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1 Introduction

In this paper we prove existence of modified wave operators, with probability one, for the family of
random operators on L2(Rd), d ≥ 2,

(1.1) H =
1
2
4− V

where

(1.2) V (x) =
∑

n∈N
ωn(1 + |n|)− 3

4 φ
(x− n

|n|β
)

with uniformly bounded independent ωn with mean 0, and β > 1
2 . The most important example are

Bernoulli variables ωn = ±1, although we would like to point out that no assumption is made about
identical distribution of the ωn. Here φ is a standard C∞ bump function with small support and
N ⊂ Rd is a set of points with the property that {R < |x| < 2R}∩N is a maximally Rβ separated set
of points so that the summands in (1.2) have disjoint supports. We refer to (1.1) with V as in (1.2) as
the 3

4 -model. Our methods also apply to more general potentials than (1.2) for which the individual
bumps are not rescaled versions of a single bump function φ. More precisely, consider

(1.3) V (x) =
∑

n∈N
ωn(1 + |n|)− 3

4 φn(x− n)

where φn is a C∞ function supported in a ball B(0, |n|β) satisfying the derivative bounds

sup
x∈Rd

|Dγφn(x)| ≤ Cγ |n|−|γ|β for all multi-indices γ

and all n ∈ N . The net N is just as above, Cγ is uniform in N , and the functions {φn(· − n)}n∈N
have disjoint supports. For simplicity, we shall restrict ourselves to the model (1.2), but all arguments
apply just as well to the case (1.3).
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Recall that wave operators of (1.1) are defined as the strong L2 limit

(1.4) Ω+ := s− lim
t→∞ e−itHeitH0

provided it exists. Here H0 = 1
24. These are the quantum mechanical analogues of classical wave

operators, which allow one to parameterize the trajectories with positive energy in the force field
−∇V by means of the free trajectories. The most basic result is that |V (x)| ≤ C|x|−1−ε guarantees
the existence of the limit (1.4). Dollard [8] showed that wave operators do not exist for the Coulomb
potential V (x) = |x|−1 in R3. Alsholm, Kato [1], Buslaev, Matveev [2], and Hörmander [10] then
constructed suitable modified wave operators by replacing eitH0 with another evolution. In particular,
Hörmander treats potentials V for which |∇V (x)| ≤ C|x|− 3

2
−ε. Another case for which modified

wave operators can be constructed is |∇V (x)| ≤ C|x|−1−ε and |∇2V (x)| ≤ C|x|−2−ε, see [6] for a
comprehensive and recent exposition of these results, as well as Reed, Simon [16] and Yafaev [18] for
scattering theory in general. Observe that (1.2) merely satisfies the decay rates

|DγV (x)| ≤ Cγ |x|−
3
4
−|γ|β for any multiindex γ,

i.e., for |γ| = 1 one has |x|− 5
4
−ε, and for |γ| = 2, |x|− 7

4
−2ε.

Despite the fact that the derivatives of V decay too slowly for any of the aforementioned results
to apply, we show in this paper that one can still construct modified wave operators by means of
the so called “correspondence principle” and Cook’s method. This principle, which was used by
Hörmander [10], refers to the construction of modified wave operators by means of classical scattering
trajectories. These trajectories are the solutions to Hamilton’s equations from classical mechanics

(1.5) ẋ = ξ ξ̇ = −∇V (x),

and it is well-known that they are the characteristics of the Hamilton-Jacobi PDE

(1.6) St(t, ξ) =
1
2
|ξ|2 + V (DS(t, ξ)).

The solution to that PDE is then used as a phase function of a parametrix U(t) to the time evolu-
tion eitH . More precisely, Hörmander defines

(1.7) (U(t)φ)(x) :=
∫

ei[x·ξ−S(t,ξ)] φ̂(ξ) dξ

for Schwartz functions φ ∈ S(Rd) with supp(φ̂) ⊂ Rd \ {0}. A novel feature of the scattering theory
of (1.2) is the introduction of a time-dependent amplitude function in the parametrix. Since D2V (x)
does not decay like |x|−2−ε one can easily show that the parametrix (1.7) does not apply here. Rather,
we define

(1.8) (U(t)φ)(x) :=
∫

ei[x·ξ−S(t,ξ)] a(t, ξ) φ̂(ξ) dξ
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with a suitable a(t, ξ).
Generally speaking, the gain of 1

4 in terms of the conditions on the potential is achieved throughout
this paper by systematically exploiting averaging in the potential. As an example, consider the
Hamilton-Jacobi PDE (1.6). It is well-known that initial conditions can be chosen such that DS(t, ξ)
is a trajectory that escapes at a linear rate to infinity. Therefore, any integral like

∫ 2T

T
V (DS(t, ξ)) dt

is going to be significantly smaller (roughly by T−
1
4 if β = 1

2) than the one with absolute values inside
due to the mean-zero assumption on the randomness. Similarly, integrating the ODE (1.5) will lead
to the expression

∫∞
t ∇V (x(s)) ds. In contrast to the deterministic theory that only exploits the size

of ∇V (x(s)) we need to invoke cancellations.
It is well-known that the existence of (modified) wave operators has strong spectral implications.
More precisely, Ω+ is an isometry that gives a unitary equivalence between 4 and the restriction of
H to a subspace of L2(Rd). The Weyl criteria implies that even the deterministic essential spectrum
σess(H) of the Schrödinger operator with potential (1.2) coincides with the essential spectrum of the
unperturbed operator −∆, σess(H) = [0,∞). Therefore, one obtains that with probability one

(1.9) σa.c.(H) = [0,∞),

where σa.c. denotes the absolutely continuous spectrum of H. It seems natural to believe that there
should be no singular spectrum in [0,∞). This conjecture is motivated by the results of Jakšić,
Last [12]. However, their result is for the discrete model on Zd and is based on the theory of rank-one
perturbations. It is therefore not clear how to prove similar results in this context. Finally, the
problem of showing completeness of the modified wave operators for the 3

4 -model is open.
The investigation of spectral properties of random operators is of course a well-established field in
its own right starting with the work of Anderson. Recently, several works have been devoted to
random decaying potentials. Of these we would like to mention Krishna [14] and Kirsch, Krishna,
Obermeit [13]. However, it seems that these investigations are very different from the present one,
both in terms of their objectives as well as their techniques. In fact, the results in [14] and [13] do
not cover the potential (1.2), as they typically require that (E|V (x)|2) 1

2 ≤ C|x|−1−ε.
A very interesting model (referred to as the 1

2 -model) is given by (1.1) with the potential

V (x) =
∑

n∈N
ωn(1 + |n|)−αφ(x− n)(1.10)

where ωn are as above, but α > 1
2 and N ⊂ Rd is a 1-net. For this model we can only show that the

classical scattering trajectories exist in the sense that they approach infinity and that their tangent
vectors approach a limit, see Proposition 2.3. However, given the total lack of any improved decay
of the derivatives of V in this case we are unable to show existence of classical (let alone, quantum
mechanical) wave operators for the 1

2 -model. Nevertheless, we start the technical part of this paper
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with the proof of existence of classical scattering trajectories for the 1
2 -model, as that proof introduces

the main idea how to exploit averaging in the potential.
Our interest in this question arose in connection with a conjecture about square integrable poten-

tials, see Simon’s review [17]: If ∫

Rd

|V (x)|2 |x|1−d dx < ∞,

then −4+V has a.c. spectrum essentially supported on [0,∞). That conjecture would imply that the
1
2 -model should have a.c. spectrum essentially supported on [0,∞) for any realization of the ωn. In
one dimension this has been shown by Deift, Killip [7]. In a series of several papers Christ, Kiselev [4],
[5] had previously settled the one-dimensional problem for potentials satisfying

∫∞
−∞ |V (x)|p dx < ∞,

where 1 ≤ p < 2. Moreover, Christ and Kiselev have recently constructed wave operators in the one-
dimensional case under basically optimal conditions [3]. Another interesting approach to a.c. spectrum
under optimal conditions is Molchanov, Novitskii, Vainberg [15].
This paper is organized as follows: In Section 2 we construct classical scattering trajectories for the
1
2 -model with probability one, see 2.3 (this is the only section that considers the 1

2 -model, all the
subsequent ones deal with the 3

4 -model). In Section 3 we derive a similar result for the 3
4 -model, see

Proposition 3.1. Moreover, we establish various finer estimates on the derivatives of the trajectories
with respect to the initial conditions. These estimates are crucial for the construction of the modified
wave operators. Finally, we construct Herbst’s classical “wave-like” operators [9], see Theorem 3.9,
which conjugate the perturbed dynamics of (1.5) with the free evolution. In Section 4 we solve, with
probability one, the Hamilton-Jacobi equation by means of the method of characteristics, which are
precisely the solutions of (1.5). The main result of this section is Corollary 4.8 which also provides
various estimates on the solution S(t, ξ) which are later needed in the construction of the wave
operators (〈x, ξ〉 − S(t, ξ) is precisely the phase of the parametrix, see (1.8)). In Section 5 we prove
our main result which is Theorem 5.6. It states that the parametrix (1.8) exists almost surely and
has the desired properties, i.e, s− limt→∞ e−itHU(t) = W+ exists and W+ intertwines eitH and ei t

2
4.

Most of the work in this section is devoted to the construction of the amplitude a(t, ξ) by means
of the solution of certain transport equations, see Proposition 5.5. These transport equations are
solved recursively leading to an asymptotic expansion of a(t, ξ). This procedure depends crucially
on averaging arguments. Throughout this paper the basic tool in connection with averaging is a
well-known large deviation estimate for martingales with bounded increments, see Lemma 2.1.

Acknowledgements: The second author is grateful to Jean Bourgain for his interest and encour-
agement, and to Alexander Kiselev and Herman Schulz-Baldes for pointing out references [12], [13].
He was partially supported by the NSF and a Sloan fellowship.

2 The existence of classical scattering trajectories for the 1
2-model

Let V be as in (1.10). We shall also assume that the supports of the various bump functions are
fitted inside shells of the form {` < |x| ≤ ` + 1}, where ` ∈ Z+. This is indicated in the second figure
below by means of the small dotted circles (we have only filled one shell with the small circles in this
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picture, but in reality all of them are filled). This allows us to define F` as the σ-algebra generated
by the random variables inside the disk |x| ≤ ` for ` ∈ Z+.

In this section we show that with large probability all solutions of Hamilton’s equation

ẋ = ξ ξ̇ = −∇V (x)(2.1)
x(0) = y ξ(0) = η

with large initial y and small ^(y, η) are classical scattering trajectories. This means that

lim
t→∞ |x(t)| = ∞ and lim

t→∞ ξ(t) exists.

The underlying intuition is very simple: If we approximate x(t) by a straight line, say x(t) ≈ y + tη,
then

ξ(t) ≈ η −
∫ t

0
∇V (y + sη) ds.

The integral on the right-hand side should behave as (a tail of) the random sum
∑

k±k−
1
2
−ε. By

Kolmogoroff’s three series theorem, this series converges almost surely. Although this is the correct
approach to estimate

(2.2)
∫ t

0
∇V (x(s)) ds

for a fixed curve x(s), integration of the random Hamilton’s equations (2.1) requires controlling (2.2)
– up to a small probability – for an entire class of (random) classical trajectories. One natural way to
circumvent this difficulty would be to consider a net of curves and then approximate a given curve by
one in the net. This, however, does not work as the cardinality of the net would necessarily need to
be exponentially large, and thus by far outweigh any bound on the probabilities of bad events which
are provided, say, by large deviation estimates. We therefore use a different approach, namely one
based on the following well-known large deviation estimate for martingales with bounded increments.
We provide a sketch of the proof for the reader’s convenience.

Lemma 2.1. Let {Ym}M
m=1 be a martingale difference sequence adapted to a filtration {Fm} of in-

creasing σ-algebras. Then

P
[∣∣∣

M∑

m=1

Ym

∣∣∣ > λ

( M∑

m=1

‖Ym‖2
∞

)1/2]
< Ce−cλ2

with some absolute constants c, C.

Proof. With t > 0 a parameter and Sn :=
∑n

j=1 Yj , consider

E
[
exp(tSn)

]
= E

[
E

[
exp(tSn) |Fn−1

]]
=

= E
[
exp(tSn−1)E[etYn |Fn−1]

]
≤ E

[
exp(tSn−1)

]
exp

(
ct2‖Yn‖2

∞
)
.(2.3)
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To pass to the second line, apply the elementary fact ex−x ≤ ecx2
and the assumption E[Yn |Fn−1] = 0

to

E[etYn |Fn−1] = 1 +
∞∑

`=2

t`

`!
E[Y `

n |Fn−1] ≤ 1 +
∞∑

`=2

t`

`!
‖Yn‖`

∞ ≤ exp
(
ct2‖Yn‖2

∞
)
.

Applying (2.3) inductively starting at n = M , and invoking Tschebyscheff’s inequality with a suitable
choice of t, finishes the proof.

Lemma 2.2 estimates by how much hitting times differ for two paths that remain close to each other.
It will be used repeatedly in what follows. In what follows we shall often consider times τ > 0 which
are minimal with the property that |x(τ)| = r for some r, i.e., τ is the hitting time of the shell |x| = r.
Another property that will be used often (without further mention) is energy conservation

(2.4)
1
2
|ξ(t)|2 + V (x(t)) =

1
2
|η|2 + V (y)

for all times t.

Lemma 2.2. Let 0 < L < R and consider two C1 curves x1, x2 in Rd so that x1(0) = x2(0),
|x1(0)| = |x2(0)| = R, and ẋ1(0) = ẋ2(0). Suppose that ρ < |ẋi(t)| < 2ρ, and ^(xi(t), ẋi(t)) < π

4 ,
i = 1, 2, for all 0 ≤ t ≤ T where T > 10L/ρ. Finally, assume that

(2.5) max
0≤t≤T

|ẋ1(t)− ẋ2(t)| < δ.

Define
τi := min[t ≥ 0 : |xi(t)| = R + L] for i = 1, 2.

Then
|τ1 − τ2| ≤ C

δL

ρ2
.

Proof. Observe that ∫ τi

0
2ẋi(t) · xi(t) dt = (R + L)2 −R2 for i = 1, 2.

Therefore,

(2.6)
∣∣∣∣
∫ τ2

τ1

2ẋi(t) · xi(t) dt

∣∣∣∣ ≤
∫ τ1

0

[
|x1(t)||ẋ1(t)− ẋ2(t)|+ |ẋ2(t)||x1(t)− x2(t)|

]
dt.

To estimate the right-hand side of (2.6) from above, note firstly that τ1 ≤ 2L
ρ . Hence, in view of our

hypotheses
∫ τ1

0

[
|x1(t)||ẋ1(t)− ẋ2(t)|+ |ẋ2(t)||x1(t)− x2(t)|

]
dt ≤(2.7)

≤ (R + L)δτ1 + 2ρ
τ2
1

2
δ ≤ CR

δL

ρ
.
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R R+L
0

x

x
1

2

To bound the left-hand side of (2.6) from below, one uses that

ẋi(t) · xi(t) ≥ 1
2
|ẋi(t)||xi(t)| ≥ 1

2
Rρ.

Combining this with (2.7) yields

|τ1 − τ2| ≤ C
δL

ρ2
,

as desired.

The following proposition is the main result of this section.

Proposition 2.3. Let V be as in (1.10) with α > 1
2 . Let ρ > 0 be arbitrary but fixed. Then with

probability 1 − o(1) as R → ∞, any solution (x(t; y, η), ξ(t; y, η)) of (2.1) with |y| = R, |η| > ρ, and
^(y, η) < π/8, has the property that limt→∞ ξ(t; y, η) =: ξ(∞; y, η) 6= 0 exists and, moreover,

|x(t; y, η)− y − tξ(∞; y, η)| ≤ C(R + t)1−ε(2.8)
|ξ(t; y, η)− ξ(∞; y, η)| ≤ C (R + t)−ε(2.9)
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where ε > 0 is so small that α > 1
2 + ε.

