
A geometric proof of the circular maximal theorem
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1 Introduction

A well–known result of Bourgain [1] asserts that the circular maximal function

Mf(x) = sup
1<t<2

�

S1

|f(x− ty)| dσ(y) (1)

is bounded on Lp(R2) for p > 2. Simple examples show that this fails for p = 2. In this

note we derive Bourgain’s result by geometric and combinatorial methods. In particular,

we do not use the Fourier transform in any way. Our proof is based on a combinatorial

argument from [6], which in turn uses Marstrand’s three circle lemma [7], and a lemma

involving two circles that seems to originate in [10]. The three circle lemma was used

in [7] to prove the following result, which is a simple consequence of Bourgain’s theorem:

Suppose a planar set E has the property: for every point in the plane, E contains

some circle with that point as center. Then E has positive measure.

Thus we show here that Marstrand’s lemma, in combination with other ideas, does

indeed allow one to establish the stronger maximal function estimate. Furthermore, we

demonstrate in section 4 how to obtain the entire known range of Lp → Lq estimates for

the circular maximal function (which is optimal possibly up to endpoints), see [9] and [11],

by using the methods from sections 2 and 3. One — perhaps significant — distinction from

the techniques developed in [1], [8], [11], and [12], which involve the Fourier transform,

is the fact that the methods presented here do not seem to yield estimates for the global

maximal function

Mf(x) = sup
0<t<∞

�

S1

|f(x− ty)| dσ(y).
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For the strong maximal function defined in terms of rectangles in Rn with sides parallel

to the coordinate axes it was shown in [4] that weak Lp bounds are equivalent to certain

geometric properties of collections of rectangles. [4] is related to this paper in so far

as inequalities for maximal functions are proved by working directly with the associated

geometric families. Moreover, in [3] page 37, A. Córdoba posed the problem of finding a

geometric proof of Stein’s spherical maximal theorem [13] and he suggested that it might

be possible to settle the two–dimensional case by studying families of annuli in the plane.

Here it is shown that it is indeed possible to prove the correct bounds on the circular

maximal function by a careful analysis of collections of annuli.

This paper is organized as follows. Proposition 1.1 illustrates how maximal function

estimates can be reduced to counting problems involving large families of thin annuli

in the plane. We do not use the full equivalence as stated in Proposition 1.1, but only

the fact that multiplicity estimates imply suitable Lp bounds. However, it might be of

interest to know that the multiplicity bounds are indeed natural. Given a large collection

of annuli with δ–separated centers, section 2 establishes estimates on the total number of

annuli that can intersect a typical one. It turns out that these inequalities are essential

in the analysis of the circular maximal function. In sections 3 and 4 they are used in

combination with the three circle lemma to prove Bourgain’s theorem and the Lp → Lq

bounds, respectively. In those sections the reader will find heuristic arguments which

explain the underlying observations for the main results, i.e., Theorems 3.1 and 4.1. It is

perhaps worth mentioning that we do not use the method of cell decomposition that was

recently applied in [14] to prove a sharp maximal function estimate. The motivation for

this paper was to adapt the method from [6], which was developed there for one–parameter

families of circles, to the two–parameter setting of (1). It seems that the improvement

over the method in [6] that was achieved in [14] using cells and the work required to pass

from the one–parameter to the two–parameter case are of a different nature.

Definition 1.1 Let δ > 0 be an arbitrary but fixed small number. By C we shall always
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mean a family of circles with δ–separated centers lying in some fixed compact set of diam-

eter <
1
2 . For our purposes we may assume that the circles in C are in general position,

in particular, all radii are distinct. Let

C = C(x, r) = {y ∈ R2 : |x− y| = r}

C
δ = C

δ(x, r) = {y ∈ R2 : r − δ < |x− y| < r + δ}. (2)

We shall always assume that r ∈ (1, 2). For any family of circles C the multiplicity

function is defined as

µ
C
δ =

�

C∈C

χ
C

δ .

Mδ will denote the following auxiliary maximal function:

Mδf(x) = sup
1<r<2

1

|Cδ(x, r)|

�

Cδ(x,r)

|f(y)| dy.

Finally, a � b means a ≤ Ab for some absolute constant A, and similarly with a � b

and a ∼ b. Lebesgue measure will be denoted by | · | and we will use both | · | and card

interchangeably for the cardinality of a set.

Proposition 1.1 The following are equivalent:

i. For every p > 2 there exists a constant c(p) depending only on p so that

�Mδf�Lp(R2) ≤ c(p)�f�Lp(R2) (3)

for all f ∈ Lp(R2) and all δ > 0.

ii. Given δ > 0 and C, a family of circles with δ–separated centers, and a small number

ρ > 0, there exists A ⊂ C with |A| > c−1
ρ |C| for some constant cρ depending only

on ρ and so that

|{C
δ : µ

A
δ > cρλ

−1−ρ
δ
−1
}| < λ|C

δ
| (4)

for all C ∈ A and all 0 < λ ≤ 1.
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Proof: Assume the second statement. For this implication we follow [6]. In view of

Marcinkiewicz’s interpolation theorem it suffices to prove a restricted weak–type estimate

for every p > 2. Fix such a p and let δ > 0, E ⊂ R2 compact, and 0 < λ ≤ 1. Pick a

δ–net {xj} in

{x ∈ R2 : MδχE(x) > λ}

and let C = {C(xj, rj)} where rj ∈ (1, 2) is chosen so that

|C
δ(xj, rj) ∩ E| > λ|C

δ(xj, rj)|

for all j. Applying (ii) with ρ = p− 2 yields A ⊂ C with property (4). Hence

|{C
δ
∩ E : µ

A
δ ≤ cρ(λ/2)−1−ρ

δ
−1
}| ≥

λ

2
|C

δ
|

for all C ∈ A and thus

λδ|A| �
�

{E : µAδ ≤cρ(λ/2)−1−ρ δ−1}
µ
A
δ ≤ |E|cρ(λ/2)1−p

δ
−1

.

In view of |A| > c−1
ρ |C| this implies

λ(δ2
|C|)

1
p � c

2
p
ρ |E|

1
p .

By our choice of {xj} we finally conclude that

λ|{x ∈ R2 : MδχE(x) > λ}|
1
p ≤ c(p)|E|

1
p ,

as desired.

To deduce the second statement from the first, we shall use an argument that seems

to originate in [9], cf. Lemma 2.1. Fix ρ > 0 small. We claim that there exists cρ so that

for half the circles C ∈ C

|{C
δ : µ

C
δ > cρλ

−1−ρ
δ
−1
}| < λ|C

δ
|
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for all 0 < λ ≤ 1. Assume that this fails with a choice of cρ to be specified below. Then

at least half the circles C ∈ C satisfy

|{C
δ : µ

C
δ > cρλ

−1−ρ
δ
−1
}| >

1

2
λ|C

δ
| (5)

for some dyadic λ = 2−j ∈ (0, 1] depending on C. Let aρ =
�∞

j=0 2−jρ. We claim that

there is B ⊂ C satisfying |B| ≥
1
2a
−1
ρ λ̄

ρ
|C| with some dyadic λ̄ ∈ (0, 1] and so that (5)

holds with λ = λ̄ for all C ∈ B. This is a simple application of the pigeon hole principle.

