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1. Introduction

In this brief survey we describe recent advances on large data results for nonlinear

wave equations such as

�u = F (u,Du), F (0) = DF (0) = 0, (u(0), u̇(0)) = (f, g)

We distinguish two basic scenarios:

• Small data theory: (f, g) are small, and F is treated as a perturbation.

The main questions are local and global well-posedness, the existence of

conserved quantities (energy), their relation to the basic symmetries of the

equation (especially the dilation symmetry). The choice of spaces in which

to solve can be very challenging, and algebraic properties of F may be essen-

tial in order to obtain well-posedness. Specifically, nonlinearities exhibiting

a null-form structure appear in geometric/physical equations. The dynam-

ics of small data are typically simple, with the associated wave becoming

asymptotically free (this is referred to as “scattering”).

• Large data theory: For local-in-time existence, energy subcritical prob-

lems are easier since the time of existence depends only on the energy norm

of the data, so one can then time-step to obtain global existence. The prob-

lem with this approach lies with the absence of information on the long-term

dynamics such as scattering. Finite-time breakdown (blowup) of solutions

may occur as well, and then the problem of classification of possible blowup

dynamics poses itself. In general, large data theory is concerned with the

classification of all possible types of dynamics that solutions may exhibit

at large energies. The structure here is much richer, with the underlying
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geometry, choices of a suitable topology or possibly gauge, playing major

parts in the possible dynamics.

In the late 1990’s Bourgain introduced the idea of induction on energy to pass

from small data to large data results in his study of the quintic radial Schrödinger

equation in R3. Around 2006, Kenig and Merle introduced their version of the

induction on energy principle in order to obtain global existence and scattering for

both focusing and defocusing equations, the former requiring further conditions on

the data (as they may blow up in finite time). Their argument is indirect, and the

basic ideas are as follows:

• Critical element: Since we have global existence and scattering for small

energies, the failure of this property for some solutions implies that there

exists a minimal energy E∗ > 0 where it fails. One then proceeds to

construct a solution u∗ with this energy E∗. This is a rather nontrivial

step. For scalar equations, one starts with a sequence of solutions un with

energies approaching E∗, and which fail to obey the scattering property

uniformly in n (in more technical terms, with Strichartz norms becoming

unbounded as n→∞). One then applies a concentration-compactness de-

composition to this sequence. If we cannot pass to a limit of the un, then

this decomposition yields a representation of un as a sum of weakly interact-

ing constituents, each of which has energy strictly less than E∗ and which

therefore scatter under the nonlinear flow by the minimality of E∗. Further-

more, these constituents interact only very weakly. Even though nonlinear

equations do not obey the superposition principle, one can still conclude

due to this weak interaction, and by means of a suitable perturbation the-

ory, that the original sequence obeys the scattering property uniformly in n,

a contradiction.

• Compactness: Due to the minimality of E∗ one can show furthermore

that u∗ enjoys compactness properties modulo symmetries. In fact, the

forward trajectory (u∗(t), ∂tu∗(t)), t ≥ 0 is pre-compact up to symmetries

in the energy space. This is again done by means of an indirect argument,

hinging on a concentration-compactness decomposition and the minimality

of E∗.

• Rigidity: In this final step one shows that any such u∗ with a precompact

trajectory necessarily vanishes. Heuristically speaking, such a compact ob-

ject would need to be a special solution (soliton, harmonic map etc.) which

then is excluded by the equation itself or conditions on the data (for exam-

ple, defocusing equations do not admit solitons other than zero, or negative

curvature targets do not allow for harmonic maps other than constants).

This hinges on algebraic features of the equation, and involves identities

obtained by contracting the energy-momentum tensor with suitable (con-

formal) Killing fields. Typical identities of this type go by the name of virial

or Morawetz.
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The concentration compactness procedure in the previous outline has turned out

to much more versatile. For instance, it has been a key ingredient in the classification

of blow-up behavior.

2. Calculus of variations

2.1. Extremal Sobolev imbedding

Recall the Sobolev imbedding in R3 (we consider three dimensions for simplicity):

‖f‖Lp(R3) ≤ C‖f‖H1(R3) which is valid for 2 ≤ p ≤ 6. A basic question is as follows:

What are the extremizers, what is the optimal constant?

We rephrase this as a variational problem

inf
{
‖f‖H1(R3)

∣∣ ‖f‖Lp(R3) = 1
}

= µ > 0

to which we would like to find a minimizer. We select a minimizing sequence:

{fn}∞n=1 ⊂ H1(R3), ‖fn‖p = 1, ‖fn‖H1(R3) → µ

The issue here is to pass to a limit fn → f∞ strongly in Lp(R3). There is a loss of

compactness due to translation invariance.

Theorem 2.1. Suppose 2 < p < 6. Then there exists a sequence {yn}∞n=1 ⊂ R3

such that {fn(· − yn)}∞n=1 is pre-compact in Lp(R3) and H1(R3).

m1 m2

Fig. 1. Separating masses

Let us consider a simplified model, see Fig. 1: Assume that fn = gn +hn where

‖gn‖pp = m1 > 0 and ‖hn‖pp = m2 > 0, where m1 + m2 = 1. Further, suppose the

supports of gn, hn are disjoint. Then

‖fn‖2H1 = ‖gn‖2H1 + ‖hn‖2H1 ≥ µ2(m
2/p
1 +m

2/p
2 )

Since 2/p < 1, the right-hand side is larger than µ2, which is a contradiction.

