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A GENERALIZATION OF BOURGAIN’S CIRCULAR

MAXIMAL THEOREM

W. SCHLAG

1. Introduction and statement of results

For 0 < δ < 1
2 , 1 < r < 2, and f ∈ S define

C(x, r) = {y ∈ R2 : |x− y| = r},
Cδ(x, r) = {y ∈ R2 : r(1− δ) < |x− y| < r(1 + δ)},

Mδf(x) = sup
1<r<2

1

|Cδ(x, r)|

�����

�

Cδ(x,r)
f(y) dy

����� ,

Mf = sup
1<r<2

|dσr ∗ f |,

where dσr is the normalized surface measure on r S1. It is easy to see that M is
not bounded on L2 (see Example 1.1 below). A well-known result of Bourgain [1]
asserts that M is bounded on Lp for 2 < p ≤ ∞. We will consider the question of
boundedness of M and Mδ from Lp to Lq. Unless stated to the contrary, we will
be dealing only with functions defined on R2.

Absolute constants will be denoted by C, and the notation � will mean = up to
a constant.

Example 1.1. 1. Let f = χCδ(0,1). Then Mδf(x) � 1 on |x| < δ. Hence ||f ||p �
δ

1
p and ||Mδf ||q ≥ C−1 δ

2
q .

2. Let f = χR, where R is the rectangle centered at 0 with dimensions δ times

δ
1
2 . Then Mδf(x) � δ

1
2 provided |x1| � 1 and |x2| < δ

1
2 . Hence ||f ||p � δ

3
2p and

||Mδf ||q � δ
1
2 (1+ 1

q ).

3. Let f = χB(0,δ). Then Mδf(x) � δ for |x| � 1 and thus ||f ||p � δ
2
p ,

||Mδf ||q � δ.

4. Let f(x) = (|1− |x|| + δ)−
1
2χB(0,2)\B(0,1)(x). Then

Mδf(x) ≥ C−1

����log
δ

|x|

���� |x|
− 1

2 if 2δ ≤ |x| < 1.(1.1)
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To see this write f as

f � δ−
1
2

�

1≤2j≤δ−1

2−j/2χC2jδ(0,1+(2j−1)δ).(1.2)

Taking the average of f over the annulus Cδ(x, 1 + |x|) and considering the contri-
bution of each dyadic shell in (1.2) separately yields (1.1). Hence ||f ||2 � | log δ| 12
and ||Mδf ||2 ≥ C−1 | log δ|.

In view of these examples one might make the following conjecture (see Figure 1).

Conjecture 1.2. For any f ∈ L1 ∩ L∞(R2)

||Mf ||q ≤ C ||f ||p in region I,(1.3)

||Mδf ||q ≤ C δ
2
q−

1
p ||f ||p in region II,(1.4)

||Mδf ||q ≤ C δ
1
2 (1+ 1

q−
3
p ) ||f ||p in region III,(1.5)

||Mδf ||q ≤ C δ1− 2
p ||f ||p in region IV.(1.6)

1
p

1
q

Q = (0, 0) R = (1, 0)

S = (1, 1)

T = (1
2 ,

1
2 )

P = (2
5 ,

1
5 )

II

IV

I
III

Figure 1. Regions of boundedness in Theorem 1.3
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Regions I, III, and IV do not contain the point T = (1
2 ,

1
2 ), where we have the

well-known, optimal inequality (see Bourgain [1] and [2] and Example 1.1 above)

||Mδf ||2 ≤ C | log δ| 12 ||f ||2.(1.7)

Otherwise the boundaries are part of the regions. We will prove the following
theorem (by C� we will always mean a constant depending only on �).

Theorem 1.3. For any f ∈ L1 ∩ L∞(R2) and any � > 0,

||Mf ||q ≤ C ||f ||p in region I \ (QP ∪ PT ),(1.8)

||Mδf ||q ≤ C� δ
2
q−

1
p−� ||f ||p in region II,(1.9)

||Mδf ||q ≤ C� δ
1
2 (1+ 1

q−
3
p )−� ||f ||p in region III,(1.10)

||Mδf ||q ≤ C δ1− 2
p ||f ||p in region IV .(1.11)

Remark 1.4. • In certain cases the δ−�–term can be replaced by a suitable power
of | log δ|, but we do not elaborate on this.

• It can be shown by modifying the proof of Theorem 1.3 that the optimal
estimates (i.e., (1.9) with � = 0) hold in the region II ∩ { 1

q < 1
6} \ (QP ∪ PR).

In [7] this somewhat technical argument is carried out in detail.
• The most interesting statement in Theorem 1.3 is probably the estimate

�Mδf�5 ≤ C�δ
−��f�5/2(1.12)

for all f ∈ L1 ∩ L∞(R2) and any � > 0. It is easy to see that (1.12) would follow
from Sogge’s sharp local smoothing conjecture [8]. Let

Aαf(t, x) =

�

R2

e2πi(x·ξ+t|ξ|)
f̂(ξ)

(1 + |ξ|)α dξ.

Then Sogge’s conjecture says that

�Aαf�L4([1,2]×R2) ≤ Cα�f�L4(R2) for α > 0.(1.13)

Interpolating (1.13) with the easy estimate

�Aαf�L∞([1,2]×R2) ≤ Cα�f�L1(R2) for α ≥ 3/2

shows that one might expect that

�Aαf�Lq([1,2]×R2) ≤ Cα,q�f�Lp(R2) for q = 3p�(1.14)

and α > 6(1/4− 1/q).

(1.12) would follow from the special case p = 5/2, q = 5 of (1.14) via the usual
Sobolev embedding argument in t, cf. [6]. Note that q = 3p� is the same relation
as in the Carleson–Sjölin theorem [3]. Moreover, it is possible to prove (1.14) for
q ≥ 5 by Carleson–Sjölin type arguments. This is shown in a forthcoming paper of
C. Sogge and the author.