Indeed, suppose our claim failed. Then

card({C ∈ C : C satisfies (5) for some λ = 2−j
∈ (0, 1]})

<

�

λ=2−j≤1

1

2
a
−1
ρ λ

ρ
|C| =

1

2
|C|,

contrary to our assumption.

Now let

E = {µ
C
δ > cρλ̄

−1−ρ
δ
−1
}.

We distinguish two cases. Let p = 1 +
√

1 + ρ.

Case 1: |E| < (aρ c(p)p 2p+1)−1 λ̄
p+ρ

|C|δ2

Applying (3) to f = χE yields

2−1− 1
p a
− 1

p
ρ λ̄

1+ ρ
p δ

2
p |C|

1
p ≤

1

2
λ̄(δ2

|B|)
1
p ≤ c(p)|E|

1
p ,

which is a contradiction.

Case 2: |E| ≥ (aρ c(p)p 2p+1)−1 λ̄
p+ρ

|C|δ2

In this case we use duality. Note that the dual inequality to (3) is

�

�

j

ajχCδ(yj ,ρj)�Lp�(R2) ≤ c(p)δ−1+ 2
p� (

�

j

|aj|
p�)

1
p�

for all families {C(yj, ρj)} with δ–separated centers. We apply this to our family C with

aj = 1. Then

cρλ̄
−1−ρ

δ
−1
|E|

1
p� ≤ �µ

C
δ�Lp�(R2) ≤ c(p)δ−1+ 2

p� |C|
1
p� .
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This contradicts our assumption on |E| for large cρ, since p was chosen so that (1+ρ)p� =

p + ρ.

We prove Bourgain’s theorem, i.e., statement (i), by showing directly that a set A ⊂ C

as in the second statement exists, cf. Theorem 3.1.

2 The two circle lemma

The following simple geometric lemma is well–known, see [1], [6], [7], and [14]. We refer

the reader to [9], Lemma 4.2 for a proof of the statement below. Let C = C(x, r) and

C = C(x̄, r̄). The notation

∆(C, C) = max(||x− x̄| − |r − r̄||, δ), d(C, C) = |x− x̄|+ |r − r̄|

will be used throughout. Note that ||x− x̄| − |r− r̄|| = 0 if and only if the two circles are

internally tangent. If ∆(C, C) = � we say that C and C are �–tangent. This means that

the shortest distance between the intersection points of C, C with the line joining their

centers is equal to �.

Lemma 2.1 Suppose x, y ∈ R2, 0 < |x− y| ≤
1
2 , and r, s ∈ (1, 2), 0 < δ < 1. Then there

is an absolute constant A0 so that

i. Cδ(x, r) ∩ Cδ(y, s) is contained in a δ–neighborhood of an arc on C(x, r) of length

≤ A0

�
∆

|x−y| centered at the point x− r sgn(r − s) x−y
|x−y| .

ii. the area of intersection satisfies

��Cδ(x, r) ∩ C
δ(y, s)

�� ≤ A0
δ2

�
∆|x− y|

.

The second part of Lemma 2.1 shows that the angle of intersection of C, C is propor-

tional to
�

∆(C, C)|x− x̄|. This should indicate that it is important to know the size of
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∆ and the distance of the centers of intersecting circles. For this reason we introduce the

set

C
C
�t = {C ∈ C : C

δ
∩ C

δ
�= ∅, �− δ ≤ ∆(C, C) ≤ 2�, t ≤ |x− x̄| ≤ 2t},

where �, t ∈ [δ, 1]. We shall make frequent use of the following simple observations. Firstly,

C ∈ CC
�t iff C ∈ CC

�t . Secondly, let y ∈ Cδ ∩C
δ
, i.e. , ||x− y| − r| < δ and ||x̄− y| − r̄| < δ.

Then

|r − r̄| ≤ ||x− y| − r|+ ||x̄− y| − r̄|+ ||x− y| − |x̄− y||

< 2δ + |x− x̄| ≤ 2(δ + t) ≤ 4t. (6)

In particular, d(C, C) ≤ 6t and � ≤ 4t if CC
�t �= ∅.

In the following paragraph we give a heuristic discussion of the results in this section.

Using the Fourier transform one obtains the well–known estimate, see [1] and [2],

�Mδf�L2(R2) � | log δ|
1
2�f�L2(R2).

By the arguments in Proposition 1.1 this is equivalent to

|{C
δ : µ

C
δ > | log δ|

b
λ
−1

δ
−1
}| < λδ

for some constant b, most circles C ∈ C, and all λ ∈ (0, 1]. These estimates can improved.

In fact, in Corollary 3.6 of [9] it was shown that there exists an absolute constant C0 so

that

�Mδf�L2(B(x0,t)) ≤ C0 t
1
2 | log δ|

1
2�f�L2(R2)

for all x0 ∈ R2, 0 < t < 1. By the second argument in the proof of Proposition 1.1 one

concludes from this, see Lemma 3.7 in [9],

|{C
δ : µ

CC
�t

δ � | log δ|
b
λ
−1

δ
−1

t}| < λδ (7)

for at least half the circles in C, all λ, �, t ∈ [δ, 1], and a suitable constant b. This in turn

implies that

|C
C
�t | �

�
�

δ

� 1
2

�
t

δ

� 3
2

| log δ|
b+1 (8)
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for at least half the circles C ∈ C and all �, t ∈ [δ, 1]. Indeed, let

Sj = {C
δ : µ

CC
�t

δ ∈ [2j
, 2j+1)}.

On the one hand, in view of (7), |Sj| � | log δ|
b2−jt. On the other hand, the area estimate

in Lemma 2.1 implies, roughly speaking, that Sj splits into � |Sj|/(δ2/
√

�t) many rect-

angles of size δ ×
δ√
�t

each of which is intersected by no more than 2j+1 many C
δ
∈ CC

�t .

Thus

card({C ∈ C
C
�t : C

δ
∩ Sj �= ∅}) � | log δ|

b2−jt

δ2/
√

�t
2j+1

∼ | log δ|
b
�

�

δ

� 1
2

�
t

δ

� 3
2

.

Since clearly

C
C
�t ⊂

�

1≤2j≤δ−2

{C ∈ C
C
�t : C

δ
∩ Sj �= ∅},

(8) follows. It seems reasonable to conjecture that (7) and (8) should hold without the

logarithmic factors. This would be optimal, as can be seen from the family C of circles

with δ–separated centers in B(0, t) which are �–tangent to the unit circle. Indeed, if

C = C(x, r) ∈ C with t/2 < |x| < t then C ∈ CC
�t implies that x̄ lies in a rectangle of size

∼ t ×
√

�t with axis 0x. Moreover, note that any C(x, r) ∈ C with x close to 0 satisfies

|CC
�t | ∼

t2

δ2 . Hence it is necessary to pass to a suitable subfamily of C in order to obtain

the
�

�
t

� 1
2 –improvement in (8) over the trivial bound |CC

�t | � t2

δ2 . This improvement will be

crucial in sections 3 and 4. The purpose of this section is to show that (7) and (8) hold

with a factor of �−η instead of the logarithmic terms for any η > 0, see Proposition 2.1.