This example shows that a minimizing sequence cannot separate into separate

“bubbles”.

2.2. The profile decomposition

A much more sophisticated version of this principle is the following concentration

compactness decomposition.
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Proposition 2.1. Let {fn}∞n=1 ⊂ H1(R3) be an arbitrary bounded sequence. Then

∀j ≥ 1 there ∃ (up to subsequence) {xjn}∞n=1 ⊂ R3 and V j ∈ H1 such that

• for all J ≥ 1 one has fn =
∑J
j=1 V

j(· − xjn) + wJn
• ∀j 6= k one has |xjn − xkn| → ∞ as n→∞
• lim supn→∞ ‖wJn‖Lp(R3) → 0 as J →∞ for all 2 < p < 6.

Moreover, as n→∞,

• ‖fn‖22 =
∑J
j=1 ‖V j‖22 + ‖wJn‖22 + o(1)

• ‖∇fn‖22 =
∑J
j=1 ‖∇V j‖22 + ‖∇wJn‖22 + o(1)

This result is due to P. Gérard [17], see also [20], and is a more explicit form of P.

L. Lions’ concentration compactness trichotomy for measures. The proof proceeds

by considering all possible weak limits of the form {fn(·−zn)}∞n=1 in H1(R3), where

{zn}∞n=1 is any sequence of translations. The profiles are obtained by choosing these

sequences such that the limits are as large as possible in H1. Seminal work in this

direction was also done by Lieb [29], as well as Brezis-Coron [4] and Struwe [43].

It makes the failure of compactness due to the translation symmetry explicit.

Note that it immediately implies the compactness claim of Theorem 2.1 for mini-

mizing sequences: Indeed, there can be only one nonzero profile V j , by exactly the

same argument as in the simplistic model from above. Finally, it is important to

realize that only noncompact symmetry groups matter, in this case the group of

translations R3. The rotation symmetries SO(3) can be ignored, since they consti-

tute a compact group. In fact, from any sequence Rj,n ∈ SO(3) we can pass to a

limit (up to subsequences) Rj,n → Rj,∞ as n→∞. But then Rj,∞ can be included

in the profile V j .

x1n

x3n

x2n

Lp sea

w3
n

V 1

V 2

V 3

Fig. 2. We fish for more profiles from the sea.
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2.3. The extremizers

By Theorem 2.1 we may pass to the limit fn(· − yn)→ f∞ in H1(R3), ‖f∞‖p = 1,

‖f∞‖H1 = µ. We can further assume that f∞ ≥ 0. Then there ∃λ > 0, a Lagrange

multiplier, so that the Euler-Largrange equation

−∆f∞ + f∞ = λ|f∞|p−2f∞
holds. One sees immediately that λ > 0 by multiplication with f∞ and integration.

Next, we remove λ > 0 since p > 2. Then f∞ = Q > 0 solves

−∆Q+Q = |Q|p−2Q (1)

One can further show that Q ∈ H1, Q > 0 is unique up to translation amongst all

solutions of (1), see [11, 27, 28]. Moreover, it is radial about some point; this is a

deep result of [18]. Q is exponentially decaying, radial, and smooth. For dim = 1

there is an explicit formula, and the only solutions to (1) in H1(R) are 0,±Q. This

is in contrast to higher dimensions d > 1, where one has infinitely many radial

solutions to (1) that change sign (these are called nodal solutions), see [2].

2.4. The critical case

The decomposition from above fails at p = 6 due to the dilation symmetry. The

correct setting here is Ḣ1(R3) since

‖f‖L6(R3) ≤ C‖f‖Ḣ1(R3) = C‖∇f‖2 (2)

This inequality is translation and scaling invariant, which both constitute noncom-

pact group actions. The analogue of Proposition 2.1 reads as follows, see [17].

Proposition 2.2. Let {fn}∞n=1 ⊂ Ḣ1(R3) a bounded sequence. Then ∀j ≥ 1

there ∃ (up to subsequence) {xjn}∞n=1 ⊂ R3, {λjn}∞n=1 ∈ R+ and V j ∈ Ḣ1 such

that

• for all J ≥ 1 one has fn =
∑J
j=1

√
λjnV j(λjn(· − xjn)) + wJn

• ∀j 6= k one has
λj
n

λk
n

+
λk
n

λj
n

+ λjn|xjn − xkn| → ∞ as n→∞
• lim supn→∞ ‖wJn‖L6(R3) → 0 as J →∞.

Moreover, as n→∞,

‖∇fn‖22 =

J∑
j=1

‖∇V j‖22 + ‖∇wJn‖22 + o(1)

The natural variational problem associated with (2) is the following:

inf
{
‖f‖Ḣ1(R3)

∣∣ ‖f‖L6(R3) = 1
}

= µ > 0

Once again, we select a minimizing sequence

{fn}∞n=1 ⊂ Ḣ1(R3), ‖fn‖L6(R3) = 1, ‖fn‖Ḣ1(R3) → µ
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We may assume that fn ≥ 0. From the concentration compactness decomposition of

Proposition 2.2 and the minimizing property of the sequence, we conclude that there

is exactly one profile. Therefore, we have the following analogue of Theorem 2.1.