Proof. For notational simplicity we take ρ = 1 and |η| ³ 1 (the general case being only slightly more
complicated). Also, observe that it suffices to prove (2.9), as (2.8) follows by integration. Fix y and
η as above and denote the solutions by x(t), ξ(t). Define

τk = inf{t ≥ 0 : |x(t)| = R + k}
where inf ∅ := ∞. Our goal is to show that

(2.10) P
[
τk exist for 0 ≤ k ≤ R and sup

0≤k≤R
|ξ(τk)− ξ(0)| ≤ R−ε

]
≥ 1− e−Rε

.

Observe that |ξ(τk) − ξ(0)| ≤ R−ε for all 0 ≤ k ≤ R implies that ^(x(t), ξ(t)) < π/4 for all times
0 ≤ t ≤ R so that Lemma 2.2 is applicable. Moreover, in this case one also has τk+1−τk ≤ 3. In what
follows we shall assume that these two properties hold up to some time and then show that they hold
for later times as well. Since they obviously hold for times at least up to

√
R, this is justified. Notice

that τk is measurable with respect to FR+k. The main idea of the proof is that {ξ(τk+1)− ξ(τk)}k≥0

is well-approximated by a martingale difference sequence. More precisely,

ξ(τk+1)− ξ(τk) = −
∫ τk+1

τk

∇V (x(s)) ds

= −
∫ τk+1

τk

∇V (x(τk) + (s− τk)ξ(τk)) ds + O((R + k)−2α).(2.11)

The last line is obtained by Taylor expanding first x(s) and then V (observe that the error term is of
the order (τk+1 − τk)3 D2V (·)∇V (·). Since this is evaluated at points in the shell between R + k and
R + k + 1, one obtains the stated O-term). In order to make the integral in (2.11) measurable with
respect to FR+k, we replace τk+1 with

τ̃k+1 := inf{s + τk ≥ τk : |x(τk) + (s− τk)ξ(τk)| = R + k + 1}.
Since |τ̃k+1 − τk+1| ≤ C(R + k)−α by Lemma 2.2 , one concludes from the preceding that

(2.12) ξ(τk+1)− ξ(τk) = −
∫ eτk+1

τk

∇V (x(τk) + (s− τk)ξ(τk)) ds + O((R + k)−2α).

Denote the integral on the right-hand side by Yk+1. Then Yk+1 is measurable with respect to FR+k,
and

E[Yk+1 | FR+k] = 0 for any k ≥ 0

provided τk+1 exists. In other words, {Yk} is a (vector valued) martingale difference sequence. Also
‖Yk‖∞ ≤ C(R + k)−α, since we are assuming that the ωn are bounded. Hence Lemma 2.1 (applied
to the components of Yk) with λ = Rε and (2.12) imply that

(2.13) P[ sup
0≤`<k≤R

|ξ(τk)− ξ(τ`)| > R
1
2
−α+ε] ≤ CR2e−cR2ε
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R R+1  R+2 R+3 R+4 R+5
0

provided α − 1
2 > 2ε > 0. Observe that this implies the existence of the hitting times τk all the way

up to τR. Passing to continuous times allows one to write

(2.14) P[ sup
0≤t<s≤τ2R

|ξ(t)− ξ(s)| > R−ε] ≤ C R2e−R2ε
.

The bad event on the left-hand side depends on the initial conditions y, η. To remove that dependence
one discretizes the initial conditions (y, η) where |y| = R and |η| ³ 1 on a scale R−10, say. This then
leads to a bound like (2.14) with RC exp−R2ε

on the right-hand side. Summing up over dyadic scales
R, 2R, 4R, 8R, . . . finally yields

(2.15) P[sup
y,η

sup
0≤t<s

(R + t)ε|ξ(t; y, η)− ξ(s; y, η)| > 1] ≤ C RC exp−R2ε

where the sup over y, η is taken only over admissible initial conditions, i.e., |y| = R, |η| ³ 1, ^(y, η) ≤
π
4 . This clearly proves (2.9) for those initial conditions provided R is chosen large enough. It is a
simple matter to generalize this to |ξ| ³ ρ where ρ = 2j , j = 1, 2, . . . . Indeed, we leave it to the reader
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to check that for |η| ³ ρ the previous argument yields

P[ sup
y,|η|³ρ

sup
0≤t<s

(R + t)ε|ξ(t; y, η)− ξ(s; y, η)| > 1] ≤ C RC exp−ρ2 R2ε
.

This allows one to sum over dyadic ρ ≥ 1. Finally, the case of small (but nonzero!) η simply requires
to take R sufficiently large.

As already remarked in the introduction, the lack of decay of the derivatives of V makes it
difficult to deduce any further properties of these scattering trajectories. A detailed analysis of
classical scattering trajectories for slowly decaying potentials (in the nonrandom case) was carried
out by Herbst [9]. Since his analysis requires at least |x|−2−ε decay for the second derivatives D2V (x)
(whereas (1.10) only satisfies |x|− 1

2
−ε decay for D2V ), his results do not apply. For example, consider

the important question of differentiability of ξ(t; y, η) with respect to η. Thus let X(t) = Dηx(t; y, η)
and Y (t) = Dηξ(t; y, η). In view of (2.1)

(2.16) Ẋ = Y Ẏ = −D2V (x(t; y, η))X

with initial conditions X(0) = 0, Y (0) = I. For a variety of reasons it is very natural to demand
that Y (t) remain in a small neighborhood of I. This is desirable, for example, in order to solve
the Hamilton-Jacobi equation by the methods of characteristics (see [10]). However, it is clearly not
going to be the case for the 1

2 -model, since X(t) will typically grow like t so that Ẏ (T ) is of size t
3
2 .

In fact, it appears that a satisfactory understanding of the classical scattering trajectories has only
been obtained under the condition |D2V (x)| ≤ C|x|−2−ε, see [9], [16], [6]. Observe that under this
condition |Y (t)− I| remains small.

3 Classical scattering for the 3
4-model

For the remainder of this paper we restrict ourselves to potentials as in (1.2). Define m(j) by means
of

|DγV (x)| ≤ C(1 + |x|)−m(j) for multiindices of length |γ| = j.

Clearly, we can take m(j) = 3
4 + jβ. Hence m(1) > 5

4 ,m(2) > 7
4 ,m(3) > 9

4 , and m(1) + m(3) > 7
2 . In

[10] Hörmander requires that m(1) + m(3) > 4. We again assume that the individual bumps in (1.2)
are arranged into disjoint shells. More precisely, for each R = 2j split {R < |x| ≤ 2R} into shells

(3.1) S`,R := {x ∈ Rd : R + `Rβ < |x| ≤ R + (` + 1)Rβ}.

We assume that N in (1.2) is chosen so that the terms in (1.2) are supported entirely inside these
shells. They define a filtration {Fk} of increasing σ-algebras in the obvious way. The following
proposition is the analogue of Proposition 2.3 for the 3

4 -model.
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Proposition 3.1. Let V be as in (1.2) with β > 1
2 . Let ρ > 0 and ε > 0 be arbitrary. Then

up to probability e−Rε
, any solution (x(t; y, η), ξ(t; y, η)) of (2.1) with |y| = R, ρ < |η| < 2ρ, and

^(y, η) < π/8, has the property that limt→∞ ξ(t; y, η) =: ξ(∞; y, η) 6= 0 exists and

|x(t; y, η)− y − tξ(∞; y, η)| ≤ C(R + t)
3
4
−β

2
+ε(3.2)

|ξ(t; y, η)− ξ(∞; y, η)| ≤ C (R + t)−
1
4
−β

2
+ε,(3.3)

provided R ≥ R0(ρ, ε).

Proof. It is well-known and very easy to check that forward trajectories have a terminal velocity
and satisfy (3.3) with (R + t)1−m(1). This only uses that m(1) > 1. This property implies that the
following stopping times are always well-defined. We first assume that y, η are fixed. Define stopping
times

τ` := inf{t ≥ 0 : |x(t)| = R + `Rβ}
τ̃` := inf{s ≥ τ`−1 : |x(τ`−1) + (s− τ`−1)ξ(τ`−1)| = R + `Rβ}(3.4)

for those ` with 0 ≤ ` ≤ R1−β. Thus, by Taylor expansion,

ξ(τ`+1)− ξ(τ`) = −
∫ eτ`+1

τ`

∇V (x(τ`) + (s− τ`)ξ(τ`)) ds

+O
(
|τ`+1 − τ`|3 ‖D2V ‖L∞(S`,R) ‖DV ‖L∞(S`,R)

)
+ O

(
|τ̃`+1 − τ`+1| ‖DV ‖L∞(S`,R)

)
.(3.5)

Denote the integral in (3.5) by Y`+1. Since |τ`+1 − τ`| ≤ C Rβ

ρ and by Lemma 2.2, with L = Rβ and
δ = CR−m(1) L

ρ ,

|τ̃`+1 − τ`+1| ≤ C
R2β−m(1)

ρ3
,

one obtains

(3.6) ξ(τ`+1)− ξ(τ`) = Y`+1 + O
(R3β

ρ3
R−m(1)−m(2)

)
+ O

(R2β−2m(1)

ρ3

)
= Y`+1 + O(ρ−3 R− 3

2 ).

Clearly,

‖Y`‖∞ ≤ C|τ̃`+1 − τ`| ‖DV ‖L∞(S`,R) ≤ C
Rβ−m(1)

ρ

and

(3.7)
bR1−βc∑

`=0

‖Y`‖2
∞ ≤ C

R1+β−2m(1)

ρ2
=

R− 1
2
−β

ρ2
.
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Summing up (3.6) yields

∣∣∣ξ(τ`1)− ξ(τ`2)−
`1∑

`=`2+1

Y`

∣∣∣ ≤ Cρ−3 R− 1
2
−β .

Therefore, Lemma 2.1 and (3.7) imply that

P[|ξ(τ`1)− ξ(τ`2)| > λρ−1R− 1
4
−β

2 + Cρ−3 R− 1
2
−β ] ≤ Ce−cλ2

for any two `1, `2 as above. Setting λ = Rε one concludes that

P[ sup
0≤t,s≤10R/ρ

|ξ(t; y, η)− ξ(s; y, η)| > R− 1
4
−β

2
+ε] ≤ Cρ R2 e−cR2ε

provided R ≥ R0(ρ, ε). The dependence on y, η on the left-hand side can be removed by means of
discretization. It is easy to see that this leads to

P[ sup
|y|=R,|η|³ρ

sup
0≤t,s≤R

|ξ(t; y, η)− ξ(s; y, η)| > R− 1
4
−β

2
+ε] ≤ C RC e−cR2ε

< e−Rε

provided R ≥ R0(ρ, ε). Finally, summing over R, 2R, ... yields (3.3), whereas (3.2) follows by inte-
grating in time. We skip the details.

Remark 3.2. Inspection of the proof reveals that the statement of the proposition remains correct
with the same R0(ρ, ε) for the entire range ρ < |ξ| and not just in ρ < |ξ| < 2ρ. But we shall make
no use of this fact.

In [9], Herbst discovered in the long range case that scattering trajectories x1, x2 with the same
terminal velocity limt→∞ ξ1(t) = limt→∞ ξ2(t) posses a limiting difference limt→∞(x1(t)− x2(t)). His
proof crucially used that |D2V (x)| ≤ C|x|−2−ε. As explained in [9], this property allows one to label
scattering trajectories by means of limt→∞ ξ1(t) and limt→∞(x1(t) − x2(t)). We discuss this issue
below in more detail. It turns out that one can recover this property for the 3

4 -model. Averaging
allows one to make up for the slower decay of D2V . We start with a simple technical lemma.

Lemma 3.3. Let ρ, ε, R0(ρ, ε) be as in Proposition 3.1. For any R1 ≥ R0(ρ, ε) the following holds
up to probability at most e−Rε

1: Let x(t) be any solution with |x(0)| = R1, and ρ < |ẋ(0)| < 2ρ as
constructed in Proposition 3.1. Then, for any α with |α| ≥ 1,

(3.8)
∣∣∣
∫ ∞

t
DαV (x(s)) ds

∣∣∣ < C1 (R1 + t)−
1
4
−(|α|− 1

2
)β+ε

for all t ≥ 0 with a constant C1 that depends on ρ, ε, α.

12



Proof. We first consider the portion of the path x(t) that lies between the spheres of radii R and 2R.
Let τ`, τ̃` be defined as in (3.4) and denote the hitting time of the sphere 2R by τ∗ and that of R by
τ∗. Then

∫ τ∗
τ∗ DαV (x(t)) dt =

∑
`

∫ τ̃`+1

τ`
DαV (x(τ`) + (s− τ`)ξ(τ`)) ds

+
∑

` O
(
|τ̃`+1 − τ`+1| ‖DαV ‖L∞(S`,R) + |τ`+1 − τ`|3‖∇DαV ‖L∞(S`,R)‖∇V ‖L∞(S`,R)

)
(3.9)

where the sum extends over all shells S`,R that lie between R and 2R. Lemma 2.2 with δ = R−m(1) Rβ

ρ

and L = Rβ shows that
|τ̃`+1 − τ`+1| ≤ CR− 3

4
+βρ−3.

Combining this with the obvious bounds on the derivatives of V implies that the sum of the error
terms in (3.9) is

(3.10) O
(
R− 1

2
−|α|β ρ−3

)
.

Denote the integral in (3.9) by Z`,α. Then {Z`,α}` form a martingale difference sequence with respect
to the obvious filtration. Moreover,

‖Z`,α‖∞ ≤ Cρ−1 R− 3
4
−(|α|−1)β.

The corresponding square function (with R1−β summands) is therefore bounded by

(3.11)
(∑

`

‖Z`,α‖2
∞

) 1
2 ≤ C ρ−1 R− 1

4
−(|α|− 1

2
)β.

Since (3.11) is much larger than (3.10), Lemma 2.1 implies that up to probability e−Rε

∣∣∣
∫ τ∗

τ∗
DαV (x(s)) ds

∣∣∣ < C1 R− 1
4
−(|α|− 1

2
)β+ε,

provided R0(ρ, ε) is sufficiently large. The lemma follows by discretizing in the initial conditions and
summing over 2jR. This has been carried out in detail above and we do not repeat it.

Remark 3.4. The reader will have no difficulty verifying by the same methods that

(3.12)
∣∣∣
∫ t

0
V (x(s)) ds

∣∣∣ < C1 (R1 + t)−
1
4
+ 1

2
β+ε

up to probability at most e−Rε
1 .
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Lemma 3.5. Let ρ, ε,R0(ρ, ε) be as in Proposition 3.1. For any R1 ≥ R0(ρ, ε) the following holds
up to probability at most e−Rε

1: Let x0, x1 be any two solutions with |x0(0)| = |x1(0)| = R1, and
ρ < |ẋ0(0)|, |ẋ1(0)| < 2ρ as constructed in Proposition 3.1 such that limt→∞ ẋ0(t) = limt→∞ ẋ1(t).
Then

lim
t→∞(x0(t)− x1(t)) =: ∆(∞)

exists. Moreover, if ∆(∞) = 0, then x0 ≡ x1.

Proof. By (3.3) (with ξ = ẋ) and the assumption of equal terminal velocity

(3.13) |ξ0(t)− ξ1(t)| ≤ C(R1 + t)−
1
4
−β

2
+ε

and thus, since β > 1
2 ,

(3.14) |x0(t)− x1(t)| < C(R1 + t)
1
2
−ε + |x0(0)− x1(0)|.