In section 3 it will turn out that this loss of �−η can be compensated for by a factor λ−ρ

for some small ρ > 0. In view of Proposition 1.1 this is exactly what one can afford to

loose.

The following statement is the main ingredient for the two circle lemma, Lemma 2.5.

It will be understood that Cj = Cj(xj, rj) for j = 0, 1, . . ..

Lemma 2.2 Suppose C2 ∈ C
C1
βτ , t ≥ 8�, and that β ≥ 100�. Then

|C
C1
�t ∩ C

C2
�t | �

t2

δ2

�
√

βτ
.
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Proof: Let F (x, r) = (|x− x1| − |r − r1|, |x− x2| − |r − r2|) be defined on

Ω = {(x, r) ∈ R2
× [1, 2] : t ≤ |x− xj| ≤ 2t, j = 1, 2}.

Suppose (x, r) ∈ Ω and let ei = x−xi
|x−xi| and σj = sgn(r − rj). Then

DF (x, r) =



 e1 −σ1

e2 −σ2





and thus JF (x, r) ∼ �(e1σ1, e2σ2) = α.

By � we mean the angle ∈ [0, π] and JF 2 denotes the sum of the squares of all

2× 2 subdeterminants of DF . Suppose (x, r) ∈ Ω and |F (x, r)| < 4�. Then there exist r�j

so that |rj − r�j| < 4� and

|x− xj| = |r − r
�
j| for j = 1, 2.

Moreover, |x − xj| ≥ t ≥ 8� and ||r − rj| − |x − xj|| < 4� imply that sgn(r − r�j) = σj.

Thus

|x1 − x2|
2 = |x− x1|

2 + |x− x2|
2
− 2(x1 − x) · (x2 − x)

= |r − r
�
1|

2 + |r − r
�
2|

2
− 2σ1σ2|r − r

�
1||r − r

�
2|+

+2σ1σ2|x− x1||x− x2|(1− cos α)

= |r
�
1 − r

�
2|

2 + 2σ1σ2|x− x1||x− x2|(1− cos α),

and consequently, in view of the definition of ∆(C1, C2) and (6)

t
2
α

2 � βτ − 50τ� � βτ.

We conclude that

JF �
√

βτ

t
on Ω ∩ F

−1(B(0, 4�)).

Changing variables, or more precisely, using the coarea formula, see Theorem 3.2.11 in [5],

we obtain
�

B(0,4�)

H
1(F−1(y) ∩ Ω) dy =

�

Ω∩F−1(B(0,4�))

JF (x, r) dxdr

�
2
t �

√
βτ

t
|Ω ∩ F

−1(B(0, 4�))|.
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To bound the Hausdorff measure, note that diam(F−1(y) ∩ Ω) � t provided |y| � t and

hence the length of the (algebraic) curve F−1(y) � Ω will also be bounded by t. This

clearly implies that

|projR2(Ω ∩ F
−1(B(0, 2�)))| � t

2 �
√

βτ
,

as desired.

Lemma 2.2 is sufficient for our purposes. However, we show below how to estimate

|C
C1
�t ∩ C

C2
�t | in those cases where Lemma 2.2 does not apply, cf. Lemma 2.5. This can be

done using Lemma 2.3, which we shall use repeatedly in what follows. It is a quantitative

version of the following simple observation: if Cj = C(xj, 3/4) are internally tangent to

C(0, 1) for j = 1, 2 with the points of tangency being far apart, then C1 and C2 intersect

each other transversely. This fact is of course well–known and has been used in [1] and [14].

See [12] for a harder version in the context of variable coefficients.

Lemma 2.3 Let C0, C1, C2 be three circles so that Cj ∈ C
C0
βjτj

for j = 1, 2. Assume

α = �(sgn(r1 − r0)(x1 − x0), sgn(r2 − r0)(x2 − x0))

≥ A0

�
(β1 + β2)(τ1 + τ2)

τ1τ2
(9)

for some sufficiently large constant A0. Then

∆(C1, C2)d(C1, C2) ∼ α
2
τ1τ2

and thus, in particular,

∆(C1, C2) ≥ 2(β1 + β2).

Proof: Let σj = sgn(rj − r0). Then

|x1 − x2|
2 = |x1 − x0|

2 + |x2 − x0|
2
− 2(x1 − x0) · (x2 − x0)

|r1 − r2|
2 = |r1 − r0|

2 + |r2 − r0|
2
− 2(r1 − r0)(r2 − r0)

|x1 − x2|
2
− |r1 − r2|

2 = |x1 − x0|
2
− |r1 − r0|

2 + |x2 − x0|
2
− |r2 − r0|

2 +
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+2σ1σ2(|r1 − r0||r2 − r0| − |x1 − x0||x2 − x0|) +

+2σ1σ2|x1 − x0||x2 − x0|(1− cos α).

This implies that (recall that d(Cj, C0) ≤ 6τj, see (6))

∆(C1, C2)d(C1, C2) ∼ τ1τ2α
2 + O(β1τ1 + β2τ2 + τ1β2 + τ2β1)

= τ1τ2α
2 + O((β1 + β2)(τ1 + τ2)) ∼ τ1τ2α

2

where we have used (9) in the last step. Since d(C1, C2) ≤ d(C1, C0)+ d(C0, C2) � τ1 + τ2

the lemma follows.

A0 will denote the constants in Lemmas 2.1 and 2.3. Using Lemma 2.3 we can deal

with the case β ≤ 100� that was left open in Lemma 2.2. The intuition behind Lemma 2.4

is as follows. If C1 and C2 are tangent, then any circle C ∈ C
C1
�t ∩ C

C2
�t has to intersect the

arc of minimal length on C1 that contains C�
1 ∩ C�

2.

Lemma 2.4 Suppose C2 ∈ C
C1
βτ . Then

|C
C1
�t ∩ C

C2
�t | �

t2

δ2

�
� + β

τ
.

Proof: We may assume that τ ≤ 4t. Indeed, let C = C(x, r) ∈ C
C1
�t ∩ C

C2
�t . Then

τ ≤ |x1 − x2| ≤ |x1 − x|+ |x− x2| ≤ 4t. Let

γ0 =

�
β + �

τ
∼

�
(β + �)(t + τ)

tτ
.

Suppose C ∈ C
C1
�t satisfies min(�(x̄− x1, x2 − x1), �(x̄− x1, x1 − x2)) > A0γ0.

We apply Lemma 2.3 with C0 = C1, C1 = C2, C2 = C, β1 = β, β2 = �, τ1 = τ , and

τ2 = t to wit ∆(C,C2) ≥ 2(� + β) > 2�. In particular C �∈ C
C2
�t . We conclude that any

C ∈ C
C1
�t ∩ C

C2
�t has to satisfy min(�(x̄− x1, x2 − x1), �(x̄− x1, x1 − x2)) ≤ A0γ0.

In particular, the centers of all circles in CC1
�t ∩C

C2
�t are contained in a 4t×2t A0γ0 rect-

angle centered at x1 and thus |CC1
�t ∩ C

C2
�t | � t2

δ2 γ0, as claimed.