Theorem 2.2. There ∃ {yn}∞n=1 ⊂ R3,∃ {λn}∞n=1 ∈ R+ such that {
√
λnfn(λn(· −

yn))}∞n=1 is pre-compact in L6(R3) and Ḣ1(R3).

Note that this theorem identifies the noncompact symmetries as the only source

of loss of compactness in a minimizing sequence. Passing to the limit
√
λnfn(λn(·−

yn))→ f∞ ≥ 0, we obtain the Euler-Lagrange equation for ϕ = cf∞ with c > 0

∆ϕ+ ϕ5 = 0

The only radial Ḣ1 solutions to this equation are ±W , 0 up to dilation symmetry,

where

W (x) = (1 + |x|2/3)−
1
2

The uniqueness follows from the Pohozaev identity.

3. Wave equations

3.1. Lagrangians

Consider the Lagrangian

L(u, ∂tu) :=

∫
R1+d

t,x

1

2

(
− u2t + |∇u|2

)
(t, x) dtdx (3)

Substitute u = u0 + εv. Then

L(u, ∂tu) = L(u0, ∂tu0) + ε

∫
R1+d

t,x

(�u0)(t, x)v(t, x) dtdx+O(ε2)

where � = ∂tt − ∆. Thus u0 is a critical point of L if and only if �u0 = 0. The

wave equation is also a Hamiltonian equation with conserved energy

E(u, ∂tu) =
1

2

∫
Rd

(
|ut|2 + |∇u|2

)
dx

Amongst other things, the Lagrangian formulation has the following significance:

• Nöther’s theorem: Underlying symmetries → invariances → Conservation

laws

Conservation of energy, momentum, angular momentum are a result of

time-translation, space-translation, and rotation invariance of the La-

grangian.

• Lagrangian formulation has a universal character, and is flexible, versatile.

To illustrate the latter point, let (M, g) be a Riemannian manifold, and u :

R1+d
t,x →M a smooth map. What does it mean for u to satisfy a wave equation?
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While it is very non-obvious how to define such an object on the level of the

equation, it is easy by modifying (3):

L(u, ∂tu) =

∫
R1+d

t,x

1

2
(−|∂tu|2g +

d∑
j=1

|∂ju|2g
)
dtdx

The critical points L′(u, ∂tu) = 0 satisfy “manifold-valued wave equation”. If M ⊂
RN is imbedded, this equation is

�u ⊥ TuM or �u = A(u)(∂u, ∂u),

A being the second fundamental form. This is the extrinsic formulation. For exam-

ple, if M = Sn−1, then

�u = u(|∂tu|2 − |∇u|2).

This gives rise to a nonlinear wave equation in a canonical way, the nonlinearity

exhibits a so-called null-form structure. Harmonic maps are time-independent solu-

tions.

There is also an intrinsic formulation: Dα∂αu = ηαβDβ∂αu = 0, in coordinates

−uitt + ∆ui + Γijk(u)∂αu
j∂αuk = 0

with η = (−1, 1, 1, . . . , 1) being the Minkowski metric. Note the following points:

• Similarity with geodesic equation: u = γ◦ϕ is a wave map provided �ϕ = 0,

γ a geodesic.

• Energy conservation: E(u, ∂tu) =

∫
Rd

(
|∂tu|2g +

∑d
j=1 |∂ju|2g

)
dx is con-

served in time.

• Cauchy problem:

�u = A(u)(∂αu, ∂αu), (u(0), ∂tu(0)) = (u0, u1)

are smooth data, with u0 a fixed map into the manifold, and u1 a vector-

field. Basic problem: Does there exist a smooth local or global-in-time so-

lution? Local in time: Yes. Global in time: depends on the dimension of

Minkowski space and the geometry of the target.

For more background, see the book by Shatah and Struwe, [36].

3.2. Symmetries

The wave equation is invariant under the Poincaré group. However, conformal in-

variance is also essential for the understanding of these equations. Of particular

importance to the well-posedness problem is the dilation symmetry. If u(t, x) is a

wave map, then so is u(λt, λx) ∀λ > 0. Suppose the data belong to the Sobolev

space Ḣs × Ḣs−1(Rd). The unique s for which this space remains invariant under

the natural scaling is s = d
2 . On the other hand, the energy remains invariant under

the following scaling: u(t, x) 7→ λ
d−2
2 u(λt, λx) same as Ḣ1 × L2(Rd). The interplay
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between the natural scaling of the wave-map equation and the scaling of the energy

is essential for the solution theory.

• Subcritical case d = 1. The natural scaling is associated with less regularity

than that of the conserved energy. Expect global existence. Logic: local

time of existence only depends on energy of data, which is preserved.

• Critical case d = 2. Energy keeps the balance with the natural scaling of the

equation. For S2 can have finite-time blowup, whereas for H2 have global

existence, see [25, 26, 33, 39, 40].

• Supercritical case d ≥ 3. Poorly understood. Self-similar blowup Q(r/t)

for sphere as target [35]. Also negatively curved manifolds possible in high

dimensions [5].

