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Abstract

Given N nonzero real numbers a1 < . . . < aN , we consider the problem of

finding a real number α so that αa1, . . . ,αaN are close to be uniformly distributed

modulo one (this question is attributed to Komlos in [13]). Firstly, it turns out that

it suffices to consider integers a1, . . . , aN . Given various quantities that measure

how close a sequence is to being uniformly distributed, e.g., the size of the largest

gap between consecutive points on the circle, discrepancy, or the number of points

falling into any interval of size 1/N (“concentration”), we provide upper bounds

for the optimal dilate. These bounds depend only on N and they are attained by

typical α, i.e., up to α belonging to some set of small measure. We also provide lower

bounds for these quantities. Some of our examples are constructed for this purpose

by means of probabilistic methods. In case of the discrepancy, the lower and upper

bounds match up to logarithms (

�
N/ log N vs.

√
N log N). However, in case of

the largest gap (log N/N vs. N−1/2
) and the concentration (exp(c log N/ log log

2 N)

vs. N1/3+�
) the lower and upper bounds do not match and the question about the

correct asymptotic behavior in terms of N remains open. Finally, we improve on a

recent result of Noga Alon and the second author by showing that every set of N
integers contains a non-averaging subset of size at least N1/5

.

1 Introduction

In this note we consider the following question, stated first informally:

Question 1.1 Given a set of N distinct integers A = {a1, . . . , aN}, does there exist an
α ∈ R so that αa1, . . . ,αaN is “well–distributed” on the circle modulo 1 ? In fact, can
this be achieved for all α up to some set of small measure ?
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There are various ways of measuring whether a given sequence x1, . . . , xN ∈ [0, 1] is “well–
distributed”, such as: discrepancy, the size of the largest gap between any two adjacent
points, and the largest number of points falling into any interval of size 1

N (we will refer
to this latter quantity as the “concentration”). Recall that the discrepancy is defined to
be

DN({xj}N
1 ) = sup

I⊂T

���card{j : xj ∈ I}−N |I|
���,

where the supremum is taken over all intervals in the torus. For each of these we seek a
real number α (depending on A) which minimizes the respective quantity with xj = {αaj}
(here {·} denotes the fractional part). We are interested in bounds for these minima that
depend only on N , and not on the particular choice of A. As far as the second part of
Question 1.1 is concerned, the methods discussed below show that the bounds we obtain
are achieved by all α up to some set of small measure. However, it is possible that our
bounds are not optimal.
Question 1.1 appears in Montgomery’s book [13], see the problem section on uniform
distribution. Some partial results are stated there, which are also discussed below.

It is natural to ask why we restrict ourselves to integers a1, . . . , aN . Indeed, (1.1)
makes perfect sense for real aj. It turns out that the integer case is the hardest. More
precisely, any bound depending only on N that holds for integer sequences also holds for
general real sequences. For example,

sup
λ1<...<λN∈R

inf
α∈R

DN({αλj(mod 1)}N
1 ) = sup

a1<...<aN∈Z
min

α∈[0,1]
DN({αaj(mod 1)}N

1 ). (1)

The underlying principle is as follows: Clearly, question (1.1) concerns some property of
the orbit {(αa1, . . . ,αaN) ∈ TN : α ∈ R} on the N–dimensional torus. If this orbit was
dense, then in particular it would come arbitrarily close to the point (0, 1

N , 2
N , . . . , N−1

N ) ∈
TN . This would imply that

inf
α∈R

DN({αaj(mod 1)}N
1 ) = 1,

which is optimal. However, it is clear that the orbit will be periodic for integer aj, and
thus not dense. On the other hand, Kronecker’s theorem implies that a generic choice (in
measure) of real numbers a1, . . . , aN will have a dense orbit. What is required for (1) and
comparable statements for the largest gap and the concentration is the following lemma
due to D. Campbell, H. Ferguson, and R. Forcade, see Lemma 2 in [7].

Lemma 1.2 Let λ1, . . . ,λN be distinct (positive) real numbers. Let ΛR denote the line
in RN given by {(λ1t, . . . ,λN t) : t ∈ R}. Then ΛR + ZN contains a line generated by
(a1, . . . , aN) where all the entries aj are distinct (positive) integers.
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Denote the right–hand side of (1) by ∆N . Given any sequence λ1, . . . ,λN of distinct
reals, let a1, . . . , aN be as in the lemma. Any point on the orbit of (a1, . . . , aN) that
minimizes the discrepancy can be approximated arbitrarily closely by points of the orbit
of (λ1, . . . ,λN) by Lemma 1.2. Thus the left–hand side of (1) will be no larger than ∆N ,
as claimed.

This paper is organized as follows. First we consider the size of the smallest gap,
then the discrepancy, the largest gap, and finally the concentration. In the last section
we take the opportunity to point out an improvement of the lower bound on the size of
non-averaging sets obtained recently by Alon and the second author [5]. The methods
used in [5] are very closely related to some of the arguments in this paper.

2 The smallest gap

In this section we discuss the smallest gap between any two points αai and αaj modulo 1.
More precisely, we ask how large

µ(A) = max
α

min
i�=j

�α(ai − aj)�

is in terms of N . Here � · � denotes the distance to the closest integer. It is shown below
that µ(A) cannot be made bigger than � N−2 (the notation A � B will mean throughout
that c1A ≤ B ≤ c2A for suitable constants c1 and c2). This is already stated in [13],
however without proof and without specific constants.

