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1 Introduction

It was shown by Besicovitch [F] that there are sets in Rd with measure
zero that contain unit line segments in every direction. In [Fe2], C. Feffer-
man used Besicovitch sets to show that the ball-multiplier is bounded only
on L2. Moreover, ideas originating in Fefferman’s work lead to alternate
proofs, cf. [Fe3], [Có1,2], of the optimal boundedness result for Bochner–
Riesz means, established originally by Carleson–Sjölin [CS], as well as for
the restriction problem in R2, which had been solved earlier by Fefferman
and Stein [Fe1]. It turns out that the crucial property of planar Besicovitch
sets in this context is that they have maximal Hausdorff dimension. It is
conjectured that Besicovitch sets E ⊂ Rd with d ≥ 3 have dimension equal
to d. It is easy to show that dim(E) ≥ (d+ 1)/2. This was first improved
by Bourgain [Bo], who showed, e.g., for d = 3 that dim(E) ≥ 7/3. A
further improvement was then achieved by Wolff [W1], who proved that
dim(E) ≥ (d + 2)/2 in all dimensions. Both these results where based
in part on “bush-type” arguments. More precisely, Bourgain’s argument
used the observation that tubes of thickness δ with 10δ-separated directions
which intersect at some point x0 have to be disjoint outside a ball of radius
1/2 centered at x0. The improvement in [W1] is obtained by considering
families of tubes intersecting a line.

In this paper we present a different geometric approach that leads to
a nontrivial estimate for Besicovitch sets in R3 – in fact Bourgain’s 7/3
bound. Our method is analogous to [KW] and will combine a geometric

The idea of bounding the total number of incidences between lines using geometric
statements about the common transversals of three or four lines is due to Thomas Wolff.
Moreover, I thank him for several helpful discussions and financial support at the Cal-
ifornia Institute of Technology. I am grateful to the referee for constructive criticism.
This paper was written partly at the Institute for Advanced Study where the author was
supported by the National Science Foundation, DMS 9304580.



Vol. 8, 1998 A GEOMETRIC INEQUALITY 607

inequality with a well-known extremal graph theory fact. The main ideas
of our proof are as follows. Let Eδ be a δ-neighborhood of a Besicovitch
set E ⊂ R3. If dim(E) ≥ p then for any � > 0

|E
δ
| ≥ δ

3−p+� (1.1)

provided δ is sufficiently small. Here we restrict ourselves to giving a
heuristic argument for the weaker statement (1.1). Let {ej}

N
j=1 ⊂ S2

be a maximally δ-separated sequence. By assumption, there are tubes
T δ

1 , T
δ
2 , . . . , T

δ
N ⊂ Eδ of dimensions 1× δ × δ such that T δ

j points in direc-
tion ej. It is clear that (1.1) holds if, say, for at least N/2 values of j

����

�
x ∈ T

δ
j :

N�

i=1

χT δ
i
(x) < δ

−3+p−�
����� >

1
2
|T

δ
j | (1.2)

(this is the concept of multiplicity from [W1]). Indeed, (1.2) implies

|E
δ
| ≥ δ

3−p+�
�

{Eδ :
�N

i=1 χTδi
<δ−3+p−�}

N�

j=1

χT δ
j
(x) dx ≥ δ

3−p+�N

2
δ2

2
,

which is (1.1) since N ∼ δ−2. To prove (1.2) with a suitable p, we shall
use the following simple geometric obstruction that limits the number of
incidences between three fixed δ-tubes and all others. Suppose we are
given lines l1, l2, l3 in general position. Since a line in R3 is given by four
parameters and incidence between lines is described by a single equation,
the set of lines

{l ⊂ R3 : l ∩ li �= ∅ , i = 1, 2, 3} (1.3)

is a one parameter family. In particular, if tubes T δ
j1 , T

δ
j2 , T

δ
j3 are in general

position then they can have at most δ−1 common transversals among the
T δ

1 , T
δ
2 , . . . , T

δ
N . Now consider the matrix A = {aij}

N
i,j=1 where aij = 1 or

0 depending on whether or not T δ
i and T δ

j intersect. If our tubes are in
sufficiently general position then the geometric obstruction discussed above
rules out submatrices of A of size δ−1 × 3 all of whose entries are equal to
one. By Hölder’s inequality

N�

i,j=1

aij ≤

� N�

j=1

� N�

i=1

aij

�3�1/3
N

2/3

≤ C

� N�

j=1

�

1≤i1<i2<i3≤N
ai1jai2jai3j +

N�

j=1

�

1≤i1<i2≤N
ai1jai2j
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+
N�

i,j=1

aij

�1/3
N

2/3

≤ C(δ−1
N

3 +N
3 +N

2)1/3N2/3
≤ Cδ

−11/3
.

In particular, a typical tube can intersect at most δ−5/3 of the tubes
T δ

1 , T
δ
2 , . . . , T

δ
N . Therefore, most points of a typical tube can be contained

in at most δ−2/3 tubes, which corresponds to p = 7/3 in (1.2). The bound
derived in (1.4), which is known to be sharp, is a special case of a well-
known result from extremal graph theory, see chapter VI in [B], especially
Theorem 2.2.

The main difficulty with this heuristic argument is to quantify “general
position”. In fact, it is possible that all tubes intersect T δ

j1 , T
δ
j2 , T

δ
j3 . This is

the case, for instance, if T δ
j1 , T

δ
j2 , T

δ
j3 lie on a suitable quadratic surface and

are distance δ1/2 apart, see Example 2.10 below.
The main purpose of this paper is to prove a sharp bound (up to | log δ|-

factors) on the measure of the set of directions of all lines that come δ-close
to three given lines, see Proposition 2.8. Using this inequality we give a
rigorous version of the argument outlined above in section 3.