From a mathematical perspective, the study of nonlinear Hamiltonian evolution

equations focuses on the following problems, broadly stated:

• Well-posedness: Existence, uniqueness, continuous dependence on the data,

persistence of regularity. At first, one needs to understand this locally in

time.

• Global behavior: Finite time break down (some norm, such as L∞, becomes

unbounded in finite time)? Or global existence: smooth solutions for all

times for smooth data?

• Blow up dynamics: If the solution breaks down in finite time, can one de-

scribe the mechanism by which it does so? For example, via energy concen-

tration at the tip of a light cone? Often, symmetries (in a wider sense) play

a crucial role here.

• Scattering to a free wave: If the solutions exists for all t ≥ 0, does it approach

a free wave? �u = N(u), then ∃v with �v = 0 and (~u−~v)(t)→ 0 as t→∞
in a suitable norm? Here ~u = (u, ∂tu). If scattering occurs, then we have

local energy decay.

Of great importance are equations that admit special “soliton” solutions. For

wave maps, these would be given by harmonic maps.

• Special solutions: If a global solution does not approach a free wave, does

it scatter to something else? A stationary nonzero solution, for example?

Focusing equations often exhibit nonlinear bound states.

• Stability theory: If special solutions exist such as stationary or time-periodic

ones, are they orbitally stable? Are they asymptotically stable?

• Multi-bump solutions: Is it possible to construct solutions which asymptoti-

cally split into moving “solitons” plus radiation? Lorentz invariance dictates

the dynamics of the single solitons.

• Resolution into multi-bumps: Do all solutions decompose in this fashion (as

in linear asymptotic completeness)? Suppose solutions ∃ for all t ≥ 0: either

scatter to a free wave, or the energy collects in “pockets” formed by such
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“solitons”? Quantization of energy.

3.3. Dispersion

In R3, the Cauchy problem �u = 0, u(0) = 0, ∂tu(0) = g has solution

u(t, x) = t

∫
tS2

g(x+ y)σ(dy)

If g is supported on B(0, 1), then u(t, x) is supported on
∣∣|t| − |x|∣∣ ≤ 1. We have

Huygens’ principle, see Figure 3. Decay of the wave:

‖u(t, ·)‖∞ ≤ Ct−1‖Dg‖1 (4)

In general dimensions the decay is t−
d−1
2 . Generally speaking, (4) is not suitable for

nonlinear problems, since L1(Rd) is not invariant under the nonlinear flow. Rather,

one uses the following energy based variant

‖u‖Lp
tL

q
x(R3) . ‖(u(0), u̇(0))‖Ḣ1×L2(R3) + ‖�u‖L1

tL
2
x(R3)

where 1
p+ 1

q ≤
1
2 , 1

p+ 3
q = 1

2 . These are Strichartz estimates which play a fundamental

role in the study of nonlinear problems. Examples of these estimates are given by

L∞t L
6
x(R1+3), L8

t,x(R1+3). In principle, L2
tL
∞
x (R1+3) is also in this class although

this particular endpoint fails. The original references are [19, 41], and the endpoint

is in [21].

Fig. 3. Huygens principle

4. The cubic Klein-Gordon equation

4.1. Basic existence theory and small data scattering

In R1+3
t,x consider the cubic defocusing Klein-Gordon equation

�u+ u+ u3 = 0, (u(0), u̇(0)) = (f, g) ∈ H := H1 × L2(R3) (5)
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with conserved energy

E(u, u̇) =

∫
R3

(1

2
|u̇|2 +

1

2
|∇u|2 +

1

2
|u|2 +

1

4
|u|4
)
dx

With S(t) denoting the linear propagator of �+ 1 we have

~u(t) = (u, u̇)(t) = S(t)(f, g)−
∫ t

0

S(t− s)(0, u3(s)) ds (6)

whence by a simple energy estimate, over the time interval I = (0, T )

‖~u‖L∞(I;H) . ‖(f, g)‖H + ‖u3‖L1(I;L2) . ‖(f, g)‖H + ‖u‖3L3(I;L6)

. ‖(f, g)‖H + T‖~u‖3L∞(I;H)

By contraction mapping for small T this implies local well-posedness for H data.

This means that there is a unique solution (u, u̇) ∈ C([0, T ];H1) × C([0, T ];L2)

which satisfies (5) in the Duhamel sense. Note that T depends only on the H-size

of data. From energy conservation we obtain global existence by time-stepping.

At this point it is natural to ask about the asymptotic state of the solution as

t→∞. Does it behave like a free wave? Specifically, we are asking about scattering

(as in linear theory): does there exist ~v(t) = (v(t), v̇(t)) ∈ H1 × L2(R3) such that

‖~u(t) − ~v(t)‖H → 0 as t → ∞ where �v + v = 0 is energy solution. If such ~v(t)

exists, then necessarily

~v(0) := ~u(0)−
∫ ∞
0

S(−s)(0, u3)(s) ds provided ‖u3‖L1
tL

2
x
<∞

Where should the finiteness of ‖u‖L3
tL

6
x

be coming from? Since L3
t expresses decay of

the solution, such a property requires dispersion. The free Klein-Gordon propagator

satisfies the Strichartz estimate

‖S(t)(f, g)‖L3
tL

6
x
≤ C‖(f, g)‖H1×L2(R3)

which implies, via the Duhamel formula (6), the nonlinear Strichartz estimate,

‖~u‖L∞(I;H) + ‖u‖L3(I;L6) . ‖(f, g)‖H + ‖u‖3L3(I;L6)

uniformly in intervals I. This immediately yields small data scattering:

‖~u‖L3(I;L6) . ‖(f, g)‖H � 1 for all I.