The two circle lemma now follows easily from Lemmas 2.2 and 2.4.
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Lemma 2.5 Suppose C2 ∈ C
C1
βτ . Then

|C
C1
�t ∩ C

C2
�t | �

t2

δ2
min(

�
�

τ
,

�
√

βτ
). (10)

Proof: As before we may assume that τ ≤ 4t. Moreover, we may also assume that

8� ≤ t. Indeed, since |CC1
�t ∩ C

C2
�t | � t2

δ2 either

�
�

τ
≤

1

10
or

�
√

βτ
≤

1

100

without loss of generality. Hence, if β ≥ 100� we apply Lemma 2.2 to conclude

|C
C1
�t ∩ C

C2
�t | �

t2

δ2

�
√

βτ
.

If on the other hand β ≤ 100�, then (10) follows from Lemma 2.4.

The following lemma is a simple technical statement that we shall use repeatedly. It

is based on the observation that two circles C1, C2 ∈ CC
�t will have to intersect provided

dist(Cδ ∩ Cδ
1 , C

δ ∩ Cδ
2) is sufficiently large (recall that all radii are ∈ [1, 2] and that the

centers are no more than a distance 1/2 from each other).

Lemma 2.6 Let C1, C2 ∈ CC
�t such that sgn(r−r1) = sgn(r−r2), and �(x1−x, x2−x) ≥

A0

�
�
t . Then C1 ∩ C2 �= ∅.

Proof : Consider the case r > r1, r2. We may assume that x = 0. By Lemma 2.1,

C
�
∩ C

�
i ⊂ Ri,

an �–neighborhood of an arc on C centered at r
xi
|xi| , i = 1, 2, of length A0

�
�
t . By our

assumptions, R1 ∩ R2 = ∅. In particular, p1 = x1 + r1
x1
|x1| ∈ R1 ⊂ exterior(C2) and

p2 = x2 + r2
x2
|x2| ∈ R2 ⊂ exterior(C1). Since ri > 1 > |xi| (recall that the centers lie in a

set of diameter <
1
2), 0 ∈ interior(C1)∩ interior(C2) and thus the segment (0, p2) intersects

C1 in an interior point of C2, say q1. Hence the arc p1q1 on C1 intersects C2. Finally, the

case r < r1, r2 can be dealt with in a similar manner.
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In Lemma 2.7 we apply the two circle lemma in order to bound the total number

of circles that can intersect a given one. This will be crucial in proving the multiplicity

estimate (4). Lemma 2.7 states, roughly speaking, that an unwanted power of t
� can be

cut in half at the cost of eliminating half the circles.

Lemma 2.7 Suppose that for some 1 ≥ α, ρ ≥ 0 and some constant A

|C
C
�t | ≤ A

�
�

δ

� 1
2

�
t

δ

� 3
2
�

t

�

�α

t
−ρ (11)

for all C ∈ C, �, t ∈ [δ, 1].

Fix 0 < ν ≤ 1 and assume ν + ρ ≤ 1 + α. Then there exists A ⊂ C, |A| ≥
1
2 |C| and a

constant bν so that

|C
C
�t | ≤ (bνA)

1
2

�
�

δ

� 1
2

�
t

δ

� 3
2
�

t

�

�α
2 +ν

t
− ρ

2−
3ν
2

for all C ∈ A, �, t ∈ [δ, 1].

Proof: Assume false. Then for at least half the circles C in C

|C
C
�t | � (bνA)

1
2

�
�

δ

� 1
2

�
t

δ

� 3
2
�

t

�

�α
2 +ν

t
− ρ

2−
3ν
2 (12)

for some choice of dyadic �, t ∈ [δ, 1] depending on C. This will lead to a contradiction

if bν is sufficiently large. The idea is as follows. Suppose (12) holds for a fixed choice of

�, t ∈ [δ, 1] and for all C ∈ B ⊂ C where |B| ≥ 1
2 |C|. Consider the set

S0 = {(C, C1, C2) : C ∈ B, C1, C2 ∈ C
C
�t}.

Clearly,

card(S0) ≥ |B|min
C∈B

|C
C
�t |

2
, (13)

which in turn can be estimated by (12). To bound card(S0) from above, we assume that

the majority of (C, C1, C2) ∈ S0 satisfy C2 ∈ C
C1
�t . Using Lemma 2.3 we will see below

13



that this is the most significant case. Now we count by choosing first C1, then C2, and

finally C:

card(S0) ≤
�

C1∈C

�

C2∈C
C1
�t

|C
C1
�t ∩ C

C2
�t |. (14)

The cardinality of the intersection is estimated by Lemma 2.5, whereas |CC1
�t | is controlled

by our hypothesis (11). The reader will easily check that the bounds (13) and (14)

obtained in this way agree if ν = 0. The terms involving ν are of a technical nature. They

arise because we apply the pigeon hole principle to make the above argument rigorous.

The details are as follows.

Let aν =
�∞

j=0 2−jν . We claim that for some (fixed) choice of �, t (12) holds for at

least (8a2
ν)
−1�ν |C| many circles C. This follows from a standard pigeon hole argument.

Indeed, if our claim failed then

card({C ∈ C : (12) holds for some � = 2−j
, t = 2−k

∈ [δ, 1]})

<

�

�=2−j≤1

�

�/4≤t=2−k≤1

(8a2
ν)
−1

�
�

t

�ν
t
ν
|C|

< (8a2
ν)
−1

∞�

k=0

∞�

l=−2

2−lν2−kν
|C| ≤

1

2
|C|,

contradicting our assumption. Now fix �, t as in the claim and let B be the set of circles

for which (12) holds with those values. Thus

|B| � a
−2
ν �

ν
|C|. (15)

Define

S0 = {(C, C1, C2) : C ∈ B, C1, C2 ∈ C
C
�t , sgn(r − r1) = sgn(r − r2)}. (16)

Clearly, |S0| ≥
1
4 |B| minC∈B |C

C
�t |

2.

Case 1: The majority of (C, C1, C2) ∈ S0 satisfy

�(x1 − x, x2 − x) ≤ A0

�
�

t
.

14



Let S1 be the set of those triples. Then, in view of (12),

|S1| ≥
1

8
|B| min

C∈B
|C

C
�t |

2 � |B| bνA
�

δ

�
t

δ

�3 �
t

�

�α+2ν

t
−ρ−3ν

. (17)

On the other hand,

|S1| � |B|A
�

δ

�
t

δ

�3 �
t

�

�α

t
−ρ

. (18)

Indeed,

|S1| ≤

�

C∈B

�

C1∈CC
�t

card({C2 ∈ C
C
�t : �(x1 − x, x2 − x) ≤ A0

�
�

t
}) (19)

� |B| max
C∈B

|C
C
�t | A0

�
�

δ

� 1
2

�
t

δ

� 3
2

� |B| A

�
�

δ

� 1
2

�
t

δ

� 3
2
�

t

�

�α

t
−ρ

�
�

δ

� 1
2

�
t

δ

� 3
2

by (11). To bound the cardinality of the set in (19), simply observe that the centers x2

will lie in a rectangle of size ∼ A0

√
�t× t centered at x.

Clearly, (17) and (18) contradict each other for large bν .

