
CHAPTER 1

Fourier Series: Convergence and Summability

Let T = R/Z be the one-dimensional torus (circle). We consider various function
spaces on it, namely C(T), Cα(T), and Lp(T). The space of complex Borel measures on
T will be denoted byM(T). Any µ ∈M(T) has associated with it a Fourier series

µ ∼
∞∑

n=−∞
µ̂(n)e(nx)

where we let e(x) = e2πix and

µ̂(n) =

∫ 1

0

e(−nx) dµ(x) .

We first consider the classical question of convergence of Fourier series. The partial sums
of f ∈ L1(T) are defined as

SNf(x) =
N∑

n=−N

f̂(n)e(nx)

=
N∑

n=−N

∫ 1

0

e(−ny)f(y) dy e(nx)

=

∫ 1

0

N∑
n=−N

e(n(x− y))f(y) dy

=

∫ 1

0

DN(x− y)f(y) dy

where DN(x) =
∑N

n=−N e(nx) is the Dirichlet kernel.

Exercise 1. Check that

DN(x) =
sin((2N + 1)πx)

sin(πx)
,

and draw the graph of DN .

One can also write

SNf(x) = (DN ∗ f) (x)

where f ∗ g(x) :=
∫
T f(x− y)g(y) dy is the convolution of f and g. You should think of

f ∗ g as an average of translates of f .

Exercise 2. Prove the following properties of the convolution:
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a) ‖f ∗ g‖p ≤ ‖f‖p‖g‖1 for all 1 ≤ p ≤ ∞, f ∈ Lp, g ∈ L1. This is called Young’s
inequality. You should pay careful attention to the fact that the integral defining
f ∗ g is not necessarily absolutely convergent for every x.

b) More generally, if f ∈ C(T), µ ∈ M(T) then f ∗ µ is well defined. Show that,
for 1 ≤ p ≤ ∞,

‖f ∗ µ‖p ≤ ‖f‖p‖µ‖
which allows you to extend f ∗ µ to f ∈ L1.

c) If f ∈ Lp(T) and g ∈ Lp′(T) where 1 < p < ∞, and 1
p

+ 1
p′ = 1 then f ∗ g,

originally defined only almost every where, extends to a continuous function on
T and

‖f ∗ g‖∞ ≤ ‖f‖p‖g‖p′ .
Is this still true of p = 1 or p =∞?

d) For f, g ∈ L1(T) show that for all n ∈ Z

f̂ ∗ g(n) = f̂(n)ĝ(n) .

It is typically difficult to understand convergence of SNf . This can be seen as an
instance of the fact that the Dirichlet kernel is not an approximate identity, see below.
One (standard) positive result is the following theorem.

Theorem 1. If f ∈ Cα(T), 0 < α ≤ 1, then ‖SNf − f‖∞ −→ 0 as N −→∞.

Proof. One has, with δ > 0 to be determined,

SNf(x)− f(x) =

∫ 1

0

(f(x− y)− f(x))DN(y) dy

=

∫

|y|≤δ

(f(x− y)− f(x))DN(y) dy

+

∫

|y|>δ

(f(x− y)− f(x))DN(y) dy .

(1)

There is the obvious bound

|DN(y)| ≤ Cmin

(
N,

1

|y|
)
.

Here and in what follows, C will denote a numerical constant that can change from line
to line. The first integral in (1) can be estimated as follows

∫

|y|≤δ

|f(x)− f(x− y)| 1

|y| dy ≤ [f ]α

∫

|y|≤δ

|y|α−1 dy ≤ C[f ]αδ
α (2)

where we have set

[f ]α = sup
x,y

|f(x)− f(x− y)|
|y|α .
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To bound the second term in (1) one needs to exploit the oscillation of DN(y). In fact,

B :=

∫

|y|>δ

(f(x− y)− f(x))DN(y) dy =

=

∫

|y|>δ

f(x− y)− f(x)

sin(πy)
sin((2N + 1)πy) dy

= −
∫

|y|>δ

hx(y) sin((2N + 1)π(y +
1

2N + 1
)) dy

where hx(y) := f(x−y)−f(x)
sin(πy)

.

Therefore,

2B =

∫

|y|>δ

hx(y) sin((2N + 1)πy) dy

−
∫

|y− 1
2N+1

|>δ

hx

(
y − 1

2N + 1

)
sin((2N + 1)πy) dy

=

∫

|y|>δ

(hx(y)− hx(y − 1

2N + 1
)), sin((2N + 1)πy) dy

+

∫

[−δ,−δ+ 1
2N+1

]

hx(y − 1

2N + 1
) sin((2N + 1)πy) dy

−
∫

[δ,δ+ 1
2N+1

]

hx(y − 1

2N + 1
) sin((2N + 1)πy) dy .

These integrals are estimated by putting absolute values inside. To do so we use the
bounds

|hx(y)| < C
‖f‖∞
δ

,

|hx(y)− hx(y + τ)| < C

( |τ |α[f ]α
δ

+
‖f‖∞
δ2
|τ |

)

if |y| > δ > 2τ .

In view of the preceding one checks

|B| ≤ C

(
N−α[f ]α

δ
+
N−1‖f‖∞

δ2

)
, (3)

provided δ > 1
N

. Choosing δ = N−α/2 one concludes from (1), (2), and (3) that

|(SNf)(x)− f(x)| ≤ C
(
N−α2/2 +N−α/2 +N−1+α

)
(‖f‖∞ + [f ]α) ,

which proves the theorem. ¤

Remark. We shall see later that the theorem fails for continuous functions i.e.,
α = 0.
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Better convergence properties are achieved by means of Cesaro means, i.e.,

σNf :=
1

N

N−1∑
n=0

Snf .

Setting KN = 1
N

∑N−1
n=0 Dn, which is called the Fejer kernel, one therefore has

σNf = KN ∗ f .

Exercise 3. Check that KN(x) = 1
N

(
sin(Nπx)
sin(πx)

)2

.

It is important to realize that K̂N looks like a triangle, i.e., for all n ∈ Z

K̂N(n) =

(
1− |n|

N

)+

.

The importance of KN with respect to convergence properties lies with the fact that the
Fejer kernels form an approximate identity (abbreviated a.i.).

Definition 1. {ΦN}∞N=1 ⊂ L∞(T) are an approximate identity provided

A1)
∫ 1

0
ΦN(x) dx = 1 for all N

A2) supN

∫ 1

0
|ΦN(x)| dx <∞

A3) for all δ > 0 one has
∫
|x|>δ
|ΦN(x)|dx −→ 0 as N −→∞.

Lemma 1. The Fejer kernels {KN}∞N=1 form an a.i.

Proof. We clearly have
∫ 1

0
KN(x) dx = 1 (why?) and KN(x) ≥ 0 so that A1) and

A2) hold. A3) follows from the bound |KN(x)| ≤ C
N

min
(
N2 , 1

x2

)
. ¤

Lemma 2. For any a.i. {ΦN}∞N=1 one has

a) If f ∈ C(T), then ‖ΦN ∗ f − f‖∞ −→ 0 as N −→∞
b) If f ∈ Lp(T) where 1 ≤ p <∞, then ‖ΦN ∗ f − f‖p −→ 0 as N −→∞.

Proof.

a) Since T is compact, f is uniformly continuous. Given ε > 0, let δ > 0 be such
that

sup
x

sup
|y|<δ

|f(x− y)− f(x)| < ε .

Then, by A1)–A3),

|(ΦN ∗ f)(x)− f(x)| =
∣∣∣
∫

T
(f(x− y)− f(x))ΦN(y) dy

∣∣∣

≤ sup
x∈T

sup
|y|<δ

|f(x− y)− f(x)|
∫

T
‖ΦN(t)|dt+

∫

|y|≥δ

|ΦN(y)|2‖f‖∞ dy

<Cε

provided N is large.
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b) Let g ∈ C(T) with ‖f − g‖p < ε. Then

‖ΦN ∗ f − f‖p ≤ ‖ΦN ∗ (f − g)‖p + ‖f − g‖p + ‖ΦN ∗ g − g‖p
≤

(
sup
N
‖ΦN‖1 + 1

)
‖f − g‖p + ‖ΦN ∗ g − g‖∞

where we have used Young’s inequality (Exercise 2 part a)) to obtain the first
term on the right-hand side. Using A2), the assumption on g, as well as part a)
finishes the proof.

¤
Corollary 1.

a) Trigonmetric polynomials are dense in C(T), Lp(T), 1 ≤ p <∞.
b) For any f ∈ L2(T)

‖f‖22 =
∑

n∈Z
|f̂(n)|2

c) {e(nx)}n∈Z form a complete orthonormal basis in L2(T).
d)

∫
Tf(x)ḡ(x) dx=

P
n∈Z f̂(n)ĝ(n)

for all f, g ∈ L2(T)

Proof.

a) By Lemma 1, {KN}∞N=1 form an a.i. and Lemma 2 applies. Since σNf = KN ∗ f
is a trigonometric polynomial, we are done.

b), c), d) are well-known to be equivalent by basic Hilbert space theory. The point to
make here is of course that ∫ 1

0

en(x)em(x) dx = δ0(n−m)

(where δ0(j) = 1 if j = 0 and δ0(j) = 0 otherwise). Generally speaking one thus has
Bessel’s inequality ∑

|f̂(n)|2 ≤ ‖f‖22
and equality is equivalent to span {en} being dense in L2(T). That, however, is guaran-
teed by part a). ¤

Remark. Parts b), c), d) go under the name Plancherel, Riesz-Fischer, and Parse-
val.

Corollary 2. (uniqueness theorem): If f ∈ L1(T) and f̂(n) = 0 for all n ∈ Z, then
f = 0.

Proof. σNf = 0 for all N by assumption and ‖σNf − f‖1 −→ 0. ¤
Corollary 3. (Riemann-Lebesgue): If f ∈ L1(T), then f̂(n) −→ 0 as n −→∞

Proof. Given ε > 0, let N be so large that ‖σNf − f‖1 < ε.

Then |f̂(n)| = |σ̂Nf(n)− f̂(n)| ≤ ‖σNf − f‖1 < ε for |n| > N . ¤
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Try to do problem 41 from the appendix.

We now return to the issue of convergence of the partial sums SNf in Lp(T) or C(T)
(observe that it makes no sense to ask about uniform convergence of SNf for general
f ∈ L∞(T) because uniform limits of continuous functions are continuous).

Lemma 3. The following statements are equivalent: For any 1 ≤ p ≤ ∞

a) For every f ∈ Lp(T) (or f ∈ C(T) if p =∞)

‖SNf − f‖p −→ 0

as N −→∞.
b) supN ‖SN‖p→p <∞

Proof. The implication b) =⇒ a) follows from the fact that trigonometric polynomi-
als are dense. The implication a) =⇒ b) can be deduced immediately from the uniform
boundedness principle of functional analysis. Alternatively, there is the following ele-
mentary argument (the method of the “gliding hump”): Suppose supN ‖SN‖p−→p = ∞.
For every positive integer ` one can therefore find a (large) integer N` such that

‖SN`
f`‖p > 2`

where f` is a trigonometric polynomial with ‖f` ‖p = 1. Now let

f(x) =
∞∑

`=1

1

`2
e(M`x)f`(x)

with some integers {M`} to be specified. Notice that

‖f‖p ≤
∞∑

`=1

1

`2
‖f`‖p <∞ .

Now choose {M`} tending to infinity so rapidly that the Fourier support of

e(Mjx)fj(x)

lies to the right of the Fourier support of

j−1∑

`=1

1

`2
e(M`x)f`(x)

for every j ≥ 2 (here Fourier support means those integers for which the corresponding
Fourier coefficients are non-zero). Then

‖(SN`+M`
− SM`−N`−1)f‖p =

1

`2
‖SN`

f`‖p > 2`

`2

which −→ ∞ as ` −→ ∞. On the other hand, since N` + M` −→ ∞ and
M` − N` − 1 −→ ∞ (why?), the left-hand side −→ 0 as ` −→ ∞. This contradic-
tion finishes the proof. ¤

Corollary 4. Fourier series do not converge on C(T) and L1(T), i.e., there exists
f ∈ C(T) so that ‖SNf − f‖∞ 9 0 and g ∈ L1(T) so that ‖SNg − g‖1 9 0 .
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Proof. By Lemma 3 it suffices to show that

sup
N
‖SN‖∞−→∞ =∞ and

sup
N
‖SN‖1−→1 =∞ .

(4)

Both properties follow from the fact that

‖DN‖1 ≥ C logN −→∞,
which you should check. To deduce (4) from this, notice that

‖SN‖∞−→∞ = sup
‖f‖∞=1

‖DN ∗ f‖∞
≥ sup

‖f‖∞=1

|(DN ∗ f)(0)|

= ‖DN‖1 .
Furthermore, with {KM}∞M=1 being the Fejer kernels,

‖SN‖1−→1 ≥ ‖DN ∗KM‖1 −→ ‖DN‖1
as M −→∞. ¤

Exercise 4. Show that ‖SN‖∞−→∞ = ‖SN‖1−→1 = ‖DN‖1.

Much finer statements about failure of point-wise convergence of Fourier series are
known, see Katznelson. We shall see below that for 1 < p <∞

sup
N
‖SN‖p−→p <∞

so that
SNf −→ f in Lp(T) .

The case p = 2 is clear, see Corollary 1, but p 6= 2 is a deep result. We will develop the
theory of the conjugate function to obtain it.

Before doing so, we digress a little to present two basic results due to Bernstein. Both
introduce important ideas.

Lemma 4. Let f be a trigonometric polynomial with f̂(k) = 0 if |k| > n. Then

‖f ′‖p ≤ Cn‖f‖p
for any 1 ≤ p ≤ ∞. The constant C is absolute.

Proof. Let Vn(x) = (1 + e(nx) + e(−nx))Kn(x) be de la Vallée Poussin’s kernel. In
problem 14 in the appendix you are asked to check that

V̂n(j) = 1 if |j| ≤ n

and
‖V ′

n‖1 ≤ Cn .

Then f = Vn ∗ f and thus f ′ = V ′
n ∗ f so that by Young’s inequality

‖f ′‖p ≤ ‖V ′
n‖1‖f‖p ≤ Cn‖f‖p
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as claimed. ¤
Remark. It is known that one can take C = 1 here.

The next lemma, also due to Bernstein, addresses the question when

∞∑
n=−∞

|f̂(n)| <∞ . (5)

Applying Cauchy-Schwarz yields

∑

n6=0

|f̂(n)| ≤
(∑

n 6=0

|f̂(n)|2|n|1+ε

) 1
2
(∑

n 6=0

|n|−1−ε

) 1
2

so that ∞∑
n=−∞

|f̂(n)|2|n|1+ε <∞ (6)

is a sufficient condition for (5) to hold. It turns out that it is a better idea to apply
Cauchy-Schwarz only on dyadic blocks. This yields

Theorem 2. For any f ∈ Cα(T) with α > 1
2

one has
∑

n∈Z
|f̂(n)| <∞

Proof. Let [f ]α ≤ 1. We claim that for every j ≥ 0,

 ∑

2j≤|n|<2j+1

|f̂(n)|2



1
2

≤ C2−jα . (7)

If (7) is true, then

∑

n 6=0

|f̂(n)| ≤ C

∞∑
j=0


 ∑

2j≤|n|<2j+1

|f̂(n)|2



1
2

2j/2

≤ C

∞∑
j=0

2−j(α− 1
2
) <∞ .

To prove (7) we choose a kernel ϕj so that

ϕ̂j(n) = 1 if 2j ≤ |n| ≤ 2j+1

and
ϕ̂j(n) = 0 if |n| ¿ 2j or |n| À 2j+1

(here ¿ and À mean “much smaller” and “much bigger”, respectively). The point is of
course that then ∑

2j≤|n|<2j+1

|f̂(n)|2 ≤ ‖ϕj ∗ f‖22 (8)
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so that it remains to bound the right hand side. There are various ways to construct ϕj.
We use de la Vallée Poussin’s kernel for this purpose. Set

ϕj(x) = V2j−1(x) · (e((3 · 2j−1 − 1)x) + e(−(3 · 2j−1 − 1)x))

We leave it to the reader to check that

ϕ̂j(n) = 1 for 2j ≤ |n| ≤ 2j+1

and that ϕ̂j(0) =, 0 which is the same as
∫ 1

0

ϕj(x) dx = 0 .

Moreover, since ϕj is constructed from Fejer kernels one easily checks that

|ϕj(x)| ≤ C
1

2j
min

(
22j ,

1

|x|2
)
.

Therefore,

|(ϕj ∗ f)(x)| = |
∫

T
ϕj(y)(f(x− y)− f(x)) dy|

≤
∫

T
|ϕj(y)||f(x− y)− f(x)| dy

≤ C

∫ 1

0

|ϕj(y)||y|α dy

≤ C2−j

∫

|y|>2−j

|y|α−2 dy + C2j

∫

|y|≤2−j

|y|α dy

≤ C2−αj .

The theorem now follows from this bound by means of (7) and (8). ¤
Remark. For a proof that avoids using the kernels {ϕj}, see Katznelson. See the

same reference for the fact that the theorem fails for α = 1
2
.

Exercise 5. Show that under the conditions of Theorem 2 the previous proof implies
that (6) holds for some ε > 0. Also show that for any α < 1

2
there exists f ∈ Cα(T) so

that
∑

n∈Z |n||f̂(n)|2 =∞.
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CHAPTER 2

Harmonic Functions on the Disk and Poisson Kernel

There is a close connection between Fourier series and analytic (harmonic) functions
on the disc D := {z ∈ C||z| ≤ 1}. In fact, a Fourier series can be viewed as the “boundary
values” of a Laurent series

∞∑
n=−∞

anz
n .

Alternatively, suppose we are given a function f on T and wish to find the harmonic
extension u of f into D, i.e.,

4u = 0 and u = f on ∂D = T .

Since 4zn = 0 and 4z̄n = 0 for every integer n ≥ 0, we are lead to defining

u(z) =
∞∑

n=0

f̂(n)zn + sum−1
n=−∞f̂(n)z̄|n| (9)

which at least formally satisfies u(e(θ)) =
∑∞

n=−∞ f̂(n)e(nθ) = f(θ). Inserting z = re(θ)

and f̂(n) =
∫ 1

0
e(−nϕ)f(ϕ) dϕ into (9) yields

u(re(θ)) =

∫

T

∑

n∈Z
r|n|e(n(θ − ϕ))f(ϕ) dϕ

Exercise 6. Check that, for 0 ≤ r < 1,

Pr(θ) :=
∑

n∈Z
r|n|e(nθ) =

1− r2

1− 2r cos(2πθ) + r2
.

This is the Poisson kernel. Based on our (formal) calculation above, we therefore expect
to obtain the harmonic extension of a “nice enough” function f on T by means of

u(re(θ)) =

∫ 1

0

Pr(θ − ϕ)f(ϕ) dy = (Pr ∗ f)(θ) .

for 0 ≤ r < 1.

Note that Pr(θ), for 0 ≤ r < 1, is a harmonic function of the variables x+iy = re(θ).
Moreover, for any finite measure µ ∈ M(T) the expression (Pr ∗ µ)(θ) is not only well-
defined, but defines a harmonic function on D.

Exercise 7. Check that {Pr}0<r<1 is an approximate identity. The role of N ∈ Z+

in Definition 1 is played here by 0 < r < 1 and N −→∞ is replaced with r −→ 1.
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An important role is played by the kernel Qr(θ) which is the harmonic conjugate of
Pr(θ). Recall that this means that Pr(θ) + iQr(θ) is analytic in z = re(θ) and Q0 = 0.
In this case it is easy to find Qr(θ) since

Pr(θ) = <
(

1 + z

1− z
)

and therefore

Qr(θ) = =
(

1 + z

1− z
)

=
2r sin(2πθ)

1− 2r cos(2πθ) + r2
.

Exercise 8.

a) Show that {Qr}0<r<1 is not an approximate identity.
b) Check that Q1(θ) = cot(πθ). Draw the graph of Q1(θ). What is the asymptotic

behavior of Q1(θ) for θ close to zero?

We will study conjugate harmonic functions later. First, we clarify in what sense the
harmonic extension Pr ∗ f of f attains f as its boundary values.

Definition 2. For any 1 ≤ p ≤ ∞ define

hp(D) :=
{
u : D −→ C harmonic | sup

0<r<1

∫ 1

0

|u(re(θ))|pdθ <∞
}
.

These are the “little” Hardy spaces with norm

|||u|||p := sup
0<r<1

‖u(re(·))‖Lp(T) .

It is important to observe that Pr(θ) ∈ h1(D). Observe that this function has “bound-
ary values” δ0 (the Dirac mass at θ = 0) since Pr = Pr ∗ δ0.

Theorem 3. There is a one-to-one correspondence between h1(D) andM(T), given
by µ ∈M(T) 7−→ Fr(θ) := (Pr ∗ µ)(θ). Furthermore,

‖µ‖ = sup
0<r<1

‖Fr‖1 = lim
r−→1

‖Fr‖1 , (10)

and

a) µ is absolutely continuous with respect to Lebesgue measure (µ¿ dθ) if and only
if {Fr} converges in L1(T). If so, then dµ = f dθ where f = L1-limit of Fr.

b) The following are equivalent for 1 < p ≤ ∞: dµ = fdθ with f ∈ Lp(T)

⇐⇒ {Fr}0<r<1 is Lp- bounded

⇐⇒ {Fr} converges in Lp if 1 < p <∞ and in σ∗ sense in L∞ if

p =∞ as r −→ 1

c) f is continuous ⇔ F extends to a continuous function on D ⇔ Fr converges
uniformly as r −→ 1−.
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This theorem identifies h1(D) with M(T), and hp(D) with Lp(T) for 1 < p ≤ ∞.
Moreover, h∞(D) contains the subclass of harmonic function that can be extended con-
tinuously onto D; this subclass is the same as C(T). Before proving the theorem we
present two simple lemmas. In what follows we use the notation Fr(θ) := F

(
re(θ)

)
.

Lemma 5.

a) If F ∈ C(D) and 4F = 0 in D, then Fr = Pr ∗ F1 for any 0 ≤ r < 1.
b) If 4F = 0 in D, then Frs = Pr ∗ Fs for any 0 ≤ r, s < 1.
c) As a function of r ∈ (0, 1) the norms ‖Fr‖p are non-decreasing for any 1 ≤ p ≤
∞.

Proof.

a) Let u(re(θ)) := (Pr ∗ F1)(θ) for any 0 ≤ r < 1, θ. Then 4u = 0 in D. By
Lemma 2 a) and Exercise 7, ‖ur − F1‖∞ −→ 0 as r −→ 1. Hence, u extends
to a continuous function on D with the same boundary values as F . By the
maximum principle, u = F as claimed.

b) Rescaling the disc sD to D reduces b) to a).
c) By b) and Young’s inequality

‖Frs‖p ≤ ‖Pr‖1‖Fs‖p = ‖Fs‖p
as claimed.

¤
Lemma 6. Let F ∈ h1(D). Then there exists a unique measure µ ∈ M(T) such that

Fr = Pr ∗ µ.

Proof. Since the unit ball ofM(T) is σ∗-compact there exists a subsequence rj −→
1 with Frj

−→ µ in σ∗-sense to some µ ∈M(T). Then, for any 0 < r < 1,

Pr ∗ µ = lim
j→∞

(Frj
∗ Pr) = lim

j−→∞
Frrj

= Fr

by Lemma 5, b). Let f ∈ C(T). Then 〈Fr, f〉 = 〈Pr ∗ µ, f〉 = 〈µ, Pr ∗ f〉 −→ 〈µ, f〉 as
r → 1 (where we again use Lemma 2 a). This shows that

µ = σ∗ − lim
r→1

Fr , (11)

which implies uniqueness of µ. ¤

Proof. If µ ∈ M(T), then Pr ∗ µ ∈ h1(D). Conversely, given F ∈ h1(D) then by
Lemma 6 there is a unique µ so that Fr = Pr ∗ µ. This gives the one-to-one correspon-
dence. Moreover, (11) and Lemma 5 c) show that

‖µ‖ ≤ lim sup
r→1

‖Fr‖1 = sup
0<r<1

‖Fr‖1 = lim
r→1
‖Fr‖1 .