Let xθ := x0 + θ(x1 − x0), where 0 ≤ θ ≤ 1. Let ∆(t) = x1(t)− x0(t). In view of (3.14),

(3.15) |∆(t)| ≤ C (R1 + t)
1
2
−ε.

For the remainder of this proof t will be large. Moreover, constants will be allowed to depend on R1.
From (2.1) and Taylor’s formula one obtains

∆̇(t) = ξ1(t)− ξ0(t) = −
∫ ∞

t

[
∇V (x1(s))−∇V (x0(s))

]
ds

= −
∑

1≤|α|≤N

1
α!

∫ ∞

t
∇DαV (x0(s))∆(s)α ds(3.16)

−
∑

|α|=N+1

1
α!

∫ 1

0

∫ ∞

t
∇DαV (xθ(s))∆(s)α ds dθ.(3.17)

Here N is chosen so large that the error term (3.17) is on the order of

O
(∫ ∞

t
s−

3
4
−(N+2)β sN( 1

2
−ε)|∆(s)| ds

)
= O

(∫ ∞

t
s−3 |∆(s)| ds

)
.

= O
(
∆(t)t−2 +

∫ ∞

t
s−2 |∆̇(s)| ds

)
(3.18)

Observe that in order to obtain this estimate we have used the obvious bound on the derivatives of V ,
as well as (3.15). Now fix any α with 1 ≤ |α| ≤ N and denote

Uα(t) := −
∫ ∞

t
∇DαV (x0(s)) ds.
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By Lemma 3.3
|Uα(t)| ≤ C t−

1
4
−(|α|+ 1

2
)β+ε

up to probability at most e−Rε
1 . Integrating by parts in the α-term in (3.16) therefore yields

∣∣∣∣
∫ ∞

t
∇DαV (x0(s))∆(s)α ds

∣∣∣∣ ≤
∣∣∣
∫ ∞

t
Uα(s)

d

ds

(
∆(s)α

)
ds

∣∣∣ +
∣∣∣Uα(t)∆(t)α

∣∣∣

≤ C

∫ ∞

t
s−

1
4
−(|α|+ 1

2
)β+ε s( 1

2
−ε)(|α|−1) |∆̇(s)| ds + C t−

1
4
−(|α|+ 1

2
)β+ε t(

1
2
−ε)(|α|−1) |∆(t)|

≤ C

∫ ∞

t
s−

1
4
− 3β

2
+ε |∆̇(s)| ds + C t−

1
4
− 3β

2
+ε |∆(t)|.(3.19)

Here we have used that |α| = 1 is the worst case. Now fix β > 1
2 and choose ε > 0 so small that

−1
4 − 3β

2 + ε < −1− δ for some δ > 0. Combining (3.16)–(3.19) yields

(3.20) |∆̇(t)| ≤ Ct−1−δ|∆(t)|+ C

∫ ∞

t
s−1−δ|∆̇(s)| ds.

Starting from the trivial bound |∆̇(t)| ≤ C and assuming (as we may) that 1
δ is not an integer iteration

of (3.20) proves that
|∆̇(t)| ≤ Ct−(n+1)δ and |∆(t)| ≤ Ct1−(n+1)δ

where n is maximal so that nδ < 1. This shows that limt→∞∆(t) exists. For the final statement of
the lemma, observe that (3.20) implies that

sup
t≥T

|∆̇(t)| ≤ C T−1−δ sup
t≥T

|∆(t)|.

If ∆(∞) = 0, then this implies that

sup
t≥T

|∆(t)| ≤ CT−δ sup
t≥T

|∆(t)|.

So ∆(t) = 0 for all large t and x0 ≡ x1 by the uniqueness theorem for ODEs.

Following common practice (see for example [16]), we set

Σ+ :=
{

(y, η) ∈ R2d : V (y) +
1
2
|η|2 > 0, (x(t), ξ(t)) satisfies lim sup

t→∞
|x(t)| = ∞

}
,

where of course (x(t), ξ(t)) = (x(t; y, η), ξ(t; y, η)) is a solution of (2.1). The following (deterministic)
lemma is a standard characterization of Σ+.
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Lemma 3.6. Let V be as in (1.2) with an arbitrary choice of bounded {ωn}n∈N . Then

(y, η) ∈ Σ+ ⇐⇒ lim
t→∞ ξ(t; y, η) =: ξ(∞) 6= 0 exists.

Moreover, in that case,

(3.21) |ξ(t; y, η)− ξ(∞; y, η)| ≤ Ct1−m(1), |x(t; y, η)− (y + tξ(∞))| ≤ Ct2−m(1).

Finally, the pair (x(t; y, η), ξ(t; y, η)) belongs to the outgoing region of phase space, i.e.,

(3.22) ^(x(t; y, η), ξ(t; y, η)) <
π

4

for all sufficiently large times t.

Proof. This is basically the same as the proof of Lemma II.1 in [9], and will be skipped.

Combining Lemma 3.6 with Lemma 3.5 yields the following useful fact.

Corollary 3.7. Almost surely the following holds: Let (x0, ξ0), (x1, ξ1) be arbitrary solutions of (2.1)
so that limt→∞ ξ0(t) = limt→∞ ξ1(t) 6= 0. Then

(3.23) lim
t→∞x0(t)− x1(t) =: ∆(∞)

exists. If ∆(∞) = 0, then x0 ≡ x1.

Proof. Fix some small ε > 0 and an arbitrary ρ > 0. For all positive integers j let Bj(ρ) be the bad
event with respect to the properties stated in Lemma 3.5 with parameters ρ and R1 = 2j ≥ R0 = 2j0 .
According to that lemma, P[Bj(ρ)] < e−2εj

for large j so that

∞∑

j=j0

P[Bj(ρ)] < ∞.

Now let B(ρ) := lim supj Bj(ρ). This event has probability zero, and similarly the union
⋃

ρ B(ρ)
where the union is taken over ρ = 2k, k ∈ Z. The corollary will be proved off the event

⋃
ρ B(ρ). In

other words, fix a potential V from the complement of
⋃

ρ B(ρ).
If x0 = x(·; y0, η0) and x1 = x(·; y1, η1) are as above, then (y0, η0), (y1, η1) ∈ Σ+ by the previous lemma.
Let ξ(∞) be the common terminal velocity and define ρ > 0 by means of ρ < |ξ(∞)| < 2ρ. Select
R1 = 2j so large that both the event Bj(ρ) does not take place and so that (3.22) holds for the curves
x0 and x1 after they have passed the sphere {|x| = R1}. We may assume that |x0(t0)| = |x1(t0)| = R1.
If the hitting times are different, then one can translate one path in time by the time difference. It is
clear that this does not change the conclusion (3.23). Applying Lemma 3.5 to the paths starting at
time t0 yields the desired property.
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The remainder of this section is devoted to constructing Herbst’s “wave-like” operators, which we
denote by H+, see Theorem 3.9 below. As the details are similar either to those in [9] or, as far as the
probabilistic arguments go, closely related to ones we have already presented, we will be somewhat
brief. As always, we consider V as in (1.2) with β > 1

2 . For the following lemma define a family of
curves {zn(·, p)}n≥0 via z0(t, p) = tp,

zn(0, p) = 0 żn(t, p) = p +
∫ ∞

t
∇V (zn−1(s, p)) ds for n ≥ 1

for any given p 6= 0.

Lemma 3.8. Almost surely the following holds: Let p 6= 0 be arbitrary. There are (nonrandom) times
Tn = Tn(|p|) such that |zn(t, p)| ≥ 1

2 |p|t for t ≥ Tn. Moreover, for all n

(3.24) |żn(t, p)− p| ≤ Cn t−
1
2
−δ and |zn(t, p)− tp| ≤ Cn t

1
2
−δ

where δ = δ(β) > 0. Finally, there exists n0 = n0(β) with the property that for any ρ > 0

(3.25) sup
ρ<|p|≤2ρ

|żn0+1(t, p)− żn0(t, p)| ≤ C1 t−1−δ for all t

where C1 is a random constant that also depends on ρ.

Proof. The statement involving linear growth past time Tn only requires that m(1) > 1. Indeed, if it
is true for zn−1, n ≥ 1 (and it clearly is if n = 1), then

(3.26) |żn(t, p)− p| ≤
∫ ∞

t
C

(1
2
|p|s)−

3
4
−β

ds ≤ Cρ t
1
4
−β

provided t ≥ Tn−1(ρ). Hence

|zn(t, p)− tp| ≤
∫ Tn−1

0
|zn(s, p)| ds + Cρ t

5
4
−β

≤ Cn(ρ) + Cρ t
5
4
−β ≤ 1

2
t|p|

provided t ≥ Tn(ρ). It follows from these properties that (zn(t, p), żn(t, p)) belongs to the outgoing
region of phase space for t ≥ Tn(ρ) (possibly after increasing Tn). One can easily improve (3.26) by
exploiting averaging in the usual way. More precisely, we show inductively that up to probability
at most e−tε0 for all t ≥ t0 the estimate (3.24) holds. Only the first inequality in (3.24) needs to be
proved, and it is obvious for n = 0. Suppose that (3.24) holds up to n − 1, and we want to prove it
for n. On possibility is to Taylor expand, which gives

żn(t, p) = p +
∑

|α|≤N

1
α!

∫ ∞

t
∇Dα V (sp)(zn−1(s, p)− sp)α ds +

+
∑

|α|=N+1

1
α!

∫ 1

0

∫ ∞

t
∇Dα V (θsp + (1− θ)zn−1(s, p))(zn−1(s, p)− sp)α ds(3.27)
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where N is taken sufficiently large so that the error term in (3.27) is no bigger than t−1, say. As
usual, we need to bound quantities of the form

Uα(t) :=
∫ ∞

t
∇Dα V (sp) ds.

A simple application of Lemma 2.1 shows that for any multi-index α

(3.28) |Uα(t)| ≤ Cα t−
1
4
−(|α|+ 1

2
)β+ε for t ≥ t0

up to probability at most e−tε0 (this situation is easier than the previous ones, as the curve inside V
is a straight line). Integrating by parts inside the integrals in the first line of (3.27) (similarly to the
way it was done in (3.19)) and invoking the previous bound on Uα(t), one checks that

|żn(t, p)− p| ≤ C t−
1
2
−δ

up to probability at most e−tε0 , as claimed. The almost sure nature of the statement is now derived by
means of the same type of Borel-Cantelli construction as in the proof of Corollary 3.7. More precisely,
given a fixed ρ > 0, we require that the large deviation bounds (3.28) hold for some t0 = t0(ρ). This
can clearly be achieved by means of Borel-Cantelli at the cost of random t0, which in turn leads to
random constants in (3.24).
To obtain (3.25), let ∆n(t, p) = zn(t, p) − zn−1(t, p) for n ≥ 1. Very much in the same spirit as the
proofs of Lemmas 3.3 and 3.5 one verifies that

(3.29) |∆̇n+1(t, p)| ≤ Cn

∫ ∞

t

|∆̇n(s, p)|
s1+δ

ds + Cn t−1−δ|∆n(t, p)|

with random constants Cn and some δ > 0 only depending on β. In fact,

żn+1(t, p)− żn(t, p) =
∫ ∞

t

[
∇V (zn(s, p))−∇V (zn−1(s, p))

]
ds

=
∑

1≤|α|≤N

1
α!

∫ ∞

t
∇DαV (zn−1(s, p))∆n(s)α ds(3.30)

−
∑

|α|=N+1

1
α!

∫ 1

0

∫ ∞

t
∇DαV (zn−1(s, p) + θ(zn(s, p)− zn−1(s, p))∆n(s)α ds dθ.(3.31)

The error term of the Taylor expansion (3.31) can be estimated without using any randomness, since
(3.24) implies that

|∆n(t, p)| ≤ Ct
1
2
−δ,

and also because β > 1
2 (but here β ≥ 1

2 would equally well work). Controlling the main terms (3.30)
requires estimates of the form

(3.32)
∣∣
∫ ∞

t
∇DαV (zn−1(s, p)) ds

∣∣ ≤ Cα t−
1
4
−(|α|+ 1

2
)β+ε for t ≥ t0
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up to probability at most e−tε0 . These are proved by the method from (3.27), i.e., by means of
reduction to the linear case via Taylor expansion. Since the details are basically identical, we skip
them. With (3.32) at our disposal, (3.30) can now be estimated by the same integration by parts
argument as in (3.19). Starting from an estimate like

|∆1(t)| ≤ C1t
1
2 and |∆̇1(t)| ≤ C1t

− 1
2 ,

say, one iteratively derives that
|∆̇n+1(t)| ≤ Cnt−

1
2
−nδ

as long as nδ < 1
2 . Assuming as we may that 1

δ is not an integer, we let n0 be maximal with the
property that (n0 − 1)δ < 1

2 . The lemma follows.

In what follows let Σ := {(a, p) ∈ Rd × Rd : p 6= 0}. Also, we write z(t, p) instead of zn0+1(t, p) and
z̃(t, p) instead of zn0(t, p) for the approximate solutions constructed above.

Theorem 3.9. Almost surely the following holds: Given (a, p) ∈ Σ, there exists a unique solution
(x(a,p), ξ(a,p)) of (2.1) such that

(3.33) |x(a,p)(t)− a− z(t, p)| → 0 and |ξ(a,p)(t)− p| → 0 as t →∞.

The map

H+ :
{

Σ → Σ+

(a, p) 7→ (x(a,p)(0), ξ(a,p)(0))

is one-to-one and onto.

Proof. The almost sure nature of this statement is explained just as in the previous proof. To construct
x(a,p), ξ(a,p) satisfying (3.33) define

ẋ(a,p)(t) = p +
∫ ∞

t
∇V (x(s)) ds.

Since also
ż(t, p) = p +

∫ ∞

t
∇V (z̃(s, p)) ds,

one then concludes that

ẋ(a,p)(t)− ż(t, p) =
∫ ∞

t

[
∇V (a + z(s, p)− y(s))−∇V (z̃(s, p))

]
ds.

Here we have set x(a,p)(t) = a + z(t, p) − y(t) with some y that is continuous and goes to zero at
infinity. If the first “boundary condition at infinity” holds, see (3.33), then necessarily

(3.34) a− (x(a,p)(t)− z(t, p)) = y(t) =
∫ ∞

t

∫ ∞

s

[
∇V (a + z(τ, p)− y(τ))−∇V (z̃(τ, p))

]
dτ ds.
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We interpret this as an integral equation for y(t) with y(t) → 0 as t →∞. By definition, x(a,p)(t) =
a + z(p, t)− y(t) is the desired classical trajectory. Since the integrand only decays like τ−

7
4
−ε, some

care is needed in interpreting the right–hand side of (3.34). For this purpose, define

U(t) :=
∫ ∞

t
D2V (z̃(s, p)) ds.

We claim that, up to a bad event of probability at most e−tε0 ,

sup
ρ<|p|<2ρ

|U(t)| ≤ t−1−δ for all t ≥ t0.

Here t0 = t0(ρ, ε) and ε > 0 is very small so that δ = δ(β) > 0. This can again be verified by means
of Taylor expansion. More precisely,

U(t) =
∑

|γ|≤N

1
γ!

∫ ∞

t
D2+γV (sp)[z̃(s, p)− sp]γ ds(3.35)

+
∫ 1

0

∑

|γ|=N+1

1
γ!