Case 2: The majority of (C, C1, C2) ∈ S0 satisfy

�(x1 − x, x2 − x) > A0

�
�

t
. (20)

Let

S2 = {(C, C1, C2) : C ∈ B, C1, C2 ∈ C
C
�t , sgn(r1 − r) = sgn(r2 − r), �(x1 − x,

x2 − x) > A0

�
�

t
, β − δ ≤ ∆(C1, C2) ≤ 2β, τ ≤ |x1 − x2| ≤ 2τ}.

Here β, τ ∈ [δ, 1] are chosen by applying the pigeon hole principle with weights a−1
ν βν and

a−1
ν τ ν , respectively so that

card(S2) � a
−2
ν (βτ)ν card(S0) � |B|a

−2
ν (βτ)ν min

C∈B
|C

C
�t |

2
. (21)

15



By (20) and the intersecting circles lemma, Lemma 2.6, any (C, C1, C2) ∈ S2 satisfies

C2 ∈ C
C1
βτ . Thus Lemma 2.5 and (11) imply that

card(S2) ≤

�

C1∈C

�

C2∈C
C1
βτ

|C
C1
�t ∩ C

C2
�t |

� |C| A

�
β

δ

� 1
2 �

τ

δ

� 3
2

�
τ

β

�α

τ
−ρ t2

δ2
min(

�
�

τ
,

�
√

βτ
). (22)

Since (C, C1, C2) ∈ S2 satisfy (20), Lemma 2.3 implies that 2β ≥ ∆(C1, C2) ≥ 4�. More-

over, τ ≤ |x1− x2| ≤ |x1− x|+ |x− x2| ≤ 4t. Now it is easy to see that (21) and (22) are

incompatible. Indeed, first note that (22) is the same as

card(S2) � |C| A
�

δ

t2τ

δ3

�
τ

β

�α

τ
−ρ

.

On the other hand, (12), (15), and (21) imply

card(S2) � a
−2
ν �

ν
|C| a

−2
ν (βτ)ν

βνA
�

δ

�
t

δ

�3 �
t

�

�α+2ν

t
−ρ−3ν

� a
−4
ν bνA |C|

�

δ

t2τ

δ3

�
t

τ

�1+α−ρ−ν �
β

�

�α+ν �
τ

β

�α

τ
−ρ

.

Since 1+α ≥ ρ+ν, the upper and lower bound will contradict each other for large bν .

Proposition 2.1 is the main result of this section. Starting from the trivial bound

|C
C
�t | �

t2

δ2
, (23)

we iterate Lemma 2.7 in order to get as close to the
�

�
t–improvement as possible, see the

discussion following Lemma 2.1 above.

Proposition 2.1 Let C be as above and let η > 0 be a small number. Then there exist a

constant cη, a subset A ⊂ C so that |A| ≥ c−1
η |C|, and

|A
C
�t| ≤ cη

�
�

δ

� 1
2

�
t

δ

� 3
2

�
−η (24)
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for all C ∈ A and all �, t ∈ [δ, 1]. In particular, every C ∈ A satisfies

|{C
δ : µ

AC
�t

δ > c
2
η λ

−1
δ
−1

t �
−η
}| < λδ (25)

for all �, t ∈ [δ, 1], 0 < λ ≤ 1.

Proof: Let αj = 1
2

�
2
3

�j
for j = 0, 1, 2, . . . and ν = η/6. We claim that there exist Aj ⊂ C,

|Aj| ≥ 2−j|C| so that for all C ∈ Aj (bν being the constant from Lemma 2.7)

|(Aj)
C
�t| ≤ bν

�
�

δ

� 1
2

�
t

δ

� 3
2
�

t

�

�αj

t
−η/2

for all j satisfying αj ≥ 2η/3.

This follows by induction using Lemma 2.7 with ρ = 3ν. For j = 0 simply observe

that

|C
C
�t | �

t2

δ2
≤ bν

�
�

δ

� 1
2

�
t

δ

� 3
2
�

t

�

�α0

t
−ρ

for all C ∈ A0 = C. For the induction step note that

1

2
αj−1 + ν ≤

2

3
αj−1 = αj

since αj−1 = 3
2αj ≥ 6ν = η. Furthermore, ρ/2 + 3ν/2 = ρ = η/2. Finally, we have

1+αj−1 ≥ 5η/6 = ν+ρ, which establishes our claim. Thus the first part of the proposition

follows by letting A = Aj0 where j0 is maximal with αj0 ≥ 2η/3.

Assume that the second part of the proposition is false. Then there is a circle C ∈ A

and numbers �, t, λ so that

|{C
δ : µ

AC
�t

δ > c
2
η λ

−1
δ
−1

t �
−η
}| > λδ.

This implies, in view of Lemma 2.1, that

c
2
η t�

−η �
�

Cδ

µ
AC

�t
δ =

�

C∈AC
�t

|C
δ
∩ C

δ
| � |A

C
�t|

δ2

√
�t

,

which contradicts (24) if cη is large.
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3 The three circle lemma

The following lemma is essentially Marstrand’s three circle lemma, cf. Lemma 5.2 in [7].

It is a quantitative version of the following fact, known in incidence geometry as the circles

of Apollonius:

Given three circles which are not internally tangent at a single point, there are at most

two other circles that are internally tangent to the three given ones.

Lemma 3.1 Fix circles C1, C2, C3, some � ∈ [δ, 1], and positive numbers λ12, λ13, λ23. Let

S = {x ∈ R2
\

3�

j=1

B(xj, �) : ∃ r ∈ (1, 2) with ||xi − x| − |ri − r|| < �

for i = 1, 2, 3 and |ei(x, r)− ej(x, r)| ∼ λij for 1 ≤ i < j ≤ 3}

where we have set ei(x, r) = xi−x
|xi−x|sgn(ri − r). Then

|S| � �
2(λ12λ13λ23)

−1
.

For a proof of Lemma 3.1 the reader is referred to [7] or [9]. These references deal

with the case λ12 = λ13 = λ23, but the same arguments apply. [6] contains a version

of Lemma 3.1 (with λ12 = λ13 = λ23 ≥
�

�
t ) that gives further information on the set

of circles under consideration and, moreover, applies to families of curves satisfying the

cinematic curvature condition from [12].

The proof of Theorem 3.1 below follows a scheme that originates in [6]. The basic

idea is to pass from the three circle lemma to bounds on the number of tangencies oc-

curring in an arbitrarily large collection of circles by means of a simple result of extremal

graph theory. Roughly speaking, this amounts to counting a suitable set of quadruples of

circles in two different ways, as explained in the following paragraph. The Kolasa–Wolff

argument splits naturally into two cases: Given a typical annulus Cδ, either the majority

of intersections of Cδ with other annuli are concentrated on a small set of Cδ or they are

spread out over an arc on Cδ of sufficient length. In view of the nondegeneracy condition

18



in the circles of Apollonius, Marstrand’s lemma can be applied only in the second case.

However, Kolasa and Wolff observed that for one–parameter families C (they consider

circles with δ–separated radii), it suffices to consider a single annulus in the first case.