The proof of Theorem 1.3 is based on a combinatorial argument from Kolasa and
Wolff [4] combined with a localized version of the L2 estimate (1.7). For the δ–free
bounds (1.8) we interpolate the (5/2, 5) inequality with an estimate obtained from
the local smoothing theorem in Mockenhaupt, Seeger, and Sogge [6].

This paper is organized as follows. In Section 2 we introduce the notion of
multiplicity µ of a family of annuli. It is shown that certain estimates for µ are
equivalent to Lp → Lq bounds on Mδ. Section 3 contains the localized L2 inequality
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and a bound on the multiplicity is derived from it. In Section 4 we establish the
main result of this paper, i.e., the restricted weak type (5/2, 5) estimate. This is
accomplished by combining the combinatorial argument from [4] (which is based
on Marstrand’s three circle lemma [5]) with the localized inequality from Section 3.
Theorem 1.3 then follows by various interpolation arguments in Section 5.

Finally, we would like to mention some consequences of Theorem 1.3. Detailed
arguments can be found in [7]. Firstly, it is well-known that one can pass from
suitable Lp → Lq bounds on Mδ to corresponding bounds on the global maximal
averages sup0<r<∞ ra|dσr ∗ f | by Littlewood-Paley theory, see [1]. The value of a
is determined by scaling. Instead of the powers δ−α in Theorem 1.3 one obtains
Sobolev norms on the right-hand side with α derivatives. Secondly, it is easy to see
that these estimates on the global circular maximal operator imply estimates for
maximal functions associated with more regular averages, e.g., the two–dimensional
wave equation. The type of averages considered in [7] are those from Stein [10],
and the method is essentially Stein’s interpolation theorem.

2. The combinatorial method

Fix E ⊂ [0, 1]2 and 0 < λ ≤ 1. Let {xj}Mj=1 be a maximally δ-separated set in

F = {x ∈ R2 : (MδχE)(x) > λ}

and let rj ∈ (1, 2) be chosen so that

|Cδ(xj , rj) ∩E| > λ|Cδ(xj , rj)|

for j = 1, 2, . . . ,M . Henceforth we will write C∗j instead of Cδ(xj , rj) ∩E and Cj

instead of Cδ(xj , rj). We introduce the multiplicity function

Φ =
M�

j=1

χC∗j .

Following [4] we define µ to be the smallest integer for which there exist at least
M/2 values of j such that

|{C∗j : Φ ≤ µ}| ≥ λ

2
|Cj |.

Clearly, we can then also find at least M/2 values of j for which

|{C∗j : Φ ≥ µ}| ≥ λ

2
|Cj |.(2.1)

The combinatorial method attempts to bound µ from above, typically in terms of
λ,M , and δ. Since

µ|E| ≥
�

{E : Φ≤µ}
Φ =

�

j

|{C∗j : Φ ≤ µ}| ≥ C−1 λMδ,(2.2)

this will imply a lower bound on |E|. The following lemma characterizes the esti-
mates of µ required for Lp → Lq boundedness of Mδ.

Lemma 2.1. Let 0 ≤ α and β < 1. Then µ ≤ Aλ−αMβ
implies

||Mδf ||q,∞ ≤ C A
1
p δ−γ ||f ||p,1 for all f ∈ L1 ∩ L∞,



A GENERALIZATION OF BOURGAIN’S CIRCULAR MAXIMAL THEOREM 107

where p = α + 1, q = p(1 − β)−1
and γ = 1

p −
2
q . We also have the following

converse. Suppose that for some fixed ρ > 0, 1 ≤ q ≤ ∞, 1 ≤ p < ∞, and all

f ∈ L1 ∩ L∞

||Mδf ||q ≤ C δ−ρ||f ||p.(2.3)

Then

µ ≤ C λ1−pM1− p
q δ−pρ+1−2 p

q .(2.4)

Proof. For the first statement we need to show

|{MδχE > λ}|
1
q ≤ C δ−γA

1
pλ−1|E|

1
p .(2.5)

Since {xj}Mj=1 was chosen to be a maximally δ-separated sequence in {MδχE > λ},
it follows that

|{MδχE > λ}| ≤ CMδ2.

In view of (2.2), i.e., |E| ≥ C−1 µ−1λMδ, and our assumption on µ we conclude
that the right-hand side of (2.5) is

≥ C−1 δ−γA
1
pλ−1(A−1λ1+αM1−βδ)

1
p � (Mδ2)

1
q .

To prove the second statement, we distinguish two cases. First assume that

|E1| = |{E : Φ ≥ µ}| ≤ µ−1λMδ.

Applying hypothesis (2.3) to the function f = χE1 and using (2.1) we obtain

λ(δ2M)
1
q ≤ C δ−ρ|E1|

1
p ≤ C δ−ρ(µ−1λMδ)

1
p ,

which implies the desired inequality (2.4).
In the other case, i.e., |E1| ≥ µ−1λMδ, we use duality. Note that the dual

statement to (2.3) is

�
�

j

ajχCδ(yj ,ρj)�p� ≤ C δ−1−ρ(2.6)

for all δ-separated {yj} in [0, 1]2, all {aj} which satisfy δ2
�

j |aj |q
� ≤ 1, and all

ρj ∈ (1, 2). Let yj = xj , ρj = rj , and aj = (δ2M)−
1
q� for j = 1, 2, . . . ,M . Then

by (2.6)

µ(µ−1λMδ)
1
p� ≤ µ|E1|

1
p� ≤ �Φ�p� ≤ C δ−1−ρ(δ2M)

1
q� ,

which implies (2.4).