Since clearly also
sup

0<r<1
‖Fr‖1 ≤ sup

0<r<1
‖Pr‖1‖µ‖ = ‖µ‖ ,
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(10) follows. If f ∈ L1(T) and dµ = fdθ, then Lemma 2 b) shows that Fr → f in
L1(T). Conversely, if Fr → f in the sense of L1(T), then because of (11) necessarily
dµ = fdθ which proves a), b), and c) are equally easy and we skip the details—simply
invoke Lemma 2 b) for 1 < p <∞ and Lemma22 a) if p =∞. ¤

Next, we turn to the issue of almost everywhere convergence of Pr ∗ f to f as r → 1.
This is an instance of the general fact that radially bounded approximate identities are
dominated by the Hardy-Littlewood maximal function Mf , see below. Recall that (with
|I| = mes (I) =Lebesgue measure of I)

Mf(x) = sup
x∈I⊂T

1

|I|
∫

I

|f(y)| dy

where I ⊂ T is an (open) interval. The basic fact here is

Proposition 1.

a) M is bounded from L1 to weak L1, i.e.,

mes[x ∈ T|Mf(x) > λ] ≤ 3

λ
‖f‖1

for all λ > 0.
b) For any 1 < p ≤ ∞, M is bounded on Lp.

Proof. Fix some λ > 0 and any compact

K ⊂ {x|Mf(x) > λ} . (12)

There exists a finite cover {Ij}Nj=1 of T by open arcs Ij such that
∫

Ij

|f(y)| dy > λ|Ij| (13)

for each j. We now apply Wiener’s covering lemma to pass to a more convenient sub-
cover: Select an arc of maximal length from {Ij}; call it J1. Observe that any Ij such
that Ij ∩ J1 6= ∅ satisfies Ij ⊂ 3 · J1 where 3 · J1 is the arc with the same center as J1

and three times the length (if 3 · J1 has length larger than 1, then set 3 · J1 = T). Now
remove all arcs from {Ij}Nj=1 that intersect J1. Let J2 be one of the remaining ones with

maximal length. Continuing in this fashion we obtain arcs {J`}L`=1 which are pair-wise
disjoint and so that

N⋃
j=1

Ij ⊂
L⋃

`=1

3 · J` .

In view of (12) and (13) therefore,

mes(K) ≤ mes

(
L⋃

`=1

3 · J`

)
≤ 3

L∑

`=1

mes(J`)

≤ 3

λ

L∑

`=1

∫

J`

|f(y)| dy ≤ 3

λ
‖f‖1 ,

as claimed.
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To prove part b), one interpolates the bound from a) with the trivial L∞ bound

‖Mf‖∞ ≤ ‖f‖∞ .

by means of Marcinkiewicz’s interpolation theorem, see Stein-Weiss, Stein 1. ¤

Definition 3. Let {Φn}∞n=1 be an approximate identity as in Definition 1. We say
that it is radially bounded if there exist functions {Ψn}∞n=1 on T so that the following
additional property holds:

A4) |Φn| ≤ Ψn, Ψn is even and decreasing, i.e., Ψn(x) ≤ Ψn(y) for 0 ≤ y ≤ x ≤ 1
2
,

for all n ≥ 1. Finally, we require that supn ‖Ψn‖1 <∞.

Examples: Fejer-, Poisson-kernels, and the box kernels (with ε→ 0 instead of n→∞)

{
1

2ε
χ[−ε,ε]

}

0<ε< 1
2

.

Lemma 7. If {Φn}∞n=1 satisfies A4), then for any f ∈ L1(T) one has

sup
n
|(Φn ∗ f)(x)| ≤ sup

n
‖Ψn‖1Mf(x)

for all x ∈ T.

Proof. It clearly suffices to show the following statement: letK : [−1
2
, 1

2
]→ R+∪{0}

be even and decreasing. Then for any f ∈ L1(T)

|(K ∗ f)(x)| ≤ ‖K‖1Mf(x) . (14)

Indeed, assume that (14) holds. Then

sup
n
|(Φn ∗ f)(x)| ≤ sup

n
(Ψn ∗ |f |)(x) ≤ sup

n
‖Ψn‖1Mf(x)

and the lemma follows. The idea behind (14) is to show that K can be written as an
average of box kernels, i.e., for some positive measure µ

K(x) =

∫ 1
2

0

χ[−y,y](x) dµ(y) . (15)

We leave it to the reader to check that

dµ = −dK +K

(
1

2

)
δ 1

2

is a suitable choice. Notice that (15) implies that

∫ 1

0

K(x) dx =

∫ 1
2

0

2y dµ(y) .

15



Moreover, by (15),

|(K ∗ f)(x)| = |
∫ 1

2

0

(
1

2y
χ[−y,y] ∗ f

)
(x) 2y dµ(y)|

≤
∫ 1

2

0

Mf(x)2y dµ(y)

= Mf(x)‖K‖1
which is (14). ¤

This lemma establishes the uniform control that is needed for almost everywhere
convergence.

Theorem 4. If {Φn}∞n=1 satisfies A1)–A4), then for any f ∈ L1(T) one has Φn∗f −→
f almost everywhere as n −→∞.

Proof. Pick ε > 0 and let g ∈ C(T) with ‖f − g‖1 < ε. By Lemma 2 a), with
h = f − g one has

mes

[
x ∈ T| lim sup

n−→∞
| (Φn ∗ f) (x)− f(x)| > √ε

]

≤mes

[
x ∈ T| lim sup

n→∞
| (Φn ∗ h) (x)| > √ε/2

]
+ mes

[
x ∈ T|h(x)| > √ε/2]

≤mes

[
x ∈ T| sup

n
| (Φn ∗ h) (x)| > √ε/2

]
+ mes

[
x ∈ T||h(x)| > √ε/2]

≤mes
[
x ∈ T|CMh(x) >

√
ε/2

]
+ mes

[
x ∈ T||h(x)| > √ε/2]

≤C√ε .
To pass to the final inequality we used Proposition 1 as well as Markov’s inequality
(recall ‖h‖1 < ε). ¤

As a corollary we not only obtain the classical Lebesgue differentiation theorem, but
also almost everywhere convergence of the Cesaro means σNf , as well as of the Poisson
integrals Pr ∗ f to f for any f ∈ L1(T). It is a famous theorem of Kolmogoroff that this
fails for the partial sums SNf .

Exercise 9. It is natural to ask whether there is an analogue of Theorem 4 for
measures µ ∈M(T). Prove the following:

a) If µ ∈M(T) is singular with respect to Lebesgue measure (µ⊥dθ), then for a.e.
x ∈ T (with respect to Lebesgue measure)

µ([x− ε, x+ ε])

2ε
−→ 0 as ε −→ 0

you should compare this with problems 6 and 9 from the appendix.
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b) Let {Φn}∞n=1 satisfy A1)–A4), and assume that the {Ψn}∞n=1 from Definition 2
also satisfy

sup
δ<|θ|< 1

2

|Ψn(θ)| −→ 0 as n −→∞

for all δ > 0. Under these assumptions show that for any µ ∈M(T)

Φn ∗ µ −→ f a.e. as n −→∞
where dµ = fdθ+dνs is the Lebesgue decomposition, i.e., f ∈ L1(T) and νs⊥dθ.
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CHAPTER 3

L1 bounded analytic functions and the F. & M. Riesz theorem

We now turn to functions F = u + iv ∈ h1(D) which are analytic in D (note that
analytic functions are complex valued harmonic functions). These functions form the
class H1(D), the “big” Hardy space. We have shown that Fr = Pr∗µ for some µ ∈M(T).
It is important to note that by analyticity µ̂(n) = 0 if n < 0. A famous result by F. &
M. Riesz asserts that such measures are necessarily absolutely continuous. We shall
prove this theorem by means of subharmonic functions.

Definition 4. Let Ω ⊂ R2 be a region (i.e., open and connected) and let f : Ω −→
R ∪ {−∞}. We say that f is subharmonic if

a) f is continuous
b) for all z ∈ Ω there exists rz > 0 so that

f(z) =

∫ 1

0

f
(
z + re(θ)

)
dθ

for all 0 < r < rz (we refer to this as the “submean value property”).

Lemma 8.

a) If f and g are subharmonic, then f ∨ g = max(f, g) is subharmonic.
b) If f ∈ C2(Ω) then f is subharmonic ⇐⇒4f ≥ 0 in Ω
c) F analytic =⇒ log |F | and |F |α with α > 0 are subharmonic
d) If f is subharmonic and ϕ is increasing and convex, then ϕ ◦ f is subharmonic

(we set ϕ(−∞) := limx→−∞ ϕ(x).

Proof. 1) is immediate. For 2) use Jensen’s formula

∫ 1

0

f(z + re(θ)) dθ − f(z) =

∫∫

D(z,r)

log
r

|w − z|4f(w) dm(w) (16)

where dm stands for two-dimensional Lebesgue measure and D(z, r) =
{w ∈ C||w − z| < r}. As an exercise, you should verify this formula (from Green’s
formula) for all f ∈ C2(Ω). If 4f ≥ 0, then the submean value property holds. If
4f(z0) < 0, then let r0 > 0 be sufficiently small so that 4f < 0 on D(z0, r0) Since
log r0

|w−z0| > 0 on this disk, Jensen’s formula implies that the submean value property

fails. Next, we verify 4) by means of Jensen’s inequality:

ϕ(f(z)) ≤ ϕ

(∫ 1

0

f(z + re(θ)) dθ

)
≤

∫ 1

0

ϕ(f(z + re(θ)) dθ .
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The first inequality sign uses that ϕ is increasing, whereas the second uses convexity
of ϕ (this second inequality is called Jensen’s inequality). If F is analytic, then log |F |
is continuous with values in R ∪ {−∞}. If F (z0) 6= 0, then log |F (z)| is harmonic on
some disk D(z0, r0). Thus, one has the stronger mean value property on this disk. If
F (z0) = 0, then log |F (z0)| = −∞, and there is nothing to prove. To see that |F |α is
subharmonic, apply 4) to log |F (z)| with ϕ(x) = exp(αx). ¤

Remark. It is helpful to keep in mind that in one dimension “harmonic = linear”
and “subharmonic = convex”.

Exercise 10. Let u be subharmonic on a domain Ω. Show that there exist a unique
measure µ on Ω such that µ(K) <∞ for every K ⊂⊂ Ω (i.e., K is a compact subset of
Ω) and so that

u(z) =

∫∫
log |z − ζ| dµ(ζ) + h(z)

where h is harmonic on Ω. (This is “Riesz’s representation of subharmonic functions”).

Exercise 11. With u and µ as in the previous exercise, show that
∫ 1

0

u(z + re(θ)) dθ − u(z) =

∫ r

0

µ(D(z, t))

t
dt

for all D(z, r) ⊂ Ω (this is “Jensen’s formula”).

Lemma 9. Let Ω be a bounded region. Suppose f is subharmonic on Ω, f ∈ C(Ω̄)
and let u be harmonic on Ω, u ∈ C(Ω̄). If f ≤ u on ∂Ω, then f ≤ u on Ω.

Proof. We may take u = 0, so f ≤ 0 on ∂Ω. Let M = maxΩ̄ f and assume that
M > 0. Set

S = {z ∈ Ω̄|f(z) = M} .
Then S ⊂ Ω and S is closed in Ω. If z ∈ S, then by the submean value property there
exists rz > 0 so that D(z, rz) ⊂ Ω. Hence S is also open. Since Ω is assumed to be
connected, one obtains S = Ω. This is a contradiction. ¤

The following lemma shows that the submean value property holds on any disk in Ω.

Lemma 10. Let f be subharmonic in Ω, z0 ∈ Ω, D(z0, r) ⊂ Ω. Then

f(z0) ≤
∫ 1

0

f(z0 + re(θ)) dθ .

Proof. Let gn = max(f,−n), where n ≥ 1. Without loss of generality z0 = 0.
Define un(z) to be the harmonic extension of gn restricted to ∂D(z0, r) where r > 0 is as
in the statement of the lemma. By the previous lemma,

f(0) ≤ gn(0) ≤ un(0) =

∫ 1

0

un(re(θ)) dθ

the last equality being the mean value property of harmonic functions. Since

max
|z|≤r

un(z) ≤ max
|z|≤r

f(z)
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the monotone convergence theorem for decreasing sequences yields

f(0) ≤
∫ 1

0

f(re(θ)) dθ ,

as claimed. ¤
Corollary 5. If g is subharmonic on D, then for all θ

g(rse(θ)) ≤ (Pr ∗ gs)(θ)

for any 0 < r, s < 1.

Proof. If g > −∞ everywhere on D, then this follows from Lemma 9. If not, then
set gn = g ∨ n. Thus

g(rse(θ)) ≤ gn(rse(θ)) ≤ (Pr ∗ (gn)s)(θ) ,

and consequently

g(rse(θ)) ≤ lim sup
n−→∞

(Pr ∗ (gn)s)(θ) ≤ (Pr ∗ gs)(θ)

where the final inequality follows from Fatou’s lemma (which can be applied in the
“reverse form” here since the (gn)’s have a uniform upper bound). ¤

Remark. If gs /∈ L1(T), then g ≡ −∞ on D(0, s) and so g ≡ −∞ on D(0, 1).

Definition 5. Let F be any function on D then F ∗ : T −→ R is defined as

F ∗(θ) = sup
0<r<1

F (re(θ)) .

We showed in the previous lecture that any u ∈ h1(D) satisfies u∗ ≤ CMµ where µ is
the boundary measure of u, i.e., ur = Pr ∗ µ.

Proposition 2. Suppose g is subharmonic on D, g ≥ 0 and g is L1-bounded, i.e.,

|||g|||1 := sup
0<r<1

∫ 1

0

, g(re(θ)) dθ <∞ .

Then

a) mes[θ ∈ T|g∗(θ) > λ] ≤ 3
λ
|||g|||1 for ∀λ > 0.

b) If g is Lp bounded, with 1 < p ≤ ∞, then

‖g∗‖Lp(T) ≤ Cp|||g|||p .

Proof.

a) Let grn ⇀ µ ∈M(T) in the σ∗-sense. Then ‖µ‖ ≤ |||g|||1 and

gs ←− grns ≤ grn ∗ Ps −→ Ps ∗ µ .
Thus, by Lemma 7,

g∗ ≤ sup
0<s<1

Ps ∗ µ ≤Mµ ,

and the desired bound now follows from Proposition 1.
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b) If |||g|||p <∞, then dµ
dθ
∈ Lp(T) with ‖dµ

dθ
‖p ≤ |||g‖||p and thus

g∗ ≤ CM

(
dµ

dθ

)
∈ Lp(T)

by Proposition 1, as claimed.

¤

We now present three versions of a well-known theorem due to F. & M. Riesz. You
should pay careful attention to the fact that the following result fails without analyticity.

Theorem 5 (First Version of F. & M. Riesz Theorem). Suppose F ∈ h1(D) is
analytic. Then F ∗ ∈ L1(T).

Proof. |F | 12 is subharmonic and L2-bounded. By Proposition 2 therefore |F | 12∗ ∈
L2(T). But |F | 12∗ = |F ∗| 12 and thus F ∗ ∈ L1(T). ¤

Let F ∈ h1(D). By Theorem 3, Fr = Pr ∗ µ where µ ∈ M(T) has a Lebesgue
decomposition dµ = fdθ + νs, νs singular and f ∈ L1(T). By Exercise 9 b) one has
Pr ∗ µ → f a.e. as r −→ 1. Thus, limr→1 F (re(θ)) = f(θ) exists for a.e. θ ∈ T. This
justifies the statement of the following theorem.

Theorem 5 (Second Version). Assume F ∈ h1(D) and F analytic. Let f(θ) =
limr→1 F

(
re(θ)

)
. Then Fr = Pr ∗ f for all 0 < r < 1.

Proof. We have Fr → f a.e. and |Fr| ≤ F ∗ ∈ L1 by the previous theorem. There-
fore, Fr → f in L1(T) and Theorem 3 a) finishes the proof. ¤

Theorem 5 (Third Version). Suppose µ ∈M(T), µ̂(n) = 0 if n < 0. Then µ¿ dθ.

Proof. Since µ̂(n) = 0 for n ∈ Z− one has that Fr = Pr ∗µ is analytic on D. By the
second version above and the remark preceding it, one concludes that dµ = f dθ with
f = limr→1− F

(
re(θ)

) ∈ L1(T), as claimed. ¤

Remark. The logic of this argument shows that if µ⊥dθ, then the harmonic extension
uµ of µ satisfies u∗µ /∈ L1(T). It is possible to give a more quantitative version of this
fact. Indeed, suppose that µ is a positive measure. Then for some absolute constant C,

C−1Mµ < u∗µ < CMµ (17)

where the upper bound is Lemma 7 (applied to the Poisson kernel) and the lower bound
follows from the assumption µ ≥ 0 and the fact that the Poisson kernel dominates the box
kernel. Problem 9 from the appendix therefore implies the quantitative non-L1 statement

mes[θ ∈ T|u∗µ(θ) ≥ λ] ≥ C

λ
‖µ‖

for µ⊥dθ, µ ≥ 0.
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The F. & M. Riesz theorem raises the following deep question: Given f ∈ L1(T), how
can one decide if

Pr ∗ f + iQr ∗ f ∈ h1(D) ?

We know that necessarily u∗f = (Pr ∗ f)∗ ∈ L1(T). A famous theorem by Burkholder-
Gundy-Silverstein, see Koosis, states that this is also sufficient (they proved this for the
non-tangential maximal function). It is important that you understand the difference
from (17), i.e., this is not the same asMf ∈ L1(T) due to possible cancellation in f (it
is known that Mf ∈ L1(T)⇐⇒ |f | log(2 + |f |) ∈ L1, see Stein 1, page 23).

Theorem 6 (Second F. & M. Riesz Theorem). Let F be analytic on D and L1-
bounded, i.e., F ∈ h1(D). Assume F 6≡ 0 and set f = limr→1− Fr. Then log |f | ∈ L1(T).
In particular, f does not vanish on a set of positive measure.

Proof. The idea is that if F (0) 6= 0, then∫

T
log |f | ≥ log |F (0)| > −∞ .

Since log+ |f | ≤ |f | ∈ L1(T) by Theorem 5, we should be done. Some care needs to
be taken, though, as F attains the boundary values f only in the almost everywhere
sense. This issue can easily be handled by means of Fatou’s lemma: First, F ∗ ∈ L1(T),
so log+ |Fr| ≤ F ∗ implies that log+ |f | ∈ L1(T) by Lebesgue dominated convergence.
Second, by subharmonicity, ∫

log |Fr(θ)| dθ ≥ log |F (0)|
so that∫

log |f(θ)| dθ =

∫
lim
r→1

log |Fr(θ)| dθ ≥ lim sup
r→1

∫
log |Fr(θ)| dθ ≥ log |F (0)| .

If F (0) 6= 0, then we are done. If F (0) = 0, then choose another point z0 ∈ D for
which F (z0) 6= 0. Now one either repeats the previous argument with the Poisson kernel
instead of the submean value property, or one composes F with an automorphism of the
unit disk that moves 0 to z0. Then the previous argument applies. ¤

Theorem 6 should of course be thought of as a version of the uniqueness theorem for
analytic functions.
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CHAPTER 4

The Conjugate Harmonic Function

Definition 6. Let u be real-valued and harmonic in D. Then we define ũ to be that
unique real-valued and harmonic function in D for which u+ iũ is analytic and ũ(0) = 0.
If u is complex-valued and harmonic, then we set ũ := (<u)e+ i(=u)e.

The following lemma presents some properties of the harmonic conjugate ũ.

Lemma 11.

a) If u is constant, then ũ = 0.
b) If u is analytic in D and u(0) = 0, then ũ = −iu. If u is co-analytic (meaning

that ū is analytic), then ũ = iu.
c) Any harmonic function u can be written uniquely as u = c+f+ḡ with c =constant,
f, g analytic, and f(0) = g(0) = 0.

Proof. 1) and 2) follow immediately from the definition, whereas 3) is given by

u = u(0) +
1

2
(u− u(0) + iũ) +

1

2
(u− u(0)− iũ) .

Uniqueness of c, f, g is also clear. ¤
Lemma 12. Suppose u is harmonic on D. Then for all n ∈ Z, n 6= 0,

(̂ũr)(n) = −isign(n)ûr(n) . (18)

Proof. By Lemma 11 part 3) it suffices to consider u = constant, analytic, co-

analytic. We present the case u = analytic, u(0) = 0. Then ũ = −iu so that (̂ũr)(n) =
−iûr(n) for all u ∈ Z. But ûr(n) = 0 for u ≤ 0 and thus (18) holds in this case. ¤

Corollary 6. Let u ∈ h2(D) be real. Then ũ ∈ h2(D). In fact,

‖ũr‖22 = ‖ur‖22 − |u(0)|2 .

Proof. By Cauchy’s theorem,
∫ 1

0

(ur + iũr)
2(θ)dθ = (u+ iũ)2(0) = u2(0) .

Since the right-hand side is real, the left-hand side is also necessarily real and thus

u2(0) =

∫ 1

0

u2
r(θ) dθ −

∫ 1

0

ũ2
r(θ) dθ ,

as claimed. ¤
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Corollary 7. If u ∈ h2(D), then limr→1 ũ(re(θ)) exists for a.e. θ ∈ T.

Proof. Combine Corollary 7 with Theorems 3 and 4. ¤

Now we consider the case of h1(D). The following theorem is a famous result due
to Besicovitch and Kolmogoroff around 1920. The proof presented here is a well-known
argument involving harmonic measure.

Theorem 7. Let u ∈ h1(D). Then

mes[θ ∈ T||ũ∗(θ)| > λ] ≤ C

λ
|||u|||1

with some absolute constant C (we get C = 48
√

2
π

).

Proof. By Theorem 3, ur = Pr ∗ µ. Splitting µ into real and imaginary parts, and
then each piece into its positive and negative parts, we reduce ourselves to the case u ≥ 0.
Let Eλ = {θ|ũ∗(θ) > λ} and set F = −ũ + iu. Then F is analytic and F (0) = iu(0).
Define a function

ωλ(x, y) =
1

π

∫

(−∞,−λ)∪(λ,∞)

y

(x− t)2 + y2
dt ,

which is harmonic for y > 0 and non negative. The following two properties of ωλ will
be important:

a) ωλ(x, y) ≥ 1
2

if |x| > λ

b) ωλ(0, y) ≤ 2y
πλ

.

For the first property compute

ωλ(x, y) = 1− 1

π

∫ λ

−λ

y

(x− t)2 + y2
dt = 1− 1

π

∫ λ/y

−λ/y

dt

1 + (x
y
− t)2

= 1− 1

π

(
arctan

λ+ x

y
− arctan

x− λ
y

)
≥ 1

2

provided (x, y) lies outside the semi-circle with radius λ and center 0. For the second
property compute

ωλ(0, y) =
1

π

∫

(−∞,−λ)∪(λ,∞)

y

t2 + y2
dt ≤ 2

π

∫ ∞

λ/y

dt

1 + t2
≤ 2y

πλ
,

as claimed.

Observe that ωλ ◦ F is harmonic and that θ ∈ Eλ implies (ωλ ◦ F )
(
re(θ)

) ≥ 1
2

for
some 0 < r < 1. Thus

|Eλ| ≤ mes

[
θ|(ωλ ◦ F )∗(θ) ≥ 1

2

]
≤ 3

1/2
|||ωλ ◦ F |||1 , (19)

by Proposition 2. Since ωλ ◦ F ≥ 0, the mean value property implies that

|||ωλ ◦ F |||1 = (ωλ ◦ F )(0) = ωλ(iu(0)) ≤ 2

π

u(0)

λ
=

2

π

|||u|||1
λ

.
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Combining this with (19) yields

|Eλ| ≤ 12

π

|||u|||1
λ

,

as claimed. ¤

The following result introduces the Hilbert transform and establishes a weak-L1 bound
for it. Formally speaking, the Hilbert transform Hµ of µ ∈M(T) is defined by

µ 7→ uµ 7→ ũµ 7→ lim
r→1

(ũµ)r =: Hµ ,

i.e., the Hilbert transform of a function on T is the boundary values of the conjugate
function of its harmonic extension. By Corollary 7 this is well defined if dµ = fdθ,
f ∈ L2(T). We now consider the case f ∈ L1(T).