∫ ∞

t
D2+γV (θsp + (1− θ)z̃(s, p))[z̃(s, p)− sp]γ ds dθ.(3.36)

The term with γ = 0 in (3.35) is O(t−
1
4
− 3β

2
+ε) by Lemma 2.1. Integrating by parts and using (3.24)

with n = n0 allows one to show that all terms in (3.35) with |γ| ≥ 1 are no larger than the term
with γ = 0. Finally, N is chosen so large that (3.36) is less than O(t−2), say, for any realization of
V , which establishes our claim. By means of the usual Borel-Cantelli construction, see the proof of
Corollary 3.7 above, one obtains that almost surely

(3.37) sup
ρ<|p|<2ρ

|U(t)| ≤ CV t−1−δ for all t

where CV is random and also depends on ρ. For a given a ∈ Rd and function y(t) set w(t) :=
a + z(t, p)− z̃(t, p)− y(t). Taylor expanding and integrating by parts shows that the double integral
in (3.34) can be interpreted as

(Ay)(t) :=
∫ ∞

t

∫ ∞

s
U(τ)ẇ(τ) dτ ds +

∫ ∞

t
U(s)w(s) ds

+
∫ ∞

t

∫ ∞

s

∫ 1

0

1
2
〈∇D2V (θz̃(s, p) + (1− θ)(a + z(τ, p)− y(τ))) w(τ), w(τ)〉 dθ dτ ds.(3.38)

Observe that the triple integral in (3.38) is no larger than
∫ ∞

t

∫ ∞

s
Cτ−

3
4
−3β |w(τ)|2 dτds ≤ C sup

t≥T
|w(t)|2 t

5
4
−3β .(3.39)
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The single integral converges almost surely in view of (3.37) provided w is bounded. In fact,

(3.40)
∣∣∣
∫ ∞

t
U(s)w(s) ds

∣∣∣ ≤ 1
δ
CV t−δ sup

s≥t
(|a|+ |z(s, p)− z̃(s, p)|+ |y(s)|).

To insure convergence of the double integral we impose the assumption |ẏ(t)| ≤ t−1, say. In view
of (3.37) and (3.25) one then obtains that

(3.41)
∣∣∣
∫ ∞

t

∫ ∞

s
U(τ)ẇ(τ) dτ ds

∣∣∣ ≤ 1
δ
CV t−δ sup

s≥t
(s|ż(s, p)− ˙̃z(s, p)|+ s|ẏ(s)|) ≤ 2

δ
CV t−δ.

This shows that A is a well-defined operator on the complete metric space

YT :=
{

y ∈ C1([T,∞)) : y(t) → 0 as t →∞, |y(t)| ≤ 1, |ẏ(t)| ≤ t−1
}

,

provided T is chosen large enough (it is random and depends on ρ). The metric here is

dT (y1, y2) = sup
t≥T

[
|y1(t)− y2(t)|+ t|ẏ1(t)− ẏ2(t)|

]
.

We will now check that A : YT → YT for T large, and that A is a contraction on that space. It then
follows that there is a (unique) fixed point in YT . It is evident from (3.39)–(3.41) that |(Ay)(t)| ≤ 1
for large t. Furthermore, it is clear that d

dt(Ay) will satisfy bounds like (3.39)–(3.41) that are better
by one power of t. We skip the details. Hence A : YT → YT . As far as the contraction is concerned,
it is easy to see that one has

dT (Ay1, Ay2) ≤ δ−1CV T−δ dT (y1, y2) + C T
5
4
−3β dT (y1, y2) sup

t≥T
(|a|+ |z(t, p)− z̃(t, p)|+ 1),

which gives the desired property for large T . Now let y ∈ YT satisfy Ay = y and define x =
a + z(t, p)− y(t). It is evident that this function x satisfies (3.33). It now remains to show that x is
a solution of (2.1). Differentiating (3.38) twice with respect to t, one obtains that

ÿ(t) = D2V (z̃(t, p))w(t) +
∫ 1

0

1
2
〈∇D2V (θz̃(s, p) + (1− θ)(a + z(τ, p)− y(τ)))w(τ), w(τ)〉 dθ

=∇V (a + z(t, p)− y(t))−∇V (z̃(t, p)).

This implies that ẍ = z̈ − ÿ = −∇V (z̃) −∇V (x) +∇V (z̃) = −∇V (x). Thus x is indeed a solution.
That H+ is one-to-one and onto is a simple consequence of Corollary 3.7, see [9] Theorem II.1 for
details.

Remark 3.10. Following [9], let

E
(0)
t (a, p) = (a + z(t, p), p) and S

(0)
t (a, p) = (a + pt, p).
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The flow of (2.1) is denoted by Ut. By the theorem,

lim
t→∞Ut ◦ H+(a, p)− E

(0)
t (a, p) = 0

for all (a, p) ∈ Σ. Moreover, H+ intertwines Ut and S
(0)
t , i.e.,

Ut ◦ H+ = H+ ◦ S
(0)
t .

In this respect, H+ enjoys many properties of a classical wave operator. However, it is in general not
a canonical transformation. It is important to realize that it is necessary to consider iterations zn for
many n, see Lemma 3.8. This is in contrast to [1] and [2], where only one iteration is used.

4 Solving the Hamilton-Jacobi equation

In this section we construct solutions, with probability one, of the equation

(4.1) ∂tS(t, ξ)− 1
2
|ξ|2 − V (DξS(t, ξ)) = 0

on a subset of (0,∞) × {ξ ∈ Rd : ξ 6= 0}. As in [10], the method of characteristics is used. This
requires bounding derivatives of the characteristics, which are precisely the trajectories of (2.1), with
respect to the initial conditions. Abusing notation slightly (in the previous section this notation is
used with a slightly different meaning), we let x(t; y, η), ξ(t; y, η) denote a solution of (2.1) with initial
data x(t0; y, η) = t0y and ξ(t0; y, η) = η. For the sake of simplicity, we shall restrict ourselves to the
case 1 ≤ |η| ≤ 2. Then one requires |y − η| < c0 for some small constant c0, say c0 = 1

10 . We refer
to such y, η as admissible. The extension to other dyadic shells ρ < |ξ| < 2ρ is straightforward and is
analogous to the previous section. The reader will easily verify that small ρ can be compensated for
by taking t0 large.

Lemma 4.1. Let ε > 0 be sufficiently small depending on β > 1
2 . Then there exists a large time t0 =

t0(ε) so that up to probability at most e−tε0 the following property holds: Any solution x(t; y, η), ξ(t; y, η)
as specified above satisfies

(4.2)
∣∣∣Dα

y,η(ξ(t; y, η)− η)
∣∣∣ ≤ t

3
4
− 3β

2
+ε

0 for any |α| = 1.

Proof. Fix admissible y, η. For simplicity, let x(t) = x(t; y, η) and ξ(t) = ξ(t; y, η). Denote X = Dηx
and Y = Dηξ. Differentiating (2.1) with respect to η shows that

Ẋ = Y , Ẏ (t) = −D2V (x(t))X(4.3)
X(t0) = 0 , Y (t0) = I
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where I is the d× d identity. Our goal is to show that Y remains in a small neighborhood of I. Let

U(t) = −
∫ ∞

t
D2V (x(s)) ds.

Then |U(t)| ≤ C t−
1
4
− 3β

2
+ε for t ≥ t0 up to probability at most e−tε0 , see Lemma 3.3. Integrating out

(4.3) yields

Y (t)− Y (t0) = −
∫ t

t0

D2V (x(s))X(s) ds =
∫ t

t0

U(s)Ẋ(s) ds− U(t)X(t)

=
∫ t

t0

U(s)Y (s) ds− U(t)
∫ t

t0

Y (s) ds.

This clearly implies that

‖Y (t)− I‖ ≤ C

∫ t

t0

s−
1
4
− 3β

2
+ε‖Y (s)‖ ds

so that

(4.4) max
t0≤t≤T

‖Y (t)− I‖ ≤ C t
3
4
− 3β

2
+ε

0 max
t0≤t≤T

‖Y (t)‖.

Hence
max

t0≤t≤T
‖Y (t)‖ ≤ 2,

say, provided t0 was chosen large enough. Reinserting this bound into (4.4) and letting T →∞ shows
that

sup
t≥t0

‖Y (t)− I‖ ≤ C t
3
4
− 3β

2
+ε

0 ,

as desired. Now let X = Dyx and Y = Dyξ. These quantities satisfy the system (4.3) with initial
conditions X(t0) = t0 I and Y (t0) = 0. Virtually the same argument as above now implies that Y
satisfies (4.2), as claimed.

The following corollary is basically an integrated version of the previous lemma. It will be used in
the construction of solutions of (4.1). The exact form of the exponent in (4.5) is not relevant, only
that it can be made strictly less than one.

Corollary 4.2. Under the same hypotheses as in the previous lemma one has the bound

(4.5)
∣∣∣Dα

y,η(x(t; y, η)− y − (t− t0)ξ(t; y, η))
∣∣∣ ≤ C t

7
4
− 3β

2
+ε

for any |α| = 1 and all times t ≥ t0.
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Proof. Fix some α of length one. As above, let

U(t) := −
∫ ∞

t
D2V (x(s; y, η)) ds.

Using (2.1) and integrating by parts one obtains

Dα
y,η(x(t; y, η)− y − (t− t0)ξ(t; y, η)) = Dα

y,η

∫ t

t0

[
ξ(s; y, η)− ξ(t; y, η)

]
ds

= Dα
y,η

∫ t

t0

(s− t0)∇V (x(s; y, η)) ds =
∫ t

t0

(s− t0) D2V (x(s; y, η))Dα
y,ηx(s; y, η) ds

= −
∫ t

t0

U(s)
[
Dα

y,ηx(s; y, η) + (s− t0)Dα
y,ηξ(t; y, η)

]
ds + (t− t0)U(t)Dα

y,ηx(t; y, η).

Since

Dα
y,ηx(t; y, η) = Dα

y,η y +
∫ t

t0

Dα
y,ηξ(s; y, η) ds,

Lemma 4.1 implies the bound for all t ≥ t0

|Dα
y,ηx(t; y, η)| ≤ Ct

up to probability at most e−tε0 and provided t0 is large. By Lemma 3.3 and Lemma 4.1 therefore, up
to probability at most e−tε0 ,

∣∣∣Dα
y,η(x(t; y, η)− y − (t− t0)ξ(t; y, η))

∣∣∣ ≤ C

∫ t

t0

s−
1
4
− 3β

2
+ε s ds + Ct

7
4
− 3β

2
+ε ≤ Ct

7
4
− 3β

2
+ε,

as claimed.

In the following lemma we estimate derivatives of higher order. Let

(4.6) µ(j) = (1− β)j − 1
4
− β

2
for j ≥ 2.

Lemma 4.3. Let ε = ε(β) > 0 be sufficiently small depending on β. Then there exists a large
time t0 = t0(ε) so that up to probability at most e−tε0 the following property holds: Any solution
x(t; y, η), ξ(t; y, η) satisfies the estimates

(4.7)
∣∣∣Dα

y,η(ξ(t; y, η), x(t; y, η)/t)
∣∣∣ ≤ C tµ(|α|)+ε

for any multi-index |α| ≥ 2 and t ≥ t0. The constant C depends on β, ε.
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Proof. First consider the case |α| = 2 and derivatives in η. Then one has the system

∂2ẋ

∂ηj∂ηk
=

∂2ξ

∂ηj∂ηk

∂2ξ̇

∂ηj∂ηk
= −

d∑

p,q=1

∇∂2V (x)
∂xp∂xq

∂xp

∂ηj

∂xq

∂ηk
−

d∑

p=1

∇∂V (x)
∂xp

∂2xp

∂ηj∂ηk
(4.8)

with initial conditions at time t0 both equal to zero. Let

Upq(t) = −
∫ ∞

t

∇∂2V (x(s))
∂xp∂xq

ds

Wp(t) = −
∫ ∞

t

∇∂V (x(s))
∂xp

ds.

By Lemma 3.3

(4.9) |Upq(t)| ≤ C t−
1
4
− 5β

2
+ε and |Wp(t)| ≤ C t−

1
4
− 3β

2
+ε

up to probability e−tε0 where t0 = t0(ε) is large. Integrating out (4.8) and then integrating by parts
in the resulting expression leads to (with Dj = ∂

∂ηj
etc. and using the summation convention)

D2
jkξ(t) = 2

∫ t

t0

Upq(s)Djξp(s)Dkxq(s) ds− Upq(t)Djxp(t)Dkxq(t)

+
∫ t

t0

Wp(s)D2
jkξp(s) ds−Wp(t)D2

jkxp(t).(4.10)

Here we have used that Djx(t0) = 0 and D2
jkx(t0) = 0. The reader will easily verify that combin-

ing (4.10) with (4.9) and (4.2) leads to

|D2
ηξ(t)| ≤ C

∫ t

t0

s−
1
4
− 5β

2
+ε s ds + C t−

1
4
− 5β

2
+ε t2

+C

∫ t

t0

s−
1
4
− 3β

2
+ε |D2

ηξ(s)| ds + C t−
1
4
− 3β

2
+ε

∫ t

t0

|D2
ηξ(s)| ds

≤ C t
7
4
− 5β

2
+ε + C

∫ t

t0

s−
1
4
− 3β

2
+ε|D2

ηξ(s)| ds.(4.11)

Gronwall’s inequality therefore implies

|D2
ηξ(t)| ≤ C t

7
4
− 5β

2
+ε + C

∫ t

t0

s
3
2
−4β+2ε ds ≤ C t

7
4
− 5β

2
+ε,
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as claimed. The same argument also applies to derivatives in y, since (4.2) continues to hold for y.
The only modification that needs to be made arises from ∂x

∂y = t0I, cf. (4.10) and (4.11). But this can
easily be seen to be insignificant. Finally, the bound on D2

y,η(x/t) follows by integrating the bound
we just obtained for ξ in time.
For larger α one uses induction. Therefore, let α be a multi-index of length |α| ≥ 3. Taking Dα

η

derivatives of (2.1) leads to an expression of the form

(4.12) Dα
η ξ̇ =

∑
coeff

∇∂m1+...+m`V (x)
∂m1xp1 · . . . · ∂m`xp`

∏̀

i=1

mi∏

k=1

D
η
(i)
k

xpi ,

where coeff stands for suitable coefficients and the sum extends over all terms so that

(4.13)
∑̀

i=1

mi∑

k=1

|η(i)
k | = |α| with |η(i)

k | ≥ 1.

There is exactly one term with ` = 1, namely

(4.14)
d∑

p=1

∇∂V (x)
∂xp

Dα
η xp,

cf. the second term in (4.8). The other terms only contain derivatives of x of orders < |α| and are
therefore estimated by means of the induction hypothesis. More precisely, consider a typical term
with ` ≥ 2 as on the right-hand side of (4.12) and let

U(t) = −
∫ ∞

t

∇∂m1+...+m`V (x(s))
∂m1xp1 · . . . · ∂m`xp`

ds.

By Lemma 3.3 one has
|U(t)| ≤ Ct−

1
4
−(M+ 1

2
)β+ε

up to probability at most e−tε0 . Here we have set M =
∑`

i=1 mi. Integrating by parts as in (4.11)
and invoking the induction hypothesis, as well as (4.13) yields an integral of the form (the boundary
term is dominated by the integral as before)

|U(t)| ≤ C

∫ t

t0

s−
1
4
−(M+ 1

2
)β+ε sM−1

∏̀

i=1

mi∏

k=1

sµ(|η(i)
k |)+ε1 ds(4.15)

≤ Ct−
1
4
−(M+ 1

2
)β+ε+M+(1−β)|α|−M( 1

4
+ β

2
)+Mε1 .(4.16)

Here ε > 0 is arbitrary small but fixed, but some care needs to be taken with the choice of ε1. Observe
that we can use the induction hypothesis only when |η(i)

k | ≥ 2. Nevertheless, since µ(1) = 3
4 − 3β

2

estimate (4.15) remains correct provided one chooses ε1 = 3β
2 − 3

4 + ε so that µ(1) + ε1 = ε. It is now
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a simple matter to check that the exponent in (4.16) is maximized if M = |α| (clearly, that case is
the analogue of the double sum in (4.8). In particular, all |η(i)

k | = 1). Indeed,

−1
4
− (M +

1
2
)β + ε + M + (1− β)|α| −M(

1
4

+
β

2
) + Mε1 ≤

≤ −1
4
− β(|α|+ 1

2
) + (|α|+ 1)ε + |α|.