At this point it might be instructive to consider those bounds on µ that corre-
spond to the points P,R, S, T in Figure 1. By Lemma 2.1,

P : p = 5/2, q = 5, µ ≤ C λ−
3
2M

1
2 ,(2.7)

R : p = 1, q = ∞, µ ≤ CM,(2.8)

S : p = 1, q = 1, µ ≤ C δ−2,(2.9)

T : p = 2, q = 2, µ ≤ C λ−1δ−1.(2.10)

Not surprisingly, inequalities (2.8) and (2.9) are trivial, whereas (2.10) follows (up
to a | log δ| 12 factor) from (1.7). Our main goal will be to show (2.7) (the result
below will involve a | log δ| factor, though). In order to do this we will need an
improved version of the L2 statement, i.e., inequality (2.10).
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3. The L2 theory

Before formulating the result, we consider an example.

Example 3.1. Let 10 δ < 10ρ < r < 1
2 and define

E = {x ∈ R2 : 1− ρ < |x| < 1}

and λ =
�ρ

r . It is easy to see that F = {MδχE > λ} � B(0, r) and M � r2

δ2 . To
determine µ, note that Φ will be approximately constant on

E1 = {x : 1− ρ < |x| < 1− ρ/2}.

Hence

µ|E1| �
�

E1

Φ � λMδ.

Thus

µ � δ−1ρ−
1
2 r

3
2 = λ−1δ−1r.

We will prove below that this improved version of (2.10) holds in general (up to
a | log δ| factor) with r replaced by the typical distance of two intersecting annuli
(for a precise version of this see the discussion following Corollary 3.6). To this end
we need a refined version of the L2 inequality (1.7). First we recall a result from [2].

Lemma 3.2. Let K ∈ L1(Rd) assuming �K differentiable. Define for j ∈ Z

αj = sup
|ξ|�2j

| �K(ξ)|,

βj = sup
|ξ|�2j

|�∇ �K(ξ), ξ�|.

Then for any fixed j and f ∈ S such that supp(f̂) ⊂ {Rd : 2j−1 < |ξ| < 2j+1}

� sup
t�1

|f ∗Kt|�L2(Rd) ≤ C α
1
2
j (αj + βj)

1
2 �f�L2(Rd).

By well-known decay properties of �dσr (see (3.3) and (3.4) below) Lemma 3.2
implies that

�Mf�L2(R2) ≤ C �f�L2(R2)(3.1)

for any f ∈ S whose Fourier transform is supported in {R2 : 2j−1 < |ξ| < 2j+1}
for some j > 0. The following proposition shows that this estimate can be im-
proved if one restricts the maximal function to a small ball. We prove this fact
by combining Bourgain’s original argument with Lemma 3.4 below. Later we will
exploit the equivalence of bounds on the multiplicity µ and p → q estimates for
Mδ, as described in Lemma 2.1, to derive the improved bound on µ alluded to in
Example 3.1 above.

Proposition 3.3. There exists an absolute constant C0 such that for any j =
1, 2, . . . , all f ∈ S with supp(f̂) ⊂ {R2 : 2j−1 < |ξ| < 2j+1}, and all 0 < t ≤ 1,
x0 ∈ R2

�Mf�L2(B(x0,t)) ≤ C0 t
1
2 �f�L2(R2).(3.2)
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Proof. We may assume that x0 = 0. Choose cut-off functions ψ ∈ C∞0 (R2) with
ψ = 1 on B(0, 1), η ∈ C∞0 (1/2, 4) so that η = 1 on (1, 2), and φ ∈ S such that
supp(φ̂) ⊂ {1/4 < |ξ| < 4} and φ̂ = 1 on {1/2 < |ξ| < 2}. Fix j for the remainder
of the proof. Define

Aj
rf(x) = ψ(t−1x)η(r)

�

R2

e2πix·ξ �dσ(r|ξ|)φ̂(2−jξ)f̂(ξ) dξ.

Let {rτ}τ be a 2−j net in [1, 2]. Suppose rτ ≤ r < rτ+1. Then

|Aj
rf | ≤ 2j

� rτ+1

rτ

|Aj
ρf | dρ+

� rτ+1

rτ

����
d

dρ
Aj
ρf

���� dρ

and thus

sup
1<r<2

|Aj
rf |2 ≤ 2j

� 2

1
|Aj

ρf |2 dρ + 2−j
� 2

1

����
d

dρ
Aj
ρf

����
2

dρ

= 2jA+ 2−jB.

It is well known that �dσ has the representation (see, e.g., [9], Theorem 1.2.1)

�dσ(ξ) = �{e2πi|ξ|ω(|ξ|)}(3.3)

with ω ∈ C∞(0,∞) and
����
dk ω(s)

dsk

���� ≤ C (1 + |s|)− 1
2−k(3.4)

for all k = 0, 1, 2, . . . . Using (3.3) it is easy to see that the integral of A can be
written as �

R2

Adx =

�

R2

�

R2

K(ξ, ξ̃)φ̂(2−jξ)φ̂(2−j ξ̃)f̂(ξ)f̂(ξ̃) dξ dξ̃,

where

K(ξ, ξ̃) = t2
� ∞

−∞

�

R2

e2πi(tx·(ξ−ξ̃)+r(|ξ|−|ξ̃|))ψ2(x)η2(r)ω(r|ξ|)ω(r|ξ̃|) dx dr.

Integrating by parts with respect to x and r in the previous expression and applying
the decay estimates (3.4) shows that

|K(ξ, ξ̃)| ≤ C 2−jt2(1 + t|ξ − ξ̃|)−2(1 + | |ξ| − |ξ̃| |)−2,

provided |ξ| � |ξ̃| � 2j . Lemma 3.4 below and Schur’s lemma yield
�

R2

Adx ≤ C 2−jt�f�22.

Carrying out the differentiation with respect to ρ in the term B above and apply-
ing (3.4) one obtains in a similar fashion

�

R2

B dx ≤ C 2jt�f�22,

and the proposition follows.

The following lemma was used in the previous proof in order to provide the
desired improvement in the L2 estimate obtained by localizing to a small ball.
Roughly speaking, the inequality below is true because the | |ξ|−|ξ̃| | factor reduces
the two-dimensional scaling in the integral to one dimension. We prove this fact by
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integrating over shells of different radii with center at ξ̃ and estimating the various
pieces separately.