So I = R as desired.

4.2. Large data scattering

For large data the previous argument completely fails. Nevertheless, large data

scattering does hold for (5). The key is again to show finiteness of supI⊂R ‖u‖L3(I;L6),

which does not simply follow perturbatively, i.e., from the Duhamel formula. One

classical method is to use Morawetz estimates, see [19]. We shall now sketch a

different route, namely that of induction on energy, which was first considered by



December 7, 2012 15:50 WSPC - Proceedings Trim Size: 9.75in x 6.5in schlag

11

Bourgain [3]. Kenig and Merle [22, 23] introduced a general and robust version of

this method, based on the concentration compactness decomposition of Bahouri,

Gérard [1].

Let ~u be the solution to (5) with data (u0, u1) ∈ H. Define the forward scattering

set

S+ = {(u0, u1) ∈ H | ~u(t)∃ globally, scatters as t→ +∞}

We claim that S+ = H. This is proved via the following outline:

• (Small data result) ‖(u0, u1)‖H < ε implies (u0, u1) ∈ S+
• (Concentration Compactness) If scattering fails, i.e., if S+ 6= H, then

construct ~u∗ of minimal energy E∗ > 0 for which ‖u∗‖L3
tL

6
x

= ∞. There

exists a continuous curve x(t) so that the trajectory

K+ = {~u∗(· − x(t), t) | t ≥ 0}

is pre-compact in H.

• (Rigidity Argument) If a forward global evolution ~u has the property that

K+ is pre-compact in H, then u ≡ 0.

This blue print was introduced by Kenig-Merle [22, 23], based on the Bahouri-

Gérard [1] decomposition; for the latter see also [30].

4.2.1. Profile decomposition

We now formulate a version of the concentration compactness decomposition which

is relevant to the study of (5). Note the similarity with Proposition 2.1, the sub-

critical elliptic profile decomposition.

Proposition 4.1. Let {un}∞n=1 free Klein-Gordon solutions in R3 s.t.

sup
n
‖~un‖L∞t H <∞

∃ free solutions vj bounded in H, and translations (tjn, x
j
n) ∈ R× R3 s.t.

un(t, x) =
∑

1≤j<J

vj(t+ tjn, x+ xjn) + wJn(t, x)

satisfies ∀ j < J , ~wJn(−tjn,−xjn) ⇀ 0 in H as n→∞, and

• limn→∞(|tjn − tkn|+ |xjn − xkn|) =∞∀ j 6= k

• dispersive errors wJn vanish asymptotically:

lim
J→∞

lim sup
n→∞

‖wJn‖(L∞t Lp
x∩L3

tL
6
x)(R×R3) = 0 ∀ 2 < p < 6

• orthogonality of the energy:

‖~un‖2H =
∑

1≤j<J

‖~vj‖2H + ‖~wJn‖2H + o(1)
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w4
n

w4
n

w4
n

w4
nx1n − x2n

t1n = t2n

t1n − t3n

v2

v3

v1

Fig. 4. Profile decomposition

Figure 4 displays three profiles amongst the “Strichartz sea” w4
n. We can extract

further profiles from this Strichartz sea if w4
n does not vanish as n→∞ in a suitable

sense. In the radial case this means limn→∞ ‖w4
n‖L∞t Lp

x(R3) > 0.

Several comments are in order:

• Noncompact symmetry groups: space-time translations and Lorentz trans-

forms such as 
t′

x′1
x′2
x′3

 =


coshα sinhα 0 0

sinhα coshα 0 0

0 0 1 0

0 0 0 1



t

x1
x2
x3


The rotations form a compact symmetry group and can be ignored in Propo-

sition 4.1. Since Lorentz transforms do not constitute a compact group, the

question arises as to why they do not appear in the profile decomposition.

The reason for this is of course that the assumption of a uniform energy

bound compactifies them. In other words, only bounded α come into play.

• Dispersive error wJn is not an energy error. In other words, in general one

cannot expect that lim supn→∞ ‖wJn‖ → 0 as J →∞.

• In the radial case we only need time translations.

4.2.2. Critical element

Key observation in the Kenig-Merle scheme: We can have only one profile due to

minimality of the energy E∗. To be more specific, we now quickly review the basic

steps in the application of Proposition 4.1 in the large data scattering blue print.
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• Select a sequence ~un(0) ∈ H, s.t. E(~un(0)) → E∗ and ‖un‖L3
t (R;L6

x(R3)) →
∞ as n→∞. Let E∗ > 0 be minimal with this property. Here we are using

the small data scattering theory.

• Apply the concentration compactness decomposition to {~un(0)}n.