By our choice of ε1 this is in fact an equality. The conclusion from the preceding is the bound

|Dα
η ξ(t)| ≤ C

∫ t

t0

s−
1
4
−β(|α|+ 1

2
)+ε s|α|−1 ds + C

∫ t

t0

s−
1
4
− 3β

2
+ε|Dα

η ξ(s)| ds.

As before, Gronwall finishes the proof. The changes required for Dα
y and x/t are analogous to those

for |α| = 2 and will be skipped.

We are now able to solve equation (4.1) by means of the method of characteristics. This is standard,
see for example Section A.3 in [6]. We will call a C∞- function ψ on Rd \ {0} admissible if

|∇ψ(ξ)− ξ| ≤ |ξ|
10

for all ξ 6= 0. The example to keep in mind is of course ψ(ξ) = 1
2 |ξ|2.

Proposition 4.4. Given 0 < ρ < 1 arbitrary and ε > 0 sufficiently small, there exists some large
time t0(ε, ρ) so that the following holds up to probability e−tε0: For any admissible ψ the equation (4.1)
has a unique C∞-solution on the set

Ωt0,ρ := [t0,∞)×
{

ξ ∈ Rd : ρ ≤ |ξ| ≤ 2ρ−1
}

with initial condition S(t0, ξ) = t0ψ(ξ). Moreover, with µ as in (4.6), one has

|DξS(t, ξ)|+ |D2
ξS(t, ξ)| ≤ Ct

|Dα
ξ S(t, ξ)| ≤ Cα t1+µ(|α|−1)+ε for all |α| ≥ 3(4.17)

in Ωt0,ρ. Moreover, in Ωt0,ρ

(4.18) |DξS(t, ξ)− t0∇ψ(ξ)− (t− t0)ξ| ≤ C t
3
4
−β

2
+ε.

Proof. Uniqueness is completely standard and will not be presented, see [6] for example. Let x(t; y, η)
and ξ(t; y, η) be the solutions of (2.1) from the beginning of this section. We now specialize to
y = ∇ψ(η). Recall that this means solving (2.1) with initial conditions x(t0) = t0∇ψ(η) and ξ(t0) = η.
We denote these solutions by x(t; η), ξ(t; η). For simplicity we set ρ = 1, but take η ∈ Rd in a slightly
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larger region, namely 1
2 < |η| < 4. By Proposition 3.1 this insures that ξ(t; η) remains in the

region 1
4 ≤ |ξ| ≤ 8 for all times provided t0 is taken to be large enough. Now define

(4.19) Q(t, η) := t0ψ(η) +
∫ t

t0

[1
2
|ξ(s; η)|2 + V (x(s; η)) + 〈x(s; η), ξ̇(s; η)〉

]
ds.

Then
Q̇(t, η) =

1
2
|ξ(t; η)|2 + V (x(t; η)) + 〈x(t; η), ξ̇(t; η)〉

and therefore, with ∂j = ∂
∂ηj

and suppressing the arguments for simplicity,

∂jQ̇ = 〈ξ, ∂jξ〉+ 〈∇V (x), ∂jx〉+ 〈∂jx,−∇V (x)〉+ 〈x, ∂j ξ̇〉
=

d

dt
〈x, ∂jξ〉.

Observe that we have used (2.1) in two places. This implies that

∂jQ(t, η)− 〈x(t; η), ∂jξ(t; η)〉 = ∂jQ(t0, η)− 〈x(t0; η), ∂jξ(t0; η)〉
= t0∂jψ(η)− 〈t0∇ψ(η), ~ej〉 = 0

where ~ej denotes the standard jth basis vector. We have thus obtained

(4.20) ∂jQ(t, η) = 〈x(t; η), ∂jξ(t; η)〉
for all times t ≥ t0. By Proposition 3.1 and Lemma 4.1 the map η 7→ ξ(t; η) is invertible with
inverse ξ = ξ(t; η). Indeed, Proposition 3.1 implies that any failure of being one-to-one has to be
local, whereas local invertibility is assured by the inverse function theorem from Lemma 4.1. It is
immediate from Lemma 4.1 that ∂ηξ(t; η) = O(1) and therefore also Dξη(t; ξ) = O(1). Moreover,
Lemma 4.3 and the chain rule combined with Leibniz’s rule imply that |Dα

ξ η(t; ξ)| ≤ Cα tµ(|α|)+ε for
all |α| ≥ 2. This depends on the convexity of the µ(j) (here one of course has linearity) and the
details of this general fact can be found in [10]. Now define S(t, ξ) = Q(t, η(t; ξ)) for 1 < |ξ| < 2 and
t ≥ t0 where t0 will be given by the preceding technical probabilistic lemmas. Observe that η(t; ξ)
will remain in 1

2 < |η| < 4 provided t0 is large. With D` := ∂
∂ξ`

one obtains from (4.20) that

D`S(t, ξ) =
d∑

j=1

∂jQ(t, η(t; ξ))D`ηj(t; ξ)

=
〈
x(t, η(t; ξ)),

d∑

j=1

∂jξ(t; η(t; ξ))D`ηj(t; ξ)
〉

= x`(t, η(t; ξ)),

which proves the fundamental relation

(4.21) DS(t, ξ) = x(t; η(t; ξ)).
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To check that S solves (4.1) one computes, using (4.20),

∂tS(t, ξ) = ∂tQ(t, η(t; ξ)) +
d∑

j=1

∂jQ(t, η(t; ξ))η̇j(t; ξ)

= ∂tQ(t, η(t; ξ)) +
〈
x(t; η(t; ξ)),

d∑

j=1

∂jξ(t; η(t; ξ))η̇j(t; ξ)
〉

=
1
2
|ξ(t; η(t; ξ))|2 + V

(∇S(t, ξ(t; η(t; ξ)))
)

+ 〈x(t; η(t; ξ)), ξ̇(t; η(t; ξ))〉

+
〈
x(t; η(t; ξ)),

d

dt
ξ(t; η(t; ξ))− ∂tξ(t; η(t; ξ))

〉

=
1
2
|ξ|2 + V

(
DS(t, ξ)

)
,

as claimed. The derivative bounds for |α| = 1, 2 in (4.17) follow from (4.21) and Lemma 4.1. More
precisely, if |α| = 1, then

|DS(t, ξ)| ≤ sup
1
2
<|η|<4

|x(t; η)| ≤ Ct.

whereas if |α| = 2, then

|D2S(t, ξ)| ≤ sup
1
2
<|η|<4

|∂ηx(t; η)| sup
1<|ξ|<2

|Dξη(t; ξ)| ≤ Ct.

Here we have used Lemma 4.1 and Corollary 4.2, which provide bounds uniform in the initial condi-
tions. For |α| = 3 consider

∂3S

∂ξj∂ξk∂ξ`
=

d∑

p,q=1

∂2
pqx`DjηpDkηq +

d∑

p=1

∂px`D
2
jkηp.

Since Djη = O(1), Lemma 4.3 implies that the right–hand side is O(t1+µ(2)+ε) as claimed. The case
of higher order α is treated via induction. The chain rule arises in this process very much in the same
way as in the previous proof. We skip the details.
As for (4.18), observe that by (3.2) and (3.3)

sup
1
2
<|η|<4

|x(t; η)− t0∇ψ(η)− (t− t0)ξ(t; η)| ≤ C t
3
4
−β

2
+ε

for all t ≥ t0. In particular, one can set η = η(t; ξ) where 1 < |ξ| < 2 which leads to

(4.22) |DξS(t, ξ)− t0∇ψ(η(t; ξ))− (t− t0)ξ| ≤ C t
3
4
−β

2
+ε,

see (4.21). To replace η(t; ξ) in ∇ψ, one uses that |η− ξ(t; η)| ≤ Ct
− 1

4
−β

2
+ε

0 . This in turn implies that

|ξ − η(t; ξ)| ≤ Ct
− 1

4
−β

2
+ε

0 . Inserting this inequality into (4.22) leads to the desired bound (4.18).
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Below it will be necessary to estimate averages of the form
∣∣∣
∫ ∞

t
DαV (DξS(t, ξ)) ds

∣∣∣

where |α| ≥ 1. This is of course very close to Lemma 3.3. In view of the arguments in Lemma 3.8
and Theorem 3.9 it might seem natural to approximate the path DS(t, ξ) by means of the line
t0∇ψ(ξ) + (t − t0)ξ and integrate by parts. This, however, does not work as well as before. For
example, let z(t, ξ) = t0∇ψ(ξ)+(t− t0)ξ and estimate

∫ 2T
T V (DS(t, ξ)) dt by means of approximating

DS(t, ξ) with z(t, ξ). Taylor expansion gives rise to terms of which the first is

∫ 2T

T
DV (z(t, ξ)) (DS(t, ξ)− z(t, ξ)) dt.

Letting U(t) =
∫ t
T DV (z(τ, ξ)) dτ and integrating by parts leads to an expression of the form

(4.23)
∫ 2T

T
U(t) (DSt(t, ξ)− ż(t, ξ)) dt =

∫ 2T

T
U(t) DxV (DS(t, ξ))D2S(t, ξ) dt

where we have used the equation (4.1) to pass to the second expression. Putting absolute values inside
the right-hand side of (4.23) leads to a bound T 1− 3β

2
+ε which is by roughly 1

4 worse than the desired
one. This indicates, of course, that further cancellation needs to be exploited in (4.23). Rather than
trying to pursue this approach, we return to the martingale method. One of the advantages of this
method is that one approximates the path DξS(t, ξ) by piecewise linearization (on a time scale T β)
rather than by linearization over the entire interval [T, 2T ].

Lemma 4.5. Let S(t, ξ) be the solution constructed in the previous proposition. Then, up to proba-
bility at most e−tε0 , one has the bounds for all t ≥ t0

∣∣∣
∫ ∞

t
DαV (DξS(s, ξ)) ds

∣∣∣ ≤ Cα t−
1
4
−(|α|− 1

2
)β+ε

and all multi-indices |α| ≥ 1, whereas for α = 0

∣∣∣
∫ t

t0

V (DξS(s, ξ)) ds
∣∣∣ ≤ C t−

1
4
+β

2
+ε.

Proof. Let T > 0 be arbitrary but fixed. Let T be such that |DξS(T, ξ)| = R and denote by T ∗ the
time for which |DξS(t, ξ)| = 2R. As in the proof of Lemma 3.3, define stopping times τ`, τ̃` by means
of

τ` := inf{t ≥ 0 : |DξS(t, ξ)| = R + `Rβ}
τ̃` := inf{s ≥ τ`−1 : |DξS(τ`−1, ξ) + (s− τ`−1)DξSt(τ`−1, ξ)| = R + `Rβ}(4.24)
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where 0 ≤ ` ≤ R1−β (recall that the bumps in (1.2) are arranged to lie inside shells S`,R, see (3.1)).
In view of (4.18) these times are well-defined. We now claim that S(τ`; ξ) is defined entirely in terms
of the random variables inside |x| ≤ R + `Rβ. This of course requires that the characteristics of
the Hamilton-Jacobi PDE belong to the outgoing region of phase space, which is guaranteed by the
assumption on the initial data (ψ is admissible). To verify our claim, recall that

DξS(τ`; ξ) = x(τ`; η(τ`; ξ)),

see (4.21). Let η(τ`; ξ) = η0 so that ξ = ξ(τ`; η0). Since by definition |x(τ`; η0)| = R + `Rβ , it follows
that S(τ`; ξ) draws only on those random variables inside |x| ≤ R + `Rβ, as claimed. This implies
that

z`(t) := DξS(τ`, ξ) + (t− τ`)DξSt(τ`, ξ)

is measurable with respect to those variables as well. By Taylor expansion
∫ T ∗

T
DαV (DξS(t, ξ)) dt =

∑

`

∫ τ̃`+1

τ`

DαV (z`(t)) dt

+
∑

`

O
(
|τ̃`+1 − τ`+1| ‖DαV ‖L∞(S`,R) + |τ`+1 − τ`|3‖∇DαV ‖L∞(S`,R) sup

τ`≤t≤τ̃`+1

|DξStt(t, ξ)|
)

(4.25)

where the sum extends over all shells S`,R that lie between R and 2R. By the equation (using formal
notation),

DξSt(t, ξ) = ξ +∇V (DξS(t, ξ))D2
ξS(t, ξ)(4.26)

D2
ξSt(t, ξ) = I + D2

xV (DξS(t, ξ))(D2
ξS(t, ξ))2 +∇V (DξS)D3

ξS(4.27)

DξStt(t, ξ) = D2
xV (DξS(t, ξ))DξSt(t, ξ)D2

ξS(t, ξ) +∇V (DξS(t, ξ))D2
ξSt(t, ξ)(4.28)

By (4.26) and (4.17) one has DξSt = O(1), and by (4.27)

D2
ξSt(t, ξ) = O(t−

3
4
−2βt2 + t−

3
4
−βt1+µ(2)+ε) = O(t

5
4
−2β).

Inserting these estimates into (4.28) shows that

(4.29) DξStt(t, ξ) = O(t−
3
4
−2βt + t−

3
4
−βt

5
4
−2β) = O(t

1
4
−2β).

To estimate the difference τ̃`+1−τ`+1 via Lemma 2.2, one uses (4.26) to conclude that δ in that lemma
satisfies

δ ≤ sup
T≤t≤T ∗

|ż`(t)−DξSt(t, ξ)| ≤ sup
T≤t≤T ∗

|DξSt(τ`, ξ)−DξSt(t, ξ)| ≤ CT
1
4
−β.

Hence

(4.30) |τ̃`+1 − τ`+1| ≤ CT
1
4 .
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The error terms in (4.25) are therefore bounded by

(4.31)
∑

`

O(T
1
4 T−

3
4
−|α|β + T 3βT−

3
4
−(|α|+1)βT

1
4
−2β) = O(T 1−βT−

1
2
−|α|β) = O(T

1
2
−(|α|+1)β).

Now let

Y` =
∫ τ̃`+1

τ`

DαV (z`(t)) dt.

One checks that ‖Y`‖∞ ≤ CT−
3
4
−(|α|−1)β and hence

(4.32)
(∑

`

‖Y`‖2
∞

) 1
2 ≤ CT−

1
4
−(|α|− 1

2
)β.

One easily checks that the exponent in (4.32) is bigger by 3β
2 − 3

4 > 0 than the exponent in (4.31).
Hence Lemma 2.1 implies that ∣∣∣

∑

`

Y`

∣∣∣ ≤ C T εT−
1
4
−(|α|− 1

2
)β

up to probability at most e−T ε
. Summing up over t, 2t, 4t, . . . if |α| ≥ 1, or t0, 2t0, 4t0, . . . if α = 0

yields the lemma.

The following lemma establishes bounds that are similar to (4.18) and will be crucial for applications.