Lemma 3.4. Let 0 < t < 1. Then

sup
ξ̃

�

R2

�
1 + t|ξ − ξ̃|

�−2 �
1 + | |ξ| − |ξ̃| |

�−2
dξ ≤ C t−1.

Proof. Fix a ξ̃ ∈ R2. Then, on the one hand,
�

{ξ : |ξ−ξ̃|≤|ξ̃|/2}

�
1 + t|ξ − ξ̃|

�−2 �
1 + | |ξ| − |ξ̃| |

�−2
dξ

�
�

2j≤|ξ̃|/2

(1 + t2j)−2

�

{ξ : |ξ−ξ̃|�2j}
(1 + | |ξ| − |ξ̃| |)−2 dξ

�
�

2j≤|ξ̃|/2

(1 + t2j)−22j |ξ̃|−1

� |ξ̃|+2j

|ξ̃|−2j
(1 + |r − |ξ̃||)−2r dr

�
�

2j≤|ξ̃|

(1 + t2j)−22j �
�

2jt≤1

2j +
�

t−1≤2j≤|ξ̃|

t−22−j

� t−1 + t−2t � t−1.

On the other hand,
�

{ξ : |ξ−ξ̃|≥|ξ̃|/2}

�
1 + t|ξ − ξ̃|

�−2 �
1 + | |ξ| − |ξ̃| |

�−2
dξ

�
�

{ξ : |ξ−ξ̃|≥|ξ̃|/2 ,| |ξ|−|ξ̃| |≤|ξ̃|/2}

�
1 + t|ξ̃|

�−2 �
1 + | |ξ| − |ξ̃| |

�−2
dξ

+

�

{ξ : | |ξ|−|ξ̃| |≥|ξ̃|/2}

�
1 + t|ξ − ξ̃|

�−2 �
1 + | |ξ| − |ξ̃| |

�−2
dξ

= A+B.

(3.5)

The first term in (3.5) can be estimated as follows:

A �
�
1 + t|ξ̃|

�−2
� 3|ξ̃|/2

|ξ̃|/2

�
1 + |r − |ξ̃||

�−2
r dr

�
�
1 + t|ξ̃|

�−2
|ξ̃| ≤ C t−1.

For the second term compute

B �
�

{ξ : 3
2 |ξ̃|≤|ξ|}

(1 + t|ξ|)−2 (1 + |ξ|)−2 dξ

+

�

{ξ : 1
2 |ξ̃|≥|ξ|}

�
1 + t|ξ̃|

�−2 �
1 + |ξ̃|

�−2
dξ

�
�

{ξ : t−1≤|ξ|}
(t|ξ|)−2 (1 + |ξ|)−2 dξ +

�

{ξ : 3
2 |ξ̃|≤|ξ|≤t−1}

(1 + |ξ|)−2 dξ

+
�
1 + t|ξ̃|

�−2 �
1 + |ξ̃|

�−2
|ξ̃|2

≤ C (1 + | log t| + 1) ≤ C t−1,

and the lemma follows.
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Remark 3.5. The proof of Proposition 3.3 above shows that (3.2) is essentially
equivalent to the following estimate for the two-dimensional wave equation. Let u
solve

✷ u = 0, u(0) = f, ut(0) = 0.

Then there exists an absolute constant C0 such that

� 1

0

�

B(x0,r)
|u(x, t)|2 dx dt ≤ C0 r�f�2L2(R2)(3.6)

for all 0 < r ≤ 1. It might be interesting to ask whether such an estimate can
hold in Lp with p �= 2. Interpolating (3.6) with Sogge’s sharp local smoothing
conjecture [8], i.e.,

� 1

0

�

R2

|u(x, t)|4 dx dt ≤ C� �f�4L4
�

(3.7)

with � > 0, yields

�� 1

0

�

B(x0,r)
|u(x, t)|p dx dt

� 1
p

≤ C� r
2
p−

1
2 �f�Lp

�
(3.8)

for 2 ≤ p ≤ 4, x0 ∈ R2, 0 < r ≤ 1, � > 0 and all f ∈ S. Solving the wave equation
above with initial condition f equal to a smooth version of χCδ(0,r) shows that the
exponent 2

p−
1
2 is optimal. Moreover, as in the case of local smoothing, (3.8) cannot

hold for p /∈ [2, 4] or with � = 0 if p > 2.

It is standard to pass from f as in the statement of Proposition 3.3 to general
f ∈ L2. This is done in the following corollary.

Corollary 3.6. There exists an absolute constant C0 such that for any f ∈ L2(R2),
x0 ∈ R2

, and 0 < δ, t < 1,

�Mδf�L2(B(x0,t)) ≤ C0 t
1
2 | log δ| 12 �f�2.(3.9)

The equivalent dual statement to (3.9) is:

�
�

j

ajχCδ(yj ,ρj)�L2(R2) ≤ C0 | log δ| 12 δ−1t
1
2(3.10)

for all δ-separated {yj} in B(x0, t), all {aj} for which δ2
�

j |aj |2 ≤ 1, and all

ρj ∈ (1, 2).

Proof. Choose φ ∈ S such that supp(φ̂) is compact, φ̂ ≥ 0, φ ≥ 0, and φ̂ ≥ 1
on B(0, 1). Given f ∈ L2(R2), f ≥ 0 let f =

�∞
j=0 fj be a Littlewood-Paley

decomposition, i.e., supp(f̂0) ⊂ {|ξ| < 2} and supp(f̂j) ⊂ {R2 : 2j−1 < |ξ| < 2j+1}
for j = 1, 2, . . . . Let χδ,r = δ dσr ∗ φδ, where we have used the notation φδ(x) =
δ−2φ(δ−1x). Then clearly

χCδ(0,r) ≤ C χδ,r.
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If M denotes the usual Hardy-Littlewood maximal operator it is easy to see that

�Mδf�L2(B(x0,t)) ≤ C �Mf0�L2(B(x0,t))

+
�

1<2j≤C δ−1

� sup
1<r<2

|χδ,r ∗ fj |�L2(B(x0,t))

≤ C t �Mf0�∞ +
�

1<2j≤C δ−1

�Mfj�L2(B(x0,t))

≤ C t �f0�∞ + t
1
2

�

1<2j≤C δ−1

�fj�2

≤ C t �f0�2 + t
1
2 | log δ| 12




�

1<2j≤C δ−1

�fj�22





1
2

≤ C t
1
2 | log δ| 12 �f�2.