Roughly speaking, if their multiplicity estimate failed on a sufficiently small set of a fixed

annulus Cδ, then the number of annuli intersecting Cδ would have to exceed δ−1, which is

the trivial bound on card(C), see [6] section 4 or [14] section 3 for details. One can show

that this type of argument does not apply to the two–parameter families of circles that

arise in the analysis of (1). More precisely, we will require stronger bounds than the ones

given by (23). This was the original motivation for considering a two circle argument and

it is also were Proposition 2.1 becomes important. Note that one cannot expect to use

the two circle lemma in the one–parameter setting of [6] and [14]. Indeed, Lemma 2.5

estimates a neighborhood of a curve which might contain the centers of all circles in C if

|C| < δ−1. However, it turns out that the bounds (24) are also needed in the second case,

i.e., that part of the argument involving Lemma 3.1.

Theorem 3.1 Let C be as above and let ρ > 0 be a small number. Then there exists

A ⊂ C so that |A| > c−1
ρ |C| for some constant cρ and so that

|{C
δ : µ

A
δ > cρλ

−1−ρ
δ
−1
}| ≤ λδ (26)

for all C ∈ A and all 0 < λ ≤ 1.

In view of Proposition 1.1 this result implies Bourgain’s theorem.

The heuristics behind the proof of Theorem 3.1 are explained in this paragraph. We

suppress any pigeon hole factors. Suppose that (26) fails with ρ = 0 in the following

slightly stronger sense: for half the circles C ∈ C

|{C
δ : µ

CC
�t

δ > λ
−1

δ
−1

t}| > λδ (27)

for a fixed choice of � and t, and λ ≥ 100A0

�
�
t . The factor t is motivated by (7).

Following [6] we consider the set

Q = {(C, C1, C2, C3) : C satisfies (27), C1, C2, C3 ∈ C
C
�t ,
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dist(Cδ
i ∩ C

δ
, C

δ
j ∩ C

δ) >
λ

20
for 1 ≤ i < j ≤ 3}. (28)

According to Lemma 2.1 the intersection C
δ
∩ C is contained in an arc on Cδ of length

≤ A0

�
�
t for any C ∈ CC

�t . Therefore, choosing first C and then an arbitrary C1 ∈ CC
�t

we see that λ ≥ 100A0

�
�
t and (27) imply that there are ∼ |CC

�t | many choices of C2, C3

satisfying the distance assumption in (28). Hence

|Q| � |C| min
C∈C

|C
C
�t |

3
.

Moreover, by the area estimate in Lemma 2.1,

λδ λ
−1

δ
−1

t <

�

Cδ

µ
CC

�t
δ =

�

C∈CC
�t

|C
δ
∩ C

δ
| � |C

C
�t |

δ2

√
�t

for any C satisfying (27). We conclude that

card(Q) � |C|

�
λ
−1

δ
−1

t
λδ

δ2/
√

�t

�3

= |C|

��
�

δ

� 1
2

�
t

δ

� 3
2

�3

.

To find an upper bound on card(Q) we assume that the majority of (C, C1, C2, C3) ∈ Q

satisfy C2 ∈ C
C1
�t and C3 ∈ C

C2
�t . Using Lemma 2.3 one can show that this is indeed the

most significant case, see the proof of Theorem 3.1 for details. Using (24) with η = 0

and Lemma 3.1 we now obtain, choosing first C1, then C2, C3, and finally C (recall that

λ ≥
�

�
t )

card(Q) �
�

C1∈C

�

C2∈C
C1
�t

�

C3∈C
C2
�t

�2

δ2
λ
−3 � |C|

�

δ

�
t

δ

�3
�2

δ2

�
t

�

� 3
2

,

which agrees with our lower bound. To apply Lemma 3.1 note that Cδ ∩ Cδ
j is contained

in an arc of length A0

�
�
t on Cδ centered at x + r

xi−x
|xi−x|sgn(r− ri), see Lemma 2.1. Hence

definition (28) implies that |ei(x, r)− ej(x, r)| > λ/20, as required.

We hope that the reader will not be sidetracked by the simple technicalities in the

following proof. In order to make the heuristic argument above rigorous, we apply the

pigeon hole principle several times. The various factors that arise by doing so as well as

the factors �−η in Proposition 2.1 can then be controlled by λ−ρ.
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Proof of Theorem 3.1: Let η = ρ/10 and choose A ⊂ C, |A| > c−1
η |C| as in Proposi-

tion 2.1. Suppose (26) failed for half the circles in A, i.e., for at least half the circles C

in A

|{C
δ : µ

A
δ > cρλ

−1−ρ
δ
−1
}| ≥

1

2
λδ, (29)

with some dyadic λ depending on C. This will lead to a contradiction for sufficiently

large cρ. We will apply the pigeon hole principle to obtain a bound of this type that

holds for a large number of circles and a fixed choice of λ. Let ν = ρ/100 and recall that

aν =
�∞

k=0 2−kν . We claim that there exists a dyadic λ̄ so that

|{C
δ : µ

A
δ > cρλ̄

−1−ρ
δ
−1
}| >

1

2
λ̄δ (30)

for at least max(1
2a
−1
ν λ̄

ν
|A|, 1) many circles C ∈ A. For if not, then the number of circles

C for which (29) holds is

<

�

λ=2−j≤1

1

2
a
−1
ν λ

ν
|A| =

1

2
|A|,

contrary to our assumption. Since

µ
A
δ � C

δ
≤

�

�/4≤t≤1

µ
AC

�t
δ ,

where the sum is taken over dyadic �, t ∈ [δ, 1], and since

�

�/4≤t≤1

�
ν =

�

�/4≤t≤1

�
�

t

�ν
t
ν
≤ 4a2

ν ,

one easily sees that for each C satisfying (30) there are �, t depending only on C so that

|{C
δ : µ

AC
�t

δ > cρ(4a
2
ν)
−1

�
ν
λ̄
−1−ρ

δ
−1
}| >

1

2
(4a2

ν)
−1

�
ν
λ̄δ. (31)

Indeed, given an x in the set appearing on the left–hand side of (30), we can find �, t

depending on x so that

µ
AC

�t
δ (x) > cρ(4a

2
ν)
−1

�
ν
λ̄
−1−ρ

δ
−1

. (32)
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For if this were not so, sum as above to get a contradiction. For the same reason, (30)

implies that for some �, t depending on C the measure of all x ∈ Cδ satisfying (32) has

to be >
1
2(4a

2
ν)
−1�νλ̄δ. Finally, there are fixed values of � an t so that (31) holds with

those �, t for at least max(1
8a
−3
ν (λ̄�)ν |A|, 1) many circles. Let the set of those circles be

denoted by B. Setting λ = 1
8a
−2
ν �νλ̄, we conclude that there is a nonempty subset B of A

satisfying

|B| � a
−3
ν (λ�)ν

|A| (33)

and fixed numbers λ, �, t ∈ [δ, 1] so that

|{C
δ : µ

AC
�t

δ � cρ a
−6
ν �

3ν
λ
−1−ρ

δ
−1
}| > λδ (34)

for all C ∈ B.