Corollary 8. Given u ∈ h1(D) the limit limr→1 ũ(re(θ)) exists for a.e. θ. With
u = Pr ∗ µ, µ ∈M(T), this limit is denoted by Hµ. There is the weak-L1 bound

mes[θ||Hµ(θ)| > λ] ≤ C

λ
‖µ‖ .

Proof. If dµ = fdθ with f ∈ L2(T) then lim
r→1

ũf (re(θ)) exists for a.e. θ by Corol-

lary 7. If f ∈ L1(T) and ε > 0, then let g ∈ L2(T) such that ‖f − g‖1 < ε. Denote, for
any δ > 0,

Eδ = {θ| lim sup
r,s→1

|ũf (re(θ))− ũf (se(θ))| > δ}

and

Fδ = {θ| lim sup
r,s→1

|ũh(re(θ))− ũh(se(θ))| > δ}

where h = f − g. In view of the preceding theorem and the L2-case,

|Eδ| = |Fδ| ≤ mes [θ|(ũh)
∗(θ) > δ/2]

≤ C

δ
|||uh|||1 ≤ C

δ
‖f − g‖1 → 0

as ε → 0. This finishes the case where µ ¿ dθ. To treat singular measures, we first
consider measures µ = ν for which |supp(ν)| = 0. Here supp(ν) := T \ ∪{I ⊂ T|ν(I) =
0}, I being an arc. Observe that for any θ /∈ supp(ν) the limit limr→1 ũr(θ) exists since the
analytic function u+ iũ can be continued across that interval J on T for which µ(J) = 0
and which contains θ. Hence limr→1 ũr exist a.e. by the assumption |supp(ν)| = 0.
If µ ∈ M(T) is an arbitrary singular measure, then use inner regularity to say that
for every ε > 0 there is ν ∈ M(T) with ‖µ − ν‖ < ε and |supp(ν)| = 0. Indeed, set
ν(A) := µ(A ∩ K) for all Borel sets A where K is compact and |µ|(T\K) < ε. The
theorem now follows by passing from the statement for ν to that for µ by means of the
same argument that was used in the absolutely continuous case above. ¤

Theorem 8 (Marcel Riesz). If 1 < p <∞, then ‖Hf‖p ≤ Cp‖f‖p. Consequently, if
u ∈ hp(D) with 1 < p <∞, then ũ ∈ hp(D) and |||ũ|||p ≤ Cp|||u|||p .
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Proof. By Corollary 6, ‖Hu‖2 ≤ ‖u‖2 (with equality if and only if
∫ 1

0
u(θ) dθ = 0).

Interpolating this with the weak-L1 bound from Corollary 8 by means of Marcinkiewicz
finishes the case 1 < p ≤ 2. If 2 < p < ∞, then we use duality. More precisely, if
f, g ∈ L2(T), then

〈f,Hg〉 =
∑

n∈Z
f̂(n)Ĥg(n) =

∑

n∈Z
isign(n)f̂(n)ĝ(n)

=
∑

n∈Z
−Ĥf(n)ĝ(n) = −〈Hf, g〉 .

This shows that H∗ = −H. Hence, if f ∈ Lp(T) ⊂ L2(T) and g ∈ L2(T) ⊂ Lp′(T), then

|〈Hf, g〉| = |〈f,Hg〉| ≤ ‖f‖p‖Hg‖p′ ≤ Cp′‖f‖p‖g‖p′ .
and thus ‖Hf‖p ≤ Cp′‖f‖p as claimed. ¤

Remark. Consider the analytic mapping F = u + iv that takes D onto the strip
{z||<z| < 1}. Then u ∈ h∞(D) but clearly v /∈ h∞(D) so that Theorem 8 has to fail on
L∞(T). By duality, it also fails on L1(T). The correct substitute for L1 in this context
is the space of real parts of functions in H1(D). This is a deep result that goes much
further than the F. & M. Riesz theorem. The statement is that

‖Hf‖1 ≤ C‖u∗f‖1 (20)

where u∗f is the non-tangential maximal function of the harmonic extension uf of f (by
the Burkholder-Gundy-Silverstein theorem the right-hand side in (20) is finite if and only
if f is the real part of an analytic L1-bounded function), see Koosis.

Next, we turn to the problem of expressing Hf in terms of a kernel. By Exercise 8,
it is clear that one would expect that

(Hµ)(θ) =

∫

T
cot(π(θ − ϕ)) dµ(ϕ) (21)

for any µ ∈M(T). This, however, requires justification as the integral on the right-hand
side is not necessarily convergent.

Proposition 3. If µ ∈M(T), then

lim
ε→0

∫

|θ−ϕ|>ε

cot(π(θ − ϕ)) dµ(ϕ) = (Hµ)(θ) (22)

for a.e. θ ∈ T. In other words, (21) holds in the principal value sense.

Proof. As an exercise you should check that the limit in (22) exists for all dµ =
f dθ + dν where f ∈ C1(T) and mes(supp(ν)) = 0 and that these measures are dense in
M(T). We will now obtain the theorem by representing a general measure as a limit of
such measures. As always, this requires a bound on an appropriate maximal function.
In this case the natural bound is of the form

mes

[
θ ∈ T

∣∣∣ sup
0<ε< 1

2

∣∣∣
∫

|θ−ϕ|>ε

cot(π(θ − ϕ)) dµ(ϕ)
∣∣∣ > λ

]
≤ C

λ
‖µ‖ (23)
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for all λ > 0. We leave it to the reader to check that (23) implies the theorem. In order to
prove (23) we invoke our strongest result on the conjugate function, namely Theorem 7.
More precisely, we claim that

sup
0<r<1

∣∣∣(Qr ∗ µ)(θ)−
∫

|θ−ϕ|>1−r

cot(π(θ − ϕ)) dµ(ϕ)
∣∣∣ ≤ CMµ(θ) , (24)

where Mµ is the Hardy-Littlewood maximal function. Since

sup
0<r<1

|(Qr ∗ µ)(θ)| = ũµ
∗(θ) ,

(23) follows from (24) by means of Theorem 7 and Proposition 1. To verify (24) write
the difference inside the absolute value signs as (Kr ∗ µ)(θ), where

Kr(θ) =

{
Qr(θ)− cot(πθ) if 1− r < |θ| < 1

2
Qr(θ) if |θ| ≤ 1− r .

By means of calculus one checks that (exercise!)

|Kr(θ)| ≤
{
C (1−r)2

|θ|3 if |θ| > 1− r
C(1− r)−1 if |θ| ≤ 1− r .

This proves that {Kr}0<r<1 form a radially bounded approximate identity and (24)
therefore follows from Lemma 7. ¤

Exercise 12. Show by means of (22) that H is not bounded on L∞(T). (Hint:
consider Hχ[0, 1

2
)).

The following proposition shows that Hf is exponentially integrable for bounded f .
In Exercise 12, you should find that Hχ[0, 1

2
] has logarithmic behavior at 0 and 1

2
. If you

find the precise asymptotics at those points it should show that the condition on α below
is sharp.

Proposition 4. Let f be a real-valued function on T with |f | ≤ 1. Then for any
0 ≤ α < π

2 ∫ 1

0

eα|Hf(θ)| dθ ≤ 2

cosα
.

Proof. Let u = uf be the harmonic extension of f to D and set F = ũ− iu. Then
|u| ≤ 1 by the maximum principle and hence cos(αu) ≥ cosα. Therefore,

<(eαF ) = < (
eαũ · e−iαu

)
= cos(αu)eαũ ≥ cos(α)eαũ (25)

By the mean value property,
∫ 1

0

<eαFr(θ) dθ = < eαF (0) = < e−iα(u(0)) = cos(αu(0)) ≤ 1 .

Combining this with (25) yields
∫ 1

0

eαũr(θ)dθ ≤ 1

cosα
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and by Fatou’s lemma therefore
∫ 1

0

eα(Hf)(θ) dθ ≤ 1

cosα
.

Since this inequality also holds for −f , the proposition follows. ¤
Remark. In the next sections we will develop the real variable theory of singular

integrals which contains the results on the Hilbert transform obtained above. The basic
theorem, due to Calderon-Zygmund states that singular integrals are bounded on Lp(Rn)
for 1 < p <∞ thus generalizing Theorem 8.

The analogue of Proposition 4 for singular integrals is given by the fact that they
are bounded from L∞ to BMO and that BMO functions are exponentially integrable
(John-Nirenberg inequality). The dual question of what happens on L1 leads into the
real variable theory of Hardy spaces. The analogue of (20) is then that singular integrals
are bounded on H1(Rn). Finally, we would like to point out that the dual space of H1

is BMO, a well-known theorem of Charles Fefferman. See Stein 2 for these deep results,
which will not be covered in these lectures.

We conclude the theory of the conjugate function by returning to the issue of Lp(T)
convergence of Fourier series. Recall from Lecture 1 that this fails for p = 1 and p =∞
but we will now deduce from Theorem 8 that it holds for 1 < p <∞.

Theorem 9. Let SN denote the partial sums of Fourier series. Then for any 1 <
p <∞ the partial sums are uniformly bounded on Lp(T), i.e.,

sup
N
‖SN‖p→p <∞ .

By Lemma 3 this implies convergence of SNf −→ f in Lp(T), 1 < p <∞.

Proof. The point is simply that SN can be written in terms of the Hilbert transform.
Indeed, recall that

Ĥf(n) = −i sign (n)f̂(n)

so that

Tf :=
1

2
(1 + iH)f =

∑
n

χ(0,∞)(n)f̂(n)e(n·) .

In other words, on the Fourier side T is multiplication by χ(0,∞) whereas SN is multi-
plication by χ[−N,N ]. It remains to write χ[−N,N ] as the difference of two shifted χ(0,∞),
i.e.,

χ[−N,N ] = χ(−N−1,∞) − χ(N,∞)

or in terms of H and T ,

(SNf)(θ) = e(−(N + 1)θ)[T (e((N + 1)·)f)](θ)− e(Nθ)[T (e(−N ·)f)](θ) .

Hence, for 1 < p <∞
‖SN‖p→p ≤ 2‖T‖p→p ≤ 1 + ‖H‖p→p

uniformly in N , as claimed. ¤
Exercise 13.
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a) Show that, for any λ > 0

sup
N

mes [θ||(SNf)(θ)‖ > λ] ≤ C

λ
‖f‖1

with some absolute constant C.
b) What would such an inequality mean with the supN inside, i.e.,

mes [θ| sup
N
|(SNf)(θ)| > λ] ≤ C

λ
‖f‖1

for all λ > 0? Can this be true?
c) Using a) show that for every f ∈ L1(T) there exists a subsequence {Nj} −→ ∞

depending on f such that

SNj
f −→ f a.e.

Remark. It is an open problem to decide whether or not one can choose {Nj} in
part c) above in such a way that the growth of Nj is uniformly controlled, say Nj ≤ 2j

for all j. It is an old and easy result for Walsh series that S2jf → f a.e. for every
f ∈ L1(T) where S2j is the 2j the partial sum of the Walsh series.

Remark (Final). The complex variable methods developed in Sections 2,3, and 4
equally well apply to the upper half plane instead of the disk. For example, the Poisson
kernel is

Pt(x) =
1

π

t

x2 + t2
with x ∈ R , t > 0

and its conjugate is

Qt(x) =
1

π

x

x2 + t2
.

Observe that Pt(x) + iQt(x) = 1
π

1
x+it

= 1
πz

with z = x + it, which should remind you of
Cauchy’s formula. The Hilbert transform is now

(Hf)(x) =
1

π

∫ ∞

−∞

f(y)

x− y dy

in the principal value sense, the precise statement being just as in Proposition 3. You
can try to transfer various basic results from above to the half plane, or consult Koosis
or Garnett.
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CHAPTER 5

Calderon-Zygmund Theory of Singular Integrals

In this section we will present the basic result on singular integrals due to Calderon
and Zygmund.

Definition 7. Let K : Rn\{0} −→ C satisfy, for some constant B,

i) |K(x)| ≤ B|x|−n

ii)
∫

r<|x|<s
K(x) dx = 0 for all 0 < r < s <∞

iii)
∫
|x|>2|y| |K(x)−K(x− y)| dx ≤ B for all y 6= 0.

Then we define the singular integral operator with kernel K to be

Tf(x) := lim
ε−→0

∫

|x−y|>ε

K(x− y)f(y) dy (26)

for all f ∈ C1
0(Rn).

Exercise 14.

a) Check that the limit (i.e., principal value) exists in (26) for all f ∈ C1
0(Rn)

(these are C1 functions with compact support).
b) Check that the Hilbert transform is a singular integral operator.

There is a simple condition that guarantees iii) (which is the so-called “Hörmander
condition”) given in the following lemma.

Lemma 13. Suppose |∇K(x)| ≤ B|x|−n−1 for all x 6= 0 and some constant B. Then

∫

|x|>2|y|
|K(x)−K(x− y)| dx ≤ CB (27)

with C = C(n).

Proof. Fix x, y ∈ Rn with |x| > 2|y|. Connect x and x − y by the line segment
x− ty, 0 ≤ t ≤ 1. This line segment lies entirely inside the ball B(x, |x|/2). Hence

|K(x)−K(x− y)| = | −
∫ 1

0

∇K(x− ty)y dt|

≤
∫ 1

0

|∇K(x− ty)||y| dt ≤ B2n+1|x|−n−1|y| .

Inserting this bound into the left-hand side of (27) yields the desired bound. ¤
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Exercise 15. Check that, for any fixed 0 < α ≤ 1, and all x 6= 0,

sup
|y|< |x|

2

|K(x)−K(x− y)|
|y|α ≤ B|x|−n−α

also implies (27).

The cancellation condition ii) implies L2-boundedness of T , as shown in the following
proposition.

Proposition 5. Let K be as in Definition 7. Then ‖T‖2→2 ≤ CB with C = C(n).

Proof. Fix 0 < r < s <∞ and consider

(Tr,sf)(x) =

∫

Rn

K(y)χ[r<|y|<s](y)f(x− y) dy .

let

mr,s(ξ) :=

∫

Rn

e−2πix·ξχ[r<|x|<s]K(x) dx

be the Fourier transform of the restricted kernel. By Plancherel’s theorem it suffices to
prove that

sup
0<r<s

‖mr,s‖∞ ≤ CB . (28)

Indeed, if (28) holds, then

‖Tr,s‖2−→2 = ‖mr,s‖∞ ≤ CB

uniformly in r, s. Moreover, for any f ∈ C1
0(Rn) one has

Tf(x) = lim
r→0
s→∞

(Tr,sf)(x)

pointwise in x ∈ Rn. Fatou’s lemma therefore implies that ‖Tf‖2 ≤ CB‖f‖2 for any
f ∈ C1

0(Rn). To verify (28) we split the integration in the Fourier transform into the
regions |x| < |ξ|−1 and |x| ≥ |ξ|−1. In the former case∣∣∣∣

∫

r<|x|<|ξ|−1

e−2πix·ξK(x) dx

∣∣∣∣ =

∣∣∣∣
∫

r<|x|<|ξ|−1

(e−2πix·ξ − 1)K(x) dx

∣∣∣∣

≤
∫

|x|<|ξ|−1

2π|x||ξ||K(x)| dx ≤

≤ 2π|ξ|
∫

|x|<|ξ|−1

B|x|−n+1 dx ≤ CB|ξ||ξ|−1 ≤ CB ,

as desired. Notice that we used the cancellation condition ii) in the first equality sign. To
deal with the case |x| > |ξ|−1 one uses the cancellation in e−2πix·ξ which in turn requires
smoothness of K, i.e., condition iii) (but compare Lemma 13). Firstly, observe that∫

s>|x|>|ξ|−1

K(x)e−2πix·ξ dx = −
∫

s>|x|>|ξ|−1

K(x)e
−2πi

ş
x+ ξ

2|ξ|2
ť
·ξ
dx (29)

= −
∫

s>|x− ξ

2|ξ|2 |>|ξ|−1

K(x− ξ

2|ξ|2 ) e−2πix·ξ dx (30)
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Denoting the expression on the left-hand side of (29) by F one thus has

2F =

∫

s>|x|>|ξ|−1

(
K(x)−K(x− ξ

2|ξ|2 )
)
e−2πix·ξ dx+ 0(1) (31)

The 0(1) term here stands for a term bounded by CB. Its origin is of course the difference
between the regions of integration in (29) and (30). We leave it to the reader to check
that condition i) implies that this error term is really no larger than CB. Estimating the
integral in (31) by means of iii) now yields

|2F | ≤
∫

|x|>|ξ|−1

∣∣∣∣K(x)−K
(
x− ξ

2|ξ|2
)∣∣∣∣ dx+ CB ≤ CB ,

as claimed. We have shown (28) and the Proposition follows. ¤

Our next goal is to show that singular integrals are bounded on weak-L1. This re-
quires the following basic decomposition lemma due to Calderon-Zygmund for L1 func-
tions. The proof uses a stopping time argument.

Lemma 14. Let f ∈ L1(Rn) and λ > 0. Then one can write f = g + b where |g| ≤ λ
and b =

∑
Q χQf where the sum runs over a collection B = {Q} of disjoint cubes such

that for each Q one has

λ <
1

|Q|
∫

Q

|f | ≤ 2nλ . (32)

Furthermore,

mes

( ⋃
Q∈B

Q

)
<

1

λ
‖f‖1 . (33)

Proof. For each ` ∈ Z we define a collection D` of dyadic cubes by means of

D` =
{

Πn
i=1[2

`mi, 2
`(mi + 1))

∣∣∣m1 . . . ,mn ∈ Z
}
.

Notice that if Q ∈ D` and Q′ ∈ D′`, then either Q ∩ Q′ = ∅ or Q ⊂ Q′ or Q′ ⊂ Q. Now
pick `0 so large that

1

|Q|
∫

Q

|f | dx ≤ λ

for every Q ∈ D`0 . For each such cube consider its 2n “children” of size 2`0−1. Any such
cube Q′ will then have the property that either

1

|Q′|
∫

Q′
|f | dx ≤ λ or

1

|Q′|
∫

Q′
|f | dx > λ . (34)

In the latter case we stop, and include Q′ in the family B of “bad cubes”. Observe that
in this case

1

|Q′|
∫

Q′
|f | ≤ 2n

|Q|
∫

Q

|f | ≤ 2nλ

where Q denotes the parent of Q′. Thus (32) holds. If, however, the first inequality in
(34) holds, then subdivide Q′ again into its children of half the size. Continuing in this
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fashion produces a collection of disjoint (dyadic) cubes B satisfying (32). Consequently,
(33) also holds, since

mes

(⋃
B
Q

)
≤

∑
B

mes(Q) <
∑
B

1

λ

∫

Q

|f | ≤ 1

λ

∫

Rn

|f | .

Now let x0 ∈ Rn\⋃
BQ. Then x0 is contained in a decreasing sequence {Qj} of dyadic

cubes each of which satisfies
1

|Qj|
∫

Qj

|f | dx ≤ λ .

By Lebesgue’s theorem |f(x0)| ≤ λ for a.e. such x0. Since moreover Rn\ ∪B Q and
Rn\ ∪B Q differ only by a set of measure zero, we can set

g = f −
∑
Q∈B

χQf

so that |g| ≤ λ a.e. as desired. ¤

We can now state the crucial weak-L1 bound for singular integrals.

Proposition 6. Let K be as in Definition 7. Then for every f ∈ C1
0(Rn) there is

the weak-L1 bound

mes[x ∈ Rn||Tf(x)| > λ] ≤ CB

λ
‖f‖1

where C = C(n).

Proof. Dividing by B if necessary, we may assume that B = 1. Now fix f ∈ C1
0(Rn)

and let λ > 0 be arbitrary. By Lemma 14 one can write f = g + b with this value of λ.
We now set

f1 = g +
∑
Q∈B

χQ
1

|Q|
∫

Q

f dx

f2 = b−
∑
Q∈B

χQ
1

|Q|
∫

Q

f dx =
∑
Q∈B

fQ

where we have set

fQ := χQ

(
f − 1

|Q|
∫

Q

f dx
)
.

Notice that f = f1 + f2, ‖f1‖∞ ≤ Cλ‖f‖1, ‖f2‖1 ≤ 2‖f‖1, ‖f1‖1 ≤ 2‖f‖1, and
∫

Q

fQ dx = 0

for all Q ∈ B. We now proceed as follows

mes[x ∈ Rn||(Tf)(x)| > λ] ≤ mes
[
x|(Tf1)(x)| > λ

2

]
+ mes

[
x||(Tf2)(x)| > λ

2

]

≤ C

λ2
‖Tf1‖22 + mes

[
x||(Tf2)(x)| > λ

2

]
. (35)
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The first term in (35) is controlled by Proposition 5:

C

λ2
‖Tf1‖22 ≤

C

λ2
‖f1‖22 ≤

C

λ2
‖f1‖∞‖f1‖1 ≤ C

λ
‖f‖1 .

To estimate the second term in (35) we define, for any Q ∈ B, the cube Q∗ to be the
dilate of Q by a fixed factor depending only on the dimension (i.e., Q∗ has the same
center as Q but side length equal to b times that of Q with b = b(n)). Thus

mes
[
x||(Tf2)(x)| > λ

2

]
≤ mes(∪BQ∗) + mes

[
x ∈ Rn\ ∪B Q∗||(Tf2)(x)| > λ

2

]

≤ C
∑
Q

mes(Q) +
2

λ

∫

Rn\∪Q∗
|(Tf2)(x)| dx

≤ C

λ
‖f‖1 +

2

λ

∑
Q∈B

∫

Rn\Q∗
|(TfQ)(x)| dx .

The crucial point of this entire proof is the fact that fQ has mean zero which allows one
to exploit the smoothness of the kernel K. More precisely, for any x ∈ Rn\Q∗,

(TfQ)(x) =

∫

Q

K(x− y)fQ(y) dy

=

∫

Q

[K(x− y)−K(x− yQ)]fQ(y) dy

(36)

where yQ denotes the center of Q. Thus
∫

Rn\Q∗
|(TfQ)(x)| dx ≤

∫

Rn\Q∗

∫

Q

|K(x− y)−K(x− yQ)||fQ(y)| dy dx

≤
∫

Q

|fQ(y)| dy ≤ 2

∫

Q

|f(y)| dy .

To pass to the second inequality sign we used condition iii) in Definition 7. Hence the
second term on the right bound side of (36) is no larger than

C

λ

∑
Q

∫

Q

|f(y)|dy ≤ C

λ
‖f‖1 ,

and we are done. ¤

Remark. The assumption f ∈ C1
0(Rn) in the previous proposition was for conve-

nience only. It ensured that one could define Tf by means of (26). However, observe
that Proposition 5 allows one to extend T to a bounded operator on L2. This in turn
implies that the weak-L1 bound in Proposition 6 holds for all f ∈ L1 ∩ L2(Rn). Indeed,
inspection of the proof reveals that apart from the L2 boundedness of T , see (35), the
definition of T in terms of K was only used in (36) where x and y are assumed to be
sufficiently separated so that the integrals are absolutely convergent.

Theorem 10 (Calderon-Zygmund). Let T be a singular integral operator as in Def-
inition 7. Then for every 1 < p <∞ one can extend T to a bounded operator on Lp(Rn)
with the bound ‖T‖p→p ≤ CB with C = C(p, n).
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Proof. By Proposition 5 and 6 (and the previous remark) one obtains this statement
for the range 1 < p ≤ 2 from the Marcinkiewicz interpolation theorem. The range
2 ≤ p < ∞ now follows by duality. Indeed, we leave it to the reader to check that for
f, g ∈ C1

0(Rn) one has

〈Tf, g〉 = 〈f, T ∗g〉 where T ∗g(x) = lim
ε→0

∫

|x−y|>ε

K∗(x− y)g(y) dy

and K∗(x) := K(−x). Since K∗ clearly verifies conditions i)–iii) in Definition 77, we
are done. ¤

Remark. It is important to realize that the cancellation condition ii) was only used
to prove L2 boundedness, but did not appear in the proof of Proposition 6. Therefore, T
is bounded on Lp(Rn) provided it is bounded for p = 2 and conditions i) and iii) hold.