(3.11)

In line (3.11) we have used a special case of Bernstein’s inequality, namely

�f0�∞ ≤ C �f0�2.
Finally, (3.10) is an immediate consequence of duality.

In order to obtain information on µ from (3.9) we will determine the typical
distance of the centers of two intersecting annuli in any collection of annuli. More
precisely, we can specify the distance of the centers and the angle of intersection of
those annuli that contribute most to the multiplicity function Φ. Following [4], we
will accomplish this by applying the pigeon hole principle to our family of annuli
satisfying (2.1). Define λ̄ = | log δ|−2λ/2, µ̄ = | log δ|−2µ, M = | log δ|−2M/2.
Furthermore, for all i, j ∈ {1, 2, . . . ,M} we let (for the meaning of ∆ see Lemma 4.2
below)

∆i,j = max(δ, | |xi − xj | − |ri − rj | | ),

Sjt,� = {i : Ci ∩ Cj �= ∅ , t/2 ≤ |xi − xj | ≤ t , � ≤ ∆i,j ≤ 2�},(3.12)

Φj
t,� =

�

i∈Sj
t,�

χC∗i

(recall that Ci = Cδ(xi, ri) and C∗i = E ∩ Ci). The pigeon hole principle asserts
that there are numbers t ∈ [δ, 1], � ∈ [δ, 1] such that

|{C∗j : Φj
t,� ≥ µ̄}| ≥ λ̄|Cj |(3.13)

for at least M values of j, say 1 ≤ j ≤M . Indeed, let j be one of the at least M/2
indices satisfying (2.1), i.e.,

|{C∗j : Φ ≥ µ}| ≥ λ

2
|Cj |.

Let x ∈ C∗j so that Φ(x) ≥ µ. We conclude that for some choice of t and � depending
only on x and j we have

Φj
t,�(x) ≥ µ̄.

For if not, then (in the following sum t and � are dyadic)

Φ(x) =
�

t,�∈[δ,1]

Φj
t,�(x) < | log δ|2µ̄ = µ,
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contradicting the choice of x. Similarly, we see that (3.13) holds for any j as above
and for some choice of t and � depending only on j. Finally, applying the pigeon
hole principle in j yields that there are t and � such that (3.13) holds for at least M
values of j. Otherwise, the number of j’s satisfying (2.1) would have to be strictly
less than | log δ|2M = M/2. Henceforth we will fix � and t to be those numbers.

By essentially the same argument as in the second part of Lemma 2.1 we can
now establish the refined version of (2.10).

Lemma 3.7. The multiplicity µ satisfies the following apriori estimate with abso-

lute constants C and b :

µ ≤ C| log δ|bλ−1δ−1t.(3.14)

Proof. Let {zi} be a t-net and consider the quantities

M1(i) = card{1 ≤ j ≤M : xj ∈ B(zi, t)},
M2(i) = card{1 ≤ j ≤M : xj ∈ B(zi, 2t)}.

Then, clearly,
�

i

M1(i) �M and
�

i

M2(i) �M.(3.15)

Since M = | log δ|−2M/2, we conclude from (3.15) that there is a point of the net,
say z0, such that M1 = M1(0) and M2 = M2(0) satisfy M1 ≥ C−1 | log δ|−2M2.
Define

Φ1 =
�

j : |xj−z0|≤2t

χC∗j .

As in Lemma 2.1 we distinguish two cases. If

|E1| = |{E : Φ1 ≥ µ̄}| ≤ µ̄−1λ̄M2δ,

then by Corollary 3.6 (setting x0 = z0)

�MδχE1�L2(B(z0,t)) ≤ C0 | log δ| 12 t 1
2 |E1|

1
2 .(3.16)

The expression on the left is ≥ C−1 λ̄(δ2M1)
1
2 . Indeed, for any 1 ≤ j ≤ M such

that xj ∈ B(z0, t) we have

Φ1 ≥ Φj
t,�.

Thus (3.13) implies that

|{C∗j : Φ1 ≥ µ̄}| ≥ λ̄|Cj |,

or equivalently

|Cj ∩E1| ≥ λ̄|Cj |, or MδχE1(xj) ≥ λ̄.

Since the {xj} are δ-separated, our claim follows. On the other hand, the right side
of (3.16) is

≤ C0 | log δ| 12 t 1
2 (µ̄−1λ̄M2δ)

1
2

by our assumption on |E1|. Recalling the definition of M1,M2, λ̄ etc., we ob-
tain (3.14).
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If |E1| ≥ µ̄−1λ̄M2δ we use duality, i.e., (3.10). Letting x0 = z0 in (3.10), replac-
ing t with 2t, setting yj = xj , ρj = rj , and aj = (δ2M2)−

1
2 for j = 1, . . . ,M2, or

aj = 0 otherwise, we obtain

�Φ1�2 ≤ C0 | log δ| 12 δ−1t
1
2 (δ2M2)

1
2 .

The left-hand side is

≥ µ̄|{E : Φ1 ≥ µ̄}| 12 = µ̄|E1|
1
2 ≥ µ̄(µ̄−1λ̄M2δ)

1
2

and the lemma follows.

In [7] it is shown how to obtain (3.14) without the Fourier transform, using
only geometric/combinatorial methods. The main tool turns out to be a two circle
lemma.