Proposition 2.1 One has

1 ≤ lim inf
N→∞

N2 min
card(A)=N

µ(A) ≤ 25

9
.

Proof : It is easy to see that µ(A) ≥ N−2 for any set A. Indeed, notice that

� 1

0

�

1≤i<j≤N

χ{�α(ai−aj)�≤N−2} dα =
1

2
N(N − 1)

2

N2
< 1.

Hence there exists an α ∈ (0, 1) such that �α(ai − aj)� > N−2 for any distinct i, j. To
see that this bound can be attained, we use the well–known Singer sequences. In fact,
see [10], if m is a prime power there exist integers 1 ≤ b1 < b2 < . . . < bm+1 ≤ m2 +m+1
so that the differences {bi− bj}i�=j are all nonzero congruence classes modulo m2 + m + 1.
Let N = 5(m + 2), D = {0, 1, 2, 6, 9}, and A = {d(m2 + m + 1), b1 + d(m2 + m +
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1), . . . , bm+1 + d(m2 + m + 1) : d ∈ D}. Notice that any integer between 0 and 9 can be
written as difference of two elements from D. By Dirichlet’s approximation theorem, for
any α ∈ (0, 1) we can choose q ∈ [1, 9(m2 +m+1)) so that �αq� ≤ (9(m2 +m+1))−1. We
claim that any such q can be written as the difference of two elements from A. Clearly,
q = q� + �(m2 + m + 1) where 0 ≤ q� ≤ m2 + m, and 0 ≤ � ≤ 8. If q� = 0, then the
claim is correct in view of the aforementioned property of D. If 1 ≤ q� ≤ m2 + m, then
there are i �= j satisfying q� ≡ bi − bj (mod m2 + m + 1). Clearly, either q� = bi − bj or
q� = m2 + m + 1 + bi − bj. This shows that any q ∈ [1, 9(m2 + m + 1)) is the difference of
two elements from A.

Remark : Will’s conjecture (see [13], problem 44) asserts that for any integers 1 ≤
n1 < n2 < . . . < nK one has

max
α

min
i
�αni� ≥

1

K + 1
.

If this is true, then one can replace 1 with 2 in the lower bound above.

3 Discrepancy

Let x1, . . . , xN ∈ [0, 1). The simplest fact about discrepancy is the standard inequality

���
N�

j=1

e2πikxj

��� ≤ 2πkDN({xj}N
j=1) for k = 1, 2, . . . . (2)

In fact, let H(t) = card{j : xj < t} − Nt for 0 ≤ t ≤ 1. Notice that H(0) = H(1) = 0.
Integrating by parts one obtains

���
N�

j=1

e2πikxj

��� =
���
� 1

0

e2πiktdH(t)
��� = 2π

���
� 1

0

ke2πiktH(t) dt
���

≤ 2πk sup
t∈[0,1]

|H(t)| ≤ 2πkDN({xj}N
1 ).

A much deeper converse due to Erdös and Turan [13] states that

DN({xj}N
i ) ≤ C

�N

K
+

K�

k=1

1

k
|

N�

j=1

e2πikxj |
�
. (3)
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Since by Cauchy–Schwarz and Plancherel

� 1

0

���
N�

j=1

e2πikαxj

��� dα ≤
√

N,

one immediately concludes from (3) with K = [
√

N ] and for N ≥ 2 that

min
α

DN({αaj(mod 1)}N
1 ) ≤

� 1

0

DN({αaj(mod 1)}N
1 ) dα ≤ C

√
N log N.

Currently we do not know whether this can improved. However, one has the following
lower bound.

Theorem 3.1 There exists an absolute constant c0 > 0 such that for large N

sup
0<a1<...<aN∈Z

min
α

DN({αaj(mod 1)}N
1 ) ≥ c0(N/ log N)

1
2 . (4)

In fact, a random subset of [1, 2N ] of cardinality N will have this property with large
probability.

Proof : The idea of the proof is to take a random subset of {1, 2, . . . , 2N} and to show
that with positive probability it contains exactly N elements and its discrepancy is >
c0(N/ log N)1/2 for some positive c0.

Let ξj (j = 1, . . . , 2N) be independent random variables with P(ξj = 1) = P(ξj = 0) =
1/2. Define the random set S = {j : ξj = 1}. Fix α ∈ [0, 1]. We will prove that for some
absolute constant c0 > 0

P
�
DN({αs(mod 1)}s∈S) < c0(N/ log N)1/2

�
< N−3 (5)

for sufficiently large N . Here we use the notation DN also for sets of points not necessarily
containing N elements. To prove (5) we proceed as follows. Let ηj have the same distri-
bution as ξj, be independent of ξj, and define S � = {j : ηj = 1}. Then (5) is equivalent
to

P
�
DN({αs(mod 1)}s∈S) < c0(N/ log N)1/2,

DN({αs�(mod 1)}s�∈S�) < c0(N/ log N)1/2
�

< N−6.

Suppose that the event

DN({αs(mod 1)}s∈S) < c0(N/ log N)1/2,

DN({αs�(mod 1)}s�∈S�) < c0(N/ log N)1/2
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occurs. It implies that for any u ∈ [0, 1)
��#{s ∈ S : αs(mod 1) ≤ u}− #{s� ∈ S � : αs�(mod 1) ≤ u}

�� < 2c0(N/ log N)1/2. (6)

Take a permutation {n1, . . . , n2N} of the set {1, . . . , 2N} such that the points {αnj} are
nondecreasing. Denote ζj = ξnj − ηnj . Clearly, ζj are independent random variables with
distribution P(ζj = 1) = P(ζj = −1) = 1/4, P(ζj = 0) = 1/2. Now (6) implies that for
any M = 1, . . . , 2N

���
M�

j=1

ζj

��� < 2c0(N/ log N)1/2.