We now present some of the most basic examples of singular integrals. Consider the
equation 4u = f in Rn where f ∈ C0(Rn), n ≥ 2. Then it is well-known that the unique
bounded solution is given by, if n ≥ 3, (and similarly with a logarithmic potential if
n = 2)

u(x) = Cn

∫

Rn

|x− y|2−nf(y) dy (37)

with some dimensional constant Cn. We would like to express the second derivatives
∂2u

∂xi∂xj
in terms of f .

Exercise 16.

a) With u as in (37), show that for f ∈ C1
0(Rn)

∂2u

∂xi∂xj

(x) = Cn · (n− 2)(n− 1)

∫

Rn

Kij(x− y)f(y) dy

in the principal value sense, where

Kij(x) =

{ xixj

|x|n+2 if i 6= j
x2

i− 1
n
|x|2

|x|n+2 if i = j .

b) Verify that Kij as above are singular integral kernels. Also show that Ki(x) =
xi

|x|n+1 is a singular integral kernel.

The operators Ri and Rij defined in terms of the kernels Ki and Kij respectively, from
above are called the Riesz transforms or double Riesz transforms respectively. By Exer-
cise 16

Rij(4ϕ) =
∂2ϕ

∂xi∂xj

(38)

for any ϕ ∈ C2
0(Rn).

Corollary 9. Let u ∈ C2
0(Rn). Then

sup
1≤i,j≤n

‖ ∂2u

∂xi∂xi

‖Lp(Rn) ≤ Cp,n‖4u‖Lp(Rn) (39)

for any 1 < p < n. Here Cp,n only depends on p and n.
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Proof. This is an immediate consequence of (38) and Theorem 10. ¤

This is the most basic formulation of many results in elliptic equations that state that
solutions of elliptic PDE are two derivatives better than the inhomogeneity, see Gilbarg-
Trudinger. In fact, most of those statements, at least on Lp, follow from Corollary 9.
The reader should appreciate the depth of Corollary 9 in view of its failure on L1 and
L∞. We now indicate why (39) fails on L1. The idea is simply to take u to be the
fundamental solution of 4 in Rn, i.e., u(x) = c|x|2−n if n ≥ 3 and u(x) = log |x| if n = 2.
Then 4u = δ0 which, at least heuristically, belongs to L1(Rn). However, one checks that

∂2u
∂xi∂xj

/∈ L1(B(0, 1)) for any i, j. Indeed, see the kernels Kij form Exercise 16). This can

be made precise in the usual way, i.e., by means of an approximate identity.

Exercise 17.

a) Let ϕ ≥ 0 be in C∞0 (Rn) with
∫
Rn ϕ dx = 1. Set ϕε(x) := ε−nϕ(x

ε
) for any

0 < ε < 1. Clearly, {ϕε}0<ε<1 form an approximate identity provided the latter
are defined analogously to Definition 1 on Rn. Moreover, let χ ∈ C∞0 (Rn) be
arbitrary with χ(0) 6= 0. Verify that, with Γn(x) = |x|2−n for n ≥ 3 and Γ2(x) =
log |x|, uε(x) := (ϕε ∗ Γn)(x)χ(x) has the following properties:

sup
ε>0
‖4uε‖L1 <∞

and

lim sup
ε−→0

‖ ∂2uε

∂xi∂xj

‖L1 =∞

for any 1 ≤ i, j ≤ n. Thus Corollary 9 fails on L1(Rn).
b) Now show that Corollary 9 also fails on L∞.

We conclude this section by addressing the question whether a singular integral oper-
ator can be defined by means of formula (26) even if f ∈ Lp(Rn) rather than f ∈ C1

0(Rn).
This question is the analogue of Proposition 3 and should be understood as follows: For
1 < p < ∞ we defined T “abstractly” as an operator on Lp(Rn) by extension from
C1

0(Rn) via the a priori bounds ‖Tf‖p ≤ Cp,n‖f‖p for all f ∈ C1
0(Rn) (the latter space

is dense in Lp(Rn)—cf. Lemma 2). We now ask if the principal value (26) converges al-
most everywhere to this extension T for any f ∈ Lp(Rn). Clearly, resolving this question
requires controlling the maximal operator

T∗f(x) = sup
ε>0
|
∫

|y|>ε

K(y)f(x− y) dy| .

In what follows we shall need the Hardy-Littlewood maximal function

Mf(x) = sup
x∈B

1

|B|
∫

B

|f(y)| dy ,

where the supremum runs over all balls B containing x. M satisfies basically the same
bounds as in Proposition 1 (check!).
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We prove the desired bounds on T∗ only for a subclass of kernels, namely the ho-
mogeneous one. This class includes the Riesz transforms from above. More precisely,
set

K(x) :=
Ω( x

|x|)

|x|n for x 6= 0 (40)

where Ω : Sn−1 −→ C, Ω ∈ C1(Sn−1) and
∫

Sn−1 Ω(x)dσ(x) = 0 where σ is the surface
measure on Sn−1. Observe that K(tx) = t−nK(x).

Exercise 18. Check that any such K satisfies the conditions in Definition 7.

Proposition 7. Suppose K is of the form (40). Then T∗ satisfies

(T∗f)(x) ≤ C[M(Tf)(x) +Mf(x)]

with some absolute constant C. In particular, T∗ is bounded on Lp(Rn) for 1 < p < ∞.
Furthermore, T∗ is also weak-L1 bounded.

Proof. Let K̃(x) := K(x)χ[|x|≥1] and more generally K̃ε(x) = ε−nK̃(x
ε
) = K(x)χ[|x|≥ε].

Pick a smooth bump function ϕ ∈ C∞0 (Rn), ϕ ≥ 0,
∫
Rn ϕ dx = 1. Define Φ := ϕ∗K−K̃.

Observe that ϕ ∗K is well-defined in the principal value sense. For any function F on
Rn let Fε(x) := ε−nF

(
x
ε

)
be its L1-normalized rescaling. Then Kε = K, K̃ε = (K̃)ε, and

thus Φε = (ϕ ∗ K)ε − K̃ε = ϕε ∗ Kε − K̃ε = ϕε ∗ K − K̃ε. Hence, for any f ∈ C1
0(Rn),

Kε ∗ f = ϕε ∗ (K ∗ f) − Φε ∗ f . We will now invoke the analogue of Lemma 7 for radi-
ally bounded approximate identities. This of course requires that {Φε}ε>0 from such a
radially bounded a.i., which can be easily deduced (the case of ϕε is obvious). Indeed,
we leave it to the reader to verify that

|Φ(x)| ≤ Cmin(1, |x|−n−1) ,

which implies the desired property. Therefore,

T∗f ≤ C(M(Tf) +Mf) ,

as claimed. The boundedness of T∗ on Lp(Rn) for 1 < p <∞ now follows from that of T
and M . The proof of the weak-L1 boundedness of T∗ is a variation of the same property
of T , of Proposition 6. We shall not present the details, see Stein 1. ¤

Corollary 10. Let K be a homogeneous singular integral kernel as in (40). Then
for any f ∈ Lp(Rn), 1 ≤ p <∞, the limit in (26) exists almost everywhere.

Proof. Let

Λ(f)(x) = | lim sup
ε→0

(Tεf)(x)− lim inf
ε→0

(Tεf)(x)| .

Observe that Λ(f) ≤ 2T∗f . Fix f ∈ Lp and let f ∈ C1
0(Rn) so that ‖f − f1‖p < δ for a

given small δ > 0. Then Λ(f) = Λ(f − f1) and therefore ‖Λf‖p ≤ C‖Λ(f − f1)‖p < Cδ
if 1 < p <∞. Hence, Λf = 0. We leave the similar case p = 1 to the reader. ¤
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CHAPTER 6

Almost Orthogonality; Schauder Estimates

In this section we present further results on singular integrals. Needless to say, the
subject has undergone vast development beyond the material of the previous section, (see
Christ’s book and Stein 2). We are not able to cover much of it, but will discuss two issues
here namely an alternative approach to L2 theory and the fact that singular integrals
are bounded on Hölder spaces. This latter fact predates the Calderon-Zygmund theorem
from the previous section, at least for the special case of the double Riesz transform.

Let us start with some very simple comments about Lp bounds, which explain why
one is mainly concerned with Lp → Lp bounds.

Exercise 19.

a) Show that a homogeneous kernel as that in (40) can only be bounded from
Lp(Rn)→ Lq(Rn) if p = q.

b) Show that for any translation invariant non-zero operator T : Lp(Rn) −→ Lq(Rn)
one necessarily has q ≥ p.

The proof of the L2 bound in the previous section was based on the Fourier transform.
This is very restrictive as it requires translation invariance. Although we do not develop
non translationally invariant singular integrals here (see Christ or Stein 2), we now
present a very useful tool that avoids the Fourier transform. The idea is to break up the
singular integral operator T into a sum

∑
j Tj (usually by a partition of K over dyadic

shells). A trivial estimate would be ‖T‖2→2 ≤
∑

j ‖Tj‖2→2, but this is useless. Much
rather, we want something like

‖T‖2→2 . sup
j
‖Tj‖2→2 .

In analogy with block matrices, with the Tj being blocks with pair-wise disjoint rows and
columns, we would want the ranges and co-ranges to be perpendicular, i.e., for j 6= k

T ∗j Tk = 0 and TjT
∗
k = 0 . (41)

Exercise 20. Show that under condition (41) one has

‖
N∑

j=1

Tj‖2→2 ≤ sup
1≤j≤N

‖Tj‖2→2 .

For applications conditions (41) are usually too strong. The point of the following lemma
(the Cotlar-Stein lemma) is to show that it is enough if they hold “almost” (hence “almost
orthogonality”).
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Lemma 15. Let {Tj}Nj=1 be operators on L2 such that, for some function γ : Z→ R,

‖T ∗j Tk‖ ≤ γ2(j − k), ‖TjT
∗
k ‖ ≤ γ2(j − k) for any j, k. Let

∞∑

`=−∞
γ(`) =: A <∞ .

Then ‖∑N
j=1 Tj‖ ≤ A.

Proof. For any positive integer n,

(T ∗T )n =
N∑

j1,...,jn=1
k1,...,kn=1

T ∗j1Tk1T
∗
j2
Tk2 . . . T

∗
jn
Tkn

Therefore, with sup1≤j≤N ‖Tj‖ =: B

‖(T ∗T )n‖ ≤
N∑

j1,...,jn=1
k1,...kn=1

‖Tj1‖
1
2‖T ∗j1Tk1‖

1
2‖Tk1T

∗
j2
‖ 1

2 · · ·

· · · ‖Tkn−1T
∗
jn
‖ 1

2‖T ∗jn
Tkn‖

1
2‖Tkn‖

1
2

≤
N∑

j1,...,jn=1
k1,...,kn=1

√
Bγ(j1 − k1)γ(k1 − j2)γ(j2 − k2) . . . γ(kk1 − jn)γ(jn − kn)

√
B

≤ NBA2n−1 .

Since T ∗T is self-adjoint, the spectral theorem implies that ‖(T ∗T )n‖ = ‖T ∗T‖n =
‖T‖2n. Hence,

‖T‖ ≤ (N BA−1)
1
2n · A .

Letting n→∞ yields the desired bound. ¤

We will now give an alternative proof of L2(Rn) boundedness of singular integrals for
kernels which satisfy

|∇K(x)| ≤ B|x|−n−1 ,

of Lemma 13. This requires a certain standard partition of unity which we now present.

Lemma 16. There exists ψ ∈ C∞0 (Rn) with the property that supp ψ ⊂ Rn\{0} and
that

∞∑
j=−∞

ψ(2−jx) = 1 (42)

for any x 6= 0. Moreover, ψ can be chosen to be a radial function, nonegative function
and no more than two terms in (42) are nonzero for any given ξ 6= 0.

Proof. Let χ ∈ C∞0 (Rn) so that χ(x) = 1 for all |x| ≤ 1 and χ(x) = 0 for |x| ≥ 2,
say.
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Set ψ(x) := χ(x)− χ(2x). Clearly, for any positive N ,

N∑
j=−N

ψ(2−jx) = χ(2−Nx)− χ(2N+1x) .

If x 6= 0 is given, then we take N so large that χ(2−Nx) = 1 and χ(2N+1x) = 0. This
implies (42), as desired (note that the sum in (42) is finite for any x 6= 0). ¤

The point of the following corollary is the method of proof rather than the statement
(which is weaker than the one in the previous section).

Corollary 11. Let K be as in Definition 7 with the additional assumption that
|∇K(x)| ≤ B|x|−n−1. Then

‖T‖2→2 ≤ CB

with C = C(n).

Proof. Let ψ be a radial function as in Lemma 16 and set Kj(x) = K(x)ψ(2−jx).
It is easy to see that these kernels have the following properties:∫

Kj(x) dx = 0, ‖∇Kj‖∞ ≤ C2−j2−jn for all j ∈ Z ,

sup
j∈Z

∫
|Kj(x)| dx <∞, and sup

j∈Z
2−j

∫
|x||Kj(x)| dx <∞ .

Define

(Tjf)(x) =

∫

Rn

Kj(x− y)f(y) dy .

Observe that this integral is absolutely convergent for any f ∈ L1
`oc(Rn). We shall now

check the conditions in Lemma 15. Let K̃j(x) := Kj(−x). Then it is easy to see that

(T ∗j Tkf)(x) :=

∫

Rn

(K̃j ∗Kk)(y)f(x− y) dy

and

(TjT
∗
k f)(x) =

∫

Rn

(Kj ∗ K̃k)(y)f(x− y) dy .
Hence, by Young’s inequality,

‖T ∗j Tk‖2→2 ≤ ‖K̃j ∗Kk‖1
and

‖TjT
∗
k ‖2→2 ≤ ‖Kj ∗ K̃k‖1 .

It suffices to consider the case j ≥ k. Then, using
∫
Kk(y) dy = 0, since obtains

∣∣∣(K̃j ∗Kk)(x)
∣∣∣ =

∣∣∣
∫

Rn

Kj(y − x)Kk(y)dy
∣∣∣ =

∣∣∣
∫

Rn

[
Kj(y − x)−Kj(−x)

]
Kk(y) dy

∣∣∣

≤
∫

Rn

‖∇Kj‖∞|y||Kk(y)| dy ≤ CB22−j2−jn2k .

Since
supp (K̃j ∗Kk) ⊂ supp(K̃j) + supp(Kk) ⊂ B(0, C · 2j) ,
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we have

‖K̃j ∗Kk‖1 ≤ CB22k−j = CB22−|j−k| .

Therefore, Lemma 15 applies with

γ2(`) = CB22−|`|

and the corollary follows. ¤

Exercise 21.

a) In the previous proof it suffices to consider the case j > k = 0. Provide the
details of this reduction.

b) Observe that Corollary 11 covers the Hilbert transform. In that case, you should
draw the graph of K(x) = 1

x
and also Kj(x) = 1

x
ψ(2−jx) and explain the previous

argument by means of pictures.

Next, we turn to the question of boundedness of singular integrals on Hölder spaces.
At this point you are strongly encouraged to try problem 16 from the appendix. You
should not use the Fourier transform for this problem.

We will now show in the full generality of Definition 7 that singular integrals are
bounded on Cα(Rn), 0 < α < 1. This requires a little bit of knowledge of tempered
distributions. Recall that S(Rn) is the Schwartz space of functions f ∈ C∞ for which
for any α, β

sup
x∈Rn

|xα||∂βf(x)| <∞

where α = (α1, . . . , αn), β = (β1, . . . , βn) are multi-indices and

xα = xα1
1 . . . . .x

αn
n , ∂β =

∂|β|

∂xβ1

1 . . . ∂βn
xn

, |β| =
n∑

j=1

|βj| .

Exercise 22. Show that the Fourier transform takes S onto S. The dual space S ′
of S is called the space of tempered distributions, see Rudin 2. If u ∈ S ′ and f ∈ S,
then û is defined via 〈û, f〉 := 〈u, f̂〉. In what follows we work with the projections 4j

defined via

4ju := (ψjû)
∨ = ψ̂j ∗ u (43)

for any u ∈ S ′. Here ψj(ξ) := ψ(2−jξ) for any j ∈ Z where ψ is as in Lemma 16. You
should pay attention to the fact that (43) is meaningful since u ∈ S ′ =⇒ û ∈ S ′ =⇒
ψjû ∈ S ′ =⇒ (ψjû)

∨ ∈ S ′. The final equality in (43) is a simple fact about distributions
that we leave to the reader to check.

We require a characterization of Cα(Rn) for 0 < α < 1 in terms of the 4j. The
reader should realize that the proof of the following lemma is reminiscent of the proof of
Bernstein’s Theorem 2.
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Lemma 17. Let |f | ≤ 1. Then f ∈ Cα(Rn) for 0 < α < 1 if and only if

sup
j∈Z

2jα‖4jf‖∞ ≤ A . (44)

Moreover, the smallest A for which (44) holds is comparable to [f ]α.

Proof. Set ψ̌j(x) = 2jn ψ̌(2jx) =: ϕj(x).

Hence
‖ϕj‖1 = ‖ψ̌‖1 for all j ∈ Z

and ∫

Rn

ϕj(x)x
γ dx = 0

for all multi-indices γ. First assume f ∈ Cα. Then

|4jf(x)| ≤
∫

Rn

|f(x− y)− f(x)||ϕj(y)| dy

≤
∫

Rn

[f ]α|y|α|ϕj(y)| dy

= 2−jα[f ]α

∫

Rn

|y|α|ψ̌(y)| dy .

Hence A ≤ C[f ]α, as claimed.

Conversely, for any positive integer ` define

g`(x) =
∑

−`≤j≤`

(4jf)(x) .

We need to show that, for all y ∈ Rn,

sup
`
|g`(x− y)− g`(x)| ≤ CA|y|α

with some constant C = C(n).

Now fix y 6= 0 and estimate∣∣∣
∑

|y|−1<2j≤2`

(4jf)(x)
∣∣∣ ≤

∑

2j>|y|−1

A2−jα ≤ CA|y|α . (45)

Secondly, observe that

|4jf(x− y)−4jf(x)| ≤ ‖∇4jf‖∞|y| ≤ C2j‖4jf‖∞|y|
≤ C2j(1−α)A|y| (46)

where we invoked Bernstein’s inequality (Lemma 18 below, with |γ| = 1) to pass to the
second inequality sign. Combining (45) and (46) yields

|g`(x− y)− g`(x)| ≤
∑

2−`≤2j≤|y|−1

|4jf(x− y)−4jf(x)|+
∑

|y|−1<2j≤2`

2‖4jf‖∞

≤
∑

2j≤|y|−1

CA2j(1−α)|y|+
∑

|y|−1<2j

2A2−jα ≤ CA|y|α ,
(47)
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uniformly in ` ≥ 1.

So {g` − g`(0)}∞`=1 are uniformly bounded on Cα(K) for any compact K. By the
Arzela-Ascoli theorem one concludes that

g` − g`(0) −→ g

uniformly on any compact set and therefore [g]α ≤ CA by (47) (strictly speaking, we
should pass to a subsequence {`i}, but we suppress this detail). It remains to show that
f has the same property. This follows from the

Claim: f = g+ constant.

To verify this, note that g`− g`(0)→ g is S ′. Thus, also ĝ`− δ0g`(0)→ ĝ in S ′ which
is the same as ∑

−`≤j≤`

ψ(2−jξ)f̂(ξ)− δ0g`(0)→ ĝ in S ′ .

So if h ∈ S with supp(h) ⊂ Rn\{0}, then 〈f̂ − ĝ, h〉 = 0, i.e., supp(f̂ − ĝ) = {0}.
By an elementary theorem about tempered distributions, therefore

(f − g)(x) =
∑

|γ|≤M

Cγx
γ , (48)

See Theorem 6.25 in Rudin 2. On the other hand, since g(0) = 0,

|(f − g)(x)| ≤ ‖f‖∞ + |g(x)− g(0)|
≤ 1 + CA|x|α .

Since α < 1, comparing this bound with (48) shows that the polynomial in (48) has to
have degree zero. Thus, f − g = constant, as claimed. ¤

Lemma 18 (Bernstein’s inequality). Suppose f ∈ Lp(Rn) with 1 ≤ p ≤ ∞ satisfies

supp (f̂) ⊂ B(0, R). Then

‖Dγf‖p ≤ CγR
|γ|‖f‖p

for any multiindex γ where Cγ = C(n, γ).

Proof. Let χ ∈ S(Rn) with supp χ̂ ⊂ B(0, 2) and χ̂(ξ) = 1 on |ξ| ≤ 1. Then

f̂(ξ) = χ̂(ξ/R)f̂(ξ) so that f = Rnχ(R·) ∗ f . Hence, by Young,

‖Dγf‖p ≤ R|γ|‖Rn(Dγχ)(R·)‖L1‖f‖p
= CγR

|γ| ‖f‖p ,
as claimed. ¤

We now present a proposition that might seem a little unmotivated for now. Never-
theless, it is not only very natural, but will also allow us to conclude the desired Hölder
bound for singular integrals. We postpone the proof of the proposition.
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Proposition 8. Let K be a singular integral kernel as in Definition 7. For any
η ∈ S with

∫
Rn η(x) dx = 0 one has

‖Tη‖1 ≤ C(η)B

with a constant depending on η.

Theorem 11. Let K be as in Definition 7 and 0 < α < 1. Then for any
f ∈ L2 ∩ Cα(Rn) one has Tf ∈ Cα(Rn) and

[Tf ]α ≤ CαB[f ]α

with Cα = C(α, n).

Proof. We use Lemma 17. In order to do so, notice first that

‖Tf‖∞ ≤ CB([f ]α + ‖f‖2) ,
which we leave to the reader to check. Therefore, it suffices to show that

sup
j

2jα‖4jTf‖∞ ≤ CB[f ]α . (49)

Let 4̃j be defined as

4̃ju =
(
ψ̃(2−j·)û(ξ)

)∨
,

where ψ̃ ∈ C∞0 (Rn\{0}) and ψ̃ψ = ψ, cf. (43). Thus, 4̃j4j = 4j. Hence,

‖4jTf‖∞ = ‖4̃j4jTf‖∞ = ‖4̃jT4jf‖∞
≤ ‖4̃jT‖∞→∞‖4jf‖∞
≤ ‖4̃jT‖∞−→∞C[f ]α2−jα .

It remains to show that supj ‖4̃jT‖∞−→∞ ≤ CB, see (49). Clearly, the kernel of 4̃jT is

2jn ˇ̃
ψ(2j·) ∗K so that

‖4̃jT‖∞−→∞ ≤ ‖2jnˇ̃ψ(2j·) ∗K‖1
= ‖ˇ̃ψ ∗ 2−jnK

(
2−j ·

)
‖1

≤ CB

(50)

by Proposition 8. Indeed, set η =
ˇ̃
ψ in that proposition so that∫

Rn

η(x) dx = ψ̃(0) = 0 ,

as required. Furthermore, we apply Proposition 8 with the kernel 2−jnK(2−j·). As this
kernel satisfies the conditions in Definition 7 uniformly in j, one obtains (50) and the
theorem is proved. ¤

It remains to show Proposition 8, which will be accomplished by means of two lemmas.

Lemma 19. Let f ∈ L∞(Rn) with ∈ f(x) dx = 0, supp (f) ⊂ B(0, R) and
‖f‖∞,≤ R−n. Then

‖Tf‖1 ≤ CB .
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Proof. By Cauchy-Schwarz,∫

|x|≤2R

|(Tf)(x)| dx ≤ ‖Tf‖2CRn
2

≤ CB‖f‖2Rn
2 ≤ CBR−nR

n
2R

n
2 = CB .

Furthermore,

∫

|x|>2R

|(Tf)(x)| dx ≤
∫

Rn

∫

|x|>2|y|
|K(x− y)−K(x)| dx|f(y)| dy ≤ B‖f‖1 ≤ CB ,

as desired. ¤
Remark. A function f as in Lemma 19 is called an H1-atom. The next lemma is

an instance of an atomic decomposition.

Lemma 20. Let η ∈ S(Rn),
∫
Rn η(x) dx = 0. Then one can write

η =
∞∑

`=1

c`a`

with
∫
Rn a`(x) dx = 0, ‖a`‖∞ ≤ `−n, supp(a`) ⊂ B(0; `) for all ` ≥ 1 and

∞∑

`=1

|c`| ≤ C(η)

with a constant C(η) depending on η.