4. The three circle lemma

In the previous section implicit information about circles was used to prove an
L2 bound on the maximal function and thus a bound on the multiplicity µ. In this
section we will attempt to use explicit geometric properties of circles in order to
bound µ. The procedure we apply here was discovered by Kolasa and Wolff [4].
Although this section is essentially self-contained, the reader might wish to read
Section 3 of [4], in particular Proposition 3.1, which provides the underlying idea
for the proof of Proposition 4.3 below. Lemma 4.1 (Marstrand’s three circle lemma)
is the main geometric tool in the argument below. It is a quantitative version of
the following fact (known in incidence geometry as the circles of Apollonius):

Given any three circles which are not internally tangent at a single point, there
are at most two circles which are internally tangent to the three given ones (we
say that two circles in the plane are internally tangent if they are tangent and the
smaller one is contained inside the larger one).

The number � in Lemma 4.1 controls the degree of internal tangency, whereas
λ separates the “points of tangency” (see Figure 2). Nδ(S) denotes the δ entropy
of the set S, i.e., the cardinality of a maximally δ-separated set in S. We merely
sketch a proof of Lemma 4.1 and refer the reader to Marstrand [5], Lemma 5.2
for further details. For a version applying to families of curves satisfying Sogge’s
cinematic curvature condition see [4], Lemma 3.1.

Lemma 4.1. Let (xj , rj)3j=1 ∈ R2 × (1, 2) and fix 0 < λ, � < 1. Consider the set

S =




x ∈ R2 \
3�

j=1

B(xj , �) : ∃ r ∈ (1, 2) with ||xi − x| − |ri − r|| < �

for i = 1, 2, 3 and |ei(x, r) − ej(x, r)| > λ for i �= j, i, j = 1, 2, 3




 .

Here

ei(x, r) =
xi − x

|xi − x| sgn(r − ri).

Then

Nδ(S) ≤ C
� �
δ

�2
λ−3

for any 0 < δ ≤ �.
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x e1
x1

e2

x2

e3

x3

||x− x2| − |r − r2||

Figure 2. Marstrand’s three circle lemma

Proof. Let

Ω = {(x, r) ∈ R2 × (1, 2) : |x− xj | > 3�, r �= ri,

|ei(x, r) − ej(x, r)| > λ for i �= j , i, j = 1, 2, 3}

and F : Ω → R3 be defined by

F (x, r) = (|xi − x| − |ri − r|)3i=1.

It is easy to see that the Jacobian JF of F satisfies

JF � |e1 − e2||e1 − e3||e2 − e3| > λ3.

Since card(F−1(p)) ≤ C0 for some absolute constant C0 and all p ∈ R3, we
conclude that

|F−1(B(0, 2�))| ≤ C �3λ−3.
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According to the definition of S there exists a function r : S → (1, 2) such that for
every x ∈ S we have |F (x, r(x))| < �. Then clearly

{(x, r) : x ∈ S , |r − r(x)| < �}

⊂ F−1(B(0, 2�)) ∪




(x, r) : x ∈ S ∩
3�

j=1

B(xj , 3�) , |r − r(x)| < �






and thus |S| ≤ C �2λ−3.

The following lemma contains bounds on the diameter and the area of Cδ(x, r)∩
Cδ(y, s). In various forms it appears in several papers on this subject; see, e.g.,
[1], [4], [5], [8]. Since the exact version we use here does not seem to be contained
explicitly in any of these references, we provide a proof for the reader’s convenience.
We will use the notation

∆ = max(||x− y| − |r − s||, δ).

Lemma 4.2. Suppose x, y ∈ R2
, x �= y, |x − y| ≤ 1

2 , and r, s ∈ (1, 2), r �= s,
0 < δ < 1. There is an absolute constant A such that

1. Cδ(x, r) ∩ Cδ(y, s) is contained in a δ neighborhood of an arc of length ≤
A
�

∆
|x−y| centered at the point x− r sgn(r − s) x−y

|x−y| .

2. The area of intersection satisfies

|Cδ(x, r) ∩ Cδ(y, s)| ≤ A
δ2

�
∆|x− y|

.(4.1)

Proof. Let z ∈ Cδ(x, r) ∩ Cδ(y, s). Then |z − x| = r1 and |z − y| = s1 where
|r − r1| < δ and |s− s1| < δ. By simple algebra

2(z − x) · (y − x) = r21 − s21 + |y − x|2.(4.2)

Assume r < s. Then (4.2) implies

2r1|x− y|(1− cos∠(z − x, x− y)) = (r1 + |x− y|)2 − s21

and thus

∠(z − x, x− y) �

�
|x− y| − (s1 − r1)

|x− y| ≤ C

�
∆

|x− y| .(4.3)

If r > s one estimates ∠(z − x, y − x) in a similar fashion.
If ∆ ≤ 10δ the bound (4.1) follows from the first statement of the lemma.

Otherwise consider α = ∠(z − x, x− y) as a function of r1 and s1. Taking partial
derivatives in (4.2) yields

∂α

∂r1
r1|x− y| sinα = r1 + |x− y| cosα,

∂α

∂s1
r1|x− y| sinα = −s1.

Thus
����
∂α

∂r1

����+
����
∂α

∂s1

���� ≤ C (|α||x− y|)−1 � (∆|x− y|)− 1
2 .
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The last equality is true since ∆ > 10δ implies that (4.3) holds with � instead of
≤. Since r1 and s1 vary in a δ interval, α will be contained in an interval of length
≤ C δ√

∆|x−y|
and (4.1) follows.

Proposition 4.3 below is the main result of this paper.

Proposition 4.3. Mδ is of restricted weak type (5/2, 5), i.e., for any f ∈ L1 ∩
L∞(R2)

�Mδf�5,∞ ≤ C | log δ|b �f�5/2,1,(4.4)

where b and C are absolute constants.