It is a standard fact of one–dimensional random walk that the probability of the last
event is less than N−6 if c0 is sufficiently small. It is easy to prove this with a somewhat
wasteful constant c0. Indeed,

P
�

max
1≤M≤2N

���
M�

j=1

ζj

��� < 2c0(N/ log N)
1
2

�

≤ P
�

max
1≤M≤[ 2N

log N ]

���
M�

j=1

ζj

��� < 4c0(N/ log N)
1
2

�[log N ]

≤ P
����

[2N/ log N ]�

j=1

ζj

��� < 4c0(N/ log N)
1
2

�[log N ]
≤ exp(−6 log N) = N−6,

where the last line follows from the central limit theorem provided c0 is small (� exp(−6)).
As argued above, this implies (5). Let αj = j/N2 for j = 0, 1, . . . , N2 − 1. Summing (5)
over all those αj shows that with probability > 1− 1/N

DN({αjs(mod 1)}s∈S) ≥ c0(N/ log N)
1
2

for all j = 0, 1, . . . , N2 − 1. Therefore, for any α ∈ [0, 1]

DN({αs(mod 1)}s∈S) ≥ c0(N/ log N)1/2)− 2. (7)

Furthermore, the probability that S contains exactly N elements is not too small (�
N−1/2) and that it contains about N elements is large.

As far as deterministic examples are concerned, we remark that the increase of DN

at a polynomial rate can be shown by means of a concrete example. In fact, for every N

6



taken from an appropriate sequence of integers tending to infinity there exist N integers
for which the discrepancy of every dilate is at least N0.1399. To see this one uses the
polynomial

P12(z) = 1 + z + z2 + z3 + z4 + z7 + z8 + z10 + z12.

In fact, it was shown in [7] that min|z|=1 |P12(z)| = c0 > 1.36. Following C. Smyth [14]
one then defines inductively

P13k−1(z) = P13k−1−1(z
13)P12(z).

These polynomials have 0, 1–coefficients (so called Newman polynomials) and P13k−1(z) =
�Nk

j=1 za(k)
j where a(k)

j are all numbers that can be written in base 13 with k digits taken
from {0, 1, 2, 3, 4, 7, 8, 10, 12}, cf. P12 above. In particular, Nk = 9k. Hence

min
|z|=1

|P13k−1(z)| ≥ ck
0 = N δ

k ,

where δ = log c0
log 9 > 0.1399. In view of (2) with k = 1 this establishes the claim. We do not

know whether one can improve the exponent δ by finding better Newman polynomials of
some fixed (small) degree and applying the same construction as above. In view of Lit-
tlewood’s conjecture on trigonometric polynomials with ±1 coefficients, see [13], it seems

reasonable to ask whether one can construct Newman polynomials PN(α) =
�N

j=1 e2πiαa(N)
j

so that minα |PN(α)| ≥ C
√

N for some sequence N →∞. However, it seems rather hard
to construct such large Newman polynomials. In fact, the following proposition shows
that a generic (in an appropriate sense) Newman polynomial has minima less than one.
This answers a question of Montgomery’s, see [13], problem 59.

Theorem 3.2 Let {ξj}j∈Z be i.i.d. where ξ0 = 0, 1 with probability 1
2 each. For any c > 1

2

P
�

min
0≤x≤1

���
N�

j=−N

ξje
2πijx

��� < c
�
→ 1

as N →∞.

Proof : This is an immediate consequence of a result of the first author [11]. In fact, it
was shown there that for any fixed t ∈ (0, 1

2) and δ > 0

P
�

min
t≤x≤ 1

2

���
N�

j=−N

±e2πijx
��� < N− 1

2+δ
�
→ 1 (8)
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as N → ∞. Here the signs are chosen independently with probability 1
2 each. Strictly

speaking, [11] only contains the case t = 0, but it is straightforward to check that any
0 < t < 1

2 works (cf. page 947 in [11]). If

DN(x) =
sin[(2N + 1)πx]

sin(πx)

denotes the usual Dirichlet kernel, then clearly

P
�

min
0≤x≤1

���
N�

j=−N

ξje
2πijx

��� < c
�

≥ P
�

min
t≤x≤ 1

2

���
N�

j=−N

±e2πijx
��� < N−1/4 and max

t≤x≤ 1
2

|DN(x)| < 2c−N−1/4
�
.

The second condition on the right–hand side is trivially satisfied provided t is sufficiently
close to 1

2 . Thus the left–hand side will tend to one because of (8).

4 The largest gap

Let A be an arbitrary set of N nonzero integers. The upper bound on the discrepancy
from the previous section implies that for an appropriate choice of α every interval of size
� N− 1

2 log N has to contain at least one element from αA (mod 1). In other words, the
largest gap between any two consecutive points αA (mod 1) is no larger than N− 1

2 log N
(in fact, this is true for “most” choices of α). It turns out that one can remove the log N
factor from this bound by very elementary means.

Proposition 4.1 Given an arbitrary set A of N nonzero integers there is an α ∈ (0, 1)
such that the largest gap between any two consecutive elements of αA (mod 1) is less
than 2N− 1

2 .