Proof. In this proof, we let

〈g〉S :=
1

|S|
∫

S

g(x) dx

for any g ∈ L1(Rn) and S ⊂ Rn with 0 < |S| < ∞. Moreover, B` := B(0, `) for ` ≥ 1,
and χ` = χB`

(indicator of B`). Define

f1 := (η − 〈η〉B1)χ1 , η1 := η − f1

and set inductively {
f`+1 := (η` − 〈η`〉B`+1

)χ`+1 and
η`+1 := η` − f`+1

(51)

for ` ≥ 1 (one can take this also with ` = 0 and η0 := η).

Observe that

η = η1 + f1 = f1 + f2 + η2 = . . . =
M∑

`=1

f` + ηM+1 . (52)

We need to show that we can pass to the limit M →∞ and that

a` := f` · `−n

‖f`‖∞ for ` ≥ 1 (53)
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have the desired properties. By construction, for all ` ≥ 1,∫

Rn

a`(x) dx = 0 , supp(a`) ⊂ B` ,

and ‖a`‖∞ ≤ `−n. It remains to show that

c` := `n‖f`‖∞ (54)

satisfies
∑∞

`=1 c` <∞ and that ‖ηM+1‖∞ → 0, see (52). Clearly,

η1 =

{ 〈η〉B1 on B1

η on Rn\B1 .

Hence,

η2 =

{ 〈η1〉B2 on B2

η1 = η on Rn\B2 .

By induction, for ` ≥ 1, one checks that

η`+1 =

{ 〈η`〉B`+1
on B`+1

η on Rn\B`+1.
(55)

Moreover, induction shows that ∫

Rn

η`(x) dx = 0 (56)

for all ` ≥ 0. Indeed, this is assumed for η0 = η. Since
∫
f`(x)dx = 0 for ` ≥ 1 by

construction, one now proceeds inductively via the formula

η`+1 = η` − f`+1 .

Property (56) implies that

∣∣〈η`〉B`+1

∣∣ ≤ 1

|B`+1|
∫

Rn\B`+1

|η`(x)| dx

≤ 1

|B`+1

∫

Rn\B`+1

|η(x)| dx ≤ C`−20n

(57)

since η` = η on Rn\B`, see (55), and since η has rapid decay. (57) implies that

‖η`+1‖∞ ≤ C`−20n ,

see (55), and also

‖f`+1‖∞ ≤ C`−20n ,

see (51). We now conclude from (52)–(54) that

η =
∞∑

`=1

f` =
∞∑

`=1

c`a`

with, see (54) and (53),
∞∑

`=1

|c`| =
∞∑

`=1

`n‖f`‖∞ ≤
∞∑

`=1

C`−19n <∞ ,

and the lemma follows. ¤
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Proof of Proposition 8. Let η be as in the statement of the proposition. By
Lemma 20,

η =
∞∑

`=1

c`a`

with c` and a` as stated there. By Lemma 19,

‖T (c`a`)‖1 ≤ |c`|‖Ta`‖1 ≤ CB|c`|
for ` ≥ 1. Hence,

∞∑

`=1

‖T (c`a`)‖1 ≤ CηB

and this easily implies that ‖Tη‖1 ≤ CηB, is claimed. ¤

A typical application of Theorem 11 is to the so-called “Schauder estimate”. More
precisely, one has the following corollary.

Corollary 12. Let f ∈ C2,α
0 (Rn). Then

sup
1≤i,j≤n

[
∂2f

∂xi∂xj

]

α

≤ C(α, n)[4f ]α (58)

for any 0 < α < 1.

Proof. As in the Lp case, see Corollary 9, this follows from the fact that

∂2f

∂xi∂xj

= Rij(4f) for 1 ≤ i, j ≤ n

where Rij are the double Riesz transforms. Now apply Theorem 11 to Rij. ¤

This in turn implies estimates for elliptic equations on a region Ω ⊂ Rn, i.e.,
n∑

i,j=1

aij(x)
∂2u

∂xi∂xj

(x) = f(x) in Ω

where aijξiξj ≥ λ|ξ|2 and aij ∈ Cα(Ω). By “freezing x”, one concludes from (58) that

sup
1≤i,j≤η

[
∂2f

∂xi∂xj

]

Cα(K)

≤ C(α, n,K)([f ]α + ‖f‖∞)

for any compact K ⊂ Ω. See Gilbarg-Trudinger for this estimate and much more.

Remark. (58) fails for α = 0 and α = 1. Try to show this—it follows immediately
from the failure of the Lp bounds for p =∞.
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CHAPTER 7

Lp-multipliers, Mikhlin theorem and Littlewood-Paley theory

One of the central concerns of harmonic analysis is the study of multiplier operators,
i.e., operators T which are of the form

(Tf)(x) =

∫

Rn

e2πix·ξm(ξ) f̂(ξ) dξ (59)

where m : Rn −→ C is bounded. By Plancherel’s theorem ‖T‖2−→2 ≤ ‖m‖∞. In fact,
one has equality here, see Davis and Chang. The same reference contains other basic
theorems on operators of the form (59), for example: There is a distribution K ∈ S ′ so
that Tf = K ∗ f for any f ∈ S (of course K = m̌). Secondly, T is bounded on L1 if and
only if the associated kernel is in L1, in which case

‖T‖1−→1 = ‖K‖1 .
There are many cases, though, where K /∈ L1(Rn) but still ‖T‖p−→p for some (or all)
1 < p < ∞. The Hilbert transform is one such example. We shall now discuss one of
the basic results in the field, which describes a large class of multipliers m that give rise
to Lp bounded operators for 1 < p <∞.

Theorem 12 (Mikhlin). Let m : Rn\{0} −→ C satisfy, for any multi-index γ of
length |γ| ≤ n+ 2

|Dγm(ξ)| ≤ B|ξ|−|γ|
for all ξ 6= 0. Then for any 1 < p <∞ there is a constant C = C(n, p) so that

‖(mf̂)∨‖p ≤ CB‖f‖p
for all f ∈ S.

Proof. Let ψ give rise to a dyadic partition of unity as in Lemma 1616. Define for
any j ∈ Z

mj(ξ),= ψ(2−jξ)m(ξ)

and set Kj = m̌j. Now fix some large positive integer N and set

K(x) =
N∑

j=−N

Kj(x) .

We claim that under our smoothness assumption on m one has

|K(x)| ≤ CB|x|−n and |∇K(x)| ≤ CB|x|−n−1 , (60)

where C = C(n). One then applies the Calderon-Zygmund theorem and lets N −→∞.
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We will verify the first inequality in (60). The second one is similar, and will be only
sketched. By assumption, ‖Dγmj‖∞ ≤ CB2−j|γ| and thus

‖Dγmj‖1 ≤ CB2−j|γ|2jn

for any multi-index |γ| ≤ n+ 2. Similarly,

‖Dγ(ξimj)‖1 ≤ CB2−j(|γ|−1)2jn

for the same γ. Hence,
‖xγ m̌j(x)‖∞ ≤ CB2j(n−|γ|)

and
‖xγDm̌j(x)‖∞ ≤ CB2j(n+1−|γ|) .

Since |x|k ≤ C(k, n)
∑

|γ|=k |xγ| one concludes that

|m̌j(x)| ≤ CB2j(n−k)|x|−k (61)

and
|Dm̌j(x)| ≤ CB2j(n+1−k)|x|−k (62)

for any 0 ≤ k ≤ n + 2 and all j ∈ Z, x ∈ Rn\{0}. We shall use this with k = 0 and
k = n+ 2. Indeed,

|K(x)| ≤
∑

j

|m̌j(x)| ≤
∑

2j≤|x|−1

|m̌j(x)|+
∑

2j>|x|−1

|m̌j(x)|

≤ CB
∑

2j≤|x|−1

2jn + CB
∑

2j>|x|−1

2jn(2j|x|)−(n+2)

≤ CB|x|−n + CB|x|2|x|−n−2 = CB|x|−n ,

as claimed. To obtain the second inequality in (60) one uses (62) instead of (61). Oth-
erwise the argument is unchanged. Thus we have verified that K satisfies the con-
ditions i) and iii) of Definition 7, see Lemma 13. Furthermore, ‖m‖∞ ≤ B so that

‖(mf̂)∨‖2 ≤ B‖f‖2. By Theorem 10, and the remark following it, one concludes that

‖(mf̂)∨‖p ≤ C(p, n)‖f‖p
for all f ∈ S and 1 < p <∞, as claimed. ¤

Remark. The conditions in Theorem 12 can be relaxed. Indeed, it suffices to assume
the derivative bounds on m for all |γ| ≤ [

n
2

]
+ 1, see Stein 1. The point is to verify the

Hörmander condition directly rather than going through Lemma 13.

Corollary 13. Under the same assumptions as in Theorem 12 one has

[(mf̂)∨]α ≤ CαB [f ]α

for any 0 < α < 1 and f ∈ Cα(Rn) ∩ L2(Rn).

Proof. This is really a corollary of the proof of Theorem 12. Indeed, we verified
there that K = m̌ is a kernel that satisfies i) and iii) from Definition 7. The Hölder
theory from the previous section does not require ii), but only L2-boundedness of f 7→
(mf̂)∨. As ‖m‖∞ ≤ B this holds and the corollary therefore follows from (60) and
Theorem 11. ¤
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Exercise 23. Provide all details in the previous proof.

Theorem 12 and Corollary 13 allow one to give proofs of Corollaries 9 and 12 without
going through Exercise 16. Indeed, one has

∂̂2u

∂xi∂xj

(ξ) =
ξiξj
|ξ|2 4̂u(ξ) .

Since m(ξ) =
ξiξj

|ξ|2 satisfies the conditions of Theorem 1212 (this is obvious, as m is

homogeneous of degree 0 and smooth away from ξ = 0), we are done.

Observe that this example shows that Theorem 12 and Corollary 13 fail if p = 1 or
p =∞, see Exercise 17.

We now present an important application of Mikhlin’s theorem, namely to Littlewood-
Paley theory. With ψ as in Lemma 16 set ψj(ξ) = ψ(2−jξ) so that

1 =
∑

j∈Z
ψj(ξ) if ξ 6= 0 .

As above, we define 4jf = (ψj f̂)∨. Then by Plancherel,

C−1‖f‖22 ≤
∑

j∈Z
‖4jf‖22 ≤ ‖f‖22 (63)

for any f ∈ L2(Rn). Observe that the middle expression is equal to ‖Sf‖22 with

Sf =

(∑
j

|4jf |2
) 1

2

This is called the Littlewood-Paley square-function. It is a famous result of theirs that
(63) generalizes to

C−1‖f‖p ≤ ‖Sf‖p ≤ C‖f‖p
for any f ∈ Lp(Rn) provided 1 < p <∞ and with C = C(p, n). We shall now derive this
result by means of a standard randomization technique. In what follows we let {rj} be
a sequence of independent random variables with P[rj = 1] = P[rj = −1] = 1

2
, for all j

(in other words, the rj are a coin tossing sequence).

Lemma 21. For any positive integer N and {aj}Nj=1 ∈ C one has

P




∣∣∣
N∑

j=1

rjaj

∣∣∣ > λ

(
N∑

j=1

|aj|2
) 1

2


 ≤ 4e−λ2/2 (64)

for all λ > 0.

Proof. Assume first that aj ∈ R. Then

EetSN = ΠN
j=iE

(
et rjaj

)
= ΠN

j=1 cosh(taj)
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where we have set SN =
∑N

j=1 rjaj. Now invoke the calculus fact

coshx ≤ ex2/2 for all x ∈ R
to conclude that

EetSN ≤ ΠN
j=1e

t2a2
j/2 = exp

(
t2

N∑
j=1

a2
j/2

)
.

Hence, with σ2 =
∑N

j=1 a
2
j ,

P
[
SN > λσ

]
≤ et2σ2/2e−λtσ

≤ e−λ2/2

where the final inequality follows by minimizing in t, i.e., = λ
σ
. Similarly,

P[SN < −λσ] ≤ e−λ2/2

so that
P[|SN | > λσ] ≤ 2e−λ2/2 .

The case of aj ∈ C now follows by means of a decomposition into real and imaginary
parts. ¤

The appearance of the Gaussian on the right-hand side of (64) should be very natural
to anybody who is familiar with the central limit theorem. It should also explain why
the following lemma holds (Khinchin’s inequality).

Lemma 22. For any 1 ≤ p <∞ there exist constants C = C(p) so that

C−1

(
N∑

j=1

|aj|2
) p

2

≤ E
∣∣∣

N∑
j=1

rjaj

∣∣∣
p

≤ C

(
N∑

j=1

|aj|2
) p

2

(65)

for any choice of positive integer N and {aj}Nj=1 ∈ C.

Proof. We start with the upper bound in (65). It suffices to consider the case∑N
j=1 |aj|2 = 1. Setting

∑N
j=1 ajrj = SN one has

E|SN |p =

∫ ∞

0

P[|SN | > λ]pλp−1 dλ ≤
∫ ∞

0

4e−λ2/2pλp−1 dλ =: C(p) <∞ .

For the lower bound it suffices to assume that 1 ≤ p ≤ 2, in fact, p = 1. By Hölder’s
inequality,

E|SN |2 = E|Sn|2/3|SN |4/3

≤ (E|SN |)2/3(E|Sn|4)1/3

≤ C(E|SN |)2/3(E, |SN |2)4/3

where the final inequality follows from the case 2 ≤ p <∞ just considered. This implies
that

E|SN |2 ≤ C(E|SN |)2 ,

and we are done. ¤
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Remark. Khinchin’s inequality is usually formulated for the Rademacher functions,
which are a concrete realization of the sequence {rj} on the interval [0, 1]. The explicit
form of the Rademacher functions allows for a different proof of Khinchin’s inequality,
but those proofs are somewhat less transparent.

We are now ready to prove the Littlewood-Paley theorem.

Theorem 13 (Littlewood-Paley). For any 1 < p < ∞ there are constants
C = C(p, n) such that

C−1‖f‖p ≤ ‖Sf‖p ≤ C‖f‖p
for any f ∈ S.

Proof. Let {rj} be as above. The proof rests on the fact that

m(ξ) :=
N∑

j=−N

rjψj(ξ)

satisfies the conditions of the Mikhlin multiplier theorem uniformly in N and uniformly
in the realization of the random variables {rj}. Indeed, for any γ,

|Dγm(ξ)| ≤
N∑

j=−N

|Dγψj(ξ)|

≤ C

N∑
j=−N

|ξ|−γ|(Dγψ)(2−jξ)|

≤ C|ξ|−γ .

To pass to the final inequality one uses that only an absolutely bounded number of terms
is non-zero in the sum preceding it for any ξ 6= 0. Hence, in view of Lemma 22,

∫

Rn

∣∣∣(Sf)(x)
∣∣∣
p

dx ≤ C lim sup
N−→∞

E
∫

Rn

∣∣∣
N∑

j=−N

rj(4jf)(x)
∣∣∣
p

dx

≤ C‖f‖pp ,
as desired.

To prove the lower bound we use duality: choose a function ψ̃ so that ψ̃ = 1 on
supp (ψ) and ψ̃ is compactly supported with supp ψ̃ ⊂ Rd\{0}. Defining 4̃j like 4j

with ψ̃ instead of ψ yields {4̃j} satisfying 4̃j4j = 4j. Therefore, for any f, g ∈ S, and
any 1 < p <∞,

|〈f, g〉| = |
∑

j

〈4jf, 4̃jg〉|

≤
∫

Rn

(∑
j

|4jf |2
) 1

2
(∑

k

|4̃kg|2
) 1

2

dx

≤ ‖Sf‖p‖S̃g‖p′ ≤ C‖Sf‖p‖g‖p′ .
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Thus, ‖f‖p ≤ C‖Sf‖p, as claimed (observe that the argument for the upper bound

equally well applies to S̃ instead of S). ¤

Remark. Theorem 12 is formulated as an a priori inequality for f ∈ S. In that case
mf̂ ∈ S ′ so that (mf̂)∨ ∈ S ′. The question arises whether or not (mf̂)∨ is meaningful for

f ∈ Lp(Rn). If 1 < p ≤ 2, then f̂ ∈ L2 + L∞(Rn) (in fact f̂ ∈ Lp′ by Hausdorff-Young),

so that mf̂ ∈ S ′ and therefore (mf̂)∨ ∈ S ′ is well-defined. If p > 2, however, it is known

that there are f ∈ Lp(Rn) such that f̂ ∈ S ′ has positive order (see Theorem 7.6.6 in

Hörmander). For such f it is in general not possible to define (mf̂)∨ in S ′. Similarly,
it is desirable to formulate Theorem 13 on Lp(Rn) rather than on S. This is done in the
following corollary. Observe that Sf is defined pointwise if f ∈ S ′(Rn).

Corollary 14.

i) Let 1 < p <∞. Then for any f ∈ Lp(Rn) one has Sf ∈ Lp and

C−1
p,n‖f‖p ≤ ‖Sf‖p ≤ Cp,n‖f‖p .

ii) Suppose that f ∈ S ′ and that Sf ∈ Lp(Rn) with some 1 < p < ∞. Then
f = g + P where P is a polynomial and g ∈ Lp(Rn). Moreover, Sf = Sg and

C−I
p,n‖Sf‖p ≤ ‖g‖p ≤ Cp,n‖Sf‖p .

Proof. To prove part i), let fk ∈ S so that ‖fk − f‖p → 0 as k → ∞. We claim
that

lim
k→∞
‖Sfk − Sf‖p = 0 . (66)

If (66) holds, the passing to the limit k →∞ is

C−1
p,n‖fk‖p ≤ ‖S(fk)‖p ≤ Cp,n‖fk‖p

implies part i).

To prove (66) one applies Fatou repeatedly. Fix x ∈ Rn. Then

|Sfk(x)− Sf(x)| = |‖{4jfk(x)}∞k=−∞‖`2 − ‖{4jf(x)}∞j=−∞‖`2|
≤ ‖{4jfk(x)−4jf(x)}∞j=−∞‖`2
= S(fk − f)(x) ≤ lim inf

m→∞
S(fk − fm)(x) .

Therefore,

‖Sfk − Sf‖p ≤ lim inf
m→∞

‖S(fk − fm)‖p ≤ Cp,n lim inf
m→∞

‖fk − fm‖p .

The claim (66) now follows by letting k →∞. For the second part we rely on the following
fact about distributions in S ′ (see the proof of Lemma 17 as well as Theorem 6.25 in
Rudin 2): Let u, v ∈ S ′ with 〈u, ϕ〉 = 〈v, ϕ〉 for all ϕ ∈ S with supp ϕ̂ ⊂ Rn\{0}. Then

u− v = P

for some polynomial P .
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We now argue as in the proof of the lower bound in Theorem 13: Let f ∈ S ′ and
h ∈ S with sup ĥ ⊂ Rd\{0}. Then

|〈f, h̄〉| ≤ Cp‖Sf‖p‖S̃h‖p′ ≤ Cp‖Sf‖p‖h‖p′ ,
where S̃ is the modified square function from the proof of Theorem 13. By the Hahn-
Banach theorem there exists g ∈ Lp so that 〈f, h̄〉 = 〈g, h〉 for all h as above satisfying
‖g‖p ≤ Cp‖Sf‖p. By the above mentioned fact about distributions, f = g+P . Moreover,
Sf = Sg and

‖Sf‖p = ‖Sg‖p ≤ C‖g‖p
by part i). ¤

Exercise 24.

a) Show that Theorem 13 fails for p = 1. The intuition is of course to take f = δ0.
For that case you should check that

(Sf)(x) ∼ |x|−n ,

so that Sf /∈ L1(Rn). Now transfer this to L1(Rn) by means of approximate
identities.

b) Show that Theorem 13 fails for p =∞

It is natural to ask at this point whether one can develop a Littlewood-Paley theory
for square functions defined in terms of sharp cut-offs rather than smooth ones as above.
More precisely, suppose we set

(Snewf)2 =
∑

j∈Z
|(χ[2j−1≤|ξ|<2j ]f̂(ξ))∨|2 .

Is it true that
C−1

p ‖f‖p ≤ ‖Snewf‖p ≤ Cp‖f‖p (67)

for 1 < p <∞?

It is a relatively easy consequence of the Lp-boundedness of the Hilbert transform
that the answer is “yes” for the case n = 1 (one dimension). On the other hand, it is
a very non-trivial and famous result of Charles Fefferman that the answer is “no” for
dimensions n ≥ 2. This latter result is based on the existence of Kakeya sets and will
not be discussed in this lecture, see Davis-Chang and the notes by Tom Wolff.

For the courageous reader we have presented the proof of (67) for n = 1 as an exercise.
Alternatively, look into Davis-Chang, Christ.

Exercise 25. In this exercise n = 1.

a) Deduce (67) from Theorem 13 by means of the following “vector-valued” inequal-
ity: Let {Ij}j∈Z be an arbitrary collection of intervals. Then for any 1 < p <∞

∥∥∥
{(

χIj
f̂j

)∨}

j

∥∥∥
Lp(`2)

:=
∥∥∥
( ∑

j

∣∣∣(χIj
f̂j

)∨∣∣∣
2) 1

2
∥∥∥

p
≤ Cp‖{fj}‖Lp(`2) (68)

where {fj}j∈Z are an arbitrary collection of functions in S(R1), say.
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b) Now deduce (68) from Theorem 8 by means of Khinchin’s inequality (Hint:

express the operator f 7→ (χI f̂)∨ by means of the Hilbert transform via the same
procedure which was used in the proof of Theorem 9).

c) By similar means prove the following Littlewood-Paley theorem for functions in
Lp(T): For any f ∈ L1(T) let

Sf =
( ∞∑

j=0

|4jf |2
) 1

2

where

(4jf)(θ) =
∑

2j−1≤|n|<2j

f̂(n)e(nθ)

for j ≥ 1 and 40f(θ) = f̂(0). Show that, for any 1 < p <∞
C−1

p ‖f‖Lp(T) ≤ ‖Sf‖Lp(T) ≤ Cp‖f‖Lp(T) (69)

for all f ∈ Lp(T).
d) As a consequence of (67) with n = 1 show the following multiplier theorem: Let

m : R\{0} → C have the property that, for each j ∈ Z
m(ξ) = mj = constant

for all 2j−1 ≤ |ξ| < 2j. Then, for any 1 < p <∞
‖(mf̂)∨‖Lp(R) ≤ Cp sup

j∈Z
|mj|‖f‖p

for all f ∈ S(R). Prove a similar theorem for Lp(T) using (69).

We now prove the “fractional Leibnitz rule” as an application of the Littlewood-Paley
theorem.

Theorem 14. Let 〈∇〉 denote the Fourier multiplier operator with symbol (1+ |ξ|2) 1
2 ,

and similarly for 〈∇〉s for every real number s. Then the following “fractional Leibnitz
rule” holds for s > 0: For any Schwartz functions f, g ∈ S(Rd)

‖〈∇〉s(fg)‖p ≤ C(s, d, p, p1, p2, p3, p4)
[‖〈∇〉sf‖p1‖g‖p2 + ‖〈∇〉sf‖p3‖g‖p4

]
(70)

where 1 < p <∞ and 1
p

= 1
p1

+ 1
p2

= 1
p3

+ 1
p4

, p1, p2, p3, p4 ∈ (1,∞).

In the notation of (fractional) Sobolev spaces W s,p(Rd), the inequality (70) is of
course the same as

‖fg‖W s,p ≤ C(s, d, p, p1, p2, p3, p4)
[‖f‖W s,p1‖g‖p2 + ‖f‖W s,p3‖g‖p4

]
.

The idea of the proof of Theorem 14 is as follows: Let {∆j}j∈Z be the Littlewood-Paley
multipliers as above. Since the multiplier of 〈∇〉 is smooth around ξ = 0, we will not need
to worry about small frequencies and therefore replace ∆0 with the entire sum

∑
k≤0 ∆k.

Now represent the functions f, g in the form:

f =
∑
j≥0

∆jf , g =
∑

k≥0

∆kg .

58



Then

‖〈∇〉s(fg)‖p =
∥∥ ∑

j,k≥0

〈∇〉s(∆jf∆kg)
∥∥

p

=
∥∥ ∑

j,k≥0
k≤j−10

〈∇〉s(∆jf∆kg)
∥∥

p
+

∥∥ ∑

j,k≥0
j≤k−10

〈∇〉s(∆jf∆kg)
∥∥

p
+

∥∥ ∑

j,k≥0
|j−k|<10

〈∇〉s(∆jf∆kg)
∥∥

p

=: P1 + P2 + P3.

