ENERGY GROWTH IN SCHRODINGER’S EQUATION WITH
MARKOVIAN FORCING.
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ABSTRACT. Schrédinger’s equation is considered on a one-dimensional torus
with time dependent potential v(0,t) = AV(0)X (t) where V(6) is an even
trigonometric polynomial and X (t) is a stationary Markov process. It is shown
that when the coupling constant A is sufficiently small, the average kinetic
energy grows as the square-root of time. More generally, the H® norm of the
wave function is shown to behave as ¢ /4.

1. INTRODUCTION

We study the long term behaviour of a quantum mechanical particle moving on
the circle in the presence of a time-dependent potential. The evolution of the wave
function v is described by the Schrodinger equation

(1) i%(ﬂ,t) _ _%(9,@ (6, 00, 1).

where we regard the circle as R/27Z. We are interested in how the kinetic energy,

&) [ 1000060 d0 = 161ss a0y (0) = 1912

grows as a function of time. In fact, we will determine the behaviour of all Sobolev
norms. Note that since v will be real, ||¢||z2 is conserved.

In two recent papers ([3, 4] see also [5, Appendix 1]), Bourgain studied the
case where v(6,t) is an analytic/smooth in 6 and quasi-periodic/smooth in ¢. In
particular, he showed [4] that if

sup |3g‘3tﬁv(9,t)| < for all a,3=0,1,...,
0.t

then for any s,e > 0, ||¢|| = = O(t¢) as t — oo. (This result holds in any number of
space dimensions.) Conversely, it is shown [3] that energy may grow logarithmically
even for t-almost periodic and #-smooth choices of v. Bourgain also gave an example
of a random model exhibiting polynomial growth [4], which we will discuss in due
course.

In contradistinction to Bourgain, we are primarily interested in the case where
v(#,t) is not a smooth function of ¢t. To show that energy growth is a generic
phenomenon, there seems no real alternative than to consider a random model. We
consider

(3) v(0,1) = AX(£)V(6)
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where X (t) is a stationary Markov process and V' (0) is an even trigonometric poly-
nomial and show that if the coupling constant X is sufficiently small then, on av-
erage, the energy grows as the square root of time. One physical interpretation of
this model is as a rigid rotator coupled to a classical heat bath.

Let us describe our requirements for the process X (¢). We will also take the
opportunity to introduce some notation.

Hypothesis 1. The process X (t) is a stationary Markov process with state space
S C R and stationary distribution du. It is further assumed that:

) the Markov process is generated by a self-adjoint operator B on L*(S;du);

) the generator B is positive semi-definite with discrete spectrum;

) zero is a simple eigenvalue of B;
v) [xdu(z) =0 and [2?dp=1;

) the function u(x) = x belongs to the quadratic form domain of B; and

) the co-ordinate operator x : u(x) — xu(z) is relatively B-bounded with relative
bound 0.
Expectation with respect to this process will be denoted by E, the eigenvalues of B
by 0 = ko < k1 < -+ < Ky < -+ (repeated according to multiplicity) and the
corresponding eigenvectors by uy. Of necessity, ug(s) = 1.

Remarks: 1. By ‘generator of the Markov process’ we mean the operator associated
with the forward Kolmogorov equation. Many probability books use the generator
associated with the backward equation. As the two operators are the adjoints of
one another and we assume that B is self-adjoint, the distinction is moot here.

The meaning of B and p is perhaps best described with a sample calculation (see
also (9) below). The probability that X (¢) € A is equal to u(A) and the probability
density (with respect to ) for X (t) given that X (¢) € A is xa(z)/u(A). For s > t,
the probability density for X (s) given that X (t) € A is [e" B~y 4] (z)/pu(A) and
so the probability that the process passes through the sets A;, As at times ¢ < to
is

/ xan () [ BE0 x4 | (@) d().

2. Regarding (ii) and (iii), the existence of a spectral gap (i.e., that zero is at
an isolated point in the spectrum) is essential both for our analysis and, we believe
for the result. However, while ample for our interests, the assumption that the
spectrum is discrete is presumably unnecessary.