• Suppose we have two nontrivial profiles, say v1 6= 0, v2 6= 0. Then E(~vj(·+
tjn)) < E∗ for all j. Pass to nonlinear profiles V j

‖~vj(tjn)− ~V j(tjn)‖H → 0 as n→∞

Then by orthogonality of the energy we have E(V j) < E∗ and therefore

V j scatters.

• Pick J so large that ‖wJn‖L3
tL

6
x
< ε for all large n. Perturbation theory

implies that we can glue all V j together with wJn whence

‖un‖L3
tL

6
x
≤M <∞ ∀ n

But this is a contradiction, and there can be at most one profile. This

gives compactness as in the elliptic case up to the symmetries – in our case

space-time translations.

• Gives compactness of forward/backward trajectory. Again proved by con-

tradiction and a profile decomposition.

Radial case, u∗(t) has precompact forward trajectory in H1 × L2(R3).

4.2.3. Rigidity

We begin with the radial case. The essential ingredient in this step is the virial

identity, A = 1
2 (x∇+∇x)

∂t〈χu̇∗ | Au∗〉 = −
∫
R3

(|∇u∗|2 +
3

4
|u∗|4) dx+ error

χ(t, x) cutoff to |x| ≤ R, error is uniformly small due to compactness. Now integrate

in time:

〈χu̇∗ | Au∗〉
∣∣∣T
0

= −
∫ T

0

[ ∫
R3

(|∇u∗|2 +
3

4
|u∗|4) dx+ error

]
(t) dt

The left-hand side here is O(R×Energy(~u∗)), whereas the right-hand side satisfies

≥ T × Energy(~u∗). This is a contradiction for large T if u∗ 6= 0.

In the nonradial case, there exists a path x(t) s.t. ~u∗(t, · − x(t)) is relatively

compact for t ≥ 0 in H1 × L2. We know |x(t)| ≤ Ct by finite propagation speed. If

optimal, this would clearly destroy virial argument.

The key observation at this point is that u∗ has vanishing momentum:

P (~u∗) = 〈u̇∗ | ∇u∗〉 = 0

Indeed, if this were not the case, then by means of a Lorentz transform we could

lower the energy while retaining the property that the solution does not scatter.

But this is a contradiction to the minimality of the energy E∗. From the vanishing
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momentum we conclude that x(t) = o(t). The virial argument now applies to show

that u∗ = 0.

We arrive at the following conclusion.

Theorem 4.1. For any data (f, g) ∈ H1 × L2(R3) there exists a unique global

solution ~u(t) to the Cauchy problem �u + u + u3 = 0, ~u(0) = (f, g) which scatters

to a free energy solution as t→ ±∞.

5. Focusing cubic Klein-Gordon equation

The focusing cubic nonlinear Klein-Gordon equation

�u+ u = ∂ttu−∆u+ u = u3 (7)

has an indefinite conserved energy

E(u, u̇) =

∫
R3

(1

2
|u̇|2 +

1

2
|∇u|2 +

1

2
|u|2 − 1

4
|u|4
)
dx

We briefly review several basic facts about (7):

• Local wellposendness for H1 × L2(R3) data.

• Small data global existence and scattering.

• Finite time blowup u(t) =
√

2(T − t)−1(1 + o(1)) as t → T−. Cutoff to

a cone using finite propagation speed to obtain finite energy solution, as

shown in Figure 5. Dashed line is a smooth cutoff which = 1 on |x| ≤ T .

• Eq. (7) admits stationary solutions characterized by −∆ϕ + ϕ = ϕ3,

amongst these we single out the ground state Q(r) > 0.

t = 0

t = T

Fig. 5. Cutoff for the blowup solutions

At this point it is natural to ask whether there might be a criterion to decide

between finite-time blowup vs. global existence. Although this question turns out

to be somewhat too general and vague, there is a clean affirmative answer provided

the energy is less than the ground state energy. This criterion was discovered by

Payne and Sattinger around 1975, see [32]. Their argument rests on the observation
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that the energy near (Q, 0) is a saddle surface. More specifically, we define the

functionals

J(ϕ) =

∫
R3

(1

2
|∇ϕ|2 +

1

2
|ϕ|2 − 1

4
|ϕ|4

)
dx,

K(ϕ) =

∫
R3

(
|∇ϕ|2 + |ϕ|2 − |ϕ|4

)
dx.

J is the stationary energy, whereas K arises from J via the dilation symmetry.

To see this, define jϕ(λ) := J(eλϕ) where ϕ 6= 0 is fixed. Figure 6 depicts the

λ∗

Fig. 6. Payne-Sattinger well

graph of jϕ, with a unique horizontal tangent at λ = λ∗. We normalize so that

λ∗ = 0. Then ∂λjϕ(λ)
∣∣
λ=λ∗

= K0(ϕ) = 0. We might expect that the well on the

left-hand side of λ∗ acts to trap the solution, leading to global existence. Due to the

arbitrariness of ϕ, we need to find the smallest summit (or mountain pass) jϕ(λ∗).

This turns out to be

inf{jϕ(0) | K0(ϕ) = 0, H1 3 ϕ 6= 0} = J(Q) (8)

This infimum is attained uniquely at ±Q up to translations. What gives rise to (8)

is the uniqueness of Q as positive solution of the elliptic equation. Figure 7 depicts

level sets of J,K and how they relate to (±Q, 0). The Payne-Sattinger theorem

states that for data (f, g) ∈ H1 × L2(R3) for which E(f, g) < E(Q, 0) one has the

following dichotomy:

K(f) ≥ 0 =⇒ global existence

K(f) < 0 =⇒ finite time blowup
(9)

These two regions are invariant under the nonlinear flow, as shown in Figure 7. The

middle region is K ≥ 0 and it traps the solution. One can immediately check that

for K(u) ≥ 0, the energy E(u, u̇) is proportional to ‖(u, u̇)‖H1×L2 . But since the

latter remains bounded, the solution is automatically global by the standard well-

posedness. It is harder, but still elementary, to see that K < 0 leads to finite-time

blowup.
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K ≥ 0

J < J0

K < 0

J < J0

K = 0
K = 0

K < 0

J < J0

J := J(u) > J(Q) =: J0

(Q, 0)
(−Q, 0)

Fig. 7. The saddle structure of the energy near the ground state

In the regime of energies above E(Q, 0) one has the following description of the

dynamics, see [31].

Theorem 5.1. Let E(u0, u1) < E(Q, 0) + ε2, (u0, u1) ∈ Hrad. In t ≥ 0 for (7)

there is the following trichotomy:

(1) finite time blowup

(2) global existence and scattering to 0

(3) global existence and scattering to Q: u(t) = Q + v(t) + oH1(1) as t → ∞, and

u̇(t) = v̇(t) + oL2(1) as t→∞, �v + v = 0, (v, v̇) ∈ H.

All 9 combinations of this trichotomy allowed as t→ ±∞.

A few remarks about Theorem 5.1:

• Applies to dim = 3, |u|p−1u, 7/3 < p < 5, or dim = 1, p > 5.

• Third alternative forms the center stable manifold associated with (±Q, 0), see

Figure 8. This is a standard notion from hyperbolic dynamical systems.

• ∃ 1-dimensional stable, unstable manifolds at (±Q, 0). These arise in the classi-

fication of all possible dynamics at energy level E(u, u̇) = E(Q, 0), see [13, 14].

The linearized operator L+ = −∆ + 1 − 3Q2 has spectrum {−k2} ∪ [1,∞) on

L2
rad(R3) where k > 0. It is easy to see that there must be negative spectrum since

〈L+Q|Q〉 = −2‖Q‖44 < 0. This implies that there is a simple negative eigenvalue

(ground state of L+). That there is no other negative spectrum and no kernel over

radial functions follows from the uniqueness of Q. Much more delicate is the spectral

gap property: L+ has no eigenvalues in (0, 1], and no threshold resonance. This

is only needed in order to understand the scattering properties of the linearized

dynamics. In particular, it allows one to use Kenji Yajima’s Lp-boundedness for

wave operators, see [47].

To understand the perturbative, i.e., stable dynamics of Theorem 5.1, we plug

u = Q+ v into (7):

v̈ + L+v = N(Q, v) = 3Qv2 + v3
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W s
W s

W u

W u

W cs

Fig. 8. Stable, unstable, center-stable manifolds

We rewrite this as a Hamiltonian system:

∂t

(
v

v̇

)
= A

(
v

v̇

)
+

(
0

N(Q, v)

)
, A =

[
0 1

−L+ 0

]
Then spec(A) = {k,−k} ∪ i[1,∞) ∪ i(−∞,−1] with ±k being simple eigenvalues,

see Figure 9. The spectrum makes it clear that one should expect 1-dimensional

stable/unstable manifolds, as well as a codimension 1 center-stable manifold.

−k k

i

−i

ess spec

ess spec

Fig. 9. Spectrum of nonselfadjoint linear operator in phase space

Let us now comment on the non-perturbative aspects of Theorem 5.1, which are

most important in describing the dynamics away from the center-stable manifold.

Figure 10 shows what happens to Figure 7 at energy levels larger than E(Q, 0): the

regions which formerly pinched off at (±Q, 0) are now “fattened up” and a solution

may pass through small balls surrounding these points. Energy is no obstruction

anymore as in the Payne-Sattinger case. The key to the description of the dynamics

is the one-pass (or no return) theorem. This establishes that the trajectory can make

only one pass through the balls. Returning trajectories are excluded by means of

an indirect argument using a variant of the virial argument that was essential to
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the rigidity step of Kenig-Merle. The point behind the stabilization of the sign of

K(u(t)) is that we may then essentially fall back on the Payne, Sattinger type

argument to decide the long-term fate of the solutions. The scattering, on the other

hand, requires the use of concentration compactness ideas, as in Kenig-Merle.

K ≥ 0

E < J

K < 0

E < J

K = 0
K = 0

K < 0

E < J

E := E(u, ut) > J(Q) + ε2 =: J

E > J (Q, 0)(−Q, 0)

Fig. 10. Signs of K = K0 away from (±Q, 0)

6. Wave maps

Suppose the smooth map u : R1+2
t,x → S2 satisfies the wave map equation

�u ⊥ TuS2 ⇔ �u = u(|∂tu|2 − |∇u|2)

as well as the equivariance assumption u ◦R = R ◦ u ∀ R ∈ SO(2), see Figure 11.

Fig. 11. Equivariance and Riemann sphere

Then u takes the special form u(t, r, φ) = (ψ(t, r), φ) in spherical coordinates,

where ψ measures the angle from the north pole. This angle then satisfies the

equivariant wave map equation

ψtt − ψrr −
1

r
ψr +

sin(2ψ)

2r2
= 0, (ψ, ψ̇)(0) = (ψ0, ψ1)
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• Conserved energy

E(ψ, ψ̇) =

∫ ∞
0

(
ψ2
t + ψ2

r +
sin2(ψ)

r2
)
r dr

• ψ(t,∞) = nπ, n ∈ Z, homotopy class = degree = n and we define Hn to be the

set of finite energy data of degree n.

• stationary solutions = harmonic maps = 0,±Q(r/λ), where Q(r) = 2 arctan r.

This is the identity S2 → S2 with stereographic projection onto R2 as domain.

Theorem 6.1. [7] Let (ψ0, ψ1) be smooth data.

(1) Let E(ψ0, ψ1) < 2E(Q, 0), degree 0. Then the solution exists globally, and scat-

ters (energy on compact sets vanishes as t → ∞). For any δ > 0 there exist

data of energy < 2E(Q, 0) + δ which blow up in finite time.

(2) Let E(ψ0, ψ1) < 3E(Q, 0), degree 1. If the solution ψ(t) blows up at time t = 1,

then there exists a continuous function, λ : [0, 1)→ (0,∞) with λ(t) = o(1− t),
a map ~ϕ = (ϕ0, ϕ1) ∈ H0 with E(~ϕ) = E(~ψ)− E(Q, 0), and a decomposition

~ψ(t) = ~ϕ+ (Q (·/λ(t)) , 0) + ~ε(t) (10)

s.t. ~ε(t) ∈ H0, ~ε(t)→ 0 in H0 as t→ 1.

L2
t (H

1
r )

t1

t2

Fig. 12. Struwe’s bubbling off theorem

• For degree 1 have an analogous classification to (10) for global solutions, see [8].

• Côte, Kenig, Merle [6] proved the degree 0 result for E < E(Q, 0)+δ. Proof pro-

ceeds via the small data scattering/concentration-compactness/rigidity scheme.

• Duyckaerts, Kenig, Merle [16] established analogous classification results for

�u = u5 in Ḣ1 × L2(R3) with W (x) = (1 + |x|2/3)−
1
2 instead of Q. We use

certain parts of their ideology, which is very heavily based on concentration

compactness arguments. Note that here we cannot rely in any form on induction

on energy.
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• Construction of blowup solutions as in (11) by Krieger-S.-Tataru, Donninger-

Krieger [12, 26].

• A crucial role in the proof of our degree 1, 3E(Q, 0) result is played by Struwe’s

bubbling off theorem in the equivariant setting [42]: if blowup happens, then

there exists a sequence of times approaching blowup time, such that a rescaled

version of the wave map approaches locally in energy space a harmonic map of

positive energy, see Figure 12. The rescalings converge in the local L2
t,r-sense

to a stationary wave map of positive energy, i.e., a harmonic map.

A fundamental role in the degree 1 argument is played by a property of the

linear wave equation. To be specific, consider �u = 0, u(0) = f ∈ Ḣ1(Rd), ut(0) =

g ∈ L2(Rd) arbitrary functions. Then Duyckaerts, Kenig, and Merle showed the

following: There exists c > 0 such that for all t ≥ 0 or all t ≤ 0 one has

Eext(~u(t)) ≥ cE(f, g) (11)

provided the dimension is odd. Here the exterior energy is computed relative to the

region in Figure 13.

In even dimensions this property fails, see [9]. To be precise, in dimensions

d = 2, 6, 10, . . . (11) holds for radial data (0, g), but fails in general for data (f, 0).

On the other hand, for dimensions d = 4, 8, 12, . . . (11) holds for radial data (f, 0)

but fails in general for data (0, g).

The proof of both the positive and negative results is based on the Fourier rep-

resentation, which in our radial context becomes a Bessel transform. The dimension

d is then reflected in the phase of the Bessel asymptotics. Due to the monotonicity

of the energy over the regions {|x| ≥ t} the key calculation is that of the asymptotic

exterior energy as t→ ±∞.

For our 3E(Q, 0) theorem we need the d = 4 result rather than d = 2 due to

the repulsive ψ
r2 -potential coming from sin(2ψ)

2r2 . Why does the (f, 0) result suffice

for our argument? Because of the results by Christodoulou, Tahvildar-Zadeh, and

Shatah [10, 37, 38] about equivariant wave maps, see also the book by Shatah,

Struwe [36]. Amongst other things, these authors showed that at blowup t = T = 1

one has vanishing kinetic energy

lim
t→1

1

1− t

∫ 1

t

∫ t

0

|ψ̇(t, r)|2 rdr dt = 0

This vanishing (modulo many other arguments) then allows us to work with the

more restrictive form of (11) for data (f, 0). However, for equivariance class 2 or

Yang-Mills our arguments do not apply in their present form, since for these prob-

lems one encounters a semi-linear equation in dimension d = 6. So we would need

to fall back on (0, g) for (11) to hold, which seems impossible to do.
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r > t

r > −t

Fig. 13. Exterior energy regions
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