

Sup/¢(|fn|) dpi < oo

implies that {f,} is uniformly integrable.

Suppose { f,}°°, is a sequence in L([0, 1], dx). Show that there is a subsequence
{fn;}321 and a measure p with f,, 2%, i provided sup,, || falli < co. Here o* is
the weak-star convergence of measures. Show that in general p ¢ L'(]0, 1], dx).
However, if we assume that, in addition, {f,}{° is uniformly integrable, then
du = fdx for some f € L'([0,1]). Can we conclude anything about strong
convergence (ie, in the L'-norm) of {f,}? Consider the analogous question on
Lr([0,1]),p > 1.

Let m denote Lebesgue measure on RY. Fix some f € LP(m), 1 < p < oo.
Define

O R — LP(m) by @4(y)(z) = f(x +y) .
Show that ®; is continuous.
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(5) Let p be a finite Borel measure on R™. Prove that

p(z) = u(B(z,r))

is a lower semi-continuous function in x. Here B(z,r) is the open ball of radius
r and center z (r > 0 is fixed).
(6) Let u be a finite Borel measure on RY. Recall

T) = su —u(B(x,r))
Mple) = r>18 m(B(az,r))

a) Show that g L m implies pu({z : Mpu(z) < occ}) =0

b) Show that if g L m, then lim sup % =00 /L — a.e.

r—0

(7) For any f € LY(R%) and 1 < k < d let

Mef () = supr—* / Wl

r>0
Show that
C
mes({x € L : Mpf(z) > A\}) < XHfHLl

where L is an arbitrary affine k-dimensional subspace and “mes” stands for
Lebesgue measure (i.e., k-dimensional measure) on this space. C' is an absolute
constant.
(8) Prove the Besicovitch covering lemma on the circle: Suppose {I;} are finitely
many arcs with |/;] < 1. Then there is a sub-collection {I;, } such that
a) Uplj, = U;l;
b) No point belongs to more than C' [;,’s where C' is a numerical constant.
Give an explicit value for C', as good as you can.
(9) a) Prove that if u € M(T) \ {0} satisfies du L df, then My ¢ L* (M is the
Hardy-Littlewood maximal function). In fact, show that

mes{0 € T : Mu(0) > \} > §||M||

provided A > ||| with an absolute constant ¢ > 0.

b) Prove that there is a numerical constant C' such that if 4 € M(T) is a
positive measure and F' the associated harmonic function, then Mp < CF*.
Conclude that if y is singular, then F* ¢ L.

(10) a) Let f be the standard Cantor-Lebesque function on the middle-third Cantor
set on [0, 1]. Show that f is Holder continuous with exponent o = %.

b) Let C be the usual middle-third Cantor set on [0, 1]. Show that C' 4+ C D
[0,1]. Can you find a larger interval than [0, 1] with this property?

(11) Let p be a measure on X with pu(X) = 1. Let f, g be two nonnegative measurable
functions with [ gdp = 1. Prove

/fg dp < /gloggdu+log/ef dp .
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(12) Suppose f € LP(R), 1 < p < oo, f is absolutely continuous with f € LP(R).

Prove
+h)— P
li 0/‘fx (z) — f'(z)| dz=0

(13) Suppose that f € L'(T) and that {S, f}°2; (the sequence of partial sums of the
Fourier series) converges in LP(T) to g for some p € [1,00] and some g € LP.
Prove that f = ¢g. If p = oo conclude that f is continuous.

(14) Let K, denote the Fejer kernel with Fourier support [—(n — 1),n — 1]. Show
that de la Vallée Poussin’s kernel

Vn(0> _ (1 + e27rin9 + 6727Tin9) Kn (9)

satisfies
a) Vo(j) = 1 where |j| <n
b) ||V!|l1 < Cn with C independent of n.
(15) Prove the following result (Bohr’s inequality) which is a sort of converse to
Bernstein’s inequality: Suppose that f € C*(T) and that f(j) = 0 for all 5 with
l7] < n.
Then
df
), = Il
for all p € [1, 00], where C' is independent of n € Z*, f and p.
(16) Show that the Hilbert transform preserves the Holder class C*(T), 0 < o < 1.
(17) If w is an irrational number, show that

H%iﬂ-mm—/ﬂe) )

for any f € L*(T). In particular, if f € L? is such that f(x +w) = f(z) for a.e.
x, then f = const.

(18) Let a be an irrational number. Can there be a non-constant function f € L*(T?)
so that

— 0

flzy +a, 21 + x2) = f(21,22)

for a.e. (z1,z9) € T??
(19) For a real-valued function ¢ on T let A, denote the multiplication operator
(Ayf)(x) = @(x)f(x). Let Py : L*(T) — L*(T) be the projection onto

span {1,e?™0 . e2(N=101 " Lot ©(f) = cos(2mf). Denote the eigenvalues

of PN A<,0 PN by {)\j,N}évzl- Show that

N
1 1
NZAjN:aHO(N) k=0,1,2,... (A1)
j=1
for some constants az, which you should compute. Also show that
1 .
N#{j AN < E} — p(E)as N — oo (A.2)

uniformly in £ € R. Find the function p.
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(20) Now let ¢ € C(T) be arbitrary and define A, and A; y as above. Show that
(A.3) below and (A.2) hold and find {ax}?2, and p in terms of . If ¢ is non-
degenerate of order s (i.e. > ;|0 (x)] # 0 on T), show that p € C/*(R).
Here (A.3) means

11m—ZAJN—ak,k::0,1,2,... (A.3)