It should be possible to bound P1 by means of the Littlewood-Paley theorem as follows,
at least heuristically:

P1 .
∥∥∥
(∑

j≥0

22js|∆jf |2
∣∣ ∑

k≤j−10

∆kg
∣∣2

) 1
2
∥∥∥

p
(71)

.
∥∥∥
(∑

j≤0

22js|∆jf |2
) 1

2
Mg

∥∥∥
p

.
∥∥∥
(∑

j>0

22js|∆jf |2
) 1

2
∥∥∥

p1

‖Mg‖p2

. ‖f‖W s,p1‖g‖p2 (72)

Here M is the Hardy-Littlewood maximal operators, which is bounded on Lp2 because
of p2 > 1. The expression in (71) is an example of a so-called “paraproduct”. To pass
from (71) to the line below is a simple fact using convolutions, whereas the inequality
sign in (71) should be a rather direct consequence of the Littlewood-Paley theorem since
the Fourier support of ∑

k≤j−10

〈∇〉s(∆jf∆kg)

for fixed j ≥ 0 is a shell of size 2j. That this is indeed so (even without the restriction
s > 0), will be shown in Lemma 23. The term P2 is the same, whereas P3 is different in
the sense that for fixed j the summand

∑

|k−j|≤10

〈∇〉s(∆jf∆kg)

no longer has Fourier support in a shell, but rather in a ball of size 2j. Nevertheless,
because of s > 0 one would expect to still be able to estimate

P3 .
∥∥∥

∑

|j−k|<10

2js|∆jf | |∆kg|
∥∥∥

p

.
∥∥∥
(∑

j

22js|∆jf |2
) 1

2
(∑

k

|∆kg|2
) 1

2
∥∥∥

p

.
∥∥∥
(∑

j

22js|∆jf |2
) 1

2
∥∥∥

p1

∥∥∥
(∑

k

|∆kg|2
) 1

2
∥∥∥

p2

. ‖f‖W s,p1‖g‖p2

To pass to the second line here, we use the Cauchy-Schwartz inequality.

Exercise 26. Use the following Lemma 23 in order to make these estimates for
P1, P2, P3 rigorous. Hint: For P3, do not use Cauchy-Schwartz, but rather resort to M
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again as follows:
∥∥∥

∑

j,k≥0
|j−k|≤10

〈∇〉s∆jf∆kg
∥∥∥

p
.

∥∥∥
( ∑

j,k≥0
|j−k|≤10

22sj|∆jf |2 |∆kg|2
) 1

2
∥∥∥

p

.
∥∥∥
(∑

j≥0

22sj|∆jf |2
) 1

2
Mg

∥∥∥
p

. ‖f‖W s,p1‖g‖p2 .

The following lemma is the main ingredient in the proof of Theorem 14.

Lemma 23. Fix some constant L > 1. Then the following properties hold:

i) Let {fk}k≥0 be Schwartz functions so that supp(f̂k) ⊂ {L−1 2k ≤ |ξ| ≤ L 2k} if k ≥ 1

and supp(f̂0) ⊂ {|ξ| ≤ L}. Then
∥∥∥〈∇〉s

∑

k≥0

fk

∥∥∥
p
≤ C(s, p, d, L)

∥∥∥
(∑

k≥0

22sk|fk|2
) 1

2
∥∥∥

p

if 1 < p <∞ and s ∈ R. Conversely, if fk = ∆kf for some f ∈ S(Rd), then the converse
holds, i.e., ∥∥∥

(∑

k≥0

22sk|fk|2
) 1

2
∥∥∥

p
≤ C(s, p, d)

∥∥〈∇〉sf
∥∥

p

if 1 < p <∞ and s ∈ R.

ii) If {fk}k≥0 are Schwartz functions such that supp(f̂k) ⊂ {|ξ| ≤ L 2k} for all k ≥ 0,
then

‖〈∇〉s
∑

k≥0

fk‖p ≤ C(s, p, d, L)
∥∥∥
(∑

k≥0

22sk|fk|2
) 1

2
∥∥∥

p

if s > 0 and 1 < p <∞.

Proof. Fix a positive integer ν so that 2ν À L2. This insures that

dist
(
supp(f̂k), supp(f̂k+ν)

)À L 2k

for all k ≥ 0. Also, let ψ1 be an even Schwartz function with the property that

supp(ψ1) ⊂ {ξ ∈ Rd | L−1/2 < |ξ| < 2L}, ψ1(ξ) = 1 if L−1 < |ξ| < L

and define ψk via ψk(ξ) = ψ1(2
−k+1ξ) for all k ≥ 1, whereas ψ0 is some Schwartz

functions so that supp(ψ0) is compact and ψ0(ξ) = 1 if |ξ| ≤ L−1. Then, by construction,

fk = ψ̂k ∗ fk for all k ≥ 0. We split the sum into congruence classes modulo ν. Thus,

‖〈∇〉s
∑

k≥0

fk‖p ≤
ν−1∑
j=0

∥∥∥〈∇〉s
∑

k≡j

fk

∥∥∥
p

=
ν−1∑
j=0

∥∥∥
∑

k≡j

〈∇〉s2−ksψ̂k ∗ 2ksfk

∥∥∥
p

=
ν−1∑
j=0

‖(ms,jF̂j)
∨‖p,
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where

Fj :=
∑

k≡j

2ksfk

ms,j(ξ) :=
∑

k≡j

(1 + |ξ|2) s
2 2−ksψ̂k(ξ).

Since ψk is obtained by scaling, it is easy to check that ms,j is a Mikhlin multiplier and
we therefore have by the Mikhlin and Littlewood-Paley theorems

‖〈∇〉s
∑

k≥0

fk‖p .
ν−1∑
j=0

‖(msjF̂j)
∨‖p .

ν−1∑
j=0

‖Fj‖p .
ν−1∑
j=0

∥∥∥(
∑

k≡j

22ks|fk|2) 1
2

∥∥∥
p

.
∥∥∥(

∑

k≥0

22ks|fk|2) 1
2

∥∥∥
p
,

as claimed. To prove the converse, let fk = ∆kf = ψ̂k ∗f , where now ψk are the standard
Littlewood-Paley functions, cf. Lemma 16. In particular, the supports of ψk are disjoint
if k runs through all even or odd integers, respectively. Define ψ̃k to be “fattened up”
versions of ψk, i.e., ψ̃kψk = ψk and supp(ψ̃k) and supp(ψ̃`) are disjoint if k − ` ≥ 3.
Observe that this implies that

ψ`

∑

k≡j

ψ̃k = ψ`ψ̃` = ψ` (73)

for every j = 0, 1, 2 provided ` ≡ j. Here congruences are to be undestood modulo 3.
Finally, we can assume that ψ̃k(ξ) = ψ̃1(2

−k+1ξ) for all k ≥ 1. Hence,

‖
(∑

k≥0

22sk|∆kf |2
) 1

2‖p

.
2∑

j=0

∥∥∥
( ∑

k≥0
k≡j mod 3

22sk|∆kf |2
) 1

2
∥∥∥

p
=

2∑
j=0

∥∥∥
( ∑

k≥0
k≡j mod 3

22sk|∆k(
̂̃ψk ? f)|2

) 1
2
∥∥∥

p

=
2∑

j=0

‖
( ∑

k≥0
k≡j mod 3

|∆k(Fj)|2
) 1

2‖p .
2∑

j=0

‖Fj‖p, (74)

by the Littlewood-Paley theorem and with the definition

Fj :=
∑

`≥0
`≡j mod 3

2s` ̂̃ψ` ∗ f.

Equality in (74) holds because of (73), since the latter implies that ∆k(Fj) = 2sk̂̃ψk ∗ f .
It remains to show that

‖Fj‖p . ‖f‖W s,p (75)

for each 0 ≤ j ≤ 2. To this end define

ms,j(ξ) :=
∑

k≥0
k≡j mod 3

2sk(1 + |ξ|2)− s
2
̂̃ψ(2−kξ)
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so that

Fj =
[
ms,j(1 + |ξ|2) s

2 f̂(ξ)
]∨
.

In order to prove (75) it suffices to show that ms,j is a Mikhlin multiplier. In fact, it is
easy to check that ‖ms‖∞ . 1 and |∂αms(ξ)| ≤ Cα(1 + |ξ|)−|α|. Indeed,

|∇ms(ξ)| .
∑

(1 + |ξ|2)− s
2

{
(1 + |ξ|)−12sk| ˆ̃ψ(2−kξ)|+ 2sk2−k|(∇ ˆ̃ψ)(2−kξ)

}

. (1 + |ξ|)−1,

and similarly for higher derivatives. This finishes the proof of part (i).

Remark for (ii), what about s = 0?

ρ = 2, s = 0 , ‖
∑

k

fk‖22
?

.
∑

k

‖fk‖2

would be true only if there was some orthogonality, not in general. (e.g., take f̂k =

χ[0,1] , N
2

?

. N , no.)

Proof of (ii). Use fact that weight (1 + |ξ|2) s
2 is bigger at the endpoints of the interval

[−C02
k, C02

k] in 1-D.

From (i),

‖
∑

k≥0

fk‖W s,ρ . ‖
(∑

l≥0

22sl
∣∣∣∆l

∑

k≥l

fk

∣∣∣
2) 1

2‖ρ

= ‖
∑

l≥0

∣∣∣
∑

k≥l

2s(l−k)ψl ? 2skfk︸ ︷︷ ︸
wk

∣∣∣
2) 1

2‖ρ

?

. ‖
(∑

k≥0

22sk|fk|2︸ ︷︷ ︸
|wk|2

) 1
2‖ρ

is the statement

‖T({wk}k≥0

)‖Lρ(l2)

?

. ‖{wk}k≥0‖Lρ(l2)

T
({wk}k≥0

)
= {

∑

k≥l≥0

2s(l−k)ψl ? wk}l≥0

→ vector-valued singular integral.

By Hilbert space-valued Calderon-Zygmund theory,

α) T : L2(l2)→ L2(`2) bounded
β) kernel matrix element Kk` = 2s(`−k)ψ`,
‖K(x)‖`2→`2 ≤ B.|x|−d

γ) ‖∇K(x)‖`2→`2 ≤ B.|x|−d−1

why γ) is needed, 1/|x| ? f does not make sense.
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C2-theorem: α), β), γ) ⇒ ‖T‖Lρ(`2)→Lρ(`2) ≤ Cd,ρB,

1 < ρ <∞

Show α)

‖T{wk}k≥0‖2L2(l2) =

∫ (∑

l≥0

∣∣∣
∑

k≥l≥0

Kkl ? wk

∣∣∣
2)
dx

=
∑

l≥0

∫ ∣∣∣
∑

k≥l

2s(l−k)ψ̂(2−lξ)ŵk(ξ)
∣∣∣
2

dξ

.
∫ ∑

l≥0

∣∣ψ̂(2−lξ)
∣∣2

︸ ︷︷ ︸
≤C

∑

k≥l

22s(l−k)

︸ ︷︷ ︸
≤C(s)

∑

k≥l

|ŵk(ξ)|2 dξ

≤ C(s).‖{wk}k≥0‖2L2(l2) .

Show β): Schur’s test

(1) sup
l

∑

k≥l

|Kkl(x)|
?≤ B.|x|−d

(2) sup
k

∑

k≥l≥0

|Kkl(x)|
?≤ B.|x|−d

(1)
∑

k≥l

2s(l−k)|ψl(x)|

≤ C(s)|ψl(x)| = C(s)2ld|ψ(2lx)|
≤ CN(s)2ld(1 + 2k|x|)−N N big.

.
{ |x|−d for 2l|x| < 1

2l(d−N)|x|−N < |x|−d for 2l|x| > 1 .

(2)
∑

k≥l≥0

2s(l−k)|ψl(x)| ≤ CN

∑

k≥l≥0

2s(l−k)(1 + 2l|x|)−N

.
∑

k≥l≥0
2l|x|<1

2s(l−k)︸ ︷︷ ︸
≤1

2ld +
∑

k≥l≥0
2l|x|>1

2s(l−k)︸ ︷︷ ︸
≤1

2ld(2l|x|)−N

︸ ︷︷ ︸
.|x|−d

take N = d+ 1,

︸ ︷︷ ︸
.|x|−d−1

(
|x|−1

)−1

=|x|−d

Show γ) idem, 2ld becomes 2l(d+1), etc.

Note: Vector-valued C2 theory trivially follows from scalar C2 theory.

¤
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CHAPTER 8

Restriction of the Fourier transform, Stein-Tomas theorem,
Strichartz estimates

In the late 1960’s, Elias M. Stein posed the question whether it is possible to restrict
the Fourier transform f̂ of a function f ∈ (Rn) with 1 ≤ p ≤ 2 to the sphere Sn−1 as a
function in Lq(Sn−1) for some 1 ≤ q ≤ ∞. In other words, is there a bound

‖f̂ ¹ Sn−1‖Lq(Sn−1) ≤ C‖f‖Lp(Rn) (76)

for all f ∈ S(Rn), with a constant C = C(n, p, q)? As an example, take p = 1, q = ∞
and C = 1. On the other hand, p = 2 is impossible, as f̂ is no better than a general
L2-function by Plancherel. Stein asked whether it is possible to find 1 < p < 2 so that
for some finite q one has the estimate (76). The following theorem settles the important
case q = 2.

Theorem 15 (Tomas-Stein). For every dimension n ≥ 2 there is a constant C(n)
such that for all f ∈ Lp(Rn)

‖f̂ ¹ Sn−1‖L2(Sn−1) ≤ C(n)‖f‖Lp(Rn) (77)

with p ≤ pn =
frac2n+ 2n+ 3. Moreover, this bound fails for p > pn.

The left-hand side in (77) is
(∫

Sn−1 |f̂(w)|2dσ(w)
) 1

2
, where σ is the surface measure

on Sn−1.

We shall prove this theorem in this section, but first some remarks are in order.
Firstly, there is nothing special about the sphere. In fact, if S0 is a compact subset of a
hypersurface S with nonvanishing Gaussian curvature, then

‖f̂ ¹ S0‖L2(S0) ≤ C(n, S0)‖f‖
L

2n+2
n+3 (Rn)

(78)

for any f ∈ S(Rn). For example, take the truncated paraboloid

S0 := {(ξ′, |ξ′|2)|ξ′ ∈ Rn−1, |ξ′| ≤ 1}
which is important for the Schrödinger equation. On the other hand, (78) fails for

S0 := {(ξ′, |ξ′|)|ξ′ ∈ Rn−1 , 1 ≤ |ξ′| ≤ 2}
since this piece of the cone has exactly one vanishing principal curvature, namely the
one along a generator of the one. This latter example is of course relevant for the wave
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equation, and we will need to find a substitute of (78) for the wave equation. A much
simpler remark concerns the range 1 ≤ p ≤ pn in Theorem 15: for p = 1, one has

‖f̂ ¹ Sn−1‖L2(Sn−1) ≤ ‖f̂ ¹ Sn−1‖∞|Sn−1| 12 ≤ ‖f‖L1(Rn)|Sn−1| 12 . (79)

Hence, it suffices to prove Theorem 15 for p = pn since the cases 1 ≤ p < pn follows by
interpolation with (79). The Stein-Tomas theorem is more accessible than the general
restriction conjecture, see below, because of the appearance of L2(Sn−1) on the left-hand
side. This allows one to use duality in the proof. To do so, we need to identify the
adjoint of the restriction operator

R : f 7→ f̂ ¹ Sn−1 .

Lemma 24. For any finite measure µ in Rn, and any f, g ∈ S(Rn) one has the
identity ∫

Rn

f̂(ξ)¯̂g(ξ)dµ(ξ) =

∫

Rn

f(x)(ḡ ∗ µ̂)(x)dx .

Proof. We use the following elementary identity for tempered distributions: If µ is
a finite measure, and φ ∈ S, then

φ̂µ = φ̂ ∗ µ̂ .
Therefore,

∫

Rn

f̂(ξ)¯̂g(ξ) dµ(ξ) =

∫

Rn

f(x)̂̂̄gµ(x) dx =

=

∫

Rn

f(x)(̂̂̄g ∗ µ̂)(x) dx =

∫

Rn

f(x)(ḡ ∗ µ̂)(x) dx

since ̂̂̄g = ̂̄̌g = ḡ. ¤

Lemma 25. Let µ be a finite measure on Rn, and g ≥ 2. Then the following are
equivalent:

a) ‖f̂µ‖Lq(Rn) ≤ C‖f‖L2(µ) for all f ∈ S (Rn)
b) ‖ĝ‖L2(µ) ≤ C‖g‖Lq′ (Rn) for all g ∈ S (Rn)

c) ‖µ̂ ∗ f‖Lq(Rn) ≤ C2‖f‖Lq′ (Rn) for all f ∈ S (Rn).

Proof. By the previous lemma, for any g ∈ S(Rn),

‖ĝ‖L2(µ) = sup
‖f‖L2(µ)=1,f∈S

∣∣∣∣
∫

Rn

ĝ(ξ)f(ξ) dµ(ξ)

∣∣∣∣ = sup
f∈S,‖f‖L2(µ)=1

∣∣∣∣
∫

Rn

g(x)f̂µ(x) dx

∣∣∣∣ (80)

Hence, if a) holds, then the right-hand side of (80) is no larger than ‖g‖Lq′ (Rn) and

b) follows. Conversely, if b) holds, then the entire expression in (80) is no larger than
C‖g‖Lq′ (Rn), which implies a). Thus a) and b) are equivalent with the same choice of C.

Clearly, applying first b) and then a) with f = ĝ yields

‖̂̂gµ‖Lq(Rn) ≤ C‖g‖Lq′ (Rn)
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for all g ∈ S(Rn). Since ̂̂gµ = g(−·) ∗ µ̂, c) follows.
∫
g(x) (µ̂, ∗f) (x) dx =

∫
g(x)

(̂
µf̌

)
(x) dx,=

∫
ĝ(ξ)f̌(ξ) dµ(ξ) .

for any f, g ∈ S(Rn). Hence, if c) holds then
∣∣∣∣
∫

Rn

ĝ(ξ)f̌(ξ) dµ(ξ)

∣∣∣∣ ≤ C2‖g‖Lq′ (Rn)‖f‖Lq′ (Rn) .

Now set f(x) = g(−x). Then
∫

Rn

|ĝ(ξ)|2 dµ(ξ) ≤ C2‖g‖2
Lq′ (Rn)

,

which is b). ¤

Setting µ = σ = σSn−1 , the surface measure of the unit sphere in Rn, one now obtains
the following:

Corollary 15. The following assertions are equivalent

a) The Stein-Tomas theorem in the “restriction form”:

‖f̂ ¹ Sn−1‖L2(σ) ≤ C‖f‖Lq′ (Rn)

for q′ = 2n+2
n+3

and all f ∈ S(Rn)
b) the “extension form” of the Stein-Tomas theorem

‖ĝσSn−1‖Lq(Rn) ≤ C‖g‖L2(σ)

for q = 2n+2
n−1

and all g ∈ S(Rn).
c) The composition of a) and b): for all f ∈ S(Rn)

‖f ∗ σ̂Sn−1‖Lq(Rn) ≤ C2‖f‖Lq′ (Rn)

with q = 2n+2
n−1

.

Proof. Set µ = σSn−1 = σ in Lemma 21. ¤

Exercise 27. In general, a) and b) above remain true, whereas c) requires L2(σ).
More precisely, show the following: The restriction estimate

‖f̂ ¹ Sn−1‖Lp(σ) ≤ C‖f‖Lq′ (Rn)∀g ∈ S
is equivalent to the extension estimate

‖ĝσSn−1‖Lq(Rn) ≤ C‖g‖Lp′ (σ)∀g ∈ S .
We now show via part b) of Corollary 15 that the Stein-Tomas theorem is optimal. This
is the well-known Knapp example.

Lemma 26. The exponent pn = 2n+2
n+3

in Theorem 15 is optimal.

67



Proof. This is equivalent to saying that the exponent q = 2n+2
n−1

in part b) of the
previous corollary is optimal. Fix a small δ > 0 and let g ∈ S such that g = 1 on
B(en;

√
δ), g ≥ 0, and supp(g) ⊂ B(en; 2

√
δ) where en = (0, . . . , 0, 1)

Then

|ĝσ(ξ)| =
∣∣∣∣∣
∫
e−2πi[x′·ξ′+ξn(

√
1−|x′|2−1)] g(x

′,
√

1− |x′|2)√
1− |x′|2 dx′

∣∣∣∣∣

≥
∣∣∣∣∣
∫

cos(2π(x′ · ξ′ + ξn(
√

1− |x′|2 − 1)))
g(x′,

√
1− |x′|2)√

1− |x′|2 dx′
∣∣∣∣∣

≥ cos
π

4

∫
g dσ ≥ C−1

(√
δ
)n−1

(81)

provided |ξ′| ≤ (
√

δ)−1

100
, |ξn| ≤ δ−1

100
. Indeed, under these assumptions, and for δ > 0 small,

|x′ · ξ′ + ξn

(√
1− |x′|2 − 1

) ∣∣ ≤
√
δ · (
√
δ)−1

100
+
δ−1

100

(√
δ
)2

≤ 1

50
,

so that the argument of the cosine in (81) is smaller than 2π
50
≤ π

4
in absolute value, as

claimed.

Hence,

‖ĝσSn−1‖Lq(Rn) ≥ C−1δ
(n−1)

2 ·
(
δ−

(n−1)
2 · δ−1

) 1
q

= C−1δ
n−1

2 δ−
(n+1)

2q

whereas ‖g‖L2(σ) ≤ Cδ
n−1

4 . It is therefore necessary that

n− 1

4
≤ n− 1

2
− n+ 1

2q

or q ≥ 2n+2
n−1

, as claimed. ¤

For the proof of Theorem 15 we need the following decay estimate for the Fourier
transform of the surface measure σSn−1 :

∣∣σ̂Sn−1(ξ)
∣∣ ≤ C(1 + |ξ|)−(n−1

2
) (82)

This is a well-known fact that is most easily proved by means of the method of stationary
phase, see Tom Wolff’s notes, for example, or Hömander’s book. It is easy to see that
(82) imposes a restriction on the possible exponents for an extension theorem of the form

‖f̂σSn−1‖Lq(Rn) ≤ C‖f‖Lp(Sn−1) . (83)

Indeed, setting f = 1 implies that one needs

q >
2n

n− 1

by (82). On the other hand, one has
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Exercise 28. Check by means of Knapps’s example from Lemma 22 that (83) can
only hold for

q ≥ n+ 1

n− 1
p′ . (84)

It is a famous conjecture of Elias Stein that (83) holds under these conditions, i.e.,
provided

∞ ≥ q >
2n

n− 1
and q ≥ n+ 1

n− 1
p′ .

Observe that the Stein-Tomas theorem with q = 2n+2
n−1

and p = 2 is a partial result in this
direction. In two dimensions the conjecture was proved in the early 1970’s by Fefferman
and Stein. But in higher dimensions it appears to be a very difficult problem with only
little progress for n ≥ 3. It is known, see Wolff’s notes, that the full restriction conjecture
implies the Kakeya conjecture on the Hausdorff dimensions of Kakeya sets in dimension
n ≥ 3. This latter conjecture appears to be also very difficult.

Proof of the Stein-Tomas theorem for p < 2n+2
n+3

. Let
∑

j∈Z ψ(2−jx) = for

x 6= 0 be the usual partition of unity. By (Lemma 21 and) Corollary 15 it is neces-
sary and sufficient to prove

‖f ∗ σ̂Sn−1‖Lp′ (Rn) ≤ C‖f‖Lp(Rn)

for all f ∈ S(Rn).

Firstly, let ϕ(x) = 1−∑
j≥0 ψ(2−jx); clearly, ϕ ∈ C∞0 (Rn), and

1 = ϕ(x),+
∑
j≥0

ψ(2−jx) for all x ∈ Rn .