Proof : Let h = N−1/2. Define the 1-periodic function

ψ(x) = max(1− |x|/h, 0) for |x| ≤ 1/2.

Let
ψ(x) =

�

k∈Z
cke

2πikx
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be the Fourier expansion of ψ. It is easy to calculate ck. We have c0 = h, ck ≥ 0,�
k ck = 1. Our aim is to prove that for some α

�

a∈A

ψ(x− αa) > 0

for all x. Denote T (x) =
�

a∈A e2πiax. Then

�

a∈A

ψ(x− αa) =
�

k

cke
2πikxT (−kα).

As � 1

0

�

k �=0

ck|T (−kα)|dα ≤ N1/2
�

k �=0

ck < N1/2,

there is α so that �

k �=0

ck|T (−kα)| < N1/2.

Therefore, �

a∈A

ψ(x− αa) = hN +
�

k �=0

cke
2πikxT (−kα) > hN −N1/2,

as required.

It is possible to replace 2N− 1
2 with cN− 1

2 for some c < 2. This can be achieved by
using an appropriate substitute for the function ψ above, see [2]. It is natural to apply the
second moment method to bound the largest gap. I.e, divide the circle into m intervals
of length 1/m each and bound the probability that one of them does not contain a point
in αA via the second moment method. We leave it to the reader to check that this gives
nothing better than N−1/2 (this requires the methods from the following section). Next
we show that for some (generic) sets the largest gap cannot be made any smaller than
c log N/N .

Proposition 4.2 For any sufficiently large N there exist sets A of cardinality N so
that the largest gap between consecutive elements from αA (mod 1) is at least log2 N

3N for
any α. In fact, a random subset of [1, N ] of cardinality � N has this property with large
probability.

Proof : Divide the circle into ν =
�

3N
log2 N

�
congruent, disjoint intervals {Ij}ν

j=1 of length

1/ν. Let the random set A ⊂ [1, 2N ] be defined via A = {j ∈ [1, 2N ] : ξj = 1} where ξj
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are i.i.d. with P(ξj = 1) = P(ξj = 0) = 1
2 . Now fix some α ∈ [0, 1]. We say that j ∈ [1, ν]

is good if

card{� : αa� ∈ Ij (mod 1)} ≤ 2

3
log2 N.

Clearly, at least half of all intervals are good. Now

P
�
for every j: Ij ∩ (αA (mod 1)) �= ∅

�

≤ P
�
for every good j: Ij ∩ (αA (mod 1)) �= ∅

�

≤
�
1− 2−

2
3 log2 N

�ν/2

≤ exp
�
− N

log2 N
· N−2/3

�

= exp(−N1/3/ log2 N).

Let αj = j
N2 for j = 0, 1, . . . , N2 − 1. Summing the previous line over all these j yields

for large N

P
�
for some α the largest gap in αA (mod 1) is smaller than log2 N

3N

�

≤ N2 exp(−N1/3/ log2 N).

Since card(A) = N with probability � N− 1
2 and card(A) � N with large probability, the

proposition follows.

5 Concentration

Given a set of N distinct integers A = {a1, . . . , aN} let

κ(A) = min
α∈[0,1]

max
x∈[0,1]

card{j ∈ [1, . . . , N ] : �αaj − x� < N−1}.

In other words, for any fixed α consider the largest number of αA (mod 1) contained
in any interval of size N−1. Then minimize this quantity in α. Before discussing upper
bounds on the concentration κ we show that it cannot be made too small. It is fairly
simple to construct an example by probabilistic methods. Although this does not give a
very good bound, the following result shows that any dilate of a “typical” set of N integers
has concentration at least log N/ log log N . In the next section we present a deterministic
example that is more involved, but which gives a much better lower bound.
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Proposition 5.1 For sufficiently large N there exist positive integers A = {a1 < . . . <
aN} so that

κ(A) >
log N

2 log log N
.

In fact, with probability > 1
2 a random subset of size � N of the first N [log N ] positive

integers has this property.

Proof : Take M = N [log N ] and let ξj be i.i.d. with P(ξj = 1) = p = 1
log N and P(ξj =

0) = 1 − p. Define A = {j : ξj = 1}. Clearly, card(A) � N with high probability. We
divide the circle into the intervals Ij = [ j

N , j+1
N ) where j = 0, . . . , N − 1. Now fix some

α ∈ [0, 1] and consider the points

P =
�
{k1α}, {k2α}, . . . , {kMα}

�

where {k1, . . . , kM} is a permutation of {1, . . . ,M} that arranges the points in nondecreas-
ing order. Call Ij unpopular if it contains no more than 1

2 log N points from P and popular
otherwise. Obviously, at least M/3 points belong to popular intervals. The proposition
follows from the fact that with high probability the sequence ξk1 , . . . , ξkM has blocks of
ones of length > [12

log N
log log N ] = L that lie entirely inside popular intervals (this is basically

the Erdös–Renyi law of long head runs). I.e., with high probability there is some j0 so
that for all j ∈ [j0, j0 + L] one has kj ∈ A and the points {kjα} belong to the same
popular interval. More precisely,

P
�
card{Ij ∩ (αA (mod 1)} <

log N

2 log log N
for all j

�

≤ P
�
no popular interval contains a row of L ones

�

≤ (1− pL)[M/4L] ≤ exp
�
−N(log N)−

log N
2 log log N

�
= exp(−

√
N). (9)

Now let α run over all fractions with denominator N3[log N ] and sum the contributions
from (9) for each of these α. Thus