Lemma 4.6. Up to probability at most e−tε0, the solution S(t, ξ) constructed in Proposition 4.4 sat-
isfies the bounds

(4.33)
∣∣Dα

ξ

[
S(t, ξ)− t0ψ(ξ)− (t− t0)|ξ|2/2

]∣∣ ≤ Cα t1+ν(|α|)+ε for all |α| ≤ 2

Here ν(0) = β
2 − 5

4 , ν(1) = −1
4 − β

2 , and ν(2) = 3
4 − 3β

2 .

Proof. The case |α| = 1 is simply a restatement of (4.18). For α = 0 one uses the equation. Indeed,
this gives

S(t, ξ)− t0ψ(ξ)− 1
2
(t− t0)|ξ|2 =

∫ t

t0

V (DξS(s, ξ)) ds.

By the previous lemma the right hand side is O(t−
1
4
+ β

2
+ε) which gives the stated value of ν(0). For

simplicity, we do not treat the case |α| = 2 in a similar way, as this would require averaging more
complicated expressions than those considered in the previous lemma. Rather, we use the methods
of proof from Proposition 4.4. Thus, let

∆(t; ξ) = S(t; ξ)− t0ψ(ξ)− t− t0
2

|ξ|2 and ∆̃(t; η) = Q(t, η)− t0ψ(ξ(t; η))− t− t0
2

|ξ(t; η)|2
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so that ∆(t; ξ) = ∆̃(t; η(t; ξ)). We want to show that

(4.34)
∣∣∣Dα

ξ ∆(t; ξ)
∣∣∣ ≤ Ctν(|α|)+1 for |α| = 2.

By (4.20),

(4.35) ∂j∆̃(t; η) = 〈x(t; η)− t0∇ψ(ξ(t; η))− (t− t0)ξ(t; η), ∂jξ(t; η)〉.
Therefore,

∂jk∆̃(t; η) = 〈x(t; η)− t0∇ψ(ξ(t; η))− (t− t0)ξ(t; η), ∂jkξ(t; η)〉
+〈∂k(x(t; η)− t0∇ψ(ξ(t; η))− (t− t0)ξ(t; η)), ∂jξ(t; η)〉.

Invoking Proposition 3.1 and the estimates from this section (namely (4.7), (4.5), and (4.2)) yields
the bound

∣∣∣∂jk∆̃(t; η)
∣∣∣ ≤ C(t

3
4
−β

2
+εtµ(2)+ε + t

7
4
− 3β

2
+ε) ≤ C t

7
4
− 3β

2
+ε.(4.36)

By the chain rule and the summation convention,

(4.37) D2
pq∆(t; ξ) = ∂jk∆̃(t; η(t; ξ))Dpηj(t; ξ)Dqηk(t; ξ) + ∂j∆̃(t; η(t; ξ))D2

pqηj(t; ξ).

To estimate the second term on the right-hand side one uses (4.35) as follows (with η = η(t; ξ)):
∣∣∣∂j∆̃(t; η)D2

pqηj(t; ξ)
∣∣∣

=
∣∣∣〈x(t; η)− t0∇ψ(ξ(t; η))− (t− t0)ξ(t; η), ∂jξ(t; η)D2

pqηj(t; ξ)〉
∣∣∣

=
∣∣∣〈x(t; η)− t0∇ψ(ξ(t; η))− (t− t0)ξ(t; η), ∂j`ξ(t; η)Dpηj(t; ξ)Dqη`(t; ξ)〉

∣∣∣
≤ C t

3
4
−β

2
+εtµ(2)+ε.(4.38)

Controlling the right-hand side of (4.37) by means of (4.38) and (4.36) yields (4.34) with ν(2) =
3
4 − 3β

2 < 0, as claimed.

Remark 4.7. It is important to note that if β is close to 1
2 , then for some δ > 0 one has ν(0) < −1+δ,

ν(1) < −1
2 − δ, and ν(2) < −δ.

In the following corollary we construct almost sure solutions to the Hamilton-Jacobi equations without
any assumptions on ξ ∈ Rd \ {0}. The method of building the solution up from smaller pieces is the
same as in [10].

Corollary 4.8. Given a sufficiently small ε > 0, there exists a C∞-function S(t, ξ) on a subset of
(0,∞)× {ξ ∈ Rd : ξ 6= 0} with the following property: For any compact K ⊂ Rd \ {0} there exists a
time t0 = t0(ε,K) such that S(t, ξ) solves the Hamilton-Jacobi equation (4.1) on the set [t0,∞)×K.
Moreover, one has the bounds (4.17) and (4.33) with random constants C, Cα.
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Proof. Consider the regions

Ωj := {ξ ∈ Rd : 2−j−1 ≤ |ξ| ≤ 2j+1}

for j = 0, 1, 2 . . .. Choose smooth cutoff functions χj so that χj = 1 on Ωj−1 and supp(χj) ⊂ Ωj (with
Ω−1 = ∅). By the proposition, a.s. there is a solution S0 on [t0,∞)× Ω0 with initial ψ(ξ) = 1

2 |ξ|2 for
some random t0 that also depends on ε. Here we have used Borel-Cantelli to pass to an a.s. statement.
Now apply the proposition to the region Ω1 with initial

ψ(ξ) = (1− χ0)(ξ)
1
2
|ξ|2 + χ0(ξ)S0(t1, ξ)/t1

at some other large random time t1. Observe that this ψ will be admissible by (4.33) with |α| = 0, 1
provided t1 is large. Continuing inductively finishes the proof.

5 Existence of quantum mechanical modified wave operators for the
3
4 model

Let H = 1
24− V with V given by (1.2). In this section we shall define a bounded operator U(t) on

L2(Rd) so that almost surely for any f0 ∈ L2(Rd) there exists f ∈ L2(Rd) such that

(5.1)
∥∥∥eitHf − U(t)f0

∥∥∥
2
→ 0 as t →∞.

Since eitH is unitary and U(t) will have the property that

sup
t>0

‖U(t)f‖2 ≤ Cρ‖f‖2 for all f with supp(f̂) ⊂ {ρ < |ξ| < ρ−1}

for any ρ > 0, it is clear that (5.1) is equivalent to the existence of the L2-limit of

e−itHU(t)φ as t →∞

for any φ ∈ S(Rd) with supp(φ̂) ⊂ Rd \ {0}. The existence of this limit will be established by means
of Cook’s method, i.e., we shall show that

(5.2)
∫ ∞

t0

∥∥∥ d

dt
e−itHU(t)φ

∥∥∥
2

dt =
∫ ∞

t0

∥∥[−iHU(t) + U̇(t)]φ
∥∥

2
dt < ∞.

For any φ as above the evolution U(t) is defined as

(5.3) U(t)φ(x) :=
∫

Rd

ei[〈x,ξ〉−S(t,ξ)] a(t, ξ)φ̂(ξ) dξ
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where S is the solution of the Hamilton-Jacobi equation from Section 4 and a is an amplitude that
we shall construct in this section. More precisely, this amplitude exists almost surely and it has the
form

(5.4) a(t, ξ) = 1 +
M∑

j=1

aj(t, ξ) where sup
ρ<|ξ|<ρ−1

|aj(t, ξ)| ≤ Cj,ρ t−j δ
2 for all t ≥ t0(ρ)

for any ρ > 0 with random constants Cj,ρ. Here δ > 0 satisfies β > 1
2 + δ and M is a large constant

that only depends on β and M → ∞ as β → 1
2 . Moreover, aj are smooth complex valued functions

that satisfy suitable derivative bounds, see below. Since a(t, ξ) → 1 uniformly on compact subsets of
Rd \ {0} as t →∞, one concludes that the wave operator

W+ := s− lim
t→∞ e−itHU(t)

is unitary and intertwines H with 4, i.e.,

eitHW+ = W+ei t
2
4.

This property also relies on the fact that S(t+τ, ξ)−S(t, ξ) → τ
2 |ξ|2 as t →∞, which follows from the

equation (4.1). The modified dynamics U(t) given by (5.3) is similar to the one used in [10], but we
are forced to include an amplitude. It is not difficult to see that the usual choice a = 1 is insufficient
for our purposes basically because both |DV (x)| . |x|− 3

2
−ε and |D2V (x)| . |x|−2−ε do not hold for

our potential (in this section we use the notation a . b to denote a ≤ Cb for some constant and
similarly a & b. Also, a ³ b means that both a & b and a . b).
Inserting (5.3) into (5.2) and exploiting (4.1) shows that one needs to establish
(5.5)∫ ∞

t0

∥∥∥V (x)
∫

Rd

eiΦ(t,x;ξ) a(t, ξ)φ̂(ξ) dξ −
∫

Rd

eiΦ(t,x;ξ) [V (∂S(t, ξ))a(t, ξ) + iat(t, ξ)]φ̂(ξ) dξ
∥∥∥

L2
x

dt < ∞

where we have set Φ(t, x; ξ) = 〈x, ξ〉−S(t, ξ). It is essential (and standard) that the critical points of
the phase are given by x = DS(t, ξ) (in what follows, D = Dξ whereas Dx will be used as derivatives
of V ). We are going to pull V (x) inside the first integral. This can be accomplished by means of
Taylor expansion and the following simple technical lemma.

Lemma 5.1. For any multi-index α one has

eiΦ(DΦ)α = (−i)|α|DαeiΦ +
∑

m≥1,|ν1|,...,|νm|≥2
ν1+...+νm+γ=α

coeff Dν1Φ · . . . ·DνmΦ DγeiΦ

where coeff stands for suitable complex constants.
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Proof. This is a standard induction argument. The case α = 0 is obvious. If the statement holds
up to |α| = N , then fox such an α and consider α + e` where e` = (0, 0, . . . , 0, 1, 0, . . . , 0) is the `th

standard basis vector. Thus

eiΦ(DΦ)α+e` = −iD`(eiΦ(DΦ)α) + ieiΦD`

[
(DΦ)α

]

= −iD`

[
(−i)|α|DαeiΦ +

∑

m≥1,|ν1|,...,|νm|≥2
ν1+...+νm+γ=α

coeff Dν1Φ · . . . ·DνmΦ DγeiΦ
]

(5.6)

+ieiΦ
d∑

j=1

αj(DΦ)α−ejDj`Φ.(5.7)

Applying the product rule in (5.6) and the induction hypothesis in (5.7) yields an expression of the
desired form.

From Taylor’s formula with some large value of N ,

V (x)
∫

Rd

eiΦ(t,x;ξ) a(t, ξ)φ̂(ξ) dξ =

=
∫

Rd

eiΦ(t,x;ξ)
{

V (DS(t, ξ)) +
∑

1≤|α|≤N

1
α!

Dα
xV (DS(t, ξ))(x−DS(t, ξ))α

}
a(t, ξ)φ̂(ξ) dξ(5.8)

+
∫

Rd

eiΦ(t,x;ξ)
∑

|α|=N+1

1
α!

∫ 1

0
Dα

xV (θDS(t, ξ) + (1− θ)x) dθ (x−DS(t, ξ))α a(t, ξ)φ̂(ξ) dξ.(5.9)

The point is of course to construct a in such a way that iat in (5.5) cancels most of the terms
in (5.8) whereas those terms that remain as well as (5.9) give an integrable contribution to (5.5) in t
provided N is large. The latter properties will follow from stationary phase. By Lemma 5.1,

∫

Rd

eiΦ(t,x;ξ)Dα
xV (DS(t, ξ))(x−DS(t, ξ))α a(t, ξ)φ̂(ξ) dξ =

= (−i)|α|
∫

Rd

eiΦ(t,x;ξ)Dα
[
Dα

xV (DS(t, ξ))a(t, ξ)φ̂(ξ)
]
dξ(5.10)

+
∑

m≥1,|ν1|,...,|νm|≥2
ν1+...+νm+γ=α

coeff
∫

Rd

eiΦ(t,x;ξ)Dγ
[
Dν1S · . . . ·DνmS Dα

xV (DS(t, ξ)) a(t, ξ)φ̂(ξ)
]
dξ.(5.11)

Observe that here we have replaced DνjΦ with DνjS since |νj | ≥ 2. In order to obtain a φ-independent
definition of the amplitude a, one needs to check that those terms in (5.10) and (5.11) in which at
least one derivative falls on φ̂(ξ) are negligible, in the sense that they give a t-integrable contribution
to (5.5). This will require using the following bounds on S from the previous section, see (4.17)
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and (4.33): There is c < 1
2 (in fact, c = 1− β) and ε > 0 so that for all large t

|S(t, ξ)|+ |DS(t, ξ)| . t, |DαS(t, ξ)| . t1+(|α|−2)c for |α| ≥ 2(5.12)
∣∣D2

[
S(t, ξ)/t− 1

2
|ξ|2]∣∣ ≤ t−ε.(5.13)

The second inequality in (5.12) can be derived from (4.17) as follows: One has |DαS(t, ξ)| .
t1+µ(|α|−1)+ε with µ(j) = (1 − β)j − 1

4 − β
2 = (1 − β)(j − 1) + 3

4 − 3β
2 . Since 3

4 − 3β
2 + ε ≤ 0,

the estimate above holds. “Large” t means that t ≥ t0 with some random t0 that also depends on the
compact subset of Rd \ {0} to which ξ belongs. Clearly, (5.13) ensures that the phase Φ has a unique
critical point on the support of φ̂ provided t is sufficiently large. We denote this critical point by ξ0.
For the following lemma we need to assume that for all large t and any multi-index γ

(5.14) |Dγa(t, ξ)|+ |Dγat(t, ξ)| . tc|γ|.

This bound will be proven below when we construct the amplitude a. The following lemma is an
instance of the well-known fact that with high probability a particle lies in the “classical region”
|x| ³ t. Because of this property it suffices to restrict L2

x in (5.5) to L2(|x| ³ t).

Lemma 5.2. Under the assumption (5.14) one has
(5.15)∥∥∥V (x)

∫

Rd

eiΦ(t,x;ξ) a(t, ξ)φ̂(ξ) dξ −
∫

Rd

eiΦ(t,x;ξ) [V (∂S(t, ξ))a(t, ξ) + iat(t, ξ)]φ̂(ξ) dξ
∥∥∥

L2(|x|6³t)
. t−2.

Here |x| 6³ t means that either |x| ≤ A−1t or |x| ≥ At for some constant A > 0 that only depends
on supp(φ̂). In particular, it suffices to prove (5.5) in the region |x| ³ t.

Proof. Fix some φ ∈ S with supp(φ̂) ⊂ {2A−1 < |ξ| < A/2}, and A some large constant. In view of
(4.18) one has

|DΦ(t, x; ξ)| = |x− tξ|+ O(t
1
2 )

for large t and A−1 ≤ |ξ| ≤ A. Thus,

|DΦ(t, x; ξ)| ³ |x|+ t in the region |x| > At, |x| < A−1t.

We will integrate each of the ξ-integrals in (5.15) by parts separately. In order to do so, one first
checks that

(5.16) |Dα[V (∂S(t, ξ))a(t, ξ)]| . tc|α|−
3
4

by (5.14) and (5.12). Indeed,

Dα[V (∂S(t, ξ))] =
∑

|α′|=m≥1,|ν1|,...,|νm|≥2
|ν1|+...+|νm|=|α|+m

coeff Dα′
x V (DS(t, ξ)) Dν1S · . . . ·DνmS(t, ξ)
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so that (with the sum over the same indices)

|Dα[V (∂S(t, ξ))]| .
∑

t−
3
4
−β|α′| tm+c(

Pm
j=1 |νj |−2m) . t−

3
4
+c|α|.

Combining this with (5.14) via the product rule yields (5.16). Moreover, one has |DαΦ(t, x; ξ)| =
|DαS(t; ξ)| . t1+c(|α|−2) for |α| ≥ 2 by (5.12). Thus each of the ξ-integrals in (5.15) is no larger than
(t + |x|)−ptcp where p is the number of partial integrations. Hence, (5.15) itself is controlled by

(∫

Rd

(t + |x|)−2pt2cp dx
) 1

2 . tcp+ d
2 t−p . t−2

provided p is taken to be large.

