
ON MINIMA OF THE ABSOLUTE VALUE OF CERTAIN
RANDOM EXPONENTIAL SUMS

W. SCHLAG

Abstract. Let Tn(x) =
Pn

j=1 ±e2πij2x where ± stands for a random choice
of sign with equal probability. It is shown here that with high probability
minx∈[0,1) |Tn(x)| < n−σ provided n is large and σ < 1/12. Similar results
are proved for other powers than squares. The problem of determining the

optimal σ is open. For the case Tn(x) =
Pn

j=1 rje2πijdx, where d = 2, 3, . . .
is fixed and with standard normal rj we show that the minima are typically

on the order of n−d+ 1
2 with high probability and for large n.

1. Introduction

Let Tn(x) =
�

n

j=1 ±e(j2x) where the signs are chosen independently with prob-
ability 1

2 each. Throughout this paper e(x) = e2πix and T = R/Z.

Theorem 1. For any σ < 1/12, P(minx∈T |Tn(x)| < n−σ) → 1 as n →∞.

The study of minima of random trigonometric polynomials originates in [9],
where Littlewood posed the problem of showing that

P
�

min
x∈T

���
n�

j=1

±e(jx)
��� < �

√
n

�
→ 1 as n →∞

for any � > 0. This was proved by Kashin [5]. In fact, a much stronger statement
holds as shown by Konyagin [6]:

P
�

min
x∈T

���
n�

j=1

±e(jx)
��� < n−

1
2+�

�
→ 1 as n →∞

for any � > 0. In [7] Konyagin and the author then showed that n−
1
2 is the correct

order of magnitude, i.e.,

lim sup
n→∞

P
�

min
x∈T

���
n�

j=1

±e(jx)
��� < �n−

1
2

�
≤ C�

for any � > 0. The purpose of this paper is to prove Theorem 1 and some re-
lated results. The basic approach will resemble that in [6], but at several crucial
points completely different arguments are required. The most essential part of our
argument involves bounding the discrepancy of the sequence

�
α1(j2 − k2), α2(j2 − k2)

�n

j,k=1
mod Z2(1)
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where α1 and α2 can be thought of as rational numbers with denominators of
size about n (loosely speaking this is related to the pair correlations considered
by Rudnik and Sarnak [11]. However, their objective is different from ours and
they also consider only one coordinate). Obtaining a nontrivial bound requires a
suitable independence condition on α1 and α2, see (18) below. Since we want this
condition to hold for sufficiently many pairs (α1, α2), we obtain only weak bounds
for the discrepancy of (1) and therefore only small σ in Theorem 1. However, even
the optimal bounds on the discrepancy of (1) would only yield σ < 1

2 in Theorem 1
using our methods. This is most likely not the correct order of magnitude for the
minimum, as it is shown in Section 3 that in the Gaussian case the optimal σ = 3

2 ,
see Theorems 16 and 20 in Section 3 (Gaussian here means that the coeffcients are
chosen to be standard normal rather than Rademacher variables). It is possible,
however, that the order of magnitude of the minima depends on the distribution of
the coefficients (notice that in the case of the polynomials of Littlewood mentioned
above this is not the case, see [6] and [7]).

We now give a heuristic argument that should give some indication why the
minima are on the order of n−

3
2 . Let Tn be as above. By the Salem–Zygmund

inequality [4]
�Tn�∞ ≤ C

�
n log n

with probability tending to 1 as n →∞ (we refer to this as asymptotically almost
surely or a.a.s.). So up to a logarithm, which we want to ignore here, the values
of Tn lie in a square of size about

√
n a.a.s.. Split this square into about n4 many

squares of side length n−
3
2 and pick a minimal n−4-net N on T. The point is

that one expects to hit most of the small squares with the values {Tn(α)}α∈N and
therefore also the square at the origin or one nearby. To see this notice firstly
that one would expect that with high probability |T �

n
(x)| is of size approximately

n2√n for typical x. Moreover, �T ��
n
�∞ ≤ Cn4

√
n log n a.a.s. by Salem–Zygmund.

Suppressing logarithms, one therefore concludes from Taylor’s theorem that

|Tn(β)− Tn(α)| = Cn2√n|β − α|
�
1 + O(n2(β − α))

�
.

This means that any two points in the net N of distance < n−2 should fall into
distinct squares. In particular, any n2 adjacent points in our net should fall into
different squares. Secondly, we claim that for typical points α, β at a distance
greater than n−2 the random variables Tn(α) and Tn(β) are weakly correlated. In
fact,

E[Tn(α)Tn(β)] =
n�

j=1

e((α− β)j2).

It is a standard fact of analytic number theory that the Weyl sum on the right–hand
side is much smaller in absolute value than n for α−β which do not come too close
to fractions with small denominators, see [10]. Since n =

�
E|Tn(α)|2

�
E|Tn(β)|2

our claim follows. Assuming for simplicity that the values of Tn at such points are
actually independent, we are in the situation of picking n2 of the small squares
randomly and independently n2 many times. It is a simple exercise to see that the
expected number of the small squares we select this way is � n4, which is the total
number of those squares.

Finally, we would like to point out that a similar heuristic argument also applies
to other powers than squares. More precisely, one easily checks along the same lines
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as before that one might expect for any fixed d = 2, 3, . . . and with ωd = (2d−1)/2,

min
x∈T

������

n�

j=1

±e(jdx)

������
< n−ωd+�

for most choices of ± as n →∞. As far as rigorous results are concerned, it is not
hard to see that the basic approach from Section 2 yields

P
�

min
x∈T

���
n�

j=1

±e(jdx)
��� < n−σd

�
→ 1 as n →∞

for some σd > 0. See Section 2.4 for further discussion of higher powers. Contrary
to the behavior suggested by the heuristic argument, the σd tend to zero with
increasing d. Moreover, it is shown in Section 3 that ωd is the correct power in the
Gaussian case for all d ≥ 2.

2. The Bernoulli case

In this section we prove Theorem 1 above. Following [6], we use the second
moment method. More precisely, fix some 0 < δ1 < 1/20 and pick a minimal
n−2–net N = {αs}M

s=1 in

T \
�n1−δ1��

q=1

q�

p=1

�p

q
− 1

qn
,
p

q
+

1
qn

�
.

Here �a� is the smallest integer greater or equal to a. Clearly, M � n2 where the
notation a � b means a ≤ Cb for some absolute constant C and a � b stands for
a � b and b � a. Fix σ > 0 and let

Eα = {|Tn(α)| < n−σ}(2)

for all α ∈ N . By Cauchy-Schwarz (the “second moment method”),

P
� �

α∈N
Eα

�
≥

��
α∈N P(Eα)

�2

�
α,β∈N P(Eα ∩ Eβ)

.(3)

The goal of this paper is to show that the right-hand side tends to one provided
σ < 1/12. The number 1/12 is most likely a technical artifact and it is possible
that one can improve on it by being more economical in the following argument.
A substantial improvement, however, will require new ideas. The harder part is of
course bounding the variances (the denominator) and it is here that (1) becomes
relevant. One might expect that P(Eα) � n−1−2σ as in the Gaussian case (Gaussian
here means that the coefficients are standard normal rather than ±). However, it
is easy to see that

P
�

T4n

�1
4

�
= 0

�
� 1

n
.

This suggests that fractions with small denominators play a special role, which
explains the choice of N above. Furthermore, one cannot use normal approximation
to prove this bound since the error in the central limit theorem is n−

1
2 (the Berry–

Esseen theorem, see [1]). For this reason such small probabilities are calculated
in [6] and [7] directly by means of the characteristic functions (i.e., the Fourier
transforms) of the random variables at hand. Finally, we would like to remark that
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the case σ < 0 in Theorem 1 is much easier than the case σ > 0. In fact, it is implicit
in our argument below that σ < 0 is covered by some fairly standard central limit
type theorems, see Theorem 8.4 in [1]. In particular, basically no number theory is
required for that case.