P
�
for some α : card{Ij ∩ (αA (mod 1))} <

log N

2 log log N
for all j

�

≤ N3 log N exp(−
√

N). (10)

The proposition follows since card(A) = N with positive probability and card(A) � N
with large probability.
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We now discuss upper bounds. It is easy to see that κ(A) ≤ C
√

N for any A ⊂ Z
with |A| = N , and we will give an argument that yields N

1
3+�. One way of showing N

1
2

is to let Xij(α) = 1 if and only if �α(ai − aj)� < 2N−1 and Xij(α) = 0 otherwise. We
consider Xij(α) as random variables by taking α to be uniform on [0, 1]. One checks that
E(Xij) = 4N−1 and thus E(

�N
i=1

�
j �=i Xij) ≤ CN . Fix some α with

�N
i=1

�
j �=i Xij(α) ≤

CN . With this choice of α there are at most � N pairs of points αaj in any interval of
size N−1.
Alternatively, pick a smooth, positive, one–periodic bump function φ with support of
size N−1 and height 1. We need to estimate the average in α of �

�N
i=1 φ(αai− x)�L∞(dx).

This can be done by bounding the average in α of the �1 norm of the Fourier coefficients
of this sum:

� 1

0

�
N�

j=1

φ(αaj − x)�L∞(dx) dα ≤
�

k∈Z
|φ̂(k)|

�� 1

0

|
N�

j=1

e2πikaj |2 dα
� 1

2

≤
�

k �=0

|φ̂(k)|
√

N + |φ̂(0)|N ≤ C
√

N.

The last inequality follows since |φ̂(k)| ≤ C min(N−1, N |k|−2).
It is easy to deal with lacunary sequences {aj}, i.e., aj+1 > qaj where q > 1 is fixed.

Indeed, assume first that q > N . Split [0, 1] into N disjoint intervals Ij of size N−1

centered at xj and let Yj(α) =
�N

i=1 χIj(αai). Clearly,

P(α : Yj(α) > N�) ≤ N−p� E(Y p
j )

= N−p�
N�

n1=1

. . .
N�

np=1

P(α : �αan1 − xj� < N−1, . . . , �αanp − xj� < N−1). (11)

It is easy to see that q > N implies that for j fixed and α uniformly distributed in [0, 1]
the random variables χIj(αai) are basically independent. More precisely, one checks that
the probability on the right–hand side is ≤ CN−k if k is the number of distinct integers
among n1, . . . , np. Hence E(Y p

j ) ≤ Cp independently of N and thus the left–hand side of
(11) is bounded by C� N−2 if p� > 2. For general q > 1, one applies this estimate to each
of the � log N many subsequences k + �ν where qν > N . Summing over j and k yields
κ(A) ≤ C�,qN� for q–lacunary sequences.

Generally speaking, the variables χIj(αai) will not be independent and the sum on the
right–hand side of (11) will be too large. Nevertheless, we will show below that one can
use (11) summed in j and with p = 3. The point is that for the majority of distinct triples
i, j, k the random variables χ[�α(ai−aj)�<δ] and χ[�α(ai−ak)�<δ] where δ = N−1 behave like
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independent variables. Unfortunately, this completely fails for fourth or higher moments
(p ≥ 4), see the discussion in Section 7.

Our proof of Theorem 5.2 below uses ideas from the paper by Alon and Peres [4] and
the recent preprint of Alon and the second author [5]. For the sake of simplicity we do
not state various bounds in an optimal form, but refer the reader to [5] for further details,
see Lemmas 3.6 to 3.10. In particular, their work allows one to prove Theorem 5.2 below
with N

1
3 ec

√
log N log log N .

Theorem 5.2 For any � > 0 there exists a constant C� so that

κ(A) ≤ C� N
1
3+�

for all N and any set A of N distinct integers.

Proof : To obtain the N
1
3+� bound let Xijk(α) = 1 if and only if �α(ai − aj)� < N−1

and �α(ai − ak)� < N−1 and Xijk(α) = 0 otherwise. As in the case of second moments
considered above, it suffices to show that E

�
i,j,k Xijk ≤ C� N1+�, where the summation

runs over triples of distinct indices. We will show that

E(Xijk) = P(α : �α(ai − aj)� < δ, �α(ai − ak)� < δ)

≤ C
�
N−2 + N−1 gcd(|ak − ai|, |aj − ai|)

|ak − ai| + |aj − ai|

�
. (12)

First notice that we may assume that gcd(|ak−ai|, |aj−ai|) = 1. Secondly, given positive,
relatively prime integers n < m and any δ > 0,

P(α : �αm� < δ, �αn� < δ) ≤ card{� ∈ [1, . . . ,m] : �n ∈ [−[2δm], . . . , [2δm]] mod m}2δ

m

≤ C(1 + δm)
δ

m
= C(δ2 +

δ

m
). (13)

Indeed, the set on the left–hand side of (13) is the union of all intervals [ �
m−

δ
m , �

m+ δ
m ] which

come δ
n close to fractions with denominator n. The number of such intervals is given by the

first factor on the right hand–side of (13). Setting δ = N−1 now yields (12). We will show
that maxi E(

�
j,k Xijk) ≤ C� N� where the summation runs over distinct j, k ∈ [1, . . . , N ].