2 The Geometric Estimates

It is well-known, see [So], that the set of lines (1.3) is a (perhaps degen-
erate) quadratic surface in R3. If l1, l2, l3 are pairwise skew, i.e., no two
are coplanar, then this quadric is nondegenerate, and is therefore, up to
Euclidean motions, a hyperbolic paraboloid or a one-sheeted hyperboloid.
In this section we consider the set of lines that come δ-close to three given
ones. We make no direct use of the aforementioned fact about quadrics.
Rather, we introduce a (most likely standard) set of coordinates on the
four-dimensional Grassmann manifold of all lines which make a bounded
angle with the z-axis and intersect a small ball around 0. Distances and an-
gles between lines can easily be expressed in terms of their coordinates. The
desired estimates are then obtained by elementary geometric arguments.
Definition 2.1. Let X = B(0, 1) ⊂ R4. l = (x, y, x̄, ȳ) ∈ X is the line
passing through the points a = (x, y,−1) and b = (x̄, ȳ, 1) with direction
∆(l) = b − a. We refer to (x, y, x̄, ȳ) = (w, w̄) as the coordinates of l.
For any set of lines L the four-dimensional Lebesgue measure of the set
of coordinates of all lines in L is denoted by |L|. lδ is the δ-neighborhood
of l. m � n and m � n mean m < Cn for some absolute constant and
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m < C−1n for some sufficiently large absolute constant, respectively. If
both m � n and n � m then m ∼ n.

The following lemma expresses distances and angles in terms of these
coordinates. It also allows us to assume that a particular line is equal to
the z-axis. Let B0 = B(0, 1/4) ⊂ R3.
Lemma 2.2. Let l1 = (w1, w̄1), l2 = (w2, w̄2) ∈ X be nonparallel. Then

i. l1 ∩ l2 �= ∅ ⇐⇒ w1 − w2 ∧ w̄1 − w̄2 = 0
ii. Suppose lδ1 ∩ lδ2 ∩B0 �= ∅ and let α > δ. Then

�(l1, l2) ∼ α⇐⇒ |w1 − w2| ∼ |w̄1 − w̄2| ∼ α

iii. Suppose �(l1, l2) = α. Then

l
δ
1 ∩ l

δ
2 �= ∅ ⇐⇒

��(w1 − w2) ∧ (w̄1 − w̄2)
�� � δα

iv. Let l0 = (ξ, η, ξ̄, η̄) ∈ X and define a linear map on R3 by

T (x, y, z) =
�
x−

z + 1
2

ξ̄ +
z − 1

2
ξ, y −

z + 1
2

η̄ +
z − 1

2
η, z

�
.

Then T maps the line l0 onto the z-axis, it distorts lengths and angles
in R3 by an absolutely bounded factor and it preserves the measure
of sets of lines, i.e., if L ⊂ X, then |T (L)| = |L|.

Proof. Since l1 and l2 are nonparallel, they intersect iff they lie in a common
plane. This is equivalent to b2 − b1 � a2 − a1, see Figure 1, which in turn
is equivalent to w1 − w2 � w̄1 − w̄2, as claimed in the first statement. The
second statement is clear from Figure 1. For iii note that by elementary
geometry the minimal separation of l1 and l2 is

|�(b1 − a1)× (b2 − a2), a1 − a2�|

|(b1 − a1)× (b2 − a2)|
∼
|(w1 − w2) ∧ (w̄1 − w̄2)|

�(l1, l2)
.

Finally, T and T−1 are uniformly bounded, so angles and lengths are
essentially preserved. The other statements follow from the fact that a line
l = (x, y, x̄, ȳ) is mapped onto T (l) = (x− ξ, y − η, x̄− ξ̄, ȳ − η̄). �

The following auxiliary lemma is a quantitative version of a simple geo-
metric fact, cf. Figure 2.
Lemma 2.3. Suppose l1, l2, l̄1, l̄2 ∈ X satisfy

l
δ
i ∩ l̄

δ
j �= ∅ and dist(l̄δi ∩ l

δ
1, l̄

δ
i ∩ l

δ
2) < λ for i, j = 1, 2

with some λ� δ. Let θ = �(l1, l2). Then

dist(lδ1 ∩ l̄
δ
1, l

δ
1 ∩ l̄

δ
2) � λ

λ + θ
.
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Figure 1: Characterization of incidence

Proof. It suffices to consider the case θ > λ. Let pij ∈ lδi ∩ l̄δj . Since
λ� δ we may assume that li ∩ l̄j = {pij} for i, j = 1, 2. This changes the
hypotheses or conclusion of the lemma by at most a multiplicative constant.
Apply Lemma 2.2, iv, with l0 = l1 so that l1 becomes the z-axis. Let l�1
be as in Figure 2 and denote by q and q� the projections of p21 onto l1
and l�1, respectively. Clearly, |p21 − q| � λ and |q − q�| = dist(l1, l�1) � λ.
Consequently,

|p22 − p21| sin θ = |q
�
− p21| ≤ |q

�
− q|+ |p21 − q| � λ ,

and therefore by symmetry |p22 − p21|+ |p12 − p11| � λ/θ, as claimed. �

Lemma 2.4 bounds the measure of the set of all lines that come δ-close
to two given ones. In our main estimate involving three lines this bound
will be used in case the three lines are close to a common plane.

Lemma 2.4. Fix l1, l2 ∈ X and α, λ ∈ (δ, 1). Let θ = �(l1, l2) and define

L
(l1,l2)
α,λ =

�
l ∈ X : lδ ∩ lδj ∩B0 �= ∅, �(l, lj) ∈ [α, 2α] for j = 1, 2 ,

dist(lδ ∩ lδ1, l
δ
∩ l

δ
2) ∈ [λ, 2λ]

�
.
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Figure 2: Lines l̄1 and l̄2 intersecting l1 and l2 as in Lemma 2.3

If λ� δ/α then

|L
(l1,l2)
α,λ | � δ

2
α

2
�
λ +

θ

α

�−1
. (2.1)

Proof. Apply Lemma 2.2, iv, with l0 = l1 so that l1 becomes the z-axis.
Consider the change of variables Φ in R3 given by

Φ : (x, y, z) �→ (ρx, ρy, z) .