3. All our arguments remain valid if one choses X (¢) to be the projection under
X : 8 — R of a stationary Markov process on a more general state space S. Notice
that if X is not one-to-one then the resulting process may be non-Markovian.

4. Condition (iv) says that X (¢) has mean zero and unit variance.

5. The requirement, (v), that u(z) = x be in the quadratic form domain of B
ensures that sample paths of the process are not too rough. Specifically, it controls
the high-frequency asymptotics of the power spectrum (see below). Exactly how
this enters our analysis is described at the end of Subsection 3.1.

6. The last condition, (vi), has been chosen to obviate functional analytic minu-
tiae in the definition of Ly in (13) below. Since A will later be chosen small, merely
assuming x is relatively B-bounded (with any bound) would permit the same ele-
mentary analysis.
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The most basic example is the following: take S = {—1,1} and

1 -1
p=la
in the natural basis for £2(S). With these definitions, X (¢) flips between +1, —1
with exponential waiting times.
The Ornstein-Uhlenbeck process also obeys Hypothesis 1. Here S = R and
9? 0
B=-— —
Ox? * e
The stationary distribution is du = (27)~ /2 exp{—22/2} dz, the standardized
Gaussian. The eigenvalues are ky = N with corresponding eigenvectors uy(x) =
(N!)~'/2Hey(z), the L?-normalized Hermite polynomials (our notation is that of
Abramowitz and Stegun [1]). The three term recurrence for these polynomials,

(4) zun(z) = VNuy_1(z) + VN + Luyyi (),
shows that x is indeed relatively bounded with bound zero.

Theorem. Let X (t) be a process obeying Hypothesis 1 and let V(0) be an even
trigonometric polynomial. If the coupling constant X\ is sufficiently small then for
any initial wave-function 1y € H?,

o
B[ e TE W0l = YT ol + ol

as T — oo. The expectation is over possible trajectories of the Markov process X (t).
In particular, the energy grows on average as the square-root of time.

Remarks: 1. We write z < y if and only if x < y and y < x. The notation = < y
means that there exists C' > 0 so that x < Cy.

2. Since adding constant (even if time-dependent) to the Hamiltonian has no
physical effect—it just changes the phase of the wave function—we may assume
that [V (0)d# = 0.

3. In the interest of clarity, we will not prove the theorem in this generality, but
rather in the special case that V' (0) = cos(#) and X (t) is the Ornstein—Uhlenbeck
process. This simplifying assumption will be invoked at the beginning of Section
3, where the computational part of the proof begins. Some further remarks on the
general case are given at the end of Subsection 3.1.

4. Extending the method we present to arbitrary (i.e., not necessarily even)
trigonometric polynomials, V', however, requires more than just computational
stamina; in this setting, the operator H introduced in Section 3 is no longer a
finite difference operator.

For heuristic reasons that we will describe in a moment, it is natural to believe
that the rate of energy growth is determined by the power spectrum of the forcing
process. The power spectrum is the non-random function

— . zwt
(6) S(w) = Jim 4T‘/ X(t dt‘ weR.

The limit is in the following sense: for any continuous function ¢ of compact support

;/‘/ieiwtx(t) dt’2¢(w)dw—>/¢(w)5(w) dw
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almost surely [8, §X-7].
By the Wiener—Khinchin Theorem, S is the Fourier transform of the two-time
correlation function E (X (¢)X (t + 7)) so it is easy to show that

. KN
S(w) = 2__FN _
(w) %: |xN| w2 + H?\/

where z are the Fourier coefficients of x with respect to the B eigenfunctions:
#n = [zun(z)du. This means that S(w) < |w|~? as |w| — co. (In fact, w?S(w) —
(x| B|z) which is finite by (v) of Hypothesis 1.)