In view of (12) this follows from the inequality

max
i=1,...,N

card{(j, k) : M gcd(|ak − ai|, |aj − ai|) ≥ |ak − ai| + |aj − ai|}

≤ C� min{N2, (MN)1+�} (14)

13



for any positive integer M . In fact,

E
�

j,k

Xijk ≤ C� N−1
�

2�≤N

2−�(2�N)1+� +
�

j,k

CN−2 ≤ C� N�.

To prove (14), fix some i ∈ [1, . . . , N ] and a positive integer M . W.l.o.g. ai = 0.
Consider the graph G = (V, E) with vertices labeled by aj, j �= i and an edge connecting
aj, ak if and only if M gcd(|ak|, |aj|) ≥ |ak| + |aj|. There exists a vertex, say a1, so that
for any positive integer r the number of closed walks of length 2r starting at a1 is at
least (N − 1)−1(2|E|/(N − 1))2r. Indeed, eliminating all vertices of degree less than the
average degree d̄ = 2|E|/(N − 1) together with all their incident edges one obtains a
subgraph in which all vertices have degree at least d̄. In particular, from any vertex
in this subgraph the number of walks of length r is at least d̄r. The claim about the
number of closed walks now follows by joining any two of these walks that end at the
same point. The stated bound then follows by Cauchy–Schwarz, see [4] for details. On
the other hand, suppose that a1, a2, . . . , a2r, a1 is a closed walk. By assumption, ai+1

ai
= qi

pi
,

where |qi|, pi ∈ {1, 2, . . . ,M} are relatively prime, for i = 1, . . . , 2r. It is clear that
p1, . . . , p2r, q1, . . . , q2r completely determine the walk. The number of choices of p1, . . . , p2r

is at most M2r. Since p1p2 · . . . · p2r = q1q2 · . . . · q2r, it follows that the number of choices
of q1, q2, . . . , q2r given p1, p2, . . . , p2r is at most [2d(p1 · . . . · p2r)]

2r, where d is the divisor
function. By the elementary estimate d(n) ≤ C� n�, one concludes that the number
of closed walks starting at a1 is at most M2r(C� M2r)2r�. In view of the lower bound,
|E| ≤ C� N1+1/2rM1+2r�. Choosing r large and then � small yields (14).

6 A lower bound for the concentration

Recall that given a set of N distinct integers A = {a1, . . . , aN} we let

κ(A) = min
α∈[0,1]

max
x∈[0,1]

card{j ∈ [1, . . . , N ] : �αaj − x� < N−1}.

Theorem 6.1 For sufficiently large N there exist positive integers A = {a1 < . . . < aN}
so that

κ(A) > exp

�
c

log N

(log log N)2

�
.

Proof : We construct a set A, |A| ≤ N and another set V (as large as we can) with the
following property. For every q ≤ Q = N(v− v), where v, v are the maximal and minimal
elements of V , there is a b such that

b + qv ∈ A for all v ∈ V. (15)
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Any set of integers A� containing A such that |A�| = N will satisfy κ(A�) ≥ |V |. To show
this, take an arbitrary α. We can find q ≤ Q such that �αq� ≤ 1/Q. Now take the b
satisfying (15). We have

�αq(v − v)� ≤ (v − v)�αq� ≤ (v − v)/Q ≤ 1/N,

thus all the numbers α(b+qv) are at distance ≤ 1/N (mod 1) from α(b+qv). We construct
the set V in the following way. We take an integer k, a subset U of the set of divisors of
k such that

U ⊂ [l, l + l/l1)

with certain integers l, l1 and put

V = {k/u : u ∈ U}.

In this way we have

v ≤ k

l
, v ≥ k

l + l/l1
,

so

v − v ≤ k

ll1
, Q ≤ kN

ll1
. (16)

We write the integers q ≤ Q in the form

q = λ0 + lλ1 + ll1(λ2 + lλ3) + ... + (ll1)
r−1(λ2r−2 + lλ2r−1),

where λ2i ≤ l − 1 and λ2i+1 ≤ l1 − 1. This is possible as long as

Q < (ll1)
r. (17)

For u ∈ U we have
λ0 + lλ1

u
= λ1 +

λ0 + (l − u)λ1

u
.

Here the first summand is independent of u and, since −l/l1 < l − u ≤ 0, the numerator
of the second satisfies

−l < λ0 + (l − u)λ1 < l.

By doing the same for each pair λ2i, λ2i+1 we obtain

q

u
= (λ1 + ll1λ3 + ... + (ll1)

r−1λ2r−1) +
1

u
(µ0 + ll1µ1 + ... + (ll1)

r−1µr−1),
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with certain integers µj satisfying −l < µj < l. Thus if A contains all the integers of the
form

k

u
(µ0 + ll1µ1 + ... + (ll1)

r−1µr−1), u ∈ U, −l < µj < l, (18)

then it will have property (15) with b given by

b = −k(λ1 + ll1λ3 + ... + (ll1)
r−1λ2r−1).

The number of integers of the form (18) is < |U |(2l)r, so this choice of A is acceptable if

N ≥ |U |(2l)r. (19)

Now we determine k, l, l1 and r. Let k be the product of the first s primes, where

s =

�
c1

log N

(log log N)2

�

with some constant c1 > 0. This k satisfies log k ∼ s log s, so with any c2 > c1 for large
N we have

k < N c2 log N/ log log N .