Now observe that ϕσ̂Sn−1 ∈ C∞0 so that

‖f ∗ ϕσ̂Sn−1‖Lp′ (Rn) ≤ C‖f‖Lp(Rn) (85)

with C = ‖ϕσ̂Sn−1‖Lr where 1 + 1
p′ = 1

r
+ 1

p
, i.e., 2

p′ = 1
r
. It therefore remains to control

Kj := ψ(2−jx)σ̂Sn−1(x) in the sense

‖f ∗Kj‖Lp′ (Rn) ≤ C2−jε‖f‖Lp(Rn)∀f ∈ S(Rn) (86)

for all j ≥ 0 and some small ε > 0. It is clear that the desired bound follows by summing
(85) and (86) over j ≥ 0. To prove (86) we interpolate a 2 −→ 2 and 1 −→∞ bound as
follows:

‖f ∗Kj‖L2 = ‖f̂‖L2‖K̂j‖L∞ =

= ‖f‖L2‖2njψ̂(2j·) ∗ σSn−1‖L∞
≤ C‖f‖L22nj · 2−j(n−1) = C2j‖f‖L2 .

(87)

To pass to the estimate (87) one basically uses that supx σSn−1(B(x, r)) ≤ Crn−1.

On the other hand,

‖f ∗Kj‖∞ ≤ ‖Kj‖∞‖f‖1
≤ C2−j

(n−1)
2 ‖f‖1 ,

(88)
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since the size of Kj is controlled by (82). Interpolating (87) with (88) yields

‖f ∗Kj‖p′ ≤ C2−j n−1
2

θ2j(1−θ)‖f‖p
where 1

p′ = θ
∞ + 1−θ

2
= 1−θ

2
. We thus obtain (86) provided

0 <
n− 1

2
θ − (1− θ) =

n+ 1

2
θ − 1 =

= (n+ 1)

(
1

2
− 1

p′

)
− 1 =

n− 1

2
− n+ 1

p′
.

This is the same as p′ > 2n+2
n−1

or p < 2n+2
n+3

, as claimed. ¤
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CHAPTER 9

The endpoint for the Stein-Tomas theorem and Strichartz
estimates

The proof of the Stein-Tomas theorem in Chapter 88 fails because (86) leads to a
divergent series with ε = 0, which is the case of p = 2n+2

n+3
. One therefore has to avoid

interpolating the operator bounds on each dyadic piece separately. The idea is basically
to sum first and then to interpolate, rather than interpolating first and then summing.
Of course, one needs to explain what it means to sum first: Recall that the proof of the
Riesz-Thorin interpolation theorem is based on the three lines theorem from complex
analysis. The key idea in our context is to sum the dyadic pieces Tj : f 7→ f ∗ Kj

together with complex weights wj(z) in such a way that

Tz :=
∑
j≥0

wj(z)Tj

converges on the strip 0 ≤ <z ≤ 1 to an analytic, operator valued function with the
property that

Tz : L1 −→ L∞ for <z = 1

and

Tz : L2 −→ L2 for <z = 0

It then follows that Tθ = Lp(Rn) −→ Lp′(Rn) for 1
p′ = 1−θ

2
.

Although this describes the idea behind complex interpolation, it is rarely imple-
mented in this fashion. Rather, one tries to embed the operator under consideration into
an analytic family that is analytically tractable.

Proof of the endpoint for Tomas-Stein. We shall consider a surface of non-
zero curvature which can be written as a graph: ξn = h(ξ′), ξ′ ∈ Rn−1. Define

Mz(ξ) =
1

Γ(z)

(
ξn − h(ξ′)

)z−1

+
χ1(ξ

′)χ2

(
ξn − h(ξ′)

)
(89)

where χ1 ∈ C∞0 (Rn−1), χ2 ∈ C∞0 (R) are smooth cut-off-functions, Γ is the Gamma-
function, and <z > 0. We will show that

Tzf := (Mzf̂)∨ (90)

can be defined by means of analytic continuation to <z ≤ 0. Moreover,

‖Tz‖2−→2 ≤ B(z) for <z = 1 . (91)
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‖Tz‖1−→∞ ≤ A(z) for <z = −n− 1

2
(92)

where A(z), B(z) grow now faster than eC|z|2 as |=z| −→ ∞.

Since one easily checks that

M0(ξ) = χ1(ξ
′)δ0(ξn − h(ξ′)) dξ′ , (93)

see (96), it follows from Stein’s complex interpolation theorem that

f 7→ M̂0 ∗ f
dent is bounded from Lp −→ Lp′ where

1

p′
=

θ

∞ +
1− θ

2
, 0 = −θn− 1

2
+ 1− θ

which implies that
1

p′
=

n− 1

2n+ 2
,

as desired. It remains to check (91)–(93). To do so, recall firstly that 1
Γ(z)

is an entire

function with zeros at z = 0, −1, −2 , . . .. It has the product representation

1

Γ(z)
= zeγz

∞∏
ν=1

(
1 +

z

ν

)
e−z/ν ,

t where z = x+ iy. Thus,
∣∣∣∣

1

Γ(z)

∣∣∣∣
2

≤ |z|2, e2γx

∞∏
ν=1

[(
1 +

x

ν

)2

+
y2

ν2

]
e−

2
ν

x

≤ |z|2e2γx

∞∏
ν=1

[
e

2x
ν

+
|z|2
ν2 e

−2x
ν

]

= |z|2e2γxe|z|
2 π2

6 .

(94)

In particular, if <z = 1, then

|Mz(ξ)| ≤ (1 + y2)e2γe(1+y2)π2

6 χ1(ξ
′)χ2

(
ξn − h(ξ′)

)

≤ Cecy2

for all ξ .

Therefore, (91) holds with the stated bound on B(z). Now let ϕ ∈ S(Rn). Thus, for
<z > 0,∫

Rn

Mz(ξ)ϕ(ξ) dξ =
1

Γ(z)

∫

Rn−1

∫ ∞

0

χ2(t)ϕ(ξ′, t+ h(ξ′))tz−1 dtχ1(ξ
′) dξ′

= − 1

zΓ(z)

∫

Rn−1

∫ ∞

0

d

dt

[
χ2(t)ϕ

(
ξ′, t+ h(ξ′)

)]
tz dtχ1(ξ

′) dξ′
(95)

Observe that the right-hand side is well-defined for <z > −1. Furthermore, at z = 0,
using zΓ(z)

∣∣
z=0

= 1
∫

Rn

M0(ξ)ϕ(ξ) dξ =

∫

Rn−1

χ2(0)ϕ(ξ′, h(ξ′))χ1(ξ
′) dξ′
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which shows that the analytic continuation of Mz to z = 0 is equal to (setting χ2(0) = 1)

M0(ξ) = χ1(ξ
′) dξ′δ0(ξn − h(ξ′)) . (96)

Clearly, M0 is proportional to surface measure on a piece of the surface

S =
{
(ξ′, h(ξ′))|ξ′ ∈ Rn−1

}
.

This is exactly what we want, since we need to bound σ̂S ∗ f .

Now recall that (95) defined the analytic continuation to <z > −1. Integrating by
parts again extends this to <z > −2 and so forth. Indeed, the right-hand side of

∫

Rn

Mz(ξ)ϕ(ξ) dξ =
(−1)k

z(z + 1) · . . . · (z + k − 1)Γ(z)

∫

Rn−1

χ1(ξ
′)

∫ ∞

0

tz+k−1

dk

dtk
[
χ2(t)ϕ(ξ′, ξn + k(ξ′))

]
dt dξ′

is well-defined for all <z > −k.
Next we prove (92) by means of an estimate on ‖M̂z‖∞. This requires the following

preliminary calculation:

Let N be a positive integer such that N > <z + 1 > 0. Then we claim that

∣∣∣∣
∫ ∞

0

e−2πitτ tzχ2(t) dt

∣∣∣∣ ≤
CN(1 + |z|)N

1 + <z (1 + |τ |)−<z−1 . (97)

To prove (97) we will distinguish large and small tτ . Let ψ ∈ C∞0 (R) be such that
ψ(t) = 1 for |t| ≤ 1 and ψ(t) = 0 for |t| ≥ 2. Then, since 0 ≤ χ2 ≤ 1,

∣∣∣∣
∫ ∞

0

e−2πitτ tzψ(tτ)χ2(t) dt

∣∣∣∣ ≤

≤
∫ ∞

0

t<zψ(t|τ |) dt ≤ |τ |−<z−1

∫ 2

0

t<z dt

≤ C

<z + 1
, |τ |−<z−1 .

(98)

If |τ | ≤ 1, then (98) is no larger than

∫ ∞

0

t<zχ2(t) dt ≤ C

<z + 1
.

Hence

(98) ≤ C

1 + <z (1 + |τ |)−<z−1 (99)
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in all cases. To treat the case tτ large, which implies that τ is large, we exploit cancel-
lation in the phase. More precisely,

∣∣∣∣
∫ ∞

0

e−2πitτ tz(1− ψ(tτ))χ2(t) dt

∣∣∣∣ ≤

≤
(

1

2π|τ |
)N ∫ ∞

0

∣∣∣∣
dN

dτN
[tz(1− ψ(tτ))χ2(t)]

∣∣∣∣ dt

≤ CN

(
1

2π|τ |
)N ∫ ∞

0

dt
[|z(z − 1) · . . . · (z −N + 1)|t<z−N(1− ψ(tτ))χ2(t)

+t<z|ψ(N)(tτ)|τNχ2(t) + t<z(1− ψ(tτ))|χ(N)
2 (t)|

]

≤ CN

(
1

2π|τ |
)N

|z(z − 1) · . . . · (z −N + 1)|
∫ ∞

1
τ

t<z−N dt+
C

(2π|τ |)N
|τ |N |τ |−<z−1

+ C|τ |−N

∫ 1

0

t<z|χ(N)
2 (t)| dt

(100)

≤ CN

[|z(z − 1) · . . . · (z −N + 1)|+ 1
]|τ |−<z−1 + CN |τ |−N . (101)

Observe that the indefinite integral in (100) converges because of <z − N < −1.
Moreover, the second term in (101) is ≤ |τ |<z−1 by the same condition (recall that we
are taking τ to be large). Hence (97) follows from(99) and (101). We now compute

M̂z(x). Let k be a positive integer with <z > −k. Then

M̂z(x) =

∫
e−2πix·ξ 1

Γ(z)
(ξn − h(ξ′))z−1

+ χ1(ξ
′)χ2(ξn − h(ξ′)) dξ′ dξn

=
1

Γ(z)

∫ ∞

0

e−2πixnttz−1χ2(t) dt

∫

Rn−1

e−2πi[x′·ξ′+xnh(ξ′)]χ1(ξ
′) dξ′

=
(−1)k

Γ(z)z · (z − 1) · . . . · (z − k + 1)

∫ ∞

0

(
e−2πixntχ2(t)

)(k)
tz+k−1 dt·

·
∫

Rn−1

e−2πi[x′·ξ′+xnh(ξ′)]χ1(ξ
′) dξ′

(102)

where the final expression is well-defined for <z > −k. We are interested in <z = −n−1
2

;
so pick k ∈ Z+ such that 1− k ≤ <z < −k + 2, ie, n+1

2
≤ k < n+1

2
+ 1. Now apply (97)

with z + k− 1 instead of z and with N = 2. Then the first integral (102) is bounded by

∣∣∣∣
∫ ∞

0

(
e−2πixntχ2(t)

)(k)
tz+k−1 dt

∣∣∣∣ ≤

≤ C(1 + |z|)2

<z + k
(1 + |xn|)−<z−k · Ck(1 + |xn|)k

≤Ck(1 + |z|)2(1 + |xn|)−<z .

(103)
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On the other hand, the second integral in (102) is controlled by the stationary phase
estimate, cf. (82),∣∣∣∣

∫

Rn−1

e−2πi[x′·ξ′+xnh(ξ′)]χ1(ξ
′) dξ′

∣∣∣∣ ≤ C(1 + |x|)−(n−1
2 ) (104)

Observe that the growth in |xn| for <z = −n−1
2

is exactly balanced by the decay in

(104). One concludes that for <z = − (n−1)
2

and with k as in (103)

‖M̂z‖∞ ≤ Cn

∣∣∣∣
1

Γ(z)z · (z − 1) · . . . · (z − k + 1)

∣∣∣∣ (1 + |z|)2 ,

see (102)–(104). Thus (92) follows from the growth estimate (94). ¤

Now suppose we have the Schrödinger equation[
1
i
∂tu+ 1

2π
4Rn u = 0
u|t=0 = f .

Then

u(t, x) =

∫

Rn

e2πi(x·ξ+t|ξ|2)f̂(ξ) dξ

= (f̂µ)∨(t, x)
(105)

where µ is the measure in Rn+1 defined∫

Rn+1

F (ξ, τ) dµ(ξ, τ) =

∫

Rn

F (ξ, |ξ|2) dξ

for all F ∈ C0(Rn+1).

Now let ϕ ∈ C∞0 (Rn+1), ϕ(ξ, τ) = 1 if |ξ|+|τ | ≤ 1. Then the endpoint of Stein-Tomas
applies and one has

‖(f̂ϕµ)∨‖Lq(Rn+1) ≤ C‖f̂‖L2(ϕµ)

where q = 2n+4
n

= 2 + 4
n
. In other words, if suppf̂ ⊂ B(0, 1), then

‖(f̂µ)∨‖
L2+ 4

n (Rn+1)
≤ C‖f̂‖L2(Rn) = C‖f‖L2(Rn) . (106)

This is the well-known Strichartz estimate under the additional condition
suppf̂ ⊂ B(0, 1). To remove it, one can rescale. Let

fλ(x) = f(x/λ) and

uλ(x, t) = u(x/λ, t/λ2) .

Then [
1
i
∂tuλ + 1

2π
4 uλ = 0
uλ|t=0 = fλ

If suppf̂ is compact, then suppf̂λ ⊂ B(0, 1) if λ is large. Hence, in view of (105) and
(106),

‖uλ‖Lq(Rn+1) ≤ C‖fλ‖L2(Rn) . (107)
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However,
‖fλ‖L2(Rn) = λ

n
2 ‖f‖L2(Rn) ,

and
‖uλ‖Lq(Rn+1) = λ

n+2
q ‖u‖Lq = λ

n
2 ‖u‖Lq .

Hence (107) is the same as

‖u‖Lgq(Rn+1) ≤ C‖f‖L2(Rn) (108)

for all f ∈ S will suppf̂ compact. These functions are dense in L2(Rn), and (108), which
is the Strichartz bound for the Schrödinger equation in n+ 1 dimensions, follows for all
f ∈ L2(Rn).

For the inhomogeneous equation[
1
i
∂tu+ 1

2π
4Rn u = F
u|t=0 = 0

(109)

use Duhamel’s principle and dispersive inequality for the free evolution, i.e.,

‖e− i
2π
4tf‖Lp′ (Rn) ≤ C|t|−n

2
( 1

p
− 1

p′ )‖f‖Lp(Rn)

for 1 ≤ p ≤ 2. Thus, if u solves (109), then

‖u(t, ·)‖Lp′ ≤
∫ t

0

C|t− s|−n
2
( 1

p
− 1

p
)‖F (s, ·)‖p ds

≤ C

∫ ∞

−∞
|t− s|−n

2
( 1

p
− 1

p′ )‖F (s, ·)‖p ds

Hence
‖u‖Lp′ (Rn+1) ≤ C‖F‖Lp(Rn+1)

provided

1 +
1

p′
=

1

p
+
n

2

(
1

p
− 1

p′

)
(110)

and

0 <
n

q

(
1

p
− 1

p′

)
< 1 . (111)

Now (110) is the same as

2

p′
=
n

2

(
1− 2

p′

)
=
n

2
− n

p′

or
1

p′
=

n

2(n+ 2)
, p′ = 2 +

4

n

and (111) also holds.

Hence, solutions of the general equation{
1
i
∂tu+ 1

2π
4 u = F
u|t=0 = f
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satisfy
‖u‖

L2+ 4
n (Rn+1)

≤ C
[‖f‖L2(Rn) + ‖F‖

L
2n+4
n+4 (Rn+1)

]

for every n ≥ 1.

The case of the wave equation:

Let Γ = {x ∈ Rn | 1 ≤ |x′| = xn ≤ 2} be a section of a light cone in Rn. Since the
cone has one vanishing principal curvature, the Fourier transform of the surface measure
on Γ decays as follows:

|ϕ̂σΓ(ξ)| ≤ C(1 + |ξ|)− (n−2)
2 . (112)

It is not hard to see that (112) is optimal for all directions ξ belonging to the dual
cone Γ∗ (which is equal to Γ if the opening angle is 90◦). It is quite clear that the complex
interpolation method from above therefore implies that there is the following restriction
estimate for Γ:

‖f̂ ¹ Γ‖L2(σΓ) ≤ C‖f‖Lp(Rn)

where p = 2n
n+2

and n ≥ 3.

Theorem 16. Let Γ be the cone in Rn, n ≥ 3, equipped with the measure dµ(ξ) = dξ′
|ξ′| .

Then (∫

Γ

|f̂(ξ)|2 dµ(ξ)

) 1
2

≤ C‖f‖Lp(Rn) (113)

with p = 2n
n+2

.

Proof. Let Γ be the cone restricted to 1 ≤ |ξn| ≤ 2. Then
(∫

λ≤|ξ|≤2λ

|f̂(ξ)|2 dµ(ξ)

) 1
2

≤
(∫

Γ

|f̂(λξ)|2dµ(λξ)

) 1
2

≤ Cλ
n−2

2 ‖ 1

λn
f

(
1

λ
·
)
‖Lp(Rn)

= Cλ
n−2

2 · λ−n · λn
p ‖f‖Lp(Rn) = C‖f‖Lp(Rn)

(114)

since
n− 2

2
− n+

n

p
= −n+ 2

n
+
n+ 2

n
= 0 .

To sum up (114) for λ = 2j we use the Littlewood-Paley theorem: Since p < 2,

‖f̂‖L2(µ) ≤ C

(∑
j

‖ 4j f‖2Lp

) 1
2

≤ C
∥∥∥
(∑

j

∣∣4j f
∣∣2

) 1
2 ∥∥∥

Lp

≤ C‖f‖Lp(Rn) ,

which is (113). ¤
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Now suppose we have the wave equation



(∂2
t −4Rn) u = 0

u |t=0 = 0 , ∂tu|t=0 = f

then

u(t, x) =

∫
e2πi(t|ξ|+xξ)f̂(ξ)

dξ

4πi|ξ| +
∫
e2πi(−t|ξ|+x·ξ)f̂(ξ)

dξ

4πi|ξ|
= (Fµ)∨(x, t) where F (ξ,±|ξ|) = f̂(ξ), dµ(ξ,±|ξ|) =

dξ

|ξ| .

By the dual to Theorem 16,

‖(F µ)∨‖Lp′ (Rn+1) ≤ C‖F‖F 2(µ) (115)

where p′ = 2n+2
n−1

. Clearly,

‖F‖L2(µ) =

(∫

Rn

|f̂(ξ)|2 dξ|ξ|
) 1

2

= ‖f‖
Ḣ− 1

2

so that (115) implies that

‖u‖
L

2n+2
n−1 (Rn+1)

≤ C‖f‖
Ḣ− 1

2 (Rn)
,

which is the standard Strichartz estimate for the wave equation in n + 1 dimensions,
n ≥ 2.

Remark. We have followed the original derivation of the Strichartz estimates. The
are other ways of proving these inequalities which are perhaps somewhat simpler. For
example, let

T : L2(Rn)→ Lp(Rn+1), T f := e−
i

2π
4f

be the evolution operator of the free Schrödinger equation. Then it is easy to check that
the dispersive inequality for the free Schrödinger equation, viz.

‖e− i
2π
4tf‖Lp′ (Rn) ≤ C|t|−n

2
( 1

p
− 1

p′ )‖f‖Lp(Rn)

together with the fractional integration theorem implies that

TT ∗ : Lp′(Rn+1)→ Lp(Rn+1)

provided p′ = 2 + 4
n

and n ≥ 1.
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CHAPTER 10

Some pointwise questions for Fourier series: the case of L1(T)

In this lecture we return to Fourier series on the circle. In contrast to the our
previous discussion in the first four lecture, which dealt with Lp(T) convergence, we now
turn to pointwise questions. This area is regarded as hard. Indeed, a famous theorem of
Carleson [2] shows that Fourier series of L2 functions converge almost everywhere. This
was extended by Hunt to Lp(T), 1 < p < ∞. Long before these results, Kolmogoroff
proved that Fourier series of functions on L1(T) do not converge almost everywhere. It
is this result which we discuss in Chapter 10. The proof strategy used in this chapter is
the standard one of Kolmogoroff, although the specific approach which we follow is due
to Stein [12]. The following lemma is a consequence of the Borel-Cantelli lemma.

Lemma 27. Let {En}∞n=1 be a sequence of measurable subsets of T such that

∞∑
n=1

|En| =∞ .

Then there exists a sequence {xn}∞n=1 ∈ T so that

∞∑
n=1

χEn(x+ xn) =∞ (116)

for almost every x ∈ T.

Proof. View Ω :=
∏∞

n=1 T as a probability space equipped with the infinite product
measure. Given x ∈ T, let Ax ⊂ Ω be the event characterized by (116). We claim that

P(Ax) = 1 ∀x ∈ T . (117)

By Fubini, it then follows that for almost every {xn}∞n=1 ∈ Ω, the event (116) holds for
almost every x ∈ T. Hence fix an arbitrary x ∈ T. Then

Ax =
{
{xn}∞n=1 | x belongs to infinitely many En(·+ xn)

}

=
{
{xn}∞n=1 | x ∈

∞⋂
N=1

∞⋃
m=N

Em(·+ xm)
}

=
∞⋂

N=1

AN ,
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where

Ac
N :=

{
{xn}∞n=1 | x ∈

∞⋂
m=N

Ec
m(·+ xm)

}

=
{
{xn}∞n=1 | xm ∈ Ec

m(·+ x) ∀m ≥ N
}
.

By definition of the product measure on Ω, it therefore follows that

P(Ac
N) =

∞∏
m=N

(1− |Em|) = 0

by assumption (116). Hence (117) holds, and the lemma follows. ¤

It will come as no surprise to the reader that the theory of almost everywhere con-
vergence of Fourier series is intimately tied up with the theory of the maximal function
(known as Carleson maximal operator)

Cf(x) := sup
n
|Snf(x)| , (118)

where Sn are the partial sum operators of Fourier series. Previously, we encountered
the Hardy-Littlewood maximal function, which controlled the almost everywhere con-
vergence of aproximate identities, see Theorem 4. Recall that the underlying bound on
the maximal function was the weak-L1 bound. Stein [12] discovered that this property is
also necessary for almost everywhere convergence. More precisely, we have the following
fact. It will be formulated in greater generality than Fourier series.

Lemma 28. Let Tn be a sequence of operators, bounded on L1(T), and translation
invariant. Define

Mf(x) := sup
n≥1
|Tnf(x)| ,

and assume that ‖Mf‖∞ <∞ for every trigonometric polynomial f on T. Now suppose
that for any f ∈ L1(T),

|{x ∈ T |Mf(x) <∞}| > 0 .

Then there exists a constant A so that

|{x ∈ T | Mf(x) > λ}| ≤ A

λ
‖f‖1

for any f ∈ L1(T) and λ > 0.

Proof. We will prove this by contradiction. Hence, assume that there exists a
sequence {fj}∞j=1 ⊂ L1(T) with ‖fj‖1 = 1 for all j ≥ 1, as well as λj > 0 so that

Ej := {x ∈ T |Mfj(x) > λj}
satisfies

|Ej| > 2j

λj

for each j ≥ 1. Be definition ofM we then also have

lim
m→∞

|{x ∈ T | sup
1≤k≤m

|Tkfj(x)| > λj}| > 2j

λj

.
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for each j ≥ 1. Hence there are Mj <∞ with the property that

|{x ∈ T | sup
1≤k≤Mj

|Tkfj(x)| > λj}| > 2j

λj

.

for each j ≥ 1. Let σN denote the N th Cesaro sum, i.e., σNf = KN ∗ f , where KN is the
Fejer kernel. Since each Tj is bounded on L1, we conclude that

lim
N→∞

|{x ∈ T | sup
1≤k≤Mj

|TkσNfj(x)| > λj}| > 2j

λj

.

Hence, we assume from now on that each fj is a trigonometric polynomial. Let mj be a
positive integer with the property that

mj ≤ λj

2j
< mj + 1 .