N—oo IV

(21) Let ¢ € C*°(T) and denote A, as in No. 19. If H is the Hilbert transform on
T, show that
[Ay,,H = A,0oH—Ho A,

is a smoothing operator, i.e., if u € M(T) is an arbitrary measure, then
(A, Hlu € C=(T) .
(22) In No. 20 show that not only (A.3) holds, but also (A.1). Le., show that for

p € C(T)
1 & 1
—g Mo —a :0(—> as N — oo
5,N k
szl N

with the same a;, as in 20.
(23) Let f € LY(T). Given A > 1, show that there exists E C T (depending on A
and f) so that mes(E) < A™! and for all N € Z*

Sy f (@) de < OA|f]? .
N/MZ! 1713

C'is a constant independent of f, N, \.
(24) Let {r;}32, be a sequence of independent, identically distributed random vari-

ables with IP(rl =1) =P(r; = —1) = ; (coin tossing sequence). Show that for
N=12,...
N N 3
P> ra| > A (Z a?) < 2702
j=1 =1

for any {a;}52, € R and A > 0.

(25) Suppose {X,,}5°, is a martingale difference sequence adopted to some filtration
{F.}52,. Show that

2

N
: >A(Z mua) < Cee¥
n=1

forany N =1,2,..., A > 0. C,c > 0 are absolute constants.

(26) Let f € CY(T) be such that ||f|lee < 1 and ||f'|lcc < K (with some K > 1).
Identifying T = R/Z we let x — 2z mod 1 be the doubling map on T. Using
the previous exercise show that for any N =1,2,...

| N \2N
mends €T | L5 - [0} < Com (-2 )
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for some absolute constants ¢, C'. Can you obtain log(K/)) instead of log?(K/\)?
Would this be optimal?
(27) Let {r;}3° be as in No. 24. Show that for any {a;} € C, and N € Z*

Zr] a;e®™%| > C, (Z\%P) Viog N | < CoN~2

provided Cj is a sufficiently large absolute constant.

(28) Let Ti(z) = 32N [an cos(2mna) + b, sin(2rnax)] be an arbitrary trigonometric
polynomial with real coefficients ag,...,an,bg,...,by. Show that there is a
polynomial P(z) = Y7 up2’ so that Tiy(x) = e 27N* P(¢2™*) and such that
P(z) = z*N P(z71). How are the zeros of P distributed in the complex plane?

(29) Suppose Ty (z) = SN [an cos(2mna) + b, sin(2rnz)] is such that Ty > 0 every-
where and a,,b, € R for allmn =0,1,..., N. Show that there are ¢, ...,cy € C
such that

sup
0<6<1

N 2

§ : n 627rmz

n=0

(30) Suppose that T'(z) = ag + S1_, aj cos(2rhz) satisfies T'(z) > 0 for all z and
T(0) = 1. Show that for any complex numbers 1, yo, . .., yn,

N—I—H <a02|yn| +Z|ah| Zyn+hyn

(31) Let {z,}32, be an infinite sequence of real numbers. Show that the following
three conditions are equivalent:

a) For any f € C(T),

1 N
N ) = [ e

b) ~ SN e(kx,) — 0 for all k € Z* .

n=1

c) lim sup]% {1<j<N:z;el modl}—|I||=0.

Tn(x) = for all x .

N 2

T

n=1

It these Condltlons hold we say that {z,}5°, is uniformly distributed modulo 1.

(32) Using #30 with a suitable choice of T', prove the following: If {x,}3°, is a
sequence for which {1 — 2,522, is u.d. modulo 1 for any k& € ZT, then {x,}$°
is also u.d. mod 1. In particular, show that {n9w}°®, is u.d. mod 1 for any
irrational w and d € Z7.

(33) a) Let p > 2 be a positive integer. Show that for a.e. x € T {p"z}>°, is u.d.

modulo 1.
b) Can you characterize those x which have this property?

(34) Suppose > 7 aZn < oo and Y | a, is Cesaro summable. Show that > 7, a,
converges. Use this to prove that for any f € C(T) for which 32 |f(n)[?|n| < oo
one has S, f — f uniformly.
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(35) Show that there exists an absolute constant C' so that

1 1 2
- 2 flx)— fy .
Sl < [ [ HE IO 0 gy < 03 P
7120 o Jo sin*(m(z —y)) 0
for any f € HY/2(T).
(36) Use #34 and #35 to prove the following theorem of Pal-Bohr: For any real
function f € C(T) there exists a homeomorphism ¢ : T — T such that

Su(fop) — fogp
uniformly. Hint: Wlog f > 0. Consider the domain defined in terms of polar
coordinates by means of r(0) = f(6/2m). Then apply the Riemann mapping

theorem to the unit disc.
(37) Show that

1 * gl Zem < I * fllewllg * 9ll2@ forall f,g e L*(R).
Can there be such an inequality with L'(R) instead of L?(R)?

(38) Prove Poincaré’s inequality:

/ 1f(x) = foo.r | dISCRQ/ |V f(z)]?* dx
D(0,R)

D(0,R)

for all f € S. Here C' depends only on the dimension. fp(, r) denotes the mean
of f over D(0, R).
(39) Prove the following weak form of the Logvinenko-Sereda theorem by means of
Poincaré’s inequality and Bernstein’s inequality:
Suppose |F'N D| < ~|D| for all disks of radius R. Show that for small v > 0
there exists d = §(7y) so that 6(y) — 0 as v — 0, and such that

1f 2y < SISz i supp(f) € D(O,R™).
(40) Given N disjoint arcs {I,}N_, C T, set f = 3. x7,. Show that
P N
Z fW)? S T
v|>k

(41) Given any function ¢ : ZT — R* so that ¢(n) — 0 as n — oo, show that you

can find a measurable set £ C T for which
lim sup —|XE(n)| =00

n—oo  Y(n)
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