Proof. In this proof we let Bδ denote a constant of the form C| log δ|b, where the
values of C and b are allowed to vary depending on the context. By Lemma 2.1 we
need to show

µ ≤ Bδ λ
− 3

2M
1
2 .(4.5)

C and b are determined implicitly in the calculation below. This will follow from
the combinatorial argument in [4], which is based on the three circle lemma, and
the refined L2 bound from above. A is the absolute constant from Lemma 4.2.

Case 1: λ̄ ≤ 100A
��
t

� 1
2
.(4.6)

On the one hand, by (3.13) and Lemma 4.2

µ̄λ̄δ ≤ C

�

Cj

�

i∈Sj
t,�

χC∗i ≤ C card(Sjt,�)
δ2

√
�t
≤ CM

δ2

√
�t
.(4.7)

On the other hand, by Lemma 3.7

µ̄ ≤ Bδ λ̄
−1δ−1t.

Thus

µ̄λ̄
� �
δ

� 1
2

�
t

δ

� 1
2

≤ Bδ min

�
M,
� �
δ

� 1
2

�
t

δ

� 3
2

�
.

Hence, if

M ≤
� �
δ

� 1
2

�
t

δ

� 3
2

,(4.8)

then

µ̄ ≤ Bδ λ̄
−1

�
δ

�

� 1
2
�
δ

t

� 1
2

M

= Bδ λ̄
− 3

2M
1
2 λ̄

1
2M

1
2

�
δ

�

� 1
2
�
δ

t

� 1
2

(4.9)

≤ Bδ λ̄
− 3

2M
1
2

��
t

� 1
4
� �
δ

� 1
4

�
t

δ

� 3
4
�
δ

�

� 1
2
�
δ

t

� 1
2

= Bδ λ̄
− 3

2M
1
2 ,
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where we have used (4.6) and (4.8) in line (4.9) to replace λ̄
1
2 and M

1
2 , respectively.

If, on the other hand,

M ≥
� �
δ

� 1
2

�
t

δ

� 3
2

,(4.10)

then

µ̄ ≤ Bδ λ̄
−1δ−1t = Bδ λ̄

− 3
2 λ̄

1
2 δ−1t

≤ Bδ λ̄
− 3

2

��
t

� 1
4
δ−1t ≤ Bδ λ̄

− 3
2

�
δ2M

t2

� 1
2

δ−1t(4.11)

= Bδ λ̄
− 3

2M
1
2 .

Here we have used (4.6) and then (4.10) in line (4.11).

Case 2: λ̄ ≥ 100A
��
t

� 1
2
.(4.12)

Following [4] we let

Q = {(j, i1, i2, i3) : 1 ≤ j ≤M, i1, i2, i3 ∈ Sjt,� and the distance between

any two of the sets Cj ∩ Ci1 , Cj ∩ Ci2 , Cj ∩ Ci3 is at least λ̄/20}.
Suppose (j, i1, i2, i3) ∈ Q. Then Lemma 4.2 implies that any two of the

ei = xj − rj sgn(rj − ri)
xj − xi
|xj − xi|

for i = i1, i2, i3 are separated by a distance λ̄/20. Indeed, by that lemma, ei is the
center of Ci ∩Cj and in view of (3.12), for any i ∈ Sjt,�

diam(Ci ∩ Cj) ≤ 2A

�
�

t
≤ λ̄/50(4.13)

by (4.12). Lemma 4.1 therefore implies that

card(Q) ≤ C
� �
δ

�2
λ̄−3M3.(4.14)

On the other hand, we claim that

card(Q) ≥ C−1 M

�
µ̄

λ̄δ

δ2/
√
�t

�3

.(4.15)

This would clearly follow from

min
1≤j≤M

card({(i1, i2, i3) ∈ (Sjt,�)
3 : the distance between any two

of the sets Cj ∩ Ci1 , Cj ∩ Ci2 , Cj ∩Ci3 is at least λ̄/20})

≥ C−1

�
µ̄

λ̄δ

δ2/
√
�t

�3

.

(4.16)

Denote the set on the left-hand side by Q(j) and fix any j as above. By (4.7) the
number of possible choices of i1 is

card(Sjt,�) ≥ C−1 µ̄
λ̄δ

δ2/
√
�t
.
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Suppose that (i1, i2, i3) ∈ Q(j). We claim that

card({i ∈ Sjt,� : (i1, i2, i) ∈ Q(j)}) ≥ C−1 µ̄
λ̄δ

δ2/
√
�t
.(4.17)

To prove (4.17) let R1 and R2 be “rectangles” in Cj of length λ̄/5 and width δ
centered at ei1 and ei2 , respectively. Using (4.13) we conclude that

i ∈ Sjt,�, Ci ∩Rτ = ∅ for τ = 1, 2

implies that

dist(Cj ∩ Ciτ , Cj ∩Ci) > λ̄/20 for τ = 1, 2.

Since

|{C∗j \ (R1 ∪R2) : Φj
t,� ≥ µ̄}| ≥ λ̄

2
|Cj |,

(4.17) follows from (4.7) (simply replace (3.13) with the previous inequality). Esti-
mating the number of admissible choices of i2 given a fixed i1 in a similar fashion
proves (4.16) and thus (4.15). We infer from (4.14) and (4.15) that

µ̄3 ≤ Bδ λ̄
−6
� �
δ

� 1
2

�
δM

1
2

t

� 3
2

M
5
4 .(4.18)

Combining (4.18) and (3.14) yields

µ̄ ≤ Bδ min



λ̄−1δ−1t, λ̄−2
� �
δ

� 1
6

�
δM

1
2

t

� 1
2

M
5
12



 .