2.1. Estimating P(Eα). We turn to the numerator in (3). In that case the correct
estimate only requires σ < 1.

Proposition 2. Fix some σ ∈ (0, 1) and let Eα be given by (2). Then

P(Eα) = c0n
−1−2σ(1 + o(1)) as n →∞

uniformly in α ∈ N . Here c0 is an absolute constant.

We shall prove this after establishing some lemmas. For any sequence x1, . . . , xn ∈
T we let Dn be the usual discrepancy over intervals, i.e.,

Dn({xj}n

j=1) = sup
I⊂T

���|I| −
1
n

card{j ∈ [1, n] : xj ∈ I}
���,

where the supremum is taken over intervals. The main tool for bounding Dn is the
well–known Erdös–Turan inequality, see [8] and [10],

Dn({xj}n

j=1) � 1
K

+
1
n

K�

k=1

���
1
k

n�

�=1

e(kx�)
���.(4)

Throughout, � · � denotes the distance to the nearest integer. The following lemma
is standard.

Lemma 3. maxα∈N Dn({αj2}n

j=1) � n−
1
2+δ1

Proof. By the Erdös–Turan inequality with K = n

Dn({αj2}n

j=1) � 1
n

+
n�

�=1

1
�

������
1
n

n�

j=1

e(α�j2)

������

� 1
n

+
1
n




n�

�=1

1
�

����
n�

j=1

e(α�j2)
����
2




1
2 �

log n

� 1
n

+
√

log n

n

�
n log n +

n�

�=1

1
�

n−1�

u=1

min(n, �2α�u�−1)

� 1
2

.(5)

To pass to the previous line one uses the standard Weyl differencing method [10],
chapter 3:

����
n�

j=1

e(α�j2)
����
2

=
����

n�

j,k=1

e(α�(j2 − k2))
����

≤ n +
����

n�

j=1

�

u∈Z,u �=0

χ[j+u∈[1,n]]e(α�(j2 − (j + u)2))
����

≤ n + 2
n−1�

u=1

����
n�

j=1

e(−2α�ju)
���� ≤ n + 2

n−1�

u=1

min(n, �2α�u�−1),(6)
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and (5) follows. We now recall a standard estimate for reciprocal sums as in (5),
see equation (9) in [10]:

H�

h=1

min(N, �hα�−1) � HN

q
+ H log q + N + q log q(7)

provided |α− p

q
| ≤ q−2 with (p, q) = 1. Let

s� =
��

k=1

n−1�

u=1

min(n, �2αku�−1).

By Dirichlet’s principle, |α − p

q
| ≤ 1

nq
for some integers 1 ≤ p ≤ q ≤ n. In view of

the definition of N one has q ≥ n1−δ1 . Therefore, for any 1 ≤ � ≤ n,

s� ≤
2�(n−1)�

h=1

��

k=1

χ[k|h] min(n, �αh�−1) ≤ C�n
�

2�(n−1)�

h=1

min(n, �αh�−1)

≤ C�n
�

�
�n2

q
+ (n� + q) log q

�
≤ C� �n1+δ1+�.

To pass to the second inequality we used that the number of divisors of h grows
at most like h�, see [3], and the third inequality follows from (7). Applying partial
summation to (5) finally implies that

Dn({αj2}n

j=1) � log n√
n

+
√

log n

n

�
log n max

1≤�≤n

s�

�

� 1
2

� log n√
n

+ C�

log n

n
n(1+δ1+�)/2.

Hence the lemma for n large. �

Lemma 4 is the first of two essential technical statements about the number of
elements in a particular sequence {ψj}n

j=1 that come close to integers. The ψj arise
naturally in the characteristic function of Tn(α), see the proof of Proposition 2
below.

Lemma 4. Suppose α ∈ N , 1/4 ≤ v ≤ n1−2δ1 , and θ ∈ [0, 2π) are arbitrary but
fixed. For any j ∈ Z let ψj = v cos(2παj2 + θ). Then

card{j ∈ [1, n] : �ψj� < n−δ1} ≤ n/2(8)

provided n > n0(δ1) (with n0 depending only on δ1).

Proof. Assume false. Then there exist integers mj such that |ψj −mj | < n−δ1 for
at least n/2 values of j. Thus

| cos(2παj2 + θ)− mj

v
| < n−δ1v−1 = ∆

for those j. If c1 > 0 is a small constant then the previous lemma implies that

card{j : | sin(2παj2 + θ)| < c1} < n/4(9)

if n is large. Define the intervals I� and J� via

I� ∪ J� = {x ∈ T : | cos(2πx + θ)− �/v| < ∆}.
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Discarding the points falling into the set in (9) we conclude that
L�

�=−L

n�

j=1

χI�∪J�(αj2) > n/4

where L = [v] + 1 and |I�| � |J�| � ∆. We may assume that
L�

�=−L

n�

j=1

χI�(αj2) > n/8.(10)

Pick a nonnegative bump function φ∆ so that φ∆ ≥ 1 on [−C∆, C∆] and

supp(�φ∆) ⊂ [−C∆−1, C∆−1]

where C is a suitable constant. Applying Cauchy–Schwarz to (10) yields

n2 �
L�

�=−L




n�

j=1

χI�(αj2)




2

v ≤
n�

j,k=1

χ[−C∆,C∆](α(j2 − k2)) v(11)

� vn + v
n�

j �=k=1

φ∆(α(j2 − k2))

= nv + vn(n− 1)�φ∆(0) + v
n�

j �=k=1

�

ν �=0

�φ∆(ν)e(αν(j2 − k2)).

Here
�

n

j �=k=1 means that we sum over j, k = 1, . . . , n with the restriction that
j �= k. Therefore, substituting k = j + u as in the proof of the previous lemma
(see (6)),

n2/v � ∆n2 + ∆
C/∆�

ν=1

n�

j=1

min(n, �2ανj�−1)

� ∆n2 + C� n�∆
Cn/∆�

k=1

min(n, �αk�−1).(12)

To pass to the second line we use that the divisor function grows more slowly than
any power, see [3]. Now let |α − p

q
| ≤ 1

nq
for some 1 ≤ p ≤ q ≤ n. In view of

the definition of N one has q ≥ n1−δ1 . Applying (7) to the reciprocal sum in (12)
yields

n2/v � n2∆ + C� n�∆
�

n2

∆q
+ (∆−1n + q) log q

�

� n2∆ + C� n�

�
n1+δ1 + n log n

�
.

This leads to the contradiction n1−δ1−� � C� v for all � > 0. �
Remark : What underlies the proof of the previous lemma is the fact that the

discrepancy of the sequence {α(j2 − k2)}n

j �=k=1 is small. In fact, one easily checks
along the lines of Lemma 3 that it is no bigger than n−

1
2+δ1+�. One can introduce

this bound explicitly into the proof of Lemma 4. Indeed, line (11) implies that

v−1 � ∆ + Dn(n−1)

�
{α(j2 − k2)}n

j �=k=1

�
.
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This, however, would lead to σ < 1
2 rather than σ < 1 as above. This is precisely

the reason why Lemma 4 is only implicitly based on the discrepancy of the sequence
of differences.

In the following lemma we compute the mean covariance matrices of Tn(α),
which we shall need in the proof of Proposition 2.

Lemma 5. Let I be the 2 × 2 identity matrix. Then cov( 1√
n
Tn(α)) = 1

2I +
O(n− 1

2+δ1) uniformly in α ∈ N as n →∞.

Proof. By independence of the summands in Tn,

cov(Tn(α)) =
n�

j=1

cov
�
±(cos(2παj2), sin(2παj2))

�
.