This k has altogether 2s divisors. Write l1 = [2s/2]. Since the interval [1, k] can be covered
with O(l1 log k) intervals of type [l, l+ l/l1), there will be at least one choice of l for which
this contains

� 2s

l1 log k

divisors of k. Hence,

|V |� 2s

l1 log k
> 2(1/2−ε)s > exp

�
c4

log N

(log log N)2

�

for any constant c4 < (c1/2) log 2. To complete the proof of the theorem, it remains to
achieve (17) and (19). We define r by the condition

(ll1)
r < kN ≤ (ll1)

r+1.

By (16) this choice guarantees that (17) holds. Since ll1 < k2, this r satisfies

r ≥ log N

2 log k
− 1 > c3 log log N (20)
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with any c3 < 1/(2c1). We have

(2l)r = (ll1)
r(2/l1)

r < kN(2/l1)
r.

Using the crude estimate |U | < k we see that to achieve (19) it is sufficient that

(l1/2)r > k2. (21)

The definition of l1 and estimate (20) of r show that

(l1/2)r > exp

�
1

4
− ε

�
log N log 2

log log N
,

thus (21) will hold for large N if c1 < log 2/8, as required.

7 Comments and Questions

The arithmetic sequence aj = j shows that the argument from Section 5 does not carry
over to fourth moments. Indeed, let Xijk�(α) = 0, 1 depending on whether the points αai

to αa� lie in an interval of size N−1 or not. Then Xijk�(α) = 1 for all α ∈ [0, N−2] so
that

�
i,j,k,� E(Xijk�) ≥ N2 for that sequence, which gives the trivial

√
N bound for the

concentration. This suggests to seek a different approach for sequences with not too large
gaps. One possibility might be to choose α to be a rational number with denominator of
size � N . This leads to the following problem:

Question 7.1 Let A ⊂ {1, 2, . . . , N2} be a set with card(A) = N . How large is

D(A) = min
N≤d≤2N

max
x∈Zd

card{a ∈ A : a ≡ x (mod d)} ? (22)

It is easy to see that D(A) ≤ C
√

N . Indeed, assume that D(A) > D = [
√

2N ]. Take D
distinct primes p1, . . . , pD in [N, 2N ] and consider the corresponding residues of A modulo
pj for j = 1, . . . , D. There are D residues classes, each contains at least D elements. Thus,
the total number of the elements is ≥ D2. Any two residues classes have at most one
element in common, and we have to subtract at most D(D − 1)/2. The number of
distinct elements is at least D2 −D(D− 1)/2 = D(D + 1)/2. One might conjecture that
D(A) ≤ C log N , as in the case of random A. However, we do not know how to prove this.
Another — potentially useful — way of viewing this question is by analogy with incidences
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between points and lines. To be precise, observe that any two arithmetic progressions
whose increments are different prime numbers in [d, 2d] can intersect in at most one point
inside the interval {1, 2, . . . , N2}. Suppose now that we have M � N/log N many primes
p1, . . . , pM ∈ [N, 2N ] for which maxx card{a ∈ A : a ≡ xmod pj} ≥ C0

√
N log N ,

where C0 is some sufficiently large constant. Let γ1, . . . , γM be the associated arithmetic
progressions with increments pj so that card(γj ∩A) ≥ C0

√
N log N for each j. Consider

now a bipartite graph with vertex sets {γ1, . . . , γM} and A, respectively and connect a
point from A with an arithmetic progression if and only if the point lies in the progression.
By the aforementioned intersection property of arithmetic progressions this graph does
not contain a K2,2. By some elementary combinatorics, see [3], there are no more than
� N3/2/

√
log N edges in total, which contradicts our assumption if C0 is large. The

(very simple) combinatorics we used arises frequently. In particular, it leads to the bound
I(n) ≤ Cn3/2 for the number of incidences I(n) between n points and n lines in the
plane (two lines intersect in at most one point, which is all we used about the arithmetic
progressions above). However, the well–known Szemeredi-Trotter theorem [9] states the
optimal bound I(n) ≤ Cn4/3. This cannot be obtained by graph theory alone, but requires
further geometric insight. We refer the reader to [9] and the recent book [3], where the
Szemeredi-Trotter theorem is discussed in the context of various probabilistic methods in
combinatorics, mainly “�–nets in hypergraphs with finite VC–dimension”. It is however
not clear whether these methods are relevant for Question 7.1. Finally, we want to point
out that the large sieve also yields this bound. In fact, by the large sieve inequality [12],

�

p≤X

p
p�

h=1

(card{a ∈ A : a ≡ h (mod p)})2 ≤ C(X2 + N2)

� 1

0

���
�

a∈A

e2πiat
���
2
dt.

Setting X = N as desired we obtain the same as before. Replacing second with fourth
moments in the previous line does not lead to any improvement because of arithmetic
progressions.

It is perhaps worth pointing out that the probability on the right–hand side of (11)
can be computed in full generality. In fact, given p distinct positive integers b1, . . . , bp and
any δ ∈ (0, 1] one has

|{α ∈ [0, 1] : �αb1� < δ, . . . , �αbp� < δ}| �
� δp card{(x1, . . . , xp) ∈ [−δ−1, δ−1]p ∩ Zp : x1b1 + . . . + xpbp = 0}. (23)

To prove this, choose a smooth one–periodic bump function φ of height one and support
[−δ, δ]. Then the left–hand side of (23) is bounded by

� 1

0

φ(b1α)φ(b2α) · . . . · φ(bpα) dα = �φ(b1·) ∗ . . . ∗ �φ(bp·)(0).
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It is an exercise in Fourier series to check that the convolution is (up to some inessential
technicalities) equal to the right–hand side of (23). This also provides a rigorous way of
checking the independent behavior in the lacunary case.