Hence, if

λ̄ ≤
� �
δ

� 1
6

�
δM

1
2

t

� 3
2

M− 1
12 ,(4.19)

we conclude that

µ̄ ≤ Bδ λ̄
−1δ−1t ≤ Bδ λ̄

− 3
2 λ̄

3
4 λ̄−

1
4

�
t

δM
1
2

�
M

1
2

≤ Bδ λ̄
− 3

2




� �
δ

� 1
6

�
δM

1
2

t

� 3
2

M− 1
12





3
4

(4.20)

·




� �
δ

� 1
2

�
δM

1
2

t

� 1
2

M− 1
4




− 1

4 �
t

δM
1
2

�
M

1
2

= Bδ λ̄
− 3

2M
1
2 .

The expressions in (4.20) are obtained by estimating λ̄ by (4.19) and (4.12), respec-
tively.

If, on the other hand,

λ̄ ≥
� �
δ

� 1
6

�
δM

1
2

t

� 3
2

M− 1
12 ,(4.21)
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then

µ̄ ≤ Bδ λ̄
−2
� �
δ

� 1
6

�
δM

1
2

t

� 1
2

M
5
12

≤ Bδ λ̄
−2



λ̄
�
δM

1
2

t

�− 3
2

M
1
12





1
4

(4.22)

·



λ̄ 1
3

�
δM

1
2

t

�− 1
6

M
1
12





3
4 �

δM
1
2

t

� 1
2

M
5
12

= Bδ λ̄
− 3

2M
1
2 .

To obtain (4.22), use (4.21) and the inequality

� �
δ

� 1
6

�
δM

1
2

t

� 1
6

≤ C λ̄
1
3M

1
12 ,

which follows from (4.12). Consequently, we have established (4.5) and the propo-
sition follows.

5. Proof of Theorem 1.3

The following lemma states that instead of averaging over δ annuli we can average
over a mollified version of dσr which is essentially concentrated on a δ annulus.

Lemma 5.1. Fix a radial function φ ∈ S(R2). Suppose that for fixed 1 ≤ p ≤ q ≤
∞, α < 3

�Mδf�q ≤ C δ−α�f�p
for all 0 < δ < 1, f ∈ L1 ∩ L∞. Then

�M(f ∗ φδ)�q ≤ C δ−α�f�p
for all 0 < δ < 1, f ∈ S.

Proof. Write φ(|x|) = φ(x). We construct a radial, nonincreasing majorant for φ
as follows. Let ρ(r) = r2|φ�(r)| and define

ψ(|x|) =

� ∞

|x|
|φ�(r)| dr

or equivalently

ψ(x) =

� ∞

0
(χB)r (x)ρ(r) dr,

where B is the unit ball in R2. Note that�

R2

ψ(x) dx =

� ∞

0
ρ(r) dr =

� ∞

0
ψ(r)r dr.

Let f ∈ S. Then

sup
1<t2

|dσt ∗ (φδ ∗ f)| ≤
�� δ−1

0
+

� ∞

δ−1

�
sup

1<t<2
|[dσt ∗ (χB)rδ] ∗ |f || ρ(r) dr

= A+B.
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On the one hand

�A�q ≤ C

� δ−1

0
�M10rδ|f |�q ρ(r) dr

≤ C δ−α
� δ−1

0
r−αρ(r) dr �f�p

≤ C δ−α�f�p
since α < 3. On the other hand, by Young’s inequality with 1 + 1

q = 1
p + 1

s ,

�B�q ≤ C

� ∞

δ−1

� (χB)10rδ ∗ |f |�q ρ(r)dr

≤ C

� ∞

δ−1

� (χB)10rδ �s�f�p ρ(r)dr

≤ C

� ∞

δ−1

(δr)−
2
s� ρ(r)dr �f�p

≤ C �f�p
and the lemma follows.

Proof of Theorem 1.3. Statements (1.9), (1.10) of Theorem 1.3 follow via Marcin-
kiewicz’s theorem from the estimates at the points Q,R, T, P (see Figure 1). To
prove (1.8), suppose we are given any f ∈ S. Let

f =
∞�

j=0

fj

be a Littlewood-Paley decomposition, i.e., supp(f̂0) ⊂ {R2 : |ξ| < 2} and supp(f̂j) ⊂
{R2 : 2j−1 < |ξ| < 2j+1} for j = 1, 2, . . . . On the one hand, (1.10), (1.9), and
Lemma 5.1 imply

||Mfj ||q ≤ C� 2j�||fj||p if

�
1

p
,
1

q

�
∈ QP ∪ PT (see Figure 1)(5.1)

for any � > 0 and j = 1, 2, . . . . On the other hand, by the local smoothing theorem
in [6] (see also [2] and [8])

||Mfj||p ≤ C 2−jβ�fj�p,(5.2)

where 2 < p < ∞, β = β(p) > 0, and j = 1, 2, . . . . Interpolating (5.2) with (5.1)
yields

||Mfj||q ≤ C 2−jγ ||fj ||p if

�
1

p
,
1

q

�
∈ region I\QP ∪ PT(5.3)

for some γ = γ(p, q) > 0. Furthermore,

||Mf0||q ≤ C ||f0||p(5.4)

by the Hardy-Littlewood and Bernstein inequalities. Finally, (1.8) follows from
inequalities (5.3) and (5.4) by Littlewood-Paley theory.

Up to a | log δ| factor, (1.11) follows by interpolating the estimate at T , i.e., (1.7),
with the ones at the endpoints R and S:

�Mδf�1 + �Mδf�∞ ≤ C δ−1�f�1.(5.5)
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To obtain the sharp estimates, let f =
�∞

0 fj be as above. The analogue of (5.5)
is

�Mfj�1 + �Mfj�∞ ≤ C 2j�fj�1,(5.6)

which can be shown by a standard application of stationary phase, cf. [7]. Interpo-
lating (5.6) with the L2 bound (3.1) yields

�Mfj�q ≤ C 2j(
2
p−1)�fj�p if

�
1

p
,
1

q

�
∈ region IV.(5.7)

(1.11) now follows from (5.7) by the same type of argument as in the proof of
Corollary 3.6 provided 1 < p. The estimates on the segment SR follow from the
ones at the endpoints. We skip the details.
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