Therefore,

cov
� 1√

n
Tn(α)

�
=

1
2
I +

1
2n

n�

j=1

�
cos(4πj2α) sin(4πj2α)
sin(4πj2α) − cos(4πj2α)

�
.

By Koksma’s inequality, see Theorem 5.1 in [8], and Lemma 3
������
1
n

n�

j=1

cos(4παj2)−
� 1

0
cos(4πx) dx

������
� Dn({αj2}n

j=1) � n−
1
2+δ1(13)

and similarly for the other terms. �
Proof of Proposition 2. Fix a σ ∈ (0, 1) and choose δ1 and � > 0 such that σ +2� <
1 − 2δ1. Let 0 ≤ φn ≤ χB(0,1) ≤ ψn ≤ 1 in R2 with φn(x) = 1 if |x| < 1 − n−�

and ψn(x) = 0 if |x| > 1 + n−�. Here B(0, 1) is the unit ball in R2 . Moreover, we
require that

sup
ξ∈R2

(1 + n−�|ξ|)m

�
|�φn(ξ)| + |�ψn(ξ)|

�
≤ Cm(14)

for any m > 1. It is standard to construct such functions. Let fα denote the
characteristic function of 1√

n
Tn(α). Then clearly

P(Eα) ≥
�

R2
φn(n

1
2+σx) dP 1√

n
Tn(α)(x)

= n−1−2σ

�

A∪B∪C

�φn(n−
1
2−σξ)fα(ξ) dξ.(15)

Here A = {|ξ| < n1/6}, B = {n1/6 < |ξ| < n
1
2+σ+2�}, and C = {|ξ| > n

1
2+σ+2�}.

The main contribution will come from region A, whereas B and C are error terms.
To compute the integral over A we use a general statement about convergence of
the characteristic function of a sum of independent (but not necessarily identi-
cally distributed) random variables with finite third moments. More precisely, by
Theorem 8.4 in Bhattacharya–Rao [1]

|fα(ξ)− exp(−�Vαξ, ξ�/2)| ≤ C|ξ|3n− 1
2 exp(−c|ξ|2)(16)

for all |ξ| ≤ n1/6 (actually, the only important condition is that |ξ| is much smaller
than

√
n). Here Vα = cov

�
1√
n
Tn(α)

�
and C, c are absolute constants. We would

like to emphasize that |fα(ξ)| � 1 for certain ξ with |ξ| � n
1
2 if α comes close to
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rational numbers with small denominators. In particular, (16) fails for such ξ. It
is therefore necessary to take the arithmetic nature of α into account for values of
|ξ| >

√
n. In view of Lemma 5 and (16)

�

A

�φn(n−
1
2−σξ)fα(ξ) dξ = c�φn(0)(1 + o(1)) = c0(1 + o(1)).(17)

To estimate the contribution of the region B we write fα(ξ) =
�

n

j=1 cos(πψj(ξ))
where

ψj(ξ) =
2ξ1√

n
cos(2πj2α) +

2ξ2√
n

sin(2πj2α) = v cos(2πj2α + θ).

Here we have set v = 2|ξ|/
√

n and θ = arg(ξ). If not too many ψj come close to Z,
then |fα(ξ)| will be small. If v < 1

4 , then each |ψj | < π/4 and one simply expands
cos around zero. Otherwise one uses Lemma 4. In B one has 2n−

1
3 < v < 2nσ+2�.

Consider first the case n−
1
3 < v < 1/4. In view of Koksma’s inequality and Lemma 3

(replace cos with cos2 in (13)) one has

|fα(ξ)| ≤ exp(−c
n�

j=1

v2 cos2(2παj2 + θ)) ≤ exp(−cn
1
3 ).

If 1/4 < v < nσ+2�, then by Lemma 4 (recall σ + 2� < 1− 2δ1)

|fα(ξ)| ≤ exp(−c
n�

j=1

�ψj�2) ≤ exp(−cn1−2δ1).

These estimates show that the integral over B goes to zero. Finally, it is immediate
from (14) that the same holds true for the integral over C. An upper bound is
obtained in a similar fashion using ψn instead, and we are done. �

2.2. Estimating P(Eα ∩ Eβ). Let (α1, α2) ∈ N 2. We say that this pair is bad if

α1�1 + α2�2 ∈
A�

q=1

q�

p=1

�p

q
− 1

qn2−2τ
,
p

q
+

1
qn2−2τ

�
mod 1(18)

for some integers �1, �2 with 1 ≤ |�1|, |�2| ≤ A = �nτ�. The intervals on the right-
hand side are basically the major arcs from the Hardy–Littlewood circle method [13]
for the Waring problem with squares. The value of τ will be specified below. The
set of bad pairs will be denoted by B = Bτ . Clearly,

card(B) �
�

α1∈N

A�

±�1,±�2=1

A�

q=1

q�

p=1

n2

q�2n2−2τ
�2 � MA3n2τ � n2+5τ .(19)

This bound becomes trivial if τ ≥ 2/5, so we may assume that 0 < τ < 2/5.
The independence condition between α1, α2 given by (18) will allow us to obtain
nontrivial bounds on the discrepancy of the multidimensional sequence

(α1(j2 − k2), α2(j2 − k2))n

j �=k=1.(20)

The notation means that j, k = 1, . . . , n but j �= k. Discrepancy here refers to dis-
crepancy over intervals, i.e., given a sequence x1, . . . ,xN ∈ Td on the d–dimensional
torus, we define its discrepancy to be

DN = sup
I⊂Td

���|I| −
1
N

card{j ∈ [1, N ] : xj ∈ I}
���.
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The supremum is taken over all rectangles I = I1 × . . . × Id ⊂ Td. Our basic tool
for bounding the discrepancy is the Erdös–Turan–Koksma inequality, see [8],

DN � 1
m

+
�

0<�h�≤m

1
r(h)

���
1
N

N�

n=1

e(�h,xn�)
���(21)

for any integer m. Here h = (h1, . . . , hd) ∈ Zd and r(h) =
�

d

j=1 max(1, |hj |).

Lemma 6. For any (α1, α2) ∈ N 2 \ B one has

Dn({α1j
2, α2j

2}n

j=1) � n−τ/2 log2 n

Dn(n−1)

�
{α1(j2 − k2), α2(j2 − k2)}n

j �=k=1

�
� n−τ log2 n.

Proof. It is well–known that, see chapter 3 in [10],
������

n�

j=1

e(αj2)

������
� n
√

q
+

�
(n + q) log q(22)

provided |α− p

q
| ≤ q−2 with (p, q) = 1. This is proved by the exact same methods

as Lemma 3. In view of the Erdös–Turan inequality one has

Dn({α1j
2, α2j

2}n

j=1) � 1
A

+
�

0<�h�≤A

1
r(h)

���
1
n

n�

j=1

e((α1h1 + α2h2)j2)
���

� 1
A

+
A�

�=1

1
�

�����
1
n

n�

j=1

e(α1�j
2)

���� +
����
1
n

n�

j=1

e(α2�j
2)

����
�

+
A�

�1,�2=1

1
�1�2

����
1
n

n�

j=1

e((α1�1 + α2�2)j2)
����(23)

� A−1 + n−
1
2+δ1 + n−τ/2 log2 n.(24)

The estimate that leads to the second term in (24) was obtained in the proof of
Lemma 3, and we refer the reader to (5). For the third term, note that for any �1
and �2 that appear in the sum in (23), there exist integers p, q with (p, q) = 1 and
1 ≤ q ≤ n2−2τ such that |α1�1 + α2�2 − p

q
| ≤ q−2. In view of (18) one has q ≥ nτ .