8 Non–averaging subsets

This section deals with the existence of large non-averaging subsets in sets of integers. A
set of integers is called non-averaging if no member of the set is the average of two or
more others. Let h(n) denote the maximum h so that every set of n integers contains a
non-averaging subset of cardinality h. Answering a problem of Erdős, Abbott proved in
[1] that h(n) � n1/13/(log n)1/13 for n ≥ 2. Alon and the second author [5] improved this
estimate to h(n) � n1/6. Their proof uses the result of Bosznay [6] who established that
the set {1, . . . , n} contains a non-averaging subset of cardinality � n1/4. The method of
[5], together with the construction (rather than the result) of [6] gives the following.

Theorem 8.1 Every set of n integers contains a non-averaging subset of cardinality �
n1/5.

Let Ij = [aj, bj) (j = 0, . . . , k − 1) be k intervals. We say that Ij are non-averaging if
for any set d0, d1, . . . , dp of p reals, where 1 ≤ p < k and the points di are in some p + 1
distinct intervals Is from the intervals above, the equation pd0 =

�p
i=1 di (mod 1) is not

satisfied. In particular, taking p = 1 we see that non-averaging intervals are disjoint.

Lemma 8.2 For any n ∈ N there exist a set of � n1/5 non-averaging intervals of length
1/n.

Proof : We follow the construction of [6]. Denote k = [n1/5]. Let us introduce the intervals

[aj, bj) = [
j

k2
+

j2

k5
,

j

k2
+

j2

k5
+

1

n
) (j = 0, . . . , k − 1).

We will show that these intervals are non-averaging. Let j0, . . . , jp be distinct and assume
that

pd0 =
p�

i=1

di (mod 1). (24)

for some di ∈ Iji . As p < k and all intervals Ij are contained in [0, 1/k), we have
0 ≤ pd0 < 1 and 0 ≤

�p
i=1 di < 1. Therefore, (24) implies the equality

pd0 =
p�

i=1

di. (25)
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Denote di = ji

k2 + ri
k5 , where ri ∈ [j2

i , j
2
i + k5/n) ⊂ [j2

i , j
2
i + 1). The equality (25) can be

rewritten as

pj0 −
p�

i=1

ji +
1

k3

�
pr0 −

p�

i=1

ri

�
= 0. (26)

Taking into account that 0 ≤ ri < k2, we get

−k3 < pr0 −
p�

i=1

ri < k3,

or, by (26), −1 < pj0 −
�p

i=1 ji < 1. The last inequalities mean that

pj0 −
p�

i=1

ji = 0

and, by (26),

pr0 −
p�

i=1

ri = 0.

It follows from the last two equalities that

p(r0 − j2
0)−

p�

i=1

(ri − 2jij0 + j2
0) = 0.

But this is impossible because r0−j2
0 < 1 but ri−2jij0+j2

0 ≥ (ji−jo)2 ≥ 1 for j = 1, . . . , p.

Lemma 8.3 If n ∈ N and there exists a set of k non-averaging intervals of length 1/n,
then h(n) ≥ k/2.

Actually the lemma was proved in [5]. For completeness, we reproduce the proof here.
Let A be a set of n integers and suppose I0, . . . , Ik−1 are non-averaging intervals of

length 1/n. The crucial idea is the following. If there are two real numbers α, β so that the
set αA+β (mod 1) intersects at least q of the intervals Ij, then A contains a non-averaging
subset of size q. Indeed, choose q of the intervals that intersect αA + β (mod 1), and for
each of them choose some a ∈ A for which αa + β (mod 1) is in that interval. The set
of all the chosen elements is clearly non-averaging. Indeed, otherwise pa0 = a1 + . . . + ap

for some chosen elements ai, implying that p(αa0 + β) =
�p

i=1(αai + β) (mod p), which
contradicts our assumption.
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To complete the proof it remains to show that there are α, β for which αA+β (mod 1)
intersects sufficiently many intervals Is. This follows easily from the second moment
method. In fact, choose randomly and independently α and β in [0, 1), according to a
uniform distribution. Fix an interval I = Ij for some j = 0, . . . , k−1, and let X denote the
random variable counting the number of elements a of A for which za = αa+β (mod 1) ∈
I. X is the sum of the n indicator random variables Xa, a ∈ A, where Xa = 1 iff
za ∈ I. The random variables Xa are pairwise independent and P(Xa = 1) = 1/n for
all a ∈ A. This is because for every two distinct members a, a� of A, the ordered pair
(za, za�) attains all values in [0, 1)2 according to a uniform distribution, as α and β range
over [0, 1). Therefore, the expectation and variance of X satisfy E(X) = n · 1/n = 1 and
V(X) = n(1/n)(1− 1/n) ≤ 1. By the Cauchy–Schwartz inequality

(EX)2 ≤ E(X2)P(X > 0) = ((EX)2 + VX)P(X > 0).

Therefore, P(X > 0) ≥ 1/2, that is; the probability that αA + β (mod 1) intersects I is
at least 1

2 .
By linearity of expectation we conclude that the expected number of intervals Ij

containing a member of αA + β (mod 1) is at least k/2 and hence there is a choice for
α and β for which at least k/2 intervals Ij contain members of αA + β (mod 1). By the
above discussion, this completes the proof of Lemma 8.3.

Theorem 8.1 immediately follows from Lemmas 8.2 and 8.3.
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