Case 1: λ ≤ 100A0

�
�
t

Here A0 is the constant from Lemmas 2.1 and 2.3. Then (34) implies that there is a

circle C ∈ A so that

|{C
δ : µ

AC
�t

δ � cρ a
−6
ν �

3ν
λ
−1

δ
−1

�
t

�

� ρ
2

}| > λδ

and thus (recall η = ρ/10, ν = ρ/100)

|{C
δ : µ

AC
�t

δ � cρa
−6
ν λ

−1
δ
−1

t
ρ
2 �
−η
}| > λδ

which contradicts our choice of A, see (25), provided cρ is large.

Case 2: λ > 100A0

�
�
t

Fix any C ∈ B and let

Q
(C) = {(C1, C2, C3) : C1, C2, C3 ∈ A

C
�t, dist(Cδ

i ∩ C
δ
, C

δ
j ∩ C

δ) >
λ

20

for 1 ≤ i < j ≤ 3}. (35)

We claim that

card(Q(C)) �
�

cρa
−6
ν �

3ν
λ
−ρ

δ
−1

�
�t

δ2

� 1
2

�3

. (36)
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By Lemma 2.1, all C ∈ AC
�t satisfy |C

δ
∩ Cδ| ∼

δ2
√

�t
and hence (34) implies

cρ a
−6
ν �

3ν
λ
−ρ

<

�

Cδ

µ
AC

�t
δ � |A

C
�t|

δ2

√
�t

, i.e., (37)

|A
C
�t| � cρa

−6
ν λ

−ρ
�
3ν

δ
−1

�
�t

δ2

� 1
2

.

Now fix any C1, C2 ∈ AC
�t. Let R1, R2 be arcs of Cδ of thickness δ and length λ/5 centered

at ej = x − r sgn(r − rj)
x−xj

|x−xj | with j = 1, 2, respectively. Lemma 2.1 implies that any

C ∈ AC
�t with the properties

C
δ
∩ C

δ
�= ∅, Rj ∩ C

δ
= ∅ for j = 1, 2

satisfies

dist(Cδ
∩ C

δ
, C

δ
∩ C

δ
j ) >

λ

20
for j = 1, 2.

Since (34) implies that

|{C
δ
\ (R1 ∪R2) : µ

AC
�t

δ � cρa
−6
ν �

3ν
λ
−1−ρ

δ
−1
}| > λδ/2

claim (36) follows from calculation (37) by choosing first C1, then C2, and finally C3.

Next we assert that the set

Q0 = {(C, C1, C2, C3) : C ∈ B, C1, C2, C3 ∈ A
C
�t, sgn(r1 − r) = sgn(r2 − r)

= sgn(r3 − r), �(xi − x, xj − x) > λ/20 for 1 ≤ i < j ≤ 3} (38)

satisfies

card(Q0) � |B|

�
cρa

−6
ν �

3ν
λ
−ρ

δ
−1

�
�t

δ2

� 1
2

�3

. (39)

First note that at least half the circles C ∈ AC
�t satisfy either sgn(r̄−r) > 0 or sgn(r̄−r) <

0. Thus one can add the condition

sgn(r1 − r) = sgn(r2 − r) = sgn(r3 − r)
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to the definition of Q(C) without violating (36). Furthermore, according to Lemma 2.1,

the set Cδ ∩ Cδ
i is centered at ei = x− r sgn(r − ri)

x−xi
|x−xi| . Given any (C1, C2, C3) ∈ Q(C)

we therefore conclude from the conditions

dist(Cδ
i ∩ C

δ
, C

δ
j ∩ C

δ) > λ/20, sgn(r − ri) = sgn(r − rj)

for 1 ≤ i < j ≤ 3 that

�(xi − x, xj − x) > λ/20,

and (39) follows from (36). We want to bound card(Q0) from above using Proposition 2.1

and Lemma 3.1. In order to do so, we need to specify the relative positions of (C1, C2, C3)

for the majority of (C, C1, C2, C3) ∈ Q0. This will be accomplished by applying the

pigeon hole principle to the variables �(x1−x, x2−x), �(x2−x, x3−x), �(x1−x, x3−x)

and ∆(C1, C2), ∆(C2, C3), |x1 − x2|, |x2 − x3| with weights a−1
ν λν

12, a−1
ν λν

13, a−1
ν λν

23 and

a−1
ν βν

1 , a−1
ν βν

2 , a−1
ν τ ν

1 , a−1
ν τ ν

2 , respectively (recall that aν =
�

j≥0 2−jν). Indeed, the set

Q = {(C, C1, C2, C3) ∈ Q0 : λij ≤ �(xi − x, xj − x) ≤ 2λij for 1 ≤ i < j ≤ 3,

β1 − δ ≤ ∆(C1, C2) ≤ 2β1, τ1 ≤ |x1 − x2| ≤ 2τ1,

β2 − δ ≤ ∆(C2, C3) ≤ 2β2, τ2 ≤ |x2 − x3| ≤ 2τ2} (40)

satisfies

card(Q) ≥ a
−7
ν (λ12λ13λ23β1τ1β2τ2)

νcard(Q0)

for a suitable choice of dyadic λ12, λ13, λ23 ∈ [λ/20, 1] and dyadic β1, τ1, β2, τ2 ∈ [δ, 1]. This

is because any element of Q0 has to satisfy the conditions in (40) for some choice of those

parameters. Hence, in view of (39) and (33),

card(Q) � |B|c
3
ρa
−25
ν (β1β2τ1τ2)

ν
�
9ν

λ
3ν−3ρ

δ
−3

�
�t

δ2

� 3
2

� |A|c
3
ρa
−28
ν (β1β2τ1τ2)

ν
�
10ν

λ
4ν−3ρ

δ
−3

�
�t

δ2

� 3
2

. (41)
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To bound card(Q) from above, first observe that λ12, λ23 ≥ λ/20 > A0

�
�
t implies by

Lemma 2.6 that C2 ∈ A
C1
β1τ1

and C3 ∈ A
C2
β2τ2

for any (C, C1, C2, C3) ∈ Q. Furthermore, in

view of Lemma 2.3, the angles β1, β2 satisfy

τ1β1 ∼ λ
2
12t

2
, τ2β2 ∼ λ

2
23t

2
. (42)

Hence it follows from (24) of Proposition 2.1 and Lemma 3.1 that

card(Q) ≤

�

C1∈A

�

C2∈A
C1
β1τ1

�

C3∈A
C2
β2τ2

|{C ∈ A : C ∈ A
Cj

�t for j = 1, 2, 3 and

sgn(ri − r) = sgn(rj − r), �(xi − x, xj − x) ∼ λij for 1 ≤ i < j ≤ 3}|

� |A| cη

�
β1

δ

� 1
2 �

τ1

δ

� 3
2
β
−η
1 cη

�
β2

δ

� 1
2 �

τ2

δ

� 3
2
β
−η
2

�2

δ2
(λ12λ13λ23)

−1

� |A| c
2
η β

−η
1 β

−η
2

�
t�

δ2

�2
τ1τ2

δ2
λ
−1

� |A| c
2
η λ

4ν−3ρ
β
−η
1 β

−η
2

�
t

�

� 1
2+2ν− 3ρ

2
�

t�

δ2

�2
τ1τ2

δ2
. (43)

It is easy to see that (41) and (43) are incompatible for large cρ because ν and η are

small compared with ρ and since τ1, τ2 ≤ 4t (indeed, if C1, C2 ∈ CC
�t then τ1 ≤ |x1 − x2| ≤

|x1 − x|+ |x− x2| ≤ 4t), and β1, β2 ≥ � (see (42) or Lemma 2.3).