We now return to those terms in (5.10) and (5.11) in which at least one derivative falls on φ̂(ξ). Since
the volume of the region |x| ³ t is td, the following lemma shows that the contribution to L2(|x| ³ t)
in (5.5) of those terms is integrable in time and therefore negligible. We shall make the restriction
|x| ³ t henceforth without further mention.

Lemma 5.3. Under the assumption (5.14) the integrals in (5.10) and (5.11) in which at least one
derivative falls on φ̂ are . t−

5
4
− d

2 .

Proof. We claim that the integrals in (5.10) and (5.11) in which at least one derivative falls on φ̂ are
of the form

(5.17)
∫

Rd

eiΦ(t,x;ξ) b(t, ξ) dξ where sup
ξ
|Dρb(t, ρ)| . t−

5
4
+c|ρ|

for any multi-index ρ. This is easy to see in the case of (5.10), since by Leibniz’s rule

b(t, ξ) =
∑

γ3 6=0
γ1+γ2+γ3=α

coeff Dγ1 [Dα
xV (DS(t, ξ))]Dγ2a(t, ξ)Dγ3 φ̂(ξ).

Expanding the derivatives inside the sum and applying (5.12) and (5.14) yields

|b(t, ξ)| . t−
3
4
−|α|βtc(|α|−1) . t−

5
4

and similarly for the derivatives. In the more complicated case (5.11) one has

b(t, ξ) =
∑

γ′+γ′′=γ

coeff Dγ′ [Dν1S · . . . ·DνmS Dα
xV (DS(t, ξ))a(t, ξ)]Dγ′′ φ̂(ξ)

where m ≥ 1, |νj | ≥ 2, and |ν1| + . . . + |νm| + |γ′| < |α|. These conditions imply that m ≤ |α|/2.
Hence (with max referring to the maximum with respect to all admissible choices of multi-indices)

|b(t, ξ)| . max tm+c
Pm

j=1(|νj |−2) t−
3
4
−|α|β tc|γ

′| . max tc(|α|−1)− 3
4
−|α|β+(1−2c)|α|/2

. max t−
3
4
−c+( 1

2
−β)|α| . t−

5
4(5.18)
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and similarly for the derivatives (to pass to the final inequality in (5.18) we use that c = 1 − β and
|α| ≥ 1). For the remainder of this proof we work with (5.17) without using any other information.
Following [10] we change variables to make application of (non)stationary phase easier. Set

(5.19) Ψ(t, x; η) = tc−1〈x, η〉 − t2c−1S(t, η/tc) = t2c−1Φ(t, x; η/tc)

so that |DαΨ| . 1 for all |α| ≥ 2. Also pick a smooth bump function χ of compact support such that∑
g∈Zd χ(· − g) = 1. Let

χg(η, t) = χ(η − g)b(t, η/tc)

so that

(5.20)
∫

Rd

eiΦ(t,x;ξ) b(t, ξ) dξ =
∑

g∈Zd

t−cd

∫
eit1−2cΨ(t,x;η) χg(η, t) dη

and |∂γ
η χg(η, t)| . t−

5
4 for any γ. Recall that Φ(t, x; ξ) has a unique critical point ξ0 defined by

x−DS(t, ξ0) = 0. For those finitely many choices of g ∈ Zd for which

|ξ0t
c − g| ≤ 100

we estimate the corresponding terms in (5.20) by means of stationary phase, see Theorem 7.7.5
in [11]. This requires uniform derivative bounds on the phase Ψ and the integrand χg, which have
been established with the exception of the first derivative DΨ(t, x; η). Close to a critical point,
however, this first derivative is controlled by means of the second derivative, whereas the size of Ψ
itself is irrelevant for stationary phase. Hence all the conditions of stationary phase are satisfied and
one has ∣∣∣

∫
eit1−2cΨ(t,x;η) χg(η, t) dη

∣∣∣ . (t1−2c)−
d
2 t−

5
4

so that the contribution to (5.20) is

(5.21) . t−cd(t1−2c)−
d
2 t−

5
4 . t−

5
4
− d

2 .

Now suppose that
|ξ0t

c − g| ³ k ≥ 100.

Since DΦ(t, x; ξ)/t is a normalized diffeomorphism with respect to the ξ variable this implies that

|∂ηΨ(t, x; η)| = tc−1|DΦ(t, x; η/tc)| & tc−1 t k t−c = k.

Applying nonstationary phase (i.e., integration by parts) to the corresponding integral yields

∣∣∣
∫

eit1−2cΨ(t,x;η) χg(η, t) dη
∣∣∣ . (t1−2ck)−N t−

5
4 .
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The contribution to (5.20) is therefore

. t−cd(t1−2c)−N
∑

k≥100

k−N+d−1t−
5
4 . t−2− d

2

provided N is large. Combining this with (5.21) finishes the proof.

In the next lemma we show that the error term (5.9) can be treated by the same method.

Lemma 5.4. Under the assumption (5.14) the contribution of (5.9) is no larger than t−2− d
2 provided

N is large.

Proof. Fix some α with |α| = N + 1. Let Ψ(t, x; η) be defined by (5.19) and set Gα(t, x; η) =
Fα(t, x; η/tc) where

(5.22) Fα(t, x; ξ) =
∫ 1

0
Dα

xV (θx + (1− θ)DS(t, ξ)) dθ.

As in the previous proof one has
∫

Rd

eiΦ(t,x;ξ) Fα(t, x; ξ) dξ

=
∑

g∈Zd

t−cd+(1−c)|α|
∫

eit1−2cΨ(t,x;η) χ(η − g, t) Gα(t, x; η) (∂ηΨ(t, x; η))α dη.(5.23)

As before, one applies the method of stationary phase to those terms in (5.23) for which |tξ0−g| ≤ 100,
where ξ0 is the critical point of Φ(t, x; ξ). This requires derivative bounds on Gα and the phase Ψ.
The latter ones were explained in the previous proof, whereas Gα satisfies

|∂γ
η Gα(t, x; η)| . t−

3
4
−|α|β = t−

3
4
−|α|(1−c) for all multi-indices γ

(recall that β = 1− c). These bounds exploit that near a critical point DS(t, ξ) is close to x, which
implies that the argument of Dα

xV in (5.22) is of size t so that |DγFα(t, x; ξ)| . t−
3
4
−β|α| tc|γ|. Thus

by the method of stationary phase those terms in (5.23) for which |tξ0 − g| ≤ 100 are

. t−
3
4
−|α|(1−c) t−cd+(1−c)|α| (t1−2c)−

d
2
− 1

2
|α| . t−

3
4
− d

2
+(c− 1

2
)(N+1).

Since c < 1
2 , the right-hand side can be made less than any negative power of t, as claimed. Now

consider any g ∈ Zd for which |tcξ0 − g| ³ k ≥ 100. Then

|∂ηΨ(t, x; η)| ³ k

so that the corresponding term in (5.23) is

. (k t1−2c)−p t1−c kN+1 . t−2− d
2 k−d−1
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provided the parameter p is taken large enough. The term t1−c is a somewhat wasteful bound on
∂γ

η Gα(t, x; η) which is due to the fact that without knowing the relative position of DS(t, ξ) and x
in (5.22) one merely has |Dγ Fα(t, x; ξ)| . t1+c(|γ|−1) for |γ| ≥ 1, and thus |∂γ

η Gα(t, x; η)| . t1−c

uniformly in γ. Summing over g ∈ Zd with |tcξ0 − g| ³ k ≥ 100 finishes the proof.

Having dispensed of various error terms, we conclude from the preceding (see in particular (5.5),
(5.10) and (5.11)) that we should choose a such that

iat =
∑

1≤|α|≤N

1
α!

{
(−i)|α|Dα

[
V (DS(t, ξ))a(t, ξ)

]

+
∑

m≥1,|ν1|,...,|νm|≥2
ν1+...+νm+γ=α

coeff Dγ
[
Dν1S · . . . ·DνmSDα

xV (DS(t, ξ))a(t, ξ)
]}

(5.24)

where coeff are the coefficients given by Lemma 5.1. More precisely, we will satisfy this equality up
to error terms that give time integrable contributions to the L2(|x| ³ t) norm. A simple application
of product and chain rules shows that (at least formally) (5.24) with N = ∞ is of the form

(5.25) iat =
∑

|α|≥1,|ν1|,...,|νm|≥2
ν1+...+νm+γ=α

coeff Dα
xV (DS(t, ξ))Dν1S · . . . ·DνmSDα

xV (DS(t, ξ))Dγa(t, ξ)

where now m = 0 is also allowed and coeff are suitable complex coefficients. The relation (5.25) is
the starting point for our construction of the amplitude a. Recall that c = 1− β. In what follows we
fix some δ > 0 such that β > 1

2 + δ.

Proposition 5.5. Given N there exists, with probability one, a C∞ function a(t, ξ) on the same
subset of (0,∞) × Rd \ {0} on which S is defined so that for large t equality holds in (5.25) for all
|α| ≤ N and up to certain negligible error terms. Moreover, for some large M depending only on N
and β > 1

2 the function a(t, ξ) is of the form a =
∑M

j=0 aj where a0 = 1 and for all 1 ≤ j ≤ M , all
multi-indices γ, and all large t

(5.26) |Dγaj(t, ξ)| . t−j δ
2
+c|γ|.

The constants implicit in this notation are random but uniform for ξ in compact subsets of Rd \ {0}.
Finally,

(5.27) |Dγa(t, ξ)| . t−
δ
2
+c|γ| and |Dγat(t, ξ)| . t−

3
4
−δ+c|γ|

for all γ, which proves (5.14).

41



Proof. By induction. Set a0 = 1 and suppose that a0, a1, . . . , aj−1 have been constructed satisfy-
ing (5.26). Then define

(5.28) aj(t, ξ) := −i
∑

j=k−1+4(|α|−m)
k≤j−1

coeff
∫ ∞

t
Dα

xV (DS(τ, ξ))Dν1S · . . . ·DνmS(τ, ξ)Dγak(τ, ξ) dτ

where coeff are precisely those coefficients appearing in (5.25). The sum here extends over all |α| ≥ 1,
k, m, ν1, . . . , νm, γ satisfying the conditions stated in (5.28) as well as

|ν1|, . . . , |νm| ≥ 2 and ν1 + . . . + νm + γ = α,

see (5.25). The meaning of the condition j = k − 1 + 4(|α| −m) will become clear in the proof. For
the moment we only point out that it insures that the sum in (5.28) is finite, since |α| ≥ 2m. To
verify (5.26) for j we begin with an integral as in (5.28) that does not contain a term Dγak, in other
words k = 0 and

∑
j νj = α. As usual, we take T and T ∗ so that |DS(T, ξ)| = R and |DS(T ∗, ξ)| = 2R

for some large R. The annulus R ≤ |x| ≤ 2R is split up into R1−β = Rc many shells S`,R of thickness
Rβ, see (3.1). Notice that R ³ T ³ T ∗ and define τ`, τ̃` as in (4.24). Thus, with

z`(t) := ∂ξS(τ`, ξ) + (t− τ`)∂ξSt(τ`, ξ)

one has
∫ T ∗

T
Dα

xV (DS(t, ξ))Dν1S · . . . ·DνmS(t, ξ) dt

=
∑

`

∫ eτ`+1

τ`

Dα
xV (z`(t))Dν1S(τ`, ξ) · . . . ·DνmS(τ`, ξ) dt(5.29)

+
∑

`

O
(
|τ`+1 − τ̃`+1| sup

R≤|x|≤2R
|Dα

xV (x)| sup
t≥T

|Dν1S(t, ξ) · . . . ·DνmS(t, ξ)|
)

(5.30)

+
∑

`

O
(
|τ`+1 − τ`|3 sup

R≤|x|≤2R
|α′|=|α|+1

|Dα′
x V (x)| sup

t≥T
|DStt(t, ξ)| sup

t≥T
|Dν1S(t, ξ) · . . . ·DνmS(t, ξ)|

)
(5.31)

+
∑

`

O
(
|τ`+1 − τ`|2 sup

R≤|x|≤2R
|Dα

xV (x)| sup
t≥T

|∂t[Dν1S(t, ξ) · . . . ·DνmS(t, ξ)]|
)
.(5.32)

By (4.30) one has |τ`+1 − τ̃`+1| . T
1
4 . Another estimate that we shall use is

(5.33)
∣∣Dν1S(t, ξ) · . . . ·DνmS(t, ξ)| . tm+c

Pm
j=1(|νj |−2) = t(1−2c)m+c|α| t−c|γ|,

which follows immediately from (5.12), as well as

(5.34) |DStt(t, ξ)| . t
1
4
−2β and |Dν [∂tS(t, ξ)]| . tc|ν|−

3
4 for |ν| ≥ 2.
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The first inequality is (4.29) whereas the second follows easily from (5.12) and the decay of derivatives
of V . Observe that we have included γ in (5.33). Despite the fact that here γ = 0 since we are assuming
that k = 0, it will be convenient to include it in the estimates for later applications. Finally, recall
that there are T 1−β = T c many terms in the sums over ` above. Consequently the error terms above
can be estimated as follows:

(5.30) . T c T
1
4 T−

3
4
−|α|β Tm+c

P
j(|νj |−2)

= T
1
2
−(|α|+1)(1−c) T (1−2c)m+c|α| T−c|γ| = T c− 1

2 T−(1−2c)(|α|−m) T−c|γ|

(5.31) . T c T 3β T−
3
4
−(|α|+1)β T

1
4
−2βT (1−2c)m+c|α| T−c|γ|

= T c− 1
2 T−|α|(1−c) T (1−2c)m+c|α| T−c|γ| = T c− 1

2 T−(1−2c)(|α|−m) T−c|γ|

(5.32) . T c T 2β T−
3
4
−|α|β T (1−2c)m+c|α| T−

3
4
−1+2c T−c|γ|(5.35)

= T c− 1
2 T−(1−2c)(|α|−m) T−c|γ|.

To pass to (5.35) we used that

∣∣∣∂t[Dν1S(t, ξ) · . . . ·DνmS(t, ξ)]
∣∣∣ .

m∑

j=1

|Dνj [∂tS(t, ξ)]|
m∏

s=1
s 6=j

t1+c(|νs|−2) . tm+c(|α|−|γ|−2m) t−
3
4 t−1+2c,

see (5.34). Now let Y` be one of the summands in (5.29). By the measurability considerations in the
proof of Lemma 4.5 the {Y`} form a martingale difference sequence with respect to the usual family
of increasing σ-algebras. Hence Lemma 2.1 implies that up to probability at most e−T ε

|
∑

`

Y`| ≤ T ε
(∑

`

‖Y`‖2
∞

) 1
2 . T εT

c
2
+1−c T−

3
4
−|α|(1−c) T (1−2c)m+c(|α|−|γ|)

. T
1
4
− c

2
+ε T−(1−2c)(|α|−m) T−c|γ| . T−

δ
2
[−1+4(|α|−m)] T−c|γ| . T−j δ

2 .(5.36)

To pass to the final inequality in (5.36) one uses that j = k − 1 + 4(|α| −m) with k = 0 and γ = 0.
Moreover, the second inequality in (5.36) follows from

1
4
− c

2
+ ε− (1− 2c)(|α| −m) ≤ δ

2
− 2δ(|α| −m)

which is equivalent to

(5.37) (1− 2c− 2δ)(|α| −m) ≥ 1
4
(1− 2c− 2δ) + ε or 0 < ε ≤ 1

4
(1− 2c− 2δ).