Applying (22) to (23) leads to (24). To obtain the second statement of the lemma,
one applies the Erdös–Turan–Koksma inequality as follows:

Dn(n−1)

�
{α1(j2 − k2), α2(j2 − k2)}n

j �=k=1

�

� 1
A

+
1
n2

A�

�=1

1
�

���
n�

j �=k=1

e(α1�(k2 − j2))
��� +

1
n2

A�

�=1

1
�

���
n�

j �=k=1

e(α2�(k2 − j2))
���

+
1
n2

A�

�1,�2=1

1
�1�2

���
n�

j �=k=1

e((α1�1 + α2�2)(k2 − j2))
���.

Estimating the first and second sums as in the proof of Lemma 3 one sees that they
do not exceed n−1+δ1 log n. For the third sum let

���α1�1 +α2�2− p

q

��� ≤ 1
qn2−2τ where
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1 ≤ p ≤ q ≤ n2−2τ . By the definition of B one has q ≥ nτ . Therefore, in view of
(6) and (7),

A�

�1,�2=1

1
�1�2

���
n�

j �=k=1

e((α1�1 + α2�2)(k2 − j2))
���

�
A�

�1,�2=1

1
�1�2

n�

j=1

min
�
n, �2(α1�1 + α2�2)j�−1

�

�
A�

�1,�2=1

1
�1�2

�
n2

nτ
+ n2−2τ log n

�
� n2−τ log2 n.

The lemma follows. �

The second moment method requires us to compute the probabilities P(Eα∩Eβ)
for typical α, β ∈ N , see (3). This will be done in Proposition 10 below. The proof
of that proposition is similar to the proof of Proposition 2. In particular, one needs
to bound the number of points

ψj = v1 cos(2πj2α + θ1) + v2 cos(2πj2β + θ2)

with j = 1, . . . , n that can come very close to integers for arbitrary but fixed 1 ≤
v2
1 + v2

2 ≤ n2σ and θ1, θ2 ∈ [0, 2π). We start with a simple observation concerning
the level curves of v1 cos(2πx) + v2 cos(2πy).

Lemma 7. Let F (x, y) = v1 cos(2πx) + v2 cos(2πy) with v2
1 + v2

2 = 1 and let
0 < � < 1. Define

B� =
�

(x, y) ∈ T2 : |x| < � or |x− 1
2
| < � or |y| < � or |y − 1

2
| < �

�
.

Then |∇F | � � on T2\B� and the curvature κ on any component of any level–curve
{F = a} \ B� satisfies

κ ≤ C�−3|v1v2|(25)

with some absolute constant C.

Proof. Clearly,

|∇F (x, y)| = 2π(v2
1 sin2(2πx) + v2

2 sin2(2πy))
1
2 � �

for any (x, y) ∈ T2 \ B�. By calculus the curvature of a level set of F at a point is
given by the ratio

κ =
|�D2F (∇F )⊥, (∇F )⊥�|

|∇F |3

at that point. One easily verifies that with F as above this is the same as

|∇F |3κ = |v1v2||v2 cos(2πx) sin2(2πy)− v1 cos(2πy) sin2(2πx)|,

and the lemma follows. �

The following lemma is the main technical statement of our proof.
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Lemma 8. Suppose that (α1, α2) ∈ N 2 \ Bτ , 1 ≤ v2
1 + v2

2 ≤ c2n2σ, and θ1, θ2 ∈
[0, 2π) are arbitrary but fixed (c2 is a sufficiently small absolute constant). Let

ψj = v1 cos(2πα1j
2 + θ1) + v2 cos(2πα2j

2 + θ2)

for all j ∈ Z. Then

card{j ∈ [1, n] : �ψj� ≤ n−σ} ≤ n/2

provided 2σ < τ and n > n0(σ, τ).

Proof. Let (v2
1 + v2

2) 1
2 = v. Fix some 2σ < τ and suppose the lemma fails. Then

there are integers mj such that for at least n/2 values of j
���w1 cos(2πα1j

2 + θ1) + w2 cos(2πα2j
2 + θ2)−

mj

v

��� ≤ n−σv−1 = ∆

where we have set w1 = v1/v, w2 = v2/v. For the sake of convenience we set
θ1 = θ2 = 0, since a translation does not matter. Thus

card
�

j ∈ [1, n] : |F (α1j
2, α2j

2)−m/v| ≤ ∆ for some m ∈ Z
�

>
n

2
,(26)

where F (x, y) = w1 cos(2πx) + w2 cos(2πy). Let B� be the set from Lemma 7 for
some fixed small � (say � = 1/100). By the definition of discrepancy and Lemma 6,

card{j ∈ [1, n] : (α1j
2, α2j

2) ∈ B�} < n/4(27)

for small � and large n. By Lemma 7 one therefore has |∇F (α1j2, α2j2)| > � for at
least half the points satisfying (26). Furthermore, on those points the curvature of
the level sets is no larger than κ � |w1w2| � min(|v1/v2|, |v2/v1|) � 1. Thus (26)
implies that

n�

j=1

L�

�=1

χC�(α1j
2, α2j

2) > n/4,(28)

where the C� are � ∆–neighborhoods of the level sets {F = m/v} \B� with m ∈ Z
and L � v. In order to introduce “pair correlations” as in the proof of Lemma 4
we now write each C� as a union of “Fefferman rectangles”, cf. [2]. More precisely,
one has

C� ⊂
L�

�=1

s0�

s=1

R�s,

where each R�s is a rectangle of dimensions C∆ × C
�

∆
κ+∆ that is tangent to the

level curve. We can assume that each rectangle intersects at most its immediate
neighbors and that R1s, . . . , RLs are parallel for each s. Clearly, s0 �

�
κ+∆

∆ .
These rectangles have the following important property: If x, y ∈ R�s for a fixed s
but arbitrary �, then x−y ∈ R∗

s
, a rectangle of approximately the same dimensions

as and parallel to each R�s, but centered at the origin. Also,
s0�

s=1

R∗
s
⊂ R0,

where R0 is an axis-parallel rectangle centered at the origin of dimensions roughly�
∆(κ + ∆) ×

�
∆/(∆ + κ). In particular, |R0| � ∆. Applying Cauchy-Schwarz
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to (28) therefore yields

n �
n�

j=1

L�

�=1

χC�(α1j
2, α2j

2) ≤
n�

j=1

L�

�=1

s0�

s=1

χR�s(α1j
2, α2j

2)

≤
s0�

s=1




L�

�=1

� n�

j=1

χR�s(α1j
2, α2j

2)
�2





1
2 √

L

�
s0�

s=1




n�

j,k=1

χSL
�=1 R�s

(α1j
2, α2j

2)χR∗s (α1(j2 − k2), α2(j2 − k2))





1
2
√

v

�




s0�

s=1

n�

j,k=1

χSL
�=1 R�s

(α1j
2, α2j

2)χR0(α1(j2 − k2), α2(j2 − k2))





1
2

√
vs0

�
�
card{j, k ∈ [1, n] : (α1(j2 − k2), α2(j2 − k2)) ∈ R0}

� 1
2√

vs0.(29)

By the definition of discrepancy and Lemma 6,

card{j, k ∈ [1, n] : (α1(j2 − k2), α2(j2 − k2)) ∈ R0} � n2∆ + n2−τ log2 n.(30)

We conclude from (29) and (30) that

n2
√

∆/v � n2(vs0)−1 � n2∆ + n2−τ log2 n.(31)

First notice that
√

∆/v is much larger than ∆ by definition of v,∆ provided c2 is
small. Thus (31) reduces to

√
∆/v � n−τ log2 n or nτ � n

σ
2 v

3
2 log2 n � n2σ log2 n,

which is a contradiction for large n. �

Lemma 9. cov( 1√
n
Tn(α), 1√

n
Tn(β)) = 1

2I + O(n−τ ) uniformly in (α, β) ∈ N 2 \ B.
Here I denotes the identity matrix in R4.