4 Lp → Lq estimates

It was shown in [9] and [11] that M : Lp(R2) → Lq(R2) provided (1
p ,

1
q ) lies in the open

triangle with vertices (0, 0), (1
2 ,

1
2) and (2

5 ,
1
5) or on the half open segment (0, 0), (1

2 ,
1
2)

(which corresponds to Bourgain’s theorem). According to the examples in the introduction

to [9] the triangle cannot be replaced by any strictly larger open set. However, the

optimal inequalities on the shorter sides are unknown. The argument in [9] used both the

combinatorial method from [6] and Fourier transform techniques, whereas [11] is based

entirely on Fourier integral operator estimates. In this section we show how the purely

25



geometric/combinatorial argument above yields the full range of p → q estimates just

stated. Since the technical details are very similar to those in the previous sections, we

shall be very brief.

By interpolation with (3) it suffices to show

�Mf�q,∞ � �f� 5
2 ,1

for every q < 5. Using the argument from the first part of the proof of Proposition 1.1 it

is easy to see that this follows from the following theorem (with q(1 + σ) = 5).

Theorem 4.1 Given σ > 0 small, there exists A ⊂ C with |A| > c−1
σ |C| for some constant

cσ depending only on σ and so that

|{C
δ : µ

A
δ > cσλ

− 3
2 δ
−1(δ2

|C|)
1
2 (1−σ)

}| < λδ (44)

for all C ∈ A, 0 < λ ≤ 1.

Before turning to the proof we give a heuristic discussion that parallels the one pre-

ceding Theorem 3.1. Set σ = 0 and assume that (44) fails in the following sense. For half

the circles C ∈ C

|{C
δ : µ

CC
�t

δ ≥ λ
− 3

2 |C|
1
2}| > λδ (45)

with a fixed choice of �, t ∈ [δ, 1] and some fixed λ ≥ A
�

�
t with A large. As before we

consider the set

Q = {(C, C1, C2, C3) : C satisfies (45), C1, C2, C3 ∈ C
C
�t ,

dist(Cδ
i ∩ C

δ
, C

δ
j ∩ C

δ) >
λ

20
for 1 ≤ i < j ≤ 3},

which will again satisfy card(Q) ≥ |C|minC∈C |C
C
�t |

3. Note that for any C satisfying (45)

λδ λ
− 3

2 |C|
1
2 ≤

�

Cδ

µ
CC

�t
δ =

�

C∈CC
�t

|C
δ
∩ C

δ
| � |C

C
�t |

δ2

√
�t
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and thus

card(Q) � |C|

�
λ
− 3

2 |C|
1
2

λδ

δ2/
√

�t

�3

.

On the other hand, assuming as above that the majority of (C, C1, C2, C3) ∈ Q satisfy

C2 ∈ C
C1
�t and C3 ∈ C

C2
�t (it will follow from Lemma 2.3 that this is the most significant

case),

card(Q) �
�

C1∈C

�

C2∈C
C1
�t

�

C3∈C
C2
�t

�2

δ2
λ
−3

.

In view of Proposition 2.1,

|C
Cj

�t | � |C|
3
4

��
�

δ

� 1
2

�
t

δ

� 3
2

� 1
4

for j = 1, 2 and thus

card(Q) � |C|
5
2

��
�

δ

� 1
2

�
t

δ

� 3
2

� 1
2

�2

δ2
λ
−3

.

Comparing the upper and lower bounds yields λ
3
2 �

�
�
t

� 3
4 , which contradicts our assump-

tion on λ.

Proof of Theorem 4.1: Let η = σ/20 , ν = σ/100, and choose A as in Proposition 2.1.

Assuming that (44) fails for at least half the circles in A we obtain as in the proof of

Theorem 3.1 that for fixed λ, �, t ∈ [δ, 1]

|{C
δ : µ

AC
�t

δ � cσa
−6
ν �

3ν
λ
− 3

2 δ
−1(δ2

|C|)
1
2 (1−σ)

}| > λδ (46)

for all C ∈ B, where |B| � a−3
ν (λ�)ν |A|.

Case 1: λ ≤ 100A0

�
�
t

On the one hand, using Lemma 2.1 and (46), we obtain

cσa
−6
ν �

3ν
λ
− 1

2 (δ2
|C|)

1
2 (1−σ) �

�

Cδ

µ
AC

�t
δ � |A

C
�t|

δ2

√
�t

. (47)

On the other hand, (24) implies that

|A
C
�t| � |C|

1
2 (1−σ)

��
�

δ

� 1
2

�
t

δ

� 3
2

�
−η

� 1
2 (1+σ)

.
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As the reader will easily verify, this contradicts (47) for large cσ since λ �
�

�
t and since

ν and η are small compared with σ.

Case 2: λ > 100A0

�
�
t

With Q defined as in (40),

card(Q) � a
−7
ν (λ12λ13λ23β1τ1β2τ2)

νcard(Q0)

� |C| c
−1
η a

−3
ν (λ�)ν

a
−7
ν λ

3ν(β1τ1β2τ2)
ν

�
cσa

−6
ν �

3ν
λ
− 1

2

√
�t

δ2
(δ2

|C|)
1
2 (1−σ)

�3

for a suitable choice of dyadic λ12, λ13, λ23 ∈ [λ/20, 1] and dyadic β1, τ1, β2, τ2 ∈ [δ, 1].

Indeed, this follows from the same reasoning as in the proof of Theorem 3.1 if one uses (46)

instead of (34). On the other hand, applying Proposition 2.1 and Lemma 3.1 as in the

upper bound (43) and using (42), i.e., τ1β1 ∼ λ2
12t

2, τ2β2 ∼ λ2
23t

2, we conclude that

card(Q) � |C|

�
cη

�
β1

δ

� 1
2 �

τ1

δ

� 3
2
β
−η
1

� 1
4+ 3σ

4

|C|
3
4 (1−σ)

�
cη

�
β2

δ

� 1
2 �

τ2

δ

� 3
2
β
−η
2

� 1
4+ 3σ

4

|C|
3
4 (1−σ) �2

δ2
(λ12λ13λ23)

−1

� δ
−3−3σ

|C|
1+ 3

2 (1−σ)(λ12λ23t
2)

1
4+ 3σ

4 (τ1τ2β
−η
1 β

−η
2 )

1
4+ 3σ

4 �
2(λ12λ13λ23)

−1

� |C| δ
−6 (δ2

|C|)
3
2 (1−σ)

t
1
2+ 3σ

2 (τ1τ2β
−η
1 β

−η
2 )

1
4+ 3σ

4 λ
− 3

2+4ν

�
t

�

� 1
2+2ν− 3σ

4

�
2
,

where we have used λ12, λ13, λ23 ≥ λ/20 �
�

�
t in the last step. Since β1, β2 ≥ � and

τ1, τ2 ≤ 4t, and since ν and η are small compared with σ, the lower and upper estimate

for card(Q) will contradict each other for large cσ.
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