The final statement holds as |α| −m ≥ |α|/2 ≥ 1/2 and 1 − 2c − 2δ = 2(β − 1
2 − δ) > 0. We now

compare the bound on |∑` Y`| from (5.36) with the bound on the error terms obtained in (5.35),
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which is T c− 1
2 T−(1−2c)(|α|−m). This latter quantity is indeed smaller than the first bound in (5.36),

as 1
4 − c

2 > c− 1
2 . We have arrived at the conclusion that

∣∣∣
∫ T ∗

T
Dα

xV (DS(τ, ξ))Dν1S · . . . ·DνmS(t, ξ) dt
∣∣∣ . T−j δ

2

up to probability at most e−T ε
. In fact, we have shown the stronger statement

sup
T≤τ≤T ∗

∣∣∣
∫ τ

T
Dα

xV (DS(τ, ξ))Dν1S · . . . ·DνmS(t, ξ) dt
∣∣∣

. T
1
4
− c

2
+ε T−(1−2c)(|α|−m) T c(

P
j |νj |−|α|) . T−j δ

2 .(5.38)

By Borel-Cantelli one now obtains that, with probability one and some random constant Cρ,

sup
ρ<|ξ|<ρ−1

∣∣∣
∫ ∞

t
Dα

xV (DS(τ, ξ))Dν1S · . . . ·DνmS(τ, ξ) dτ
∣∣∣ ≤ Cρ t−j δ

2

for all t and arbitrary ρ > 0, as desired. The same argument also shows that

sup
ρ<|ξ|<ρ−1

∣∣∣Dγ

∫ ∞

t
Dα

xV (DS(τ, ξ))Dν1S · . . . ·DνmS(τ, ξ) dτ
∣∣∣ . t−j δ

2
+c|γ|

for any multi-index γ. Indeed, consider the case when all the derivatives fall on Dν1S · . . . ·DνmS(τ, ξ).
In view of (5.12) this gives an increase by t|γ|c, as claimed. All other cases are of the same order of
magnitude.
Next, we turn to those terms in (5.28) that contain ak(t, ξ) for some 0 < k ≤ j − 1. The martingale
argument that was used for k = 0 does not immediately apply to the case k 6= 0 as ak(t, ξ) depends
on all random variables. This issue, however, can be circumvented by inductively reducing oneself to
the case k = 0. More precisely, consider

∫ T ∗

T
Dα

xV (DS(t, ξ))Dν1S · . . . ·DνmS(t, ξ)Dγak(t, ξ) dt =

= Dγak(T, ξ)
∫ T ∗

T
Dα

xV (DS(t, ξ))Dν1S · . . . ·DνmS(t, ξ) dt(5.39)

−
∫ T ∗

T
Dα

xV (DS(t, ξ))Dν1S · . . . ·DνmS(t, ξ) Dγ [ak(T, ξ)− ak(t, ξ)] dt.(5.40)

The first expression (5.39) is controlled by means of the induction hypothesis and the previous cal-
culation with k = 0. Indeed, using (5.26) with k < j and the one before last estimate in (5.36) shows
that

(5.39) . T−k δ
2
+c|γ| T−

δ
2
[−1+4(|α|−m)] T−c|γ|

. T−
δ
2
[−1+k+4(|α|−m)] = T−j δ

2 ,
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since j = −1 + k + 4(|α| −m). Clearly, the same calculation also shows that

|Dν(5.39)| . T−j δ
2
+|ν|c

for any multi-index ν. By definition (5.28) the integral in (5.40) is the sum of terms of the form
(5.41)∫ T ∗

T
Dα

xV (DS(t, ξ))Dν1S · . . . ·DνmS(t, ξ)
∫ t

T
Dα′

x V (DS(τ, ξ))Dν′1S · . . . ·Dν′
m′S(τ, ξ) Dγ′ak′(τ, ξ) dτ dt

where the various parameters satisfy the relations

α = ν1 + . . . + νm + γ, |α| ≥ 1, |νj | ≥ 2
α′ + γ = ν ′1 + . . . + ν ′m′ + γ′, |α′| ≥ 1, |ν ′j | ≥ 2

k = −1 + k′ + 4(|α′| −m′), k′ ≤ k − 1
j = −1 + k + 4(|α| −m), k ≤ j − 1.(5.42)

The last two lines imply that

(5.43) j = −2 + k′ + 4(|α|+ |α′| −m−m′) and k′ ≤ j − 2.

The inductive reduction should now be clear: If k = 0 in (5.41), then one uses the same martingale
argument as above in combination with the induction hypothesis, which controls the size of the inner
integral. If k′ > 0, then the previous reduction needs to be repeated, i.e., pull ak′(T, ξ) outside
of the entire expression and leave ak′(t, ξ) − ak′(T, ξ) inside. The expression with ak′(T, ξ) on the
outside is controlled by the the induction hypothesis and the argument that we shall elaborate below
for the k′ = 0 case. On the other hand, there are two possibilities for the remaining part with
ak′(t, ξ) − ak′(T, ξ) inside. Writing this difference out as we did above by means of (5.28) leads to
expressions that are either “a-free” or not. In the latter case, one repeats, whereas in the former
case the martingale argument applies again. Since the index of the amplitude goes down by at least
one at each step, the process terminates. We shall not supply the complete details of this reduction,
as they are straightforward. Rather, we shall discuss the aforementioned case of k′ = 0 in (5.41)
in full detail. We start with a slightly informal calculation that will explain the mechanism behind
the numerology that appears in (5.43). The point is that integrals such as (5.41) are by a factor of
(T

1−β
2
−ε)−2 = T−c+2ε smaller than the corresponding integral with absolute values inside. The square

here is due to the fact that two integrations are being performed, each averaging gaining a factor of
T

1−β
2
−ε. In other words,

(5.41) . T−
3
4
−|α|β Tm+c(|α|−|γ|−2m) T−

3
4
−|α′|β Tm′+c(|α′|+|γ|−2m′) T 2−c+2ε(5.44)

. T
1
2
−c+2ε T−(1−2c)(|α|+|α′|−m−m′) . T−

δ
2
[−2+4(|α|+|α′|−m−m′)] . T−j δ

2 .(5.45)

Here the bound in (5.44) is obtained by using the usual point-wise bound on the derivatives of V ,
whereas the products are controlled by means of (5.33) in conjunction with (5.42). The final inequality
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in (5.45) follows from (5.43), whereas the first can be seen to follow from

1
2
(1− 2c− 2δ + 2ε) ≤ (1− 2c− 2δ)(|α|+ |α′| −m−m′).

Since |α| −m ≥ |α|/2 and similarly for α′, this reduces to

ε ≤ 1
4
(1− 2c− 2δ).

Observe that this is the same condition as in (5.37). This argument shows that the presence of −2
in (5.43) matches exactly with the fact that two averages are being performed in (5.41), and similarly
for any other number of averages. For the rigorous martingale version of this informal argument, we
will approximate (5.41) by a sum of martingale differences Z` where

Z` :=
∫ eτ`+1

τ`

Dα
xV (z`(t)) dt Dν1S · . . . ·DνmS(τ`, ξ)

∫ τ`

T
Dα′

x V (DS(τ, ξ))Dν′1S · . . . ·Dν′
m′S(τ, ξ) dτ

where τ`, τ̃`+1, z`(t) are as above. To estimate ‖Z`‖∞, one first uses (5.38) to obtain a bound on the
second integral:

∣∣∣
∫ τ`

T
Dα′

x V (DS(τ, ξ))Dν′1S · . . . ·Dν′
m′S(τ, ξ) dτ

∣∣∣

. T
1
4
− c

2
+ε T−(1−2c)(|α′|−m′) T c(

Pm′
j=1 |ν′j |−|α′|−|γ′|) . T

1
4
− c

2
+ε T−(1−2c)(|α′|−m′) T c|γ|

where we have used that γ′ = 0 and the second relation in (5.42). Therefore,

‖Z`‖∞ . T β T−
3
4
−|α|β Tm+c(|α|−2m) T

1
4
− c

2
+ε T−(1−2c)(|α′|−m′) T c|γ|

. T
1
2
− 3c

2
+ε T−(1−2c)(|α|+|α′|−m−m′).

Hence, up to probability at most e−T ε
,

(5.46)
(∑

`

‖Z`‖∞
) 1

2 . T
1
2
−c+2ε T−(1−2c)(|α|+|α′|−m−m′) . T−j δ

2 ,

which agrees with the informal calculation in (5.45). There are three error terms involved in the
approximation of (5.41) by

∑
` Z`. One derives from replacing τ`+1 with τ̃`+1, another from the

linearization of DS(t, ξ), and the final one from freezing t at τ`. The first two error terms can be
treated in the same way as those in (5.30) and (5.31), respectively, and we therefore skip the details.
On the other hand, freezing the second integral in (5.41) at time t = τl introduces a new type of error
that we now estimate. Clearly, the error in question is bounded by

T T−
3
4
−|α|β Tm+c(

Pm
j=1 |νj |−2m) T β T−

3
4
−|α′|β Tm′+c(

Pm′
j=1 |ν′j |−2m′)

= T−
1
2
+β T−(1−2c)(|α|+|α′|−m−m′)(5.47)
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since
∑m

j=1 |νj | = |α| − |γ| and
∑m′

j=1 |ν ′j | = |α′|+ |γ|. Comparing this with the desired bound (5.46),
one sees that (5.47) is smaller than (5.46) by T−2ε, so that it can be ignored. This concludes the
inductive proof of (5.26).
Now fix some large N and let a =

∑M
j=0 aj with another large integer M that we need to specify.

The way to choose M is to cancel as many orders of magnitude in t as possible for each of the terms
in (5.25) with 1 ≤ |α| ≤ N . The terms with |α| > N are negligible by Lemma 5.4. It is clearly
impossible to achieve

(5.48) i∂t

M∑

j=0

aj(t, ξ)−
∑

coeff Dα
xV (DS(t, ξ))Dν1S · . . . ·DνmSDα

xV (DS(t, ξ))Dγ
M∑

j=0

aj(t, ξ) = 0.

(with the sum as in (5.25)) by means of our construction based on (5.28). On the other hand, it
is also clear that by taking M sufficiently large one can achieve that this difference is only going to
involve aj(t, ξ) and Dα

xV (DS(t, ξ) with indices j and multi-indices α so that

j + 4|α| ≥ j + 4(|α| −m) ≥ j0,

see (5.28) with some fixed j0. Taking j0 large, it follows from (5.26) that the resulting expression
will again be negligible in the usual sense. This can be seen by putting absolute values inside the
integrals, since either Dα

xV (DS(t, ξ) or aj(t, ξ) can be made less than any given large negative power
of t.
Finally, we check that (5.27) holds. The first inequality follows immediately from (5.26). For the
second, take derivatives in (5.28). With the sum being over all admissible choices of parameters
in (5.28) one has

|Dν∂taj(t, ξ)| .
∑

t−
3
4
−|α|(1−c) tm+c(|α|−|γ|−2m) tc|ν| t−k δ

2
+|γ|c

. t−
3
4
−k δ

2 t−2δ(|α|−m) tc|ν| = t−
3
4
−(j+1) δ

2 tc|ν|

where the second inequality follows from β ≥ 1
2 + δ, and the final equality holds since j = −1 + k +

4(|α| −m). Summing over j ≥ 1 proves (5.27) and thus the proposition.

It should be clear from the previous proof that the usual definition of modified wave operators
with a(t, ξ) = 1 does not apply in our situation. Indeed, the first significant term in the station-
ary phase expansion of ∫

Rd

eiΦ(t,x;ξ) [V (x)− V (∂S(t, ξ))]φ̂(ξ) dξ

is

(5.49)
∫

Rd

eiΦ(t,x;ξ) 〈D2
xV (x)(x− ∂S(t, ξ)), x− ∂S(t, ξ)〉φ̂(ξ) dξ.
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By the method of stationary phase this integral is of the order D2
xV (x)t t−

d
2 . Therefore,

‖(5.49)‖L2(|x|³t) . sup
|x|³t

|D2
xV (x)| t.

In the context of standard scattering theory [6], which requires t−2−ε of the second derivatives,
this latter expression is integrable in time. In our case, however, |D2

xV (x)t| is typically on the
order of t−

3
4
−ε and therefore not integrable. We circumvent this difficulty here by means of the

amplitude a(t, ξ). In fact, it is easy to see from (5.28) and also natural in view of the aforementioned
problem with D2V (x)t that the first nonzero term after a0 = 1 is

a3(t, ξ) = const
∫ ∞

t
D2

xV (DS(τ, ξ))D2S(τ, ξ) dτ

with a suitable constant const (this allows one to slightly strengthen (5.27), but we do not exploit
this fact). Generally speaking, the patient reader will easily find the first few aj by means of explicit
integration by parts. It turns out that a1 = a2 = a4 = a5 = a8 = 0, whereas the first few nonzero
terms decay like t−

3δ
2 , t−3δ and t−

7δ
2 , respectively. In the context of (5.28) the zero terms aj are

identified by means of non-divisibility by four of j + 1− k.
We have now arrived at our main result.

Theorem 5.6. With probability one the following holds: For any φ ∈ S(Rd) with supp(φ̂) ⊂ R2 \ {0}
let

(U(t)φ)(x) :=
∫

Rd

ei[x·ξ−S(t,ξ)] a(t, ξ) φ̂(ξ) dξ,

where S(t, ξ) and a(t, ξ) are the C∞ functions constructed in Corollary 4.8 and Proposition 5.5,
respectively. For every such φ there exists f ∈ L2(Rd) such that

(5.50) lim
t→∞

∥∥eitHf − U(t)φ
∥∥ = 0.

In other words, W+ := s − limt→∞ e−itHU(t) exists, W+ is an isometry, and W+ intertwines H
and 1

24, i.e., for all t ≥ 0

(5.51) eitHW+ = W+ei t
2
4.

Finally, this implies that σa.c(H) = [0,∞).

Proof. The amplitude a was constructed in such a way that (5.2) converges, which implies that (5.50)
holds. As ‖φ − U(t)φ‖2 . t−

δ
2 by (5.26), it follows that W+ is an isometry on L2(Rd). For the

intertwining property one computes

eitH W+φ = lim
s→∞ e−i(s−t)H U(s)φ

= lim
s→∞ e−i(s−t)H U(s− t) ei t

2
4φ + lim

s→∞ e−i(s−t)H (U(s)− U(s− t) ei t
2
4)φ.(5.52)

48



The first expression on the right-hand side is W+ ei t
2
4φ, whereas the second is (up to the unitary

factor e−i(s−t)H) equal to

(U(s)− U(s− t) ei t
2
4)φ(x) =

∫
eix·ξ

[
e−iS(s,ξ) a(s, ξ)− e−i t

2
|ξ|2−iS(s−t,ξ) a(s− t, ξ)

]
φ̂(ξ) dξ.

Since
S(s, ξ)− S(s− t, ξ) =

t

2
|ξ|2 +

∫ s

s−t
V (DS(τ, ξ) dτ → t

2
|ξ|2 as s →∞

and |a(s, ξ)− a(s− t, ξ)| . s−
3
4
−δ t by (5.27), with both estimates holding uniformly for ξ in compact

subsets of Rd \ {0}, one concludes that the term in brackets goes to zero as s →∞. Thus the second
term in (5.52) goes to zero by Plancherel and the dominated convergence theorem. Finally, the Weyl
criteria implies that the deterministic essential spectrum σess(H) of the Schrödinger operator with
potential (1.2) coincides with the essential spectrum of the unperturbed operator −∆, σess(H) =
[0,∞). Therefore we conclude, from the intertwining properties of the wave operator W+, that with
probability one σa.c.(H) = [0,∞).
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