Proof. We will only sketch the proof, see the proof of Lemma 5 for more details. We
need to show that the 2× 2 matrices in the upper right–hand and lower left–hand
corners of the covariance matrix tend to zero. The entries of these matrices are
controlled by the sums

���
1
n

n�

�=1

e((α ± β)�2)
���,

which go to zero as n →∞. In fact,
���
1
n

n�

�=1

e((α ± β)�2)
��� < n−τ/2,(32)

see (18) and (22). �

Proposition 10. One has uniformly in (α, β) ∈ N 2 \ B

P(Eα ∩ Eβ) = c2
0n
−2−4σ(1 + o(1)) as n →∞

provided 2σ < τ .
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Proof. Let φn and ψn be as in the proof of Proposition 2, and define �φn(x, y) =
φn(x)φn(y) and �ψn(x, y) = ψn(x)ψn(y). We denote the characteristic function of
( 1√

n
Tn(α), 1√

n
Tn(β)) by fαβ . Then

P(Eα ∩ Eβ) ≥
�

R4

�φn(n
1
2+σx) dP( 1√

n
Tn(α), 1√

n
Tn(β))(x)

= n−2−4σ

�

A∪B∪C

��φn(n−
1
2−σξ)fαβ(ξ) dξ.(33)

Here A = {ξ ∈ R4 : |ξ| < n1/6}, B = {R4 : n1/6 < |ξ| < n
1
2+σ+2�}, and C = {R4 :

|ξ| > n
1
2+σ+2�}. By Theorem 8.4 in Bhattacharya–Rao and Lemma 9

�

A

��φn(n−
1
2−σξ)fαβ(ξ) dξ = c2

0(1 + o(1)),(34)

see (16) and (17). Here c0 is the same constant as in (17). The contribution from
region B is estimated via Lemma 8 as in the proof of Proposition 2. The only
difference is that for small values of v2

1 + v2
2 one has

n�

j=1

�ψj�2 =
n�

j=1

|ψj |2 =
n�

j=1

|v1 cos(2παj2 + θ1) + v2 cos(2πβj2 + θ2)|2

= n(v2
1 + v2

2)/2 + o(n)

since the product term goes to zero in view of (32). The contribution from C goes

to zero by the decay of ��φn and ��ψn, see (14). Finally, using �ψn one obtains an upper
bound in a similar fashion. �

2.3. The proof of Theorem 1.

Proof. We bound P
��

α∈N Eα

�
from below using the second moment method.

More precisely, Cauchy-Schwarz implies that

P
� �

α∈N
Eα

�
≥

��
α∈N P(Eα)

�2

�
α,β∈N P(Eα ∩ Eβ)

.

The numerator is equal to (Mc0n−1−2σ)2(1 + o(1)) by Proposition 2. We bound
the denominator from above as follows, using Propositions 2,10 and (19):

�

α,β∈N
P(Eα ∩ Eβ) =

�

α,β∈N\B

P(Eα ∩ Eβ) +
�

α,β∈B
P(Eα ∩ Eβ)

≤
�

α,β∈N\B

P(Eα ∩ Eβ) +
�

α,β∈B
P(Eα)

≤ M2c2
0n
−2−4σ(1 + o(1)) + O(n2+5τn−1−2σ)

= M2c2
0n
−2−4σ

�
1 + O(n−1+5τ+2σ)

�
.(35)

Since 2σ < τ the O–term goes to zero provided τ < 1/6. Thus the theorem follows
as long as σ < 1/12, as claimed. �



14 W. SCHLAG

2.4. The case of higher powers. In this subsection we will sketch a proof of the
following theorem.

Theorem 11. Let d = 2, 3, 4, . . . be fixed and define Tn(x) =
�

n

j=1 ±e(jdx) where
the ± are chosen independently with probability 1

2 each. If σ < d−1
2+5·2d−1 , then

P(min
x∈T

|Tn(x)| < n−σ) → 1 as n →∞.

The case d = 2 is just Theorem 1, and we will simply indicate the changes
that need to be made to adapt the proof from Sections 2.1–2.3 to this case. The
basic strategy for the proof of Theorem 11 is the same as that for the proof of
Theorem 1. In fact, the modifications are straightforward, and we will therefore not
supply too many details. The restrictions on σ are far from the conjectured ones σ <
(2d−1)/2 = ωd. One can improve on our result for large d by invoking Vinogradov’s
method rather than the cruder Weyl bounds (38) that we shall use here, cf. [10].
However, these improvements are still minor compared to the remaining gap with ωd

and we have therefore chosen to use the simpler but less precise estimates.
Let N be a minimal n−d–net in T and define Eα as in (2) for all α ∈ N . Let
ω = d/5 and retain only those α ∈ N that satisfy

α� �∈
�nω��

q=1

q�

p=1

�p

q
− 1

qnd−2ω
,
p

q
+

1
qnd−2ω

�
mod 1(36)

for all � = 1, 2, . . . , �nω�. The number of points that we remove is no larger than
O(n4ω) = o(nd). So one can assume that all points α ∈ N satisfy (36) and that
#N � nd.
The “bad pairs” in N 2 are defined as follows, cf. (18): B = Bτ ⊂ N 2 consists of all
pairs (α1, α2) ∈ N 2 such that

α1�1 + α2�2 ∈
A�

q=1

q�

p=1

�p

q
− 1

qnd−2τ
,
p

q
+

1
qnd−2τ

�
mod 1(37)

for some integers �1, �2 with 1 ≤ |�1|, |�2| ≤ A = �nτ�. It is clear that

card(B) �
�

α1∈N

A�

±�1,±�2=1

A�

q=1

q�

p=1

nd

q�2nd−2τ
�2 � #N · A3n2τ � nd+5τ .

It suffices to consider that case τ < ω = d/5. We claim that Propositions 2 and 10
remain valid for higher d under the condition 2d−1σ < τ . In fact, we have

Proposition 12. Suppose 0 < 2d−1σ < τ . Then

P(Eα) = c0n
−1−2σ(1 + o(1)) uniformly in α ∈ N and

P(Eα ∩ Eβ) = c2
0n
−2−4σ(1 + o(1)) uniformly in (α, β) ∈ N 2 \ Bτ

with an absolute constant c0.

Inspection of the proof of Theorem 1 in the previous section now reveals that
we only need to ensure that d− 1 > 2σ + 5τ > (2 + 5 · 2d−1)σ, which leads to the
bound stated in Theorem 11. Indeed, since M � nd the O–term in (35) is of the
form n1−d+5τ+2σ.

Proposition 12 is of course the analogue of Propositions 2 and 10 and will be
proved similarly. More precisely, it will suffice to prove the analogue of the two
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main Lemmas 4 and 8 under the condition 2d−1σ < τ . These in turn are based on
the following discrepancy bounds, cf. the remark following Lemma 4 and Lemma 6.

Lemma 13. For any α ∈ N and (α1, α2) ∈ T2 \ B, one has

Dn

�
{αjd}n

j=1

�
≤ C� n−ωκ+�

Dn(n−1)

�
{α(jd − kd)}n

j �=k=1

�
≤ C� n−2ωκ+�

Dn

�
{α1j

d, α2j
d}n

j=1

�
≤ C� n−τκ+�

Dn(n−1)

�
{α1(jd − kd), α2(jd − kd)}n

j �=k=1

�
≤ C� n−2τκ+�

for any � > 0. Here κ = 21−d.