Then
∞∑

j=1

mj|Ej| =∞

by construction. Counting each of the sets Ej with multiplicity mj, the previous lemma
implies that there exists a sequence of points xj,`, j ≥ 1, 1 ≤ ` ≤ mj, so that

∞∑
j=1

mj∑

`=1

χEj
(x− xj,`) =∞ (119)

for almost every x ∈ T. Let

δj :=
1

j2mj

and define

f(x) :=
∞∑

j=1

mj∑

`=1

±δjfj(x− xj,`) ,

where the signs ± will be chosen randomly. First note that irrespective of the choice of
these signs,

‖f‖1 ≤
∞∑

j=1

mjδj <∞.

The point is now to choose the signs so that

Mf(x) =∞
for almost every x ∈ T. For this purpose, select x ∈ T such that x ∈ Ej + xj,` for
infinitely many j and ` = `(j) (just pick one such `(j) if there are more than one). Since
the Tn are translation invariant, so isM. Hence

Mfj(x− xj,`) > λj

for infinitely many j. We conclude that for those j there is a positive integer n(j, x) so
that

|Tn(j,x)fj(x− xj,`)| > λj.
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At the cost of removing another set of measure zero we may assume that

Tnf(x) =
∞∑

j=1

mj∑

`=1

±δjTnf(x− xj,`)

for all positive integers n. In particular, we have that

Tn(j,x)f(x) =
∞∑

j=1

mj∑

`=1

±δjTn(j,x)f(x− xj,`)

which implies that

P[|Tn(j,x)f(x)| > δjλj] ≥ 1

2
,

where the probability measure is with respect to the choice of signs ±. Since δjλj →∞,
we obtain that

P[|Tn(j,x)f(x)| =∞] ≥ 1

2
.

We claim that the event on the left-hand side is a tail event. Indeed, this holds since

Mf(x) ≤
∞∑

j=1

Mfj(x)

and each summand on the right-hand side here is finite (fj is a trigonometric polynomial
and we are assuming that M is uniformly bounded on trigonometric polynomials). By
Kolmogoroff’s zero-one law we therefore have

P[|Tn(j,x)f(x)| =∞] = 1.

It follows from Fubini’s theorem that almost surely (in the choice of ±)

Mf(x) =∞.
This would contradict our main hypothesis, and we are done. ¤

The previous lemma, which is due to Stein, reduces Kolmogoroff’s theorem on the
failure of almost everywhere convergence of Fourier series of L1 functions to disproving
a weak-L1 bound for the Carleson maximal operator. More precisely, we arrive at the
following corollary.

Corollary 16. Suppose {Snf}∞n=1 converges almost everywhere for every f ∈ L1(T).
Then there exists a constant A such that

|{x ∈ T | Cµ(x) > λ}| ≤ A

λ
‖µ‖ (120)

for any complex Borel measure µ on T and λ > 0, where C is as in (118).

Proof. By the previous lemma, our assumption implies that there exists a constant
A such that

|{x ∈ T | Cf(x) > λ}| ≤ A

λ
‖f‖1

for all λ > 0. This is the same as

|{x ∈ T | |Snf(x)| > λ}| ≤ A

λ
‖f‖1

82



for all n ≥ 1 and λ > 0. If µ is a complex measure, then we set f = VN ∗ µ, where VN is
de la Vallée-Poussin’s kernel. It follows that

sup
N≥1
|{x ∈ T | |Sn[VN ∗ µ](x)| > λ}| ≤ A

λ
‖µ‖

for all n ≥ 1 and λ > 0. Passing to the limit N →∞, we obtain our desired conclusion.
¤

The idea behind Kolmogoroff’s theorem is to find a measure µ which would vio-
late (120). This measure will be chosen to create resonances, i.e., so that the peaks of
the Dirichlet kernel all appear with the same sign. More precisely, for every positive
integer N we will choose

µN :=
1

N

N∑
j=1

δxj,N
(121)

where the xj,N are close to j
N

. Then

(SnµN)(x) =
1

N

N∑
j=1

sin((2n+ 1)π(x− xj,N))

sin(π(x− xj,N))
. (122)

If x is fixed, we will then argue that there exists n so that the summands on the right-
hand have the same sign (for this, we will need to make a careful choice of the xj,N).
Thus, the size of the entire sum will be about

N∑
j=1

1

j
³ logN

because of the denominators in (122), which clearly contradicts (120).

The choice of the points xj,N is based on the following lemma due to Kronecker.

Lemma 29. Assume that (θ1, . . . , θd) ∈ Td is incommensurate, i.e., that for any
(n1, . . . , nd) ∈ Zd \ {0} one has that

n1θ1 + . . .+ ndθd 6∈ Z.
Then the orbit {

(nθ1, . . . , nθd) mod Zd | n ∈ Z} ⊂ Td (123)

is dense in Td.

Proof. It will suffice to show that for any smooth function f on Td

1

N

N∑
n=1

f(nθ1, . . . , nθd)→
∫

Td

f(x) dx. (124)

Indeed, if the orbit (123) is not dense, then we could find f ≥ 0 so that the set {Td|f > 0}
does not intersect it. Cleary, this would contradict (124). To prove (124), expand f into
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a Fourier series. Then

1

N

N∑
n=1

f(nθ1, . . . , nθd) =
1

N

N∑
n=1

∑

ν∈Zd

f̂(ν)e2πiθ·ν

= f̂(0) +
∑

ν∈Zd\{0}
f̂(ν)

1

N

1− e2πi(N+1)θ·ν

1− e2πiθ·ν ,

where the ratio on the right-hand side is well-defined by our assumption. Clearly, f̂(ν)
is rapidly decaying in |ν| since f ∈ C∞(Td). Thus, since

∣∣∣ 1

N

1− e2πi(N+1)θ·ν

1− e2πiθ·ν

∣∣∣ ≤ 1

for all N ≥ 1, ν 6= 0, it follows that

lim
N→∞

∑

ν∈Zd\{0}
f̂(ν)

1

N

1− e2πi(N+1)θ·ν

1− e2πiθ·ν = 0,

and we are done. ¤

We can now carry out our construction of the µN .

Lemma 30. There exists a sequence µN of probability measures on T with the property
that

lim sup
n→∞

(logN)−1|SnµN(x)| > 0

for almost every x ∈ T.

Proof. For every N ≥ 1 and 1 ≤ j ≤ N choose xj,N ∈ T which satisfy

|xj,N − j

N
| ≤ N−2

and so that {xj,N}Nj=1 ∈ TN is an incommensurate vector. This can be done since
the commensurate vectors have measure zero. Clearly, the set of x ∈ T such that
{2(x − xj,N)}Nj=1 ∈ TN is a commensurate vector is at most countable. It follows that
for almost every x ∈ T, {{2n(x− xj,N)}Nj=1 mod ZN | n ∈ Z}

is dense in TN . Hence, for almost every x ∈ T,{{(2n+ 1)(x− xj,N)}Nj=1 mod ZN | n ∈ Z}

is also dense in TN . It follows that for almost every x ∈ T there are infinitely many
choices of n ≥ 1 so that

sin((2n+ 1)π(x− xj,N)) ≥ 1

2
for all 1 ≤ j ≤ N . In particular, for those n the sum in (122) satisfies

|SnµN(x)| ≥ 1

2N

N∑
j=1

1

| sin(π(x− xj,N))| ≥ C
1

N

N∑
j=1

1

j/N
≥ C logN,
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as desired. ¤

Finally, combining Lemma 30 with Corollary 16 yields Kolmogoroff’s theorem.

Theorem 17. There exists f ∈ L1(T) so that Snf does not converge almost every-
where.

It is known that this statement also holds with everywhere divergence. There has
been considerable interest in the question of how much the condition f ∈ L1(T) can be
relaxed for the conclusion of everywhere divergence of the Fourier series. It is known
that ∫

T
|f(x)| log(1 + |f(x)|) log log(100 + |f(x)|) dx <∞

is sufficient for a.e. convergence, see Sjölin [11] (and Antonov [1] for a sharper condition),
whereas Konyagin [10] showed the following: Let φ : [0,∞)→ [0,∞) be non-decreasing
and satisfy φ(u) = o(u

√
log u/

√
log log u) as u → ∞. Then there exists f ∈ L1(T) so

that ∫
φ(|f(x)|) dx <∞

and lim supm→∞ Smf(x) =∞ for all x ∈ T.

Exercise 29. Consider the following variants of Lemma 28:

1) Let {µn}∞n=1 be a sequence of positive measures on Rd supported in a common compact
set. Define

Mf(x) := sup
n≥1
|(f ∗ µn)(x)|.

Let 1 ≤ p <∞ and assume that for each f ∈ Lp(Rd)

Mf(x) <∞ on a set of positive measure.

Then show that f 7→ Mf is of weak-type (p, p).

2) Now suppose µn are complex measures of the form dµn(x) = Kn(x)dx, but again
with common compact support. Show that the conclusion of part 1) holds, but only for
1 ≤ p ≤ 2.
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APPENDIX A

Homework Problems 1–41, Introduction to Harmonic Analysis

Some of these homework problems are quite challenging, and you should probably
only attempt them after you have worked through all eight lectures. Only very few of
the following problems are referred to in the text. Moreover, some of them are only
loosely connected with the contents of these lectures, like those on uniform distribution.
Generally speaking, it is not necessary to work through the problems to understand
the lectures, but they should be thought of as—hopefully interesting—extensions and
applications of the ideas in the lectures.

(1) Let φ : [0,∞)→ [0,∞) be a continuously differentiable and monotone function
with φ(0) = 0. Prove

∫

X

φ
(
f(x)

)
dµ(x) =

∫ ∞

0

φ′(t)µ({x ∈ X : f(x) > t}) dt

where f ≥ 0, f ∈ L1(X,µ) and (X,µ) is some σ-finite measure space.
(2) We say a sequence {fn}∞n=1 ∈ L1(µ) is uniformly integrable if for every ε > 0

there exists δ > 0 such that

µ(E) < δ =⇒ sup
n

∣∣∣∣
∫

E

fn du

∣∣∣∣ < ε .

Suppose µ is a finite measure. Let φ : [0,∞)→ [0,∞) be a continuous increasing

function with limt→∞
φ(t)

t
= +∞. Prove that

sup
n

∫
φ(|fn|) dµ <∞

implies that {fn} is uniformly integrable.
(3) Suppose {fn}∞n=1 is a sequence in L1([0, 1], dx). Show that there is a subsequence

{fnj
}∞j=1 and a measure µ with fnj

σ∗−→µ provided supn ‖fn‖1 < ∞. Here σ∗ is

the weak-star convergence of measures. Show that in general µ /∈ L1([0, 1], dx).
However, if we assume that, in addition, {fn}∞1 is uniformly integrable, then
dµ = fdx for some f ∈ L1([0, 1]). Can we conclude anything about strong
convergence (ie, in the L1-norm) of {fn}? Consider the analogous question on
Lp([0, 1]), p > 1.

(4) Let m denote Lebesgue measure on Rd. Fix some f ∈ Lp(m), 1 ≤ p < ∞.
Define

Φf : Rd −→ Lp(m) by Φf (y)(x) = f(x+ y) .

Show that Φf is continuous.
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(5) Let µ be a finite Borel measure on Rn. Prove that

ϕ(x) = µ
(
B(x, r)

)

is a lower semi-continuous function in x. Here B(x, r) is the open ball of radius
r and center x (r > 0 is fixed).

(6) Let µ be a finite Borel measure on Rd. Recall

Mµ(x) = sup
r>0

µ
(
B(x, r)

)

m
(
B(x, r)

)

a) Show that µ ⊥ m implies µ({x : Mµ(x) <∞}) = 0

b) Show that if µ ⊥ m, then lim sup
r→0

µ(B(x,r))
m(B(x,r))

=∞ µ− a.e.
(7) For any f ∈ L1(Rd) and 1 ≤ k ≤ d let

Mkf(x) = sup
r>0

r−k

∫

B(x,r)

|f(y)| dy .

Show that

mes({x ∈ L : Mkf(x) > λ}) ≤ C

λ
‖f‖L1

where L is an arbitrary affine k-dimensional subspace and “mes” stands for
Lebesgue measure (i.e., k-dimensional measure) on this space. C is an absolute
constant.

(8) Prove the Besicovitch covering lemma on the circle: Suppose {Ij} are finitely
many arcs with |Ij| < 1. Then there is a sub-collection {Ijk

} such that
a) ∪kIjk

= ∪jIj
b) No point belongs to more than C Ijk

’s where C is a numerical constant.
Give an explicit value for C, as good as you can.

(9) a) Prove that if µ ∈ M(T) \ {0} satisfies dµ ⊥ dθ, then Mµ /∈ L1 (M is the
Hardy-Littlewood maximal function). In fact, show that

mes{θ ∈ T : Mµ(θ) > λ} ≥ c

λ
‖µ‖

provided λ > ‖µ‖ with an absolute constant c > 0.
b) Prove that there is a numerical constant C such that if µ ∈ M(T) is a

positive measure and F the associated harmonic function, then Mµ ≤ CF ∗.
Conclude that if µ is singular, then F ∗ /∈ L1.

(10) a) Let f be the standard Cantor-Lebesque function on the middle-third Cantor
set on [0, 1]. Show that f is Hölder continuous with exponent α = log 2

log 3
.

b) Let C be the usual middle-third Cantor set on [0, 1]. Show that C + C ⊃
[0, 1]. Can you find a larger interval than [0, 1] with this property?

(11) Let µ be a measure onX with µ(X) = 1. Let f, g be two nonnegative measurable
functions with

∫
gdµ = 1. Prove

∫
fg dµ ≤

∫
g log gdµ+ log

∫
ef dµ .
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(12) Suppose f ∈ Lp(R), 1 ≤ p < ∞, f is absolutely continuous with f ′ ∈ Lp(R).
Prove

lim
h→0

∫ ∣∣∣∣
f(x+ h)− f(x)

h
− f ′(x)

∣∣∣∣
p

dx = 0

(13) Suppose that f ∈ L1(T) and that {Snf}∞n=1 (the sequence of partial sums of the
Fourier series) converges in Lp(T) to g for some p ∈ [1,∞] and some g ∈ Lp.
Prove that f = g. If p =∞ conclude that f is continuous.

(14) Let Kn denote the Fejer kernel with Fourier support [−(n − 1), n − 1]. Show
that de la Vallée Poussin’s kernel

Vn(θ) =
(
1 + e2πinθ + e−2πinθ

)
Kn (θ)

satisfies
a) V̂n(j) = 1 where |j| ≤ n
b) ‖V ′

n‖1 ≤ Cn with C independent of n.
(15) Prove the following result (Bohr’s inequality) which is a sort of converse to

Bernstein’s inequality: Suppose that f ∈ C1(T) and that f̂(j) = 0 for all j with
|j| < n.

Then ∥∥∥∥
df

dθ

∥∥∥∥
p

≥ Cn‖f‖p

for all p ∈ [1,∞], where C is independent of n ∈ Z+, f and p.
(16) Show that the Hilbert transform preserves the Hölder class Cα(T), 0 < α < 1.
(17) If ω is an irrational number, show that

∥∥∥∥
1

N

N∑
n=1

f(·+ nω)−
∫

T
f(θ) dθ

∥∥∥∥
L2

→ 0

for any f ∈ L2(T). In particular, if f ∈ L2 is such that f(x+ ω) = f(x) for a.e.
x, then f = const.

(18) Let α be an irrational number. Can there be a non-constant function f ∈ L2(T2)
so that

f(x1 + α, x1 + x2) = f(x1, x2)

for a.e. (x1, x2) ∈ T2?
(19) For a real-valued function ϕ on T let Aϕ denote the multiplication operator

(Aϕf)(x) = ϕ(x)f(x). Let PN : L2(T) → L2(T) be the projection onto
span {1, e2πiθ , . . . , e2πi(N−1)θ}. Let ϕ(θ) = cos(2πθ). Denote the eigenvalues
of PN Aϕ PN by {λj,N}Nj=1. Show that

1

N

N∑
j=1

λk
j,N = ak +O

(
1

N

)
k = 0, 1, 2, . . . (A.1)

for some constants ak, which you should compute. Also show that

1

N
# {j : λj,N ≤ E} → ρ(E) as N →∞ (A.2)

uniformly in E ∈ R. Find the function ρ.
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(20) Now let ϕ ∈ C∞(T) be arbitrary and define Aϕ and λj,N as above. Show that
(A.3) below and (A.2) hold and find {ak}∞k=0 and ρ in terms of ϕ. If ϕ is non-
degenerate of order s (i.e.

∑s
`=0 |ϕ(`)(x)| 6= 0 on T), show that ρ ∈ C1/s(R).

Here (A.3) means

lim
N→∞

1

N

N∑
j=1

λk
j,N = ak, k = 0, 1, 2, . . . (A.3)

(21) Let ϕ ∈ C∞(T) and denote Aϕ as in No. 19. If H is the Hilbert transform on
T, show that

[Aϕ, H] = Aϕ ◦H −H ◦ Aϕ

is a smoothing operator, i.e., if µ ∈M(T) is an arbitrary measure, then

[Aϕ, H]µ ∈ C∞(T) .

(22) In No. 20 show that not only (A.3) holds, but also (A.1). I.e., show that for
ϕ ∈ C∞(T)

1

N

N∑
j=1

λk
j,N − ak = 0

(
1

N

)
as N →∞

with the same ak as in 20.
(23) Let f ∈ L1(T). Given λ > 1, show that there exists E ⊂ T (depending on λ

and f) so that mes(E) < λ−1 and for all N ∈ Z+

1

N

∫

T\E

N∑
n=1

|Snf(x)|2 dx ≤ Cλ‖f‖21 .

C is a constant independent of f,N, λ.
(24) Let {rj}∞j=1 be a sequence of independent, identically distributed random vari-

ables with P(r1 = 1) = P(r1 = −1) = 1
2

(coin tossing sequence). Show that for
N = 1, 2, . . .

P




∣∣∣∣∣
N∑

j=1

rjaj

∣∣∣∣∣ > λ

(
N∑

j=1

a2
j

) 1
2


 ≤ 2e−λ2/2

for any {aj}∞j=1 ∈ R and λ > 0.
(25) Suppose {Xn}∞n=1 is a martingale difference sequence adopted to some filtration

{Fn}∞n=1. Show that

P




∣∣∣∣∣
N∑

n=1

Xn

∣∣∣∣∣ > λ

(
N∑

n=1

‖Xn‖2∞
) 1

2


 ≤ Ce−cλ2

for any N = 1, 2, . . ., λ > 0. C, c > 0 are absolute constants.
(26) Let f ∈ C1(T) be such that ‖f‖∞ ≤ 1 and ‖f ′‖∞ ≤ K (with some K ≥ 1).

Identifying T = R/Z we let x 7→ 2x mod 1 be the doubling map on T. Using
the previous exercise show that for any N = 1, 2, . . .

mes

{
x ∈ T :

∣∣∣∣∣
1

N

N∑
n=1

f(2nx)−
∫

T
f

∣∣∣∣∣ > λ

}
≤ C exp

(
−c λ2N

log2(K/λ)

)
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for some absolute constants c, C. Can you obtain log(K/λ) instead of log2(K/λ)?
Would this be optimal?

(27) Let {rj}∞1 be as in No. 24. Show that for any {aj} ∈ C, and N ∈ Z+

P


 sup

0≤θ≤1

∣∣∣∣∣
N∑

j=1

rj aje
2πijθ

∣∣∣∣∣ > C0

(
N∑

j=1

|aj|2
) 1

2 √
logN


 ≤ C0N

−2

provided C0 is a sufficiently large absolute constant.
(28) Let TN(x) =

∑N
n=0[an cos(2πnx) + bn sin(2πnx)] be an arbitrary trigonometric

polynomial with real coefficients a0, . . . , aN , b0, . . . , bN . Show that there is a
polynomial P (z) =

∑2N
`=0 u`z

` so that TN(x) = e−2πiNx P (e2πix) and such that

P (z) = z2N P (z̄−1). How are the zeros of P distributed in the complex plane?

(29) Suppose TN(x) =
∑N

n=0 [an cos(2πnx) + bn sin(2πnx)] is such that TN ≥ 0 every-
where and an, bn ∈ R for all n = 0, 1, . . . , N . Show that there are c0, . . . , cN ∈ C
such that

TN(x) =

∣∣∣∣∣
N∑

n=0

cne
2πinx

∣∣∣∣∣

2

for all x .

(30) Suppose that T (x) = a0 +
∑H

h=1 ah cos(2πhx) satisfies T (x) ≥ 0 for all x and
T (0) = 1. Show that for any complex numbers y1, y2, . . . , yN ,

∣∣∣∣∣
N∑

n=1

yn

∣∣∣∣∣

2

≤ (N +H)

(
a0

N∑
n=1

|yn|2 +
H∑

h=1

|ah|
∣∣∣∣∣
N−h∑
n=1

yn+hȳn

∣∣∣∣∣

)
.

(31) Let {xn}∞n=1 be an infinite sequence of real numbers. Show that the following
three conditions are equivalent:
a) For any f ∈ C(T),

1

N

N∑
n=1

f(xn)→
∫

T
f dx

b) 1
N

∑N
n=1 e(kxn) → 0 for all k ∈ Z+ .

c) lim
N→∞

sup
I⊂T
| 1
N

#{1 ≤ j ≤ N : xj ∈ I mod 1} − |I|| = 0 .

If these conditions hold we say that {xn}∞n=1 is uniformly distributed modulo 1.
(32) Using #30 with a suitable choice of T , prove the following: If {xn}∞n=1 is a

sequence for which {xn+k−xn}∞n=1 is u.d. modulo 1 for any k ∈ Z+, then {xn}∞1
is also u.d. mod 1. In particular, show that {ndω}∞n=1 is u.d. mod 1 for any
irrational ω and d ∈ Z+.

(33) a) Let p ≥ 2 be a positive integer. Show that for a.e. x ∈ T {pnx}∞n=1 is u.d.
modulo 1.

b) Can you characterize those x which have this property?
(34) Suppose

∑∞
n=1 a

2
nn <∞ and

∑∞
1 an is Cesaro summable. Show that

∑∞
n=1 an

converges. Use this to prove that for any f ∈ C(T) for which
∑

n |f̂(n)|2·|n| <∞
one has Snf → f uniformly.
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(35) Show that there exists an absolute constant C so that

C−1
∑

n 6=0

|f̂(n)|2|n| ≤
∫ 1

0

∫ 1

0

|f(x)− f(y)|2
sin2(π(x− y)) dx dy ≤ C

∑

n 6=0

|f̂(n)|2|n|

for any f ∈ H1/2(T).
(36) Use #34 and #35 to prove the following theorem of Pal-Bohr: For any real

function f ∈ C(T) there exists a homeomorphism ϕ : T→ T such that

Sn(f ◦ ϕ) −→ f ◦ ϕ
uniformly. Hint: Wlog f > 0. Consider the domain defined in terms of polar
coordinates by means of r(θ) = f(θ/2π). Then apply the Riemann mapping
theorem to the unit disc.

(37) Show that

‖f ∗ g‖2L2(R) ≤ ‖f ∗ f‖L2(R)‖g ∗ g‖L2(R) for all f, g ∈ L2(R) .

Can there be such an inequality with L1(R) instead of L2(R)?
(38) Prove Poincaré’s inequality:∫

D(0,R)

|f(x)− fD(0,R)|2 dx ≤ CR2

∫

D(0,R)

|∇f(x)|2 dx

for all f ∈ S. Here C depends only on the dimension. fD(0,R) denotes the mean
of f over D(0, R).

(39) Prove the following weak form of the Logvinenko-Sereda theorem by means of
Poincaré’s inequality and Bernstein’s inequality:

Suppose |F ∩D| ≤ γ|D| for all disks of radius R. Show that for small γ > 0
there exists δ = δ(γ) so that δ(γ)→ 0 as γ → 0, and such that

‖f‖L2(F ) ≤ δ(γ)‖f‖2 if supp(f̂) ⊂ D(0, R−1).

(40) Given N disjoint arcs {Iα}Nα=1 ⊂ T, set f =
∑N

α=1 χIα . Show that
∑

|ν|>k

|f̂(ν)|2 . N

k
.

(41) Given any function ψ : Z+ → R+ so that ψ(n) → 0 as n → ∞, show that you
can find a measurable set E ⊂ T for which

lim sup
n→∞

|χ̂E(n)|
ψ(n)

=∞.
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