At small coupling, A, significant energy growth can only occur as the result of
a cumulative effect over a long time period. A particle of unit mass and momen-
tum p experiences a cosine potential as being time-dependent with typical angular
frequency w = p. Now if the potential has a time dependent coupling constant
given by a process X (t), only the part of that process with characteristic frequency
w will have a cumulative effect—the effect of the parts at other frequencies will
average out to zero, at leading order. In this way, it is natural to intuit that the
rate at which the particle gains energy is proportional to the amount of power in
the process at that frequency. As energy is proportional to momentum squared we
expect
i 2x S -
P < S) =p
which implies p = p~3. This leads to p =< t'/* and so the prediction that energy
should grow as the square-root of time.

More generally, the argument of the preceding paragraph suggests that processes
with S(w) =< |w|™7 give rise to p =< tY/*+7) T. Spencer informed us that V.
Zakharov predicted such behaviour during a private discussion of this problem. We
are not privy to his reasoning.

Bourgain’s random model [4, Part II] is far from being stationary. In essence,
his model may be described by V() = cos(f) and X(t) by > g;7v,(t) where g;
are normalized Gaussian random variables and +; are disjointly supported bump
functions. Although the functions y; are all of approximately unit norm in H*, they
are not evenly spaced. Indeed, for s = 1, supp(7;) is approximately [j*/°, (j+1)*/°].
This means that X (¢) is not uniformly locally H*. Consequently, it doesn’t offer a
very clear view, to our eyes at least, of the role of temporal smoothness in the rate
of energy growth.

However, it is possible to fit Bourgain’s result into the heuristic described above
by introducing a local power spectrum

-2

2

S(w,t) = E ‘/ X(t+ )T o(r) dr

where ¢ is positive, C*°, supported by [—2,2], and equal to 1 on [—1,1]. For the
model under discussion, one finds that there are =< t'/(2+2%) many 7;’s supported
in a unit neighbourhood of ¢ and that each |§(w)|? is of size t~(2+1)/(25+2) gyer
the interval [—t1/(25+2) 141/(25+2)] and essentially zero outside this interval. By
modifying the above argument to say pp o< S(p,t) we find that pp =< t=*/(+1) and
so ||| < t1/(25+2) as proved by Bourgain.

Earlier we mentioned that the model under consideration may be interpreted as
a rigid rotator coupled to a classical heat bath. We should say that for the case
we treat, the bath is at an infinite temperature and so it is reasonable to expect
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that the energy increases indefinitely. The power spectrum of a finite temperature
bath would have exponential tails. (For example, the well known Planck law:
S(w) o w?/(e*/T — 1) where T denotes the temperature.) This leads us to ask
what would happen in the presence of a finite temperature heat bath.

A finite temperature bath may be modelled by a stationary mixing process
all of whose sample paths are analytic in the strip R + i[—a, a]. (For example,
X(t)= [Y(t+s)(s>+1)"! ds where Y (¢) is the two-state process described above.)
Naive physical intuition suggests that thermal equilibrium might be achieved and
in particular, that while there may be rare excursions to high energy the energy
should remain bounded on average. We believe that this is not the case and that
in fact, the energy tends to infinity with probability one. This is what the heuristic
given above predicts.

The paper is arranged as follows: in the next section, we reformulate the problem
in terms of the resolvent of the associated semi-group. In Section 3 we study the
properties of the generator L) and, in particular, extract its dominant part using
a block decomposition. Section 4 is devoted to obtaining norm estimates both for
H, the main part of L, and for the discrepancy between the two. Specifically,
these are weighted norm estimates for their resolvents and for the derivatives there-
of. Finally, Section 5 uses these norm estimates to obtain the pointwise estimates
necessary to prove the Theorem.

The material of Section 2 and of the beginning of Section 3 is is essentially
standard fare. However, it particularly parallels the work of Tcheremchantsev [11,
12, 13] since, in a crude sense, his model resembles the Fourier transform of ours.

Acknowledgements: The authors are grateful to the Institute for Advanced
Study (Princeton), where this work was commenced, and in particular, to Thomas
Spencer for his interest in this problem. B.E. and R.K. were supported, in part, by
NSF Grant DMS-9729992, W.S. was supported by NSF grant DMS 0070538 and a
Sloan fellowship.

2. REFORMULATION

Just as classical probability distributions are described by normalized positive
measures, i.e., normalized positive linear functionals on random variables, so quan-
tum mechanical distributions are described by normalised linear functionals on the
space of observables (bounded linear operators). These are called density matrices,
they are the positive trace-class operators and are normalized to have trace equal
to one. The expected value of an observable A is given by tr(Ap). For example,
a system in the quantum state [¢) is described by p = |[¥){(¢|, the projection on
to the linear space spanned by |1)). More generally, a system in states |¢;) with
probabilities p; is described by p = >, ps|1;)(¢;]. Notice that the expected value
of an observable A is given by tr(Ap) = >, pi(¥;|A|1;). The only natural choice!

As is usual in this business, we consider the space of density matrices as a subset
of the space of Hilbert—Schmidt operators. This affords us the pleasure of working
in a Hilbert Space (the inner product is given by (p|o) = tr(p'o)). We will denote
the space of Hilbert-Schmidt operators on L?(R/27Z) by J(L*(R/27Z)) or, more
often, J, for short.

The state of the Markov process X is described by its probability density u(x), a
non-negative function in L?(S;du) with [u(z)dp = 1. While the quantum system
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is described by its density matrix p, a non-negative operator in Jo with tr(p) = 1
(in particular, p € J1). The state of the combined system of the Markov process
and the quantum particle at any time ¢ is described by an element of the Hilbert
space L*(S;dp) @ J2. We will denote this element by P(t). For example, when the
process and quantum system are independent of one another, P = u ® p. The most
general P is the limit of convex combinations of tensor products.

A particular case is when the quantum system is in an initial state ¥ and the
process X is in its stationary distribution. This is represented by

P(t=0)=uo®po  where po = [¢ho)(tho| and uo(x) = 1.

Note that at positive times, P need no longer be a tensor product. This is because
of the states of quantum particle and the forcing process become correlated.
To help explain the meaning of P we now describe how to calculate expectations.
A natural class of random variables/observables is f(X)A for some f € L?(dpu)
and A € J5. In the independent case, P = u ® p, it is clear that the average value
of f(X)A is given by

/f(x)u(a:) du(z) - tr (Ap) < ®A |P>L2 (dp)®To
Linearity then forces the same choice for general P, namely
(7) E{f(XW)@ @AW )} = (f & ATP1)) 12, 00,

Similarly, the average value of more complicated observables such as 3, f;(X)A;
is determined by linearity.

Of course, we are mainly interested in observables that are not Hilbert—Schmidt;
for example, the kinetic energy. These can be dealt with using a simple approxi-
mation argument.

To determine the evolution equation for P, we perform the following calculation:
let f € L?(du) be from the domain of B and let A € J5 be such that [Hy, A] € Ja,
then

® TR0

= E{ — [BA(X®) (W] Al[p) + F(X0) (D] A) + £ (X(0) (] Al) }
=E{ ~ [BAX®) (@[ A[p) + if (X () (0](Ho + AX (H)V) Al)
— i (X(O)(¥]A(Ho + AX(OV)|0) }
= E{ ~[BA(X0)(0|Alv) +i7 (X () (w] [Ho, Al|)
X (O (X W)V Al[) }

where we have used a dot to denote the time derivative, Hy to denote the free

Hamiltonian (the Laplacian, —%) and V represents the operator of multiplication
by the spatial part of the potential, V' (0) = cos(#). Also, [4,C] = AC —C A denotes
the commutator of the operators A, C. In the first equation we used the fact that
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S E{f(X (1))} = —E{[Bf](X(t))}. Strictly speaking, this should be BT since
0 % [r@ut 0 du@ = [ 105 @0 duto)

- [ @)Bua.t) dutz)

- [1B i@t 6 dute)

However, we assumed B to be self-adjoint so there is no need to distinguish.
Equation (8) shows that the time derivative of the average value of an observable
f(X)A is given by the average value of another observable,

—[BfI(X)A+if(X)[Ho, A] +iAX f(X)[V, A].

In order that we obtain the same relation when calculating averages with P