Proof. We shall use the inequality, see [10],
���

N�

�=1

e(�dα)
��� ≤ Cd,� N1+�

�1
q

+
1
N

+
q

Nd

�κ

(38)

provided |α − p

q
| ≤ 2q−2 with (p, q) = 1. We will only consider the sequence

{α1(jd − kd), α2(jd − kd)}n

j �=k=1 and leave the other cases to the reader. By the
Erdös–Turan inequality (21) with m = �nω�,

Dn(n−1)

�
{α1(jd − kd), α2(j2 − k2})n

j �=k=1

�

� n−ω +
1
n2

�nω��

�=1

1
�

���
n�

j �=k=1

e(α1�(kd − jd))
��� +

1
n2

�nω��

�=1

1
�

���
n�

j �=k=1

e(α2�(kd − jd))
���(39)

+
1
n2

�nω��

�1,�2=1

1
�1�2

���
n�

j �=k=1

e((α1�1 + α2�2)(kd − jd))
���.(40)

Consider the first sum in (39) and fix some positive integer � ≤ �nω�. By Dirichlet’s
principle and the definition of N , see (36), there exist integers p, q with (p, q) = 1
such that |α1�− p

q
| ≤ q−2 and nω ≤ q ≤ nd−2ω. Applying (38) one obtains

���
n�

j �=k=1

e(α1�(kd − jd))
��� ≤ n +

���
n�

j=1

e(α1�j
d)

��2

≤ n + C� n2+�

�
n−ω + n−2ω

�2κ

.

Therefore the contribution from (39) is no bigger than

n−ω + n−1 log n + C� n−2ωκ+�.

Now fix �1 and �2 as in (40) and apply Dirichlet’s principle to α1�1 +α2�2 to obtain
integers p, q with (p, q) = 1 such that |α1�1 + α2�2− p

q
| ≤ q−2 and nτ ≤ q ≤ nd−2τ ,

cf. (37). Thus, in view of (38),
���

n�

j �=k=1

e((α1�1 + α2�2)(kd − jd))
��� ≤ n +

���
n�

j=1

e((α1�1 + α2�2)jd)
���
2

≤ n + C� n2−2τκ+�.

Summing over �1 and �2 in (40) and observing that 2τκ < 2ωκ = 2d21−d/5 ≤ 1
2

leads to the stated bound on the discrepancy. �
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We now turn to the generalization of Lemmas 4 and 8 to higher powers. As
before, κ = 21−d.

Lemma 14. For any α ∈ N let ψj = v cos(2παjd + θ) for some 1/4 ≤ v ≤ nσ and
θ ∈ [0, 2π). Suppose σ < 2ωκ. Then for any δ > 0

card{j ∈ [1, n] : �ψj� < n−δ} ≤ n/2

provided n > n0(δ, σ).

Proof. Assume the lemma fails and let ∆ = (nδv)−1. As in the proof of Lemma 4
one obtains inequality (11), i.e.,

n2 � v
n�

j,k=1

χ[−C∆,C∆](α(jd − kd)).

By the definition of discrepancy and Lemma 13

n2/v � ∆n2 + n2 Dn(n−1)

�
{α(jd − kd)}n

j �=k=1

�
� ∆n2 + C� n2−2ωκ+�.

Hence n−σ ≤ C� n−2ωκ+� for all � > 0 which contradicts our assumption on σ. �

The analogue of Lemma 8 reads as follows.

Lemma 15. Let (α1, α2) ∈ N 2 \ Bτ and set

ψj = v1 cos(2πα1j
2 + θ1) + v2 cos(2πα2j

2 + θ2)

where 1 ≤ v2
1 + v2

2 ≤ c2n2σ and θ1, θ2 ∈ [0, 2π) (c2 is a sufficiently small absolute
constant). Then

card{j ∈ [1, n] : �ψj� ≤ n−σ} ≤ n/2

provided σ < τκ and n > n0(σ, τ).

Proof. Assume the lemma fails and let ∆ = v−1n−σ. As in the proof of Lemma 8
one obtains by means of simple geometric considerations that

n �
�
card{j, k ∈ [1, n] : (α1(jd − kd), α2(jd − kd)) ∈ R0}

� 1
2
�

v∆− 1
2(41)

where R0 is a rectangle of area ∆. By the definition of discrepancy and Lemma 13,

card{j, k ∈ [1, n] : (α1(jd − kd), α2(jd − kd)) ∈ R0} � n2∆ + C� n2−2τκ+�.(42)

We conclude from (41) and (42) that

n2
√

∆/v � n2∆ + C� n2−2τκ+�.(43)

First notice that
√

∆/v is much larger than ∆ by definition of v,∆ provided c2 is
small. Thus (43) reduces to

√
∆/v ≤ C� n−2τκ+� for all � > 0 or to σ ≥ τκ, which

contradicts our assumption. �

The proof of Proposition 12 above now proceeds along the same lines as the
proofs of Propositions 2 and 10, with Lemmas 14 and 15 replacing Lemmas 4
and 8, respectively. We leave the details to the reader.
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3. The Gaussian case

Fix any d = 2, 3, . . . and let ωd = (2d − 1)/2. In this section we let Tn(x) =�
n

j=1 rje(jdx) with standard normal and independent rj . The dependence on d
will not be indicated in Tn.

Theorem 16. For any δ0 > 0

P
�
min
x∈T

|Tn(x)| < n−ωd+δ0
�
→ 1 as n →∞.

This will again require several lemmas. As already apparent from our heuristic
derivation at the end of Section 1, freezing Tn at the points {αj}M

j=1 and applying the
second moment method with the events Ej = {|Tn(αj)| < n−ωd+δ0} would require
M � n2d. The difficulty with this approach, however, is that the “independence
length scale” is only n−d. We therefore split the circle into intervals of length n−d,
but cannot expect to use the events Ej . Following Konyagin [6], we instead consider
Taylor expansions of Tn of very high order around the points in N . The idea is
simply that the size of Tn on an interval of size n−d can be controlled by a Taylor
polynomial of sufficiently high degree around any point in that interval.

More precisely, we let N = {αs}M

s=1 be a minimal n−d–net in

T \
�n1−δ1��

q=1

q�

p=1

�p

q
− 1

qn
,
p

q
+

1
qn

�

for some fixed δ1 > 0. The choice of the intervals on the right–hand side is somewhat
arbitrary. The only important feature is that they are centered around fractions
with small denominators and that their total length goes to zero. Fix some δ0 ∈
(0, 1) and define

h =
1
4
n−ωd+δ0 , H = n

1
2−δ1 , and ∆ = n−d−δ2

where δ2 < δ0/4. Furthermore, we choose r to be a large integer satisfying rδ2 >
d + 1 and δ1 sufficiently small such that rδ1 < δ0/10, where r will be the order of
the Taylor expansion. Let

C =






r�

j=0

[Ujh, (Uj + 1)h)×
r�

�=0

[V�h, (V� + 1)h) ⊂ [−H,H]2r+2 ⊂ Cr+1 :

Uj , Vj ∈ Z, inf
|y|≤∆

����
r�

j=0

Ujh + iVjh

j!
(2πind)jyj

���� <
h

2




 .

We shall refer to the cubes in C as good cubes. The second moment method will
be applied with the events

Eα = {Xn(α) ∈
�

Q∈C
Q} where

Xn(α) = (�Tn(α),�[T �
n
(α)/(2πind)], . . . ,�[T (r)

n
(α)/(2πind)r],(44)

�Tn(α),�[T �
n
(α)/(2πind)], . . . ,�[T (r)

n
(α)/(2πind)r])

with α ∈ N .

Lemma 17. If Eα occurs, then inf |x−α|<∆ |Tn(x)| < n−ωd+δ0 .
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Proof. Taylor expanding Tn around α to the order r shows that

inf
|x−α|<∆

|Tn(x)| ≤ inf
|y|≤∆

����
r�

�=0

U�h + iV�h

�!
(2πind)�y�

���� +
r�

�=0

2
�!

h(2πnd∆)�

+O

�
nd(r+1)n

(r + 1)!
∆r+1

�

<
h

2
+ 2h exp(2πnd∆) + O

�
n1−(r+1)δ2

(r + 1)!

�
< n−ωd+δ0 ,

as claimed. �
The following lemma establishes that the number of good cubes is sufficiently

large. Naively speaking, the number of cubes in C should be�
�

H

h

�2r+1
because one

can think of these cubes belonging to a neighborhood of width� h of a hypersurface.
This basically turns out to be true.

Lemma 18. #C �
�

H

h

�2r+1
n−2δ2 . In particular,

#C · nd

�
hn−

1
2

�2(r+1)
≥ nδ0/2(45)

provided n is sufficiently large.

Proof. Let

G =
�

(z0, z1, . . . , zr) ∈ Cr+1 : |z0| < h/2, max
1≤j≤r

|zj | < H/2,�z1 > H/3
�

.

With Z = (z0, . . . , zr) we set

QZ(t) =
r�

j=0

zj

ijtj

j!
.

Taylor’s formula implies that the mapping

Φs(Z) =
�
QZ(s), Q�

Z
(s), . . . , Q(r)

Z
(s)

�

defines a unimodular flow on Cr+1. One has, for all Z ∈ G,

inf
|t|<∆/2

���QZ(2πtnd)
��� = inf

|t|<πn−δ2
|QZ(t)| <

h

2
.

Therefore

inf
|t|<2πn−δ2

���QZ(t + s)
��� = inf

|t|<2πn−δ2

���QΦs(Z)(t)
��� = inf

|t|<∆

���QΦs(Z)(2πndt)
��� <

h

2

for any |s| < πn−δ2 . On the other hand, one checks easily that Φt(G) ∩ G = ∅ if

t�z1 −
H

2
t2

1− t
− h

2
≥ h

2
,

or if 1
2 > t ≥ 6h/H. Also notice that Φt(G) ⊂ [−H,H]2r+2 as long as |t| < 1

2 . It
follows from these properties that the number of good cubes is (|G| is the measure
of G)

#C � n−δ2

h/H

|G|
h2(r+1)

�
�

H

h

�2r+1

n−δ2 .
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Hence

#C · nd

�
hn−

1
2

�2(r+1)
� H2r+1nd−δ2−r−1h = nδ0−δ2−δ1(2r+1) ≥ nδ0/2,

as claimed. �

In the next lemma we compute the covariance matrices of 1√
n
Xn(α) and the

joint covariances of two such vectors.

Lemma 19. Let the random vector Xn(α) be defined by (44). Let V be the (r +
1)×(r+1) matrix with entries Vk� = 1

1+d(k+�) for k, � = 0, 1, . . . , r. Then detV �= 0
and for any α ∈ N

cov
� 1√

n
Xn(α)

�
=

1
2

�
V 0
0 V

�
+ O

�
n−γ

�
as n →∞(46)

where γ = γ(d, δ1) > 0. Suppose α, β ∈ N 2 are such that

α ± β �∈
�nδ1��

q=1

q�

p=1

�p

q
− 1

qnd−δ1
,
p

q
+

1
qnd−δ1

�
mod 1.(47)

Then, as n →∞

cov
� 1√

n
Xn(α),

1√
n

Xn(β)
�

=
1
2





V 0 0 0
0 V 0 0
0 0 V 0
0 0 0 V



 + O
�
n−γ

�
(48)

where the constants in the O–notation only depends on δ1 and d.

Proof. By independence of the rj

cov(Xn(α)) =
n�

j=1

cov
�
rj(cos(2πjdα), (j/n)d cos(2πjdα), . . . , (j/n)dr cos(2πjdα),

sin(2πjdα), (j/n)d sin(2πjdα), . . . , (j/n)dr sin(2πjdα))
�
.

The matrix V arises since

1
n

n�

j=1

(j/n)d(�+k) =
� 1

0
xd(�+k) dx + O(1/n) =

1
1 + d(� + k)

+ O(1/n).

As the Gram matrix of the functions x2j and x2� in L2[0, 1] the matrix V is nonde-
generate. Standard trigonometric identities therefore reduce (46) to showing that

1
n

������

n�

j=1

�
j

n

�p

e(2jdα)

������
= O(n−γ)(49)

for any nonnegative integer p. Let

sj =
j�

�=1

e(2�dα) for j = 0, 1, . . . , n.

To prove (49) we shall use the Weyl bound (38) above. By Dirichlet’s principle and
in view of the definition of N , there are integers p, q with n1−δ1 ≤ q ≤ n so that
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|α − p

q
| ≤ 1

qn
. Clearly we may also assume that p, q are relatively prime. Hence

|2α− 2p

q
| ≤ 2

qn
≤ 2q−2 and by (38)

1
j
|sj | ≤ C�n

�

�
n(−1+δ1)κ + j−κ + (nj−d)κ

�
(50)

for any j = 1, 2, . . . , n. Summing by parts in (49) we obtain

1
n

n�

j=1

�
j

n

�p

e(2jdα) =
1
n

n�

j=1

�
j

n

�p

(sj − sj−1)

=
1
n

n−1�

j=1

�� j

n

�p

−
�j + 1

n

�p
�
sj +

1
n

sn = O



 1
n

n�

j=1

�
j

n

�p 1
j
|sj |



 +
1
n

sn.(51)

Setting j = n in (50) shows that the last term in (51) is O
�
n−γ

�
. Splitting the

sum in (51) into j < n
3
2d and j ≥ n

3
2d and using (50) in the latter and |sj | ≤ j in

the former finishes the proof of (49). We skip the details.
The proof of (48) is similar and will only be sketched. Here we need to show

that for any nonnegative integer p

1
n

������

n�

j=1

�
j

n

�p

e(jd(α ± β))

������
= O(n−γ)(52)

for all α, β as in (47). Consider α + β for simplicity. By Dirichlet’s principle
and (47) there exist relatively prime integers p, q so that |α + β − p

q
| ≤ q−2 and

nδ1 ≤ q ≤ nd−δ1 . Let b = 1− δ1
2d

. One checks from (38) that for any j ≥ nb

1
j
|sj | ≤ C�j

�

�
j−κ + n−δ1κ/2

�

where now sj =
�

j

�=1 e(�d(α + β)) (recall that κ = 21−d). To finish the proof one
sums by parts in (52) as above and then splits the sum in (51) into j > nb and
j ≤ nb. The details are left to the reader. �

Proof of Theorem 16. The random variable Xn(α) is a 2(r+1)–dimensional Gauss-
ian vector with covariance matrix given by (46), i.e., the distribution of 1√

n
Xn(α)

has a density function of the form
�

det Σα(n)
(2π)r+1

exp
�
−1

2
�Σα(n)x,x�

�
with x ∈ R2(r+1)

where Σα(n)−1 = cov
�

1√
n
Xn(α)

�
. Since dist(Q, 0) ≤ H = n

1
2−δ1 , one obtains

from Lemma 19

P(Xn(α) ∈ C) =
�

Q∈C
P(Xn(α) ∈ Q) =

�

Q∈C
c0

�
h√
n

�2(r+1)

(1 + o(1))

= c0#C
�

h√
n

�2(r+1)

(1 + o(1)) = pn(1 + o(1)),(53)
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uniformly in α ∈ N as n → ∞. Here pn is defined by the last equality. Similarly
by (48), for any α, β ∈ N satisfying (47),

P(Xn(α) ∈ C and Xn(β) ∈ C) =
�

c0#C
�

h√
n

�2(r+1)

(1 + o(1))
�2

= p2
n
(1 + o(1)).

Thus
�

α,β∈N
P(Xn(α) ∈ C and Xn(β) ∈ C) ≤

�
(#N )2p2

n
+ #N · n2δ1pn

�
(1 + o(1)),(54)

where the second summand are the pairs that violate (47). In fact, their number is
no bigger than

�

α∈N

n
δ1�

q=1

q�

p=1

2
q
nδ1 � #N · n2δ1 ,

as claimed. By Cauchy–Schwarz, (53) and (54),

P
� �

α∈N
Eα

�
≥ (#Npn)2

(#N )2p2
n

+ #Nn2δ1pn

=
1

1 + (#Npn)−1n2δ1
.

By Lemma 18,

#Npn � nd#C
�
hn−

1
2

�2(r+1)
≥ nδ0/2.

Hence (recall that δ1 < δ0/10)

P
� �

α∈N
Eα

�
≥ 1

1 + O(n2δ1−δ0/2)
= 1− o(1),

which implies the theorem in view of Lemma 17. �

The following result shows that n−ωd is the correct order of magnitude in the
Gaussian case.

Theorem 20. For any � > 0, P
�
minx∈T |Tn(x)| < n−ωd−�

�
→ 0 as n →∞.

Proof. Fix some small � > 0 and let N = {xj}M

j=1 be a minimal n−2d−�–net in T.
Clearly, M � n2d+�, and

P
�

inf
|x−xj |<n−2d−�

|Tn(x)| < n−ωd−�

�
≤ P

�
|Tn(xj)| < Cn−ωd−�

�
log n

�

+P
�
�T �

n
�∞ > Cnd+ 1

2
�

log n
�
.(55)

Indeed, suppose �T �
n
�∞ < Cnd+ 1

2
√

log n and suppose that |Tn(yj)| < n−ωd−� for
some |yj − xj | < n−2d−�. Then

|Tn(xj)| ≤ |Tn(yj)| + |xj − yj |�T �n�∞ � n−ωd−�
�

log n,

as claimed. By the Salem–Zygmund inequality [4], the second term in (55) goes to
zero like n−6d provided C is large enough. We claim that for all points xj ∈ N that
do not belong to a finite number of certain intervals

P
�
|Tn(xj)| ≤ Cn−ωd−�

�
log n

�
≤ C

�
n−ωd− 1

2−�
�

log n
�2

n�/2(56)

≤ Cn−2d−3�/2 log n = o(M−1).
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More precisely, (56) will be shown to hold for all

xj ∈ N \
�

q≤q0

q�

p=1

�p

q
− 1

qnd+�/4
,
p

q
+

1
qnd+�/4

�
,(57)

where q0 is some constant depending only on d (for d = 2 one can show that there
are no exceptions other than q = 1 and q = 2 and possibly this is true for all d, but
we do not need such an accurate statement). The random polynomial 1√

n
Tn(xj)

is a two–dimensional Gaussian vector, i.e., its distribution has a two–dimensional
Gaussian density

�
det Σj

2π
exp

�
−1

2
�Σjx,x�

�
with x ∈ R2(58)

where Σ−1
j

= cov
�

1√
n
Tn(xj)

�
. By definition

cov
� 1√

n
Tn(x)

�
=

1
n

n�

j=1

�
cos2(2πjdα) 1

2 sin(4πjdα)
1
2 sin(4πjdα) sin2(2πjdα)

�

=
�

1
2 0
0 1

2

�
+

1
2n

n�

j=1

�
cos(4πjdα) sin(4πjdα)
sin(4πjdα) − cos(4πjdα)

�
.

In other words,

2cov
� 1√

n
Tn(x)

�
=

�
1 + r(x) s(x)
s(x) 1− r(x)

�
,(59)

where r(x) + is(x) = 1
n

�
n

�=1 e(2�dx). If xj ∈ N belongs to a minor arc, i.e.,

xj �∈
�n���

q=1

q�

p=1

�p

q
− 1

qnd−�
,
p

q
+

1
qnd−�

�
,(60)

then in view of (38) and a standard application of Dirichlet’s principle

|r(xj) + is(xj)| = O(n−τ )

for some τ = τ(�, d). Thus, if xj ∈ N satisfies (60), then

Σ−1
j

= cov
� 1√

n
Tn(xj)

�
=

1
2
I + O(n−τ )

where I is the identity in R2. In view of (58) we have shown that (56) holds for
such xj without the n�/2–factor. On the major arcs we proceed as usual [13], i.e.,
suppose that |x− p

q
| ≤ 1

qnd−� with 1 ≤ p ≤ q ≤ n� and (p, q) = 1. Then x = p

q
+ β
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with |β| ≤ n�−d. Thus
n�

�=1

e(2�dx) =
n�

�=1

e
�
2�d

p

q

�
e(2�dβ)

=
[n/q]�

u=0

q�

v=1

e
�
2vd

p

q

�
e(2udqdβ)(1 + O(qd|β| + |β|nd−1q)) + O(q)

=
[n/q]�

u=0

q�

v=1

e
�
2vd

p

q

�
e(2udqdβ) + O(q + nqd|β| + |β|ndq)

= Sp,q

[n/q]�

u=0

e(2udqdβ) + O(n2�) =
n

q
Sp,q

� 1

0
e(2ndβxd) dx + O(n2�).

Here Sp,q =
�

q

v=1 e
�
2vd p

q

�
and we let I(λ) =

� 1
0 e(2λxd) dx. We therefore conclude

from (59) that

4 det cov
� 1√

n
Tn(x)

�
= 1−

�����
1
q

q�

v=1

e
�
2vd

p

q

������

2 ���I(βnd)
���
2
−O(n2�−1)

≥ max



1
2
−

�����
1
q

q�

v=1

e
�
2vd

p

q

������

2

, 1− |I(βnd)|2 −O(n2�−1)



(61)

for large n. By classical results on Gauss sums, see [13],

max
(p,q)=1

�����
1
q

q�

v=1

e
�
2vd

p

q

������ → 0

as q →∞. In fact, it is known that

max
(p,q)=1

�����

q�

v=1

e
�
2vd

p

q

������ ≤ Cq1− 1
q

with some absolute constant C and all q, see [12] and the references cited there.
Thus

det cov
� 1√

n
Tn(x)

�
>

1
4

for all but finitely many values of q, say if q > q0 = q0(d). Since

trace cov
� 1√

n
Tn(x)

�
= 1,(62)

see (59), both eigenvalues of Σ−1
j

are � 1 and (56) continues to hold (even without
the n�/2–factor) for all points in N that belong to major arcs provided q > q0. Now
assume that 1 ≤ q ≤ q0. Then we can use the second term in (61). Indeed, one
easily checks that |I(λ)| ≤ 1− cmin(λ2, 1) for all λ and some small constant c > 0.
Therefore,

det cov
� 1√

n
Tn(x)

�
� n−�/2

provided |β| > n−d−�/4, which means that |x − p

q
| > n−d−�/4. In view of (62) the

covariance matrix has one eigenvalue of size � 1 and another that is at least n−�/2.
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We conclude that (56) holds for all xj satisfying (57). To deal with the remaining
intervals as defined by the right–hand side of (57), we let I ⊂ T be any interval of
length � n−d−�/4 and fix some y0 ∈ I. Then

P
�
min
x∈I

|Tn(x)| < n−ωd−�

�
≤ P

�
|Tn(y0)| < Cn

1
2−�/4

�
log n

�
(63)

+P
�
�T �

n
�∞ > Cnd+ 1

2
�

log n
�
.

The second term is again O(n−6d) by the Salem–Zygmund inequality. We claim
that the first term goes to zero as n → ∞. In view of (62), cov

�
1√
n
Tn(y0)

�
has a

unit eigenvector, say e0, with corresponding eigenvalue at least 1
2 . Thus

P
�
|Tn(y0)| < Cn

1
2−�/4

�
log n

�
≤ P

����n−1/2Tn(y0), e0�
�� < Cn−�/4

�
log n

�
� n−�/8.

Summing over the probabilities in (56) as well as (63) over the � q2
0 many intervals

given by (57) yields

P
�
min
x∈T

|Tn(x)| < n−ωd−�

�
� n−�/2 log n + n−�/8,

and the theorem is proved. �
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