By Lemma 2.2, ii, Φ takes L(l1,l2)
α,λ into X provided ρ� α−1. Furthermore,

δ, α, and θ are rescaled into ρδ, ρα, and ρθ, respectively (note that θ � α

by the triangle inequality). If α is small, λ is comparable to the distance of
lδ ∩ lδ1 and lδ ∩ lδ2 in the z-direction. Thus λ remains essentially unchanged
under this rescaling. Since |L(l1,l2)

α,λ | scales like ρ4, we conclude that it suffices
to show (2.1) with α = 1. This observation will be used repeatedly in what
follows.

It is convenient to assume that l and l1 are incident rather than δ-
incident. Thus we introduce the auxiliary set

L =
�
l ∈ X : l ∩ l1 ∩B0 �= ∅, l

δ
∩ l

δ
2 ∩B0 �= ∅, �(l, lj) ∈ [1, 2] for j = 1, 2 ,

dist(lδ ∩ lδ1, l
δ
∩ l

δ
2) ∈ [λ, 2λ]

�
.
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λ� δ implies that L(l1,l2)
α,λ is contained in a Cδ-neighborhood of L (translate

l1 until it intersects l). Hence it suffices to show that the three-dimensional
Hausdorff measure of L satisfies

H
3(L) � δ

λ + θ
. (2.2)

Let l = (w, w̄) ∈ L and l ∩ l1 = (0, 0, τ). Then
1
2(1 + τ)w̄ + 1

2(1− τ)w = 0 (2.3)

since the expression on the left-hand side is the (x, y)-component of the
point on l with z-coordinate τ . Furthermore, by Lemma 2.2, iii, lδ∩lδ2∩B0 �=
∅ implies

��(w − w2) ∧ (w̄ − w̄2)
�� � δ . (2.4)

Since τ ∈ (−1/2, 1/2) the map from (w, τ) to (w, w̄) satisfying (2.3) is a
smooth parametrization of L. Therefore it suffices to bound the volume of
the set of (w, τ) parameters of all lines in L. To this end (2.4) is rewritten
as follows. By (2.3)

δ �
��(1 + τ)(w̄ − w̄2) ∧ (w − w2)

�� =
��(−(1− τ)w − (1 + τ)w̄2) ∧ (w − w2)

��

=
��(−(1− τ)w2 − (1 + τ)w̄2) ∧ (w − w2)

�� . (2.5)

Fixing τ we conclude that the set of w satisfying (2.4) and |w −w2| ∼ 1 is
contained in a strip in R2 of width δ|(1− τ)w2 + (1 + τ)w̄2|

−1 intersected
with the unit disc. Hence the measure of all (w, τ) parametrizing L is
bounded by

�

J

δ

|(1− τ)w2 + (1 + τ)w̄2|
dτ . (2.6)

Here J is the set of τ for which there exists l ∈ L with l∩ l1 = (0, 0, τ). Fix
such a τ and l. Translating l2 one obtains l�2 = (w�2, w̄�2) such that l∩ l�2 �= ∅

and |w2 − w�2|+ |w̄2 − w̄�2| � δ. λ� δ and �(l�2, l) ∼ 1 imply

dist
�
l
�
2 ∩ {z = τ}, l ∩ {z = τ}

�
∼ dist(lδ ∩ lδ1, l

δ
∩ l

δ
2) ,

see Figure 3. Clearly, cf. (2.3),

l
�
2 ∩ {z = τ} =

�1
2(1− τ)w�2 + 1

2(1 + τ)w̄�2, τ
�

l ∩ {z = τ} = (0, 0, τ)

and thus
��1
2(1− τ)w2 + 1

2(1 + τ)w̄2
�� =

��1
2(1− τ)w�2 + 1

2(1 + τ)w̄�2
��+O(δ)

∼ dist(lδ ∩ lδ2, l
δ
∩ l

δ
1) � λ . (2.7)
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Figure 3: Lines l1 and l2 intersecting l as in Lemmas 2.4 and 2.5

Because Lemma 2.3 implies that J is contained in an interval of length λ
θ+λ ,

we finally conclude that (2.6) � δ(λ + θ)−1, which is (2.2). �
For the Kakeya problem it is more important to bound the measure

of the set of directions of all lines in L
(l1,l2)
α,λ rather than the measure of

L
(l1,l2)
α,λ itself. However, it is easy to pass from the latter to the former,

provided one has a lower bound on the two-dimensional measure of all lines
in L

(l1,l2)
α,λ with a fixed direction. This is carried out in the following lemma

by determining how far a line can be translated inside L(l1,l2)
α,λ . Recall that

∆(l) = (w̄ − w, 2). If lδ ∩ lδj �= ∅, we let l�j henceforth be as in the previous
proof, i.e., lj � l�j , l∩ l

�
j �= ∅ and |wj−w

�
j |+ |w̄j− w̄

�
j | � δ. Finally, we define

l ∨ l�j to be the plane spanned by l and l�j .
Lemma 2.5. Fix lines l1, l2 ∈ X and α, λ, φ0 ∈ (δ, 1). Let θ = �(l1, l2) > δ

and define

D
(l1,l2)
α,λ (φ0) =

�
e : ∃ l ∈ X with direction e = ∆(l) so that lδ ∩ lδj ∩B0 �= ∅ ,
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�(l, lj) ∈ [α, 2α] for j = 1, 2, dist(lδ ∩ lδ1, l
δ
∩ l

δ
2) > λ ,

�(l ∨ l�1, l ∨ l
�
2) ≤ φ0

�
.

If λ� δ/α, then
��D(l1,l2)

α,λ (φ0)
�� � α

2�
λ + θ

α

�−1 min
�
φ0,

θ
α

�
| log δ| .

Proof. As before, it suffices to consider the case α = 1. Since (see Figure 3)

�(l ∨ l�1, l ∨ l
�
2) ∼

��(e1 − e) ∧ (e2 − e)
�� ≤ |e1 − e2| ∼ �(l1, l2) = θ

(2.8)

we may assume that φ0 ≤ θ. Let

L(φ) =
�
l ∈ X : lδ ∩ lδj ∩B0 �= ∅ ,�(l, lj) ∼ 1 for j = 1, 2 ,

dist(lδ ∩ lδ1, l
δ
∩ l

δ
2) > λ ,�(l ∨ l�1, l ∨ l

�
2) ∈ (φ− δ, 2φ]

�
.

Clearly,

D
(l1,l2)
1,λ (φ0) ⊂

�

δ≤φ≤φ0

∆(L(φ)) , (2.9)

where φ is taken to be dyadic. Let B1 = B(0, 1/2) ⊂ R3 and fix some
φ ∈ (δ, φ0). In order to facilitate the translation mentioned above we define
the auxiliary set

L
�(φ) =

�
l ∈ X : l10δ

∩ l
10δ
j ∩B1 �= ∅ , �(l, lj) ∼ 1 for j = 1, 2 ,

dist(l10δ
∩ l

10δ
1 , l

10δ
∩ l

10δ
2 ) > λ/2 , �(l ∨ l�1, l ∨ l

�
2) ∈ (φ− δ, 2φ]

�
.

(2.10)

Replacing λ with 2jλ, j ∈ [0, | log δ|], in Lemma 2.4 and summing yields

|L
�(φ)| � δ

2(λ + θ)−1
| log δ| . (2.11)

Using the coordinates (w,∆) on X rather than (w, w̄) one obtains from
Fubini’s theorem�

∆(L(φ))
H

2�
{l ∈ L

�(φ) : ∆(l) = e}
�
de ≤ |L

�(φ)| . (2.12)

We claim that for any e ∈ ∆(L(φ))

H
2�
{l ∈ L

�(φ) : ∆(l) = e}
�

� δ2

φ . (2.13)

To see this let l ∈ L(φ) and e = ∆(l). Choose any l� ∈ l ∨ l�1 parallel to l

with dist(l, l�) � δ/φ. Then �(l∨ l�1, l∨ l�2) � φ implies that dist(l�, l�2) < δ.
Furthermore,

dist
�
(l�)10δ

∩ l
10δ
1 , (l�)10δ ∩ l10δ2

�
> λ/2 ,
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provided l� lies in the correct half plane of l ∨ l�1 relative to l (in one of
the half planes the distance between l1 and l2 increases). Thus l� and its
δ-translates belong to L�(φ), which proves (2.13). We conclude from (2.11),
(2.12), and (2.13) that for any φ ≥ δ

��∆(L(φ))
�� � (λ + θ)−1

φ| log δ| , (2.14)

and the lemma follows from (2.9). �
The following two lemmas are analogues of Lemmas 2.4 and 2.5 for the

case of three lines. For further details in the arguments below the reader is
referred to the proofs of those lemmas.
Lemma 2.6. Fix lines l1, l2, l3 ∈ X, λ ∈ (δ, 1), and angles α ∈ (δ, 1),
�φ = (φ12, φ13, φ23) ∈ (δ, π/2)3. Let L ≥ 2 be some constant. Define

L
(l1,l2,l3)
α,λ (�φ) =

�
l∈X : lδ∩lδj∩B0 �= ∅ , �(l, lj)∈[α, 2α] , dist(lδ∩lδi , l

δ
∩l

δ
j )

∈ [λ,Lλ] , �(l ∨ l�i, l ∨ l
�
j) ∈ [φij/2, φij ] for 1 ≤ i �= j ≤ 3

�
. (2.15)

Let θ = max�(li, lj) and φ = maxφij . If λ� δ/α and φ� Lδ/λα, then
��L(l1,l2,l3)

α,λ (�φ)
�� � αδ

3
Lλ

−1�
λ + θ

α

�−1
φ
−1

. (2.16)

Proof. By the triangle inequality we may assume that φ23 ∼ φ and θ12 ∼ θ.
We let l1 be the z-axis and α = 1. L

(l1,l2,l3)
α,λ (�φ) is contained in a Cδ-

neighborhood of the auxiliary set

L =
�
l∈X : l∩ l1∩B0 �= ∅ , l

δ
∩ l

δ
j ∩B0 �= ∅ , �(l, lj) ∈ [1, 2] , dist(lδ ∩ lδi ,

l
δ
∩ l

δ
j ) ∈ [λ,Lλ] , �(l ∨ l�1, l ∨ l

�
2) ∈ [φij/2, φij ] for 1 ≤ i �= j ≤ 3

�
.

With (w, τ) being the parameters from the proof of Lemma 2.4, it will
suffice to show that the three-dimensional measure of the set of (w, τ) pa-
rameters of L is bounded by δ2Lλ−1(λ + θ)−1φ−1. Let J be the set of all
τ such that there exists l ∈ L with l ∩ l1 = (0, 0, τ). Fix such a τ and l.
Let vj = 1

2(1 − τ)wj + 1
2(1 + τ)w̄j for j = 2, 3. In view of (2.5) the set

of all w such that (w, τ) corresponds to some line in L is contained in the
intersection of the strips

��vj ∧ (w − wj)
�� � δ , j = 2, 3 . (2.17)

The area given by (2.17) is bounded by δ2|v2 ∧ v3|
−1. We claim that

infτ∈J |v2 ∧ v3| � λ2φ. Define v�j = 1
2(1 − τ)w�j + 1

2(1 + τ)w̄�j . Since
l�j ∩ {z = τ} = {(v�j , τ)} and l ∩ {z = τ} = {(0, 0, τ)} it follows that
v�j � ej − e for j = 2, 3, see Figure 3. By (2.7) therefore

|v
�
2 ∧ v

�
3| ∼ |v

�
2||v

�
3|�(l ∨ l�2, l ∨ l

�
3) ∼ |v

�
2||v

�
3|φ23 � λ

2
φ .
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Note also that (2.7) implies |v�2|+ |v�3| � Lλ and thus

|v2 ∧ v3| ≥ |v
�
2 ∧ v

�
3| − δ O

�
|v
�
2|+ |v

�
3|
�

� λ
2
φ− Lδλ � λ

2
φ .

The last step uses φλ � Lδ. By Lemma 2.3 J is contained in an inter-
val of length � Lλ(λ + θ)−1 and Fubini’s theorem implies that the vol-
ume of the set of (w, τ) parameters of L is bounded by δ2|v2 ∧ v3|

−1|J | �
δ2λ−2φ−1Lλ(λ + θ)−1. �

As in the case of two lines, one can pass from an estimate on |L(l1,l2,l3)
α,λ (�φ)|

to an estimate on the measure of the set of directions given by all lines in
L

(l1,l2,l3)
α,λ (�φ).

Lemma 2.7. Fix l1, l2, l3 ∈ X, some λ ∈ (δ, 1), and angles α ∈ (δ, 1), �φ =
(φ12, φ13, φ23) ∈ (δ, π/2)3. Let L ≥ 2 be some constant and let L(l1,l2,l3)

α,λ (�φ)
be defined as in (2.15). If λ� δ/α and φ� Lδ/λα then

��∆(L(l1,l2,l3)
α,λ (�φ))

�� � αδ Lλ
−1�

λ + θ
α

�−1
.

Proof. As usual we assume that l1 is the z-axis and that α = 1. Using
coordinates (w,∆) rather than (w, w̄) on the space of lines one obtains
from Fubini’s theorem and Lemma 2.6�

∆(L(l1,l2,l3)
1,λ (�φ))

H
2�
{l ∈ L : ∆(l) = e}

�
de ≤

��L(l1,l2,l3)
1,λ (�φ)

��

� δ
3
Lλ

−1(λ + θ)−1
φ
−1

.

(2.18)

Given e ∈ ∆(L(l1,l2,l3)
1,λ (�φ)) we claim that

H
2�
{l ∈ L

(l1,l2,l3)
1,λ (�φ) : ∆(l) = e}

�
� δ2

φ (2.19)

(strictly speaking, one should introduce an auxiliary set as in (2.10), but
we skip those details). Indeed, suppose that l ∈ L

(l1,l2,l3)
1,λ (�φ), e = ∆(l).

Since �(l ∨ l�i, l ∨ l�j) ∼ φij ≤ φ, any line l� ∈ l ∨ l�1 parallel to l so that
dist(l, l�) � δ/φ satisfies dist(l�, l�j) < δ for j = 1, 2, 3. Furthermore, it
follows from

dist(lδ ∩ lδi , l
δ
∩ l

δ
j ) ∈ [λ,Lλ] , �(lj , l) ∼ 1 and δ

φ � λ

that dist((l�)δ ∩ lδi , (l
�)δ ∩ lδj ) ∈ [λ/2, 2Lλ]. We conclude that l� and all its δ-

translates belong to L(l1,l2,l3)
1,λ (�φ). This proves (2.19) and the lemma follows

from (2.18). �
The following proposition is the main result of this paper. It is a quanti-

tative version of the fact that (1.3) is a one-parameter family. Note that in
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contrast to Lemma 2.7 one does not need to specify the angles between the
planes l∨ l�i and l∨ l�j in Proposition 2.8. This is important for applications
to the Kakeya problem below, see section 3.

Proposition 2.8. Fix lines l1, l2, l3 ∈ X, and α, λ ∈ (δ, 1), and some
constant L ≥ 2. Let θ = max�(li, lj) > δ and define

D
(l1,l2,l3)
α,λ =

�
e : ∃ l ∈ X with direction e so that l

δ
∩ l

δ
j ∩B0 �= ∅ ,

�(l, lj) ∈ [α, 2α] , dist(lδ ∩ lδi , l
δ
∩ l

δ
j ) ∈ [λ,Lλ] , for 1 ≤ i �= j ≤ 3

�
.

If λ� δ/α then

|D
(l1,l2,l3)
α,λ | � αδλ

−1�
λ + θ

α

�−1 min
�
L, θ

λ
δ

�
| log δ|3 . (2.20)

Proof. We may assume that θ = �(l1, l2), that l1 is the z-axis, and that
α = 1. Let L(l1,l2,l3)

1,λ (�φ) be the set defined in Lemma 2.6.
Then, with φ12 etc. dyadic numbers ∈ [δ, π/2],

D
(l1,l2,l3)
1,λ ⊂

�

L δ
λ�maxφij

∆
�
L

(l1,l2,l3)
1,λ (�φ)

�
∪∆

� �

maxφij�L δ
λ

L
(l1,l2,l3)
1,λ (�φ)

�
.

(2.21)

We bound the measure of the first union of (2.21) by Lemma 2.7. If θ � L
δ
λ

the first union in (2.21) is empty, since we always have φij � θ, see (2.8).
Thus���

�

L δ
λ�maxφij

∆
�
L

(l1,l2,l3)
1,λ (�φ)

���� � δ Lλ
−1(λ + θ)−1 min

�
1, θ λ

Lδ

�
| log δ|3 .

(2.22)

The measure of the second union can be estimated via Lemma 2.5, simply
by discarding l3. Indeed, clearly

∆
� �

maxφij�L δ
λ

L
(l1,l2,l3)
1,λ (�φ)

�
⊂ D

(l1,l2)
1,λ

�
L

δ
λ

�
,

and since �(l1, l2) = θ > δ the desired estimate follows from Lemma 2.5. �

Remark 2.9. Inequality (2.20) turns out to be sharp if L ∼ 1, at least up
to logarithmic factors. The constant L was introduced only for technical
reasons. In fact, in the applications to the Kakeya problem in section 3
we shall have L < δ−�. Note also that the condition λ � δ/α cannot be
relaxed because

diam(l�δ ∩ lδ) ∼ δ
α

for any l, l� intersecting at angle α.
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Example 2.10. Consider the following hyperbolic paraboloid. Let l1 be
the x-axis and define

l2 =
�
(t cos θ,−λ, t sin θ) : t ∈ R

�

l3 =
�
(t cos θ, λ,−t sin θ) : t ∈ R

�
.

Here λ, θ ∈ (δ, 1). The common transversals of these three lines are

l
�
ξ =

�
(ξ, tλ, tξ tan θ) : t ∈ R

�
,

see Figure 4. We shall bound the measure of the set

θ

λ

λ

l

l

 l
 31

2

= x  axis

l’ = y axis

  ξ

0

  β

 θ

 θ

 l’
  ξ

l’

λ

Figure 4: Hyperbolic paraboloid as in Example 2.10

D =
�
e : e = ∆(l) with some l satisfying l

δ
i∩l

δ
�= ∅ , dist(lδi∩l

δ
, l
δ
j∩l

δ) ∼ λ
�

from below. Clearly, ∆(l�ξ) ∈ D provided |ξ| � λ
λ+θ . Moreover, it is easy to

see that � ∆(l�ξ)
|∆(l�ξ)|

: |ξ| � λ

λ + θ

�

is an arc of a great circle on S2 of length ∼ θ
λ+θ .

Now fix some ξ with |ξ| � λ
λ+θ . Let l� ∈ l1 ∨ l

�
ξ so that (ξ, 0, 0) ∈ l�, and

β = �(l�ξ, l
�) ≤ min

�
1,

δ

λθ

�
,

see Figure 4. Then l� will be δ-close to l1, l2, l3 and the intersection points
remain λ-separated. Therefore ∆(l�) ∈ D. Moreover, the directions of those
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l� (still with fixed ξ) lie on an arc of length ∼ min(1, δ/λθ) perpendicular
to the aforementioned great circle. Thus

|D| � θ

λ + θ
min

�
1,

δ

λθ

�
= δλ

−1(λ + θ)−1 min
�

1, θ
λ

δ

�
,

which agrees with (2.20) up to logarithms (α ∼ L ∼ 1).

3 Application to the Kakeya Problem

Let T δ(e, x) ⊂ R3 denote a tube of length one and thickness δ pointing in
direction e ∈ S2 and centered at x. As usual, define the Kakeya maximal
function to be

Mδf(e) = sup
x∈R3

δ
−2
�

T δ(e,x)
|f(y)| dy.

Using Proposition 2.8 we show below how to obtain the bound

�Mδf�Lq(S2) ≤ C� δ
− 3

p+1−�
�f�Lp(R3) (3.1)

for any � > 0 and with p = 7/3, q = 2p� = 7/2. Letting f be the indicator
function of a fixed δ-tube one sees that q = 2p� is the optimal q. In [W1]
the stronger estimate (3.1) with p = 5/2 and q = 2p� = 10/3 is established.
Moreover, it is a well-known conjecture that (3.1) holds with p = q = 3.
By Lemma 2.15 in [Bo], (3.1) implies dim(E) ≥ p for any Besicovitch set
E ⊂ R3. In particular, we recover Bourgain’s estimate dim(E) ≥ 7/3 from
[Bo].

The following proposition establishes the equivalence of (3.1) with ap-
propriate bounds on the multiplicity as indicated in the introduction.
Proposition 3.1. Fix any finite p, q > 1. Then the following statements
are equivalent.

i. For any � > 0 there exists a constant C� depending only on �, p, q

such that

�Mδf�Lq(S2) ≤ C� δ
− 3

p+1−�
�f�Lp(R3) (3.2)

for all f ∈ Lp(R3).
ii. For any collection T of tubes T δ

1 , T
δ
2 , . . . , T

δ
N with δ-separated direc-

tions and any � > 0 there exists a subcollection T � ⊂ T so that
card(T �) ≥ N/2 and

����

�
x ∈ T

δ :
N�

j=1

χT δ
j
(x) > λ

1−p
δ
p−3−�(δ2

N)1−
p
q

����� < λ|T
δ
|

(3.3)
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for all T δ ∈ T � and all λ ∈ (0, 1] provided δ is sufficiently small, i.e.,
δ ∈ (0, δ0(�, p, q)].

Proof. That (3.2) follows from the second statement is exactly the low
multiplicity case in [W1]. First note that it suffices to show (3.2) with
f = χE , and any measurable E ⊂ R3. Fix λ ∈ (0, 1] and pick a maximally δ-
separated set {ej}Nj=1 in F = {e ∈ S2 : MδχE(e) > λ}. Clearly, |F | � δ2N

and there exist points xj ∈ R3 such that
��T δ(ej, xj) ∩E

�� > λ
��T δ(ej , xj)

�� (3.4)
for j = 1, 2, . . . ,N . Let

µ = λ
1−p

δ
p−3−�(δ2

N)1−
p
q . (3.5)

Applying the second statement of the proposition with λ/2 instead of λ

and with T = {T δ(ej , xj)}Nj=1 one concludes that

|E| � 1
µ

�

{E:
�N

j=1 χTδj
≤µ}

�

T δ∈T �

χT δ ≥
1
µ

card(T �)
λ

2
δ
2

� δ
3+�−p

λ
p(δ2

N)p/q , (3.6)
for sufficiently small δ, which is the same as

λ
��{Mδ(χE) > λ}

�� 1q � λ|F |
1
q ≤ C� δ

− 3
p+1− �

p |E|
1
p .

To obtain the second statement from the first we invoke an argument that
seems to originate in [S]. Fix any small � > 0 and assume that there exists
T � ⊂ T with card(T �) ≥ card(T )/2 = N/2 and such that for all T δ ∈ T �

����

�
x ∈ T

δ :
N�

j=1

χT δ
j
(x) > λ

1−p
δ
p−3−�(δ2

N)1−
p
q

����� > λ|T
δ
|

(3.7)

with some λ ∈ (0, 1] depending on T δ. First note that necessarily λ > δ.
This follows easily from (3.7) for small δ since δ2N ≤ 1 and p > 1. Apply-
ing the pigeon-hole principle one concludes that there exist T �� ⊂ T with
card(T ��) ≥ 1

2 | log δ|
−1N and a fixed (dyadic) λ ∈ [δ, 1] such that (3.7) holds

with this choice of λ and for all T δ ∈ T ��. Let µ be as in (3.5) and define
E1 =

�
x ∈ R3 :

�N
j=1 χT δ

j
(x) > µ

�
.

Case 1: |E1| ≤ λp(δ2N)p/qδ3−p+�

First note that (3.7) implies that M2δ(χE1)(e�) > µ for any e� ∈ S2

such that |e� − e| < δ where e is the direction of T δ ∈ T ��. In view of (3.2)
with f = χE1 one therefore obtains

λ
�
δ
2card(T ��)

� 1
q ≤ C� δ

− 3
p+1− �

2p |E1|
1
p ,
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which contradicts our assumption on E1 if δ is sufficiently small.
Case 2: |E1| > λp(δ2N)p/qδ3−p+�

In this case we use duality. Let {ej}Mj=1 ⊂ S2 be a maximally δ-separated
set of directions. The dual statement to (3.2) is

����
M�

i=1

ajχT δ(ei,yi)

����
p�
≤ C� δ

2
q�−

3
p+1− �

2p

� M�

j=1

|aj |
q�
�1/q�

(3.8)

for any choice of {yj} ⊂ R3 and reals aj . To apply (3.8) we may of course
assume that the {ej} and {yj} are chosen such that the tubes in T are
among the {T δ(ei, yi)}Mi=1. Now choose ai = 1 or 0 depending on whether
or not T δ ∈ T . Thus

µ|E1|
1
p� ≤ C� δ

2
q�−

3
p+1− �

2pN
1
q� .

In view of the definition of µ this implies
|E1| ≤ C� δ

�p�/2p
λ
p
δ
3−p+�(δ2

N)p/q ,
which contradicts the assumption of Case 2 for small δ. We conclude that
T � with the stated properties cannot exist and we are done. �

Note that Wolff’s result [W1] implies the multiplicity estimate with
p = 5/2 and q = 2p� = 10/3. The purpose of the following proposition
is to show how to derive (3.3) with p = 7/3 and q = 2p� = 7/2 from
Proposition 2.8. Arguments of this type originate in [KW].
Proposition 3.2. For any collection T of tubes T δ

1 , T
δ
2 , . . . , T

δ
N with δ-

separated directions and any � > 0 there exists a subcollection T � ⊂ T so
that card(T �) ≥ N/2 and

����

�
x ∈ T

δ :
N�

j=1

χT δ
j
(x) > λ

− 4
3 δ
− 2

3−�(δ2
N)

1
3

����� < λ|T
δ
|

for all T δ ∈ T � and all λ ∈ (0, 1] provided δ is sufficiently small.

Proof. Suppose this fails for some fixed � > 0. Then there exists T � ⊂ T ,
with card(T �) ≥ 1

2card(T ) = 1
2N and such that for all T δ ∈ T �

����

�
x ∈ T

δ :
N�

j=1

χT δ
j
(x) > λ

− 4
3 δ
− 2

3−�(δ2
N)

1
3

����� > λ|T
δ
| (3.9)

with some λ depending on T δ. As in the previous proof, it follows from the
pigeon-hole principle that there exist T �� ⊂ T � with card(T ��) ≥ 1

4 | log δ|
−1N

and a fixed λ ∈ [δ, 1] such that (3.9) holds for all T δ ∈ T ��. Define

µ = λ
− 4

3 δ
− 2

3−
2�
3 (δ2

N)
1
3 . (3.10)
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Fix any T δ ∈ T ��. Clearly, for every x in the set on the left-hand side
of (3.9) there exists an angle α ∈ [δ, 1] depending on x such that

card
�
{j ∈ {1, 2 . . . ,N} : x ∈ T

δ
j and �(T δ

j , T
δ) ∈ (α, 2α]}

�

>
1
2 | log δ|

−1
λ
− 4

3 δ
− 2

3−�(δ2
N)

1
3 > µ .

Applying the pigeon-hole principle again, conclude that for some choice
of α depending only on T δ we have

���
�
x ∈ T

δ :
�

j:�(T δ
j ,T

δ)∈(α,2α]

χT δ
j
(x) > µ

���� > 1
2 | log δ|

−1
λ|T

δ
| .

(3.11)

Finally, a further application of the pigeon-hole principle shows that there
exist a fixed α ∈ [δ, 1] and a set of tubes T1 ⊂ T �� with card(T1) >
1
2 | log δ|

−1card(T ��) such that (3.11) holds for all T δ ∈ T1. Let λ̄=| log δ|−1λ.
Case 1: λ̄ ≤ δ−� δα
In view of (3.11)

µλ̄δ
2
≤

�

T δ

�

j:�(T δ
j ,T

δ)≤2α

χT δ
j
(x)dx

≤

�

j:�(T δ
j ,T

δ)≤2α

|T
δ
∩ T

δ
j | � min

�
N,

α2

δ2
�
δ3

α .

Hence

µ � λ̄
− 4

3
�
δ
α

� 4
3 δ
−2− �

3 min(δ2
N,α

2) � | log δ|
4
3λ
− 4

3 δ
− 2

3−
�
3 (δ2

N)
1
3 ,

which contradicts (3.10).

Case 2: λ̄ > δ−� δα
Consider the set

Q1 =
�
(T δ

, T
δ
1 , T

δ
2 , T

δ
3 ) : T δ

∈ T1 , T
δ
∩ T

δ
i �= ∅ ,

�(T δ
, T

δ
i ) ∈ (α, 2α] , i = 1, 2, 3

�
.

Fix any T δ ∈ T1 and let R1, R2, . . . , Rm be non-overlapping congruent
subtubes of T δ of dimensions δ × δ × 5 δ

α , which we call rectangles. Note
that if T δ

j ∩Rk �= ∅ and �(T δ
j , T

δ) ∈ (α, 2α] then T δ
j can intersect at most

the two neighboring rectangles of Rk. In view of (3.11) the number of
rectangles Rk such that

Rk ∩

�
x ∈ T

δ :
�

j:�(T δ
j ,T

δ)∈(α,2α]

χT δ
j
(x) > µ

�
�= ∅ (3.12)
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has to be � λ̄
α
δ > δ−�. We shall refer to these rectangles as good rectangles.

As usual, one bounds the multiplicity µ by estimating the cardinality of Q1
in two different ways. Firstly, (3.12) implies that for a given T δ there are
many choices of triples (T δ

1 , T
δ
2 , T

δ
3 ) which gives a lower bound on card(Q1).

Secondly, an upper bound is obtained by fixing some triple and then lim-
iting the number of possible choices of T δ by Proposition 2.8. However, in
order to apply Proposition 2.8 one needs to know that the distances of the
intersection points are approximately equal. In order to achieve this, we
divide every T δ ∈ T1 into congruent subtubes S1, S2, . . . , Sm of thickness δ
and height λ̄. Clearly, m ∼ λ̄−1 � δ�

α
δ . For any T δ ∈ T1 the pigeon hole

principle implies that there exists an integer M = M(T δ) ∈ {1, 2, . . . ,m}
such that

card
�
{j ∈ {1, 2, . . . ,m} : Sj contains at least

λ̄α

2δM
| log δ|−1

good rectangles Rk}

�
≥M . (3.13)

Furthermore, there exist T0 ⊂ T1 and a fixed integer ν ≥ 0 so that

card(T0) ≥ 1
2 | log δ|

−1card(T1) � | log δ|−3
N and M(T δ) ∈ [2ν , 2ν+1]

for all T δ ∈ T0.
Assume that 2ν > A2

� λ̄
−�/5 with some sufficiently large A� depending

only on �. Then by Lemma 5.3 in [W2] there exists σ > A�λ̄ such that
there are at least (2ν λ̄�/5)3 triples (Sj1 , Sj2 , Sj3) with the property that
dist(Sjl , Sjk) ∈ [σ,A�σ], 1 ≤ l < k ≤ 3. Therefore, in view of (3.13), there
are at least

(2ν λ̄�/5)3 ·
�

λ̄α

2ν+2δ
| log δ|−1

�3

�
�
λ̄
α

δ

�3
δ
� (3.14)

many triples (Rk1 , Rk2 , Rk3) of good rectangles so that

dist(Rki , Rkj ) ∈ [σ, 2A�σ] for 1 ≤ i < j ≤ 3 . (3.15)

Now suppose that 2ν ≤ A�λ̄
−�/5. By (3.13) there has to be at least one

subtube, say S1, such that

card
�
{k : Rk ⊂ S1}

�
≥ λ̄

α
δ δ

�/4
,

provided δ is sufficiently small. Clearly, this implies that there are at
least (λ̄α

δ δ
�/4)3 many triples (Rk1 , Rk2 , Rk3) of good rectangles so that

dist(Rki , Rkj ) ∈ [λ̄δ�/4/10, λ̄] for i �= j. Combining this with (3.14) and
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(3.15) we finally conclude that there exists T0 ⊂ T1 of cardinality card(T0) �
| log δ|−3N so that for every T δ ∈ T0 there are at least

�
λ̄
α
δ

�3
δ
� (3.16)

triples (Rk1 , Rk2 , Rk3) of good rectangles with the property that

dist(Rki , Rkj ) ∈ [σ,Lσ] (3.17)

where σ ≥ λ̄δ�/4/10 and L ≤ 10δ−�/4. With σ and L as in (3.17) define

Q0 =
�
(T δ

, T
δ
1 , T

δ
2 , T

δ
3 ) ∈ Q1 : T δ

∈ T0 , dist(T δ
∩ T

δ
i , T

δ
∩ T

δ
j ) ∈ [σ,Lσ]

for 1 ≤ i < j ≤ 3
�
.

To bound the cardinality of Q0 from below, note that if T δ
j ∩ Rk �= ∅ and

�(T δ
j , T

δ) ∈ (α, 2α] then T δ
j can intersect at most the two neighboring

rectangles of Rk. Consequently, given T δ ∈ T0, (3.16) and (3.12) imply

card
�
{(T δ

1 , T
δ
2 , T

δ
3 ) : (T δ

, T
δ
1 , T

δ
2 , T

δ
3 ) ∈ Q0}

�
�
�
µλ̄

α
δ

�3
δ
�

and thus
card(Q0) � card(T0)

�
µλ̄

α
δ

�3
δ
�
.

As usual, one bounds the cardinality of Q from above by choosing first
(T δ

1 , T
δ
2 , T

δ
3 ) and then T δ. In order to apply Proposition 2.8 in this context,

we need to consider a slightly smaller set Q�0 ⊂ Q0. Clearly, there exists an
angle θ ∈ [δ, 1] such that the set

Q
�
0 =

�
(T δ

, T
δ
1 , T

δ
2 , T

δ
3 ) ∈ Q0 : max

1≤i<j≤3
�(T δ

i , T
δ
j ) ∈ (θ, 2θ]

�

satisfies

card(Q�0) � | log δ|−1card(Q0) � N
�
µλ̄

α
δ

�3
δ
�
| log δ|−4

.

(3.18)

On the other hand,

card(Q�0) � α
δ σ
−1 α

θL| log δ|
3
·N min

�
N,

θ2

δ2
�2
. (3.19)

Indeed, there are N possibilities for choosing T δ
1 . Once T δ

1 is fixed the
directions of T δ

2 and T δ
3 have to lie in a θ-cap on S2 centered at the direction

of T δ
1 . This leads to the last factor in (3.19). Finally, the number of choices

of T δ is controlled by Proposition 2.8. Comparing (3.18) with (3.19) one
finds that

µ � λ
−4/3

δ
−2/3(δ2

N)1/3
�
θ
α

�1/3
δ
−�/2

| log δ|4 .
Since θ � α by the triangle inequality, this contradicts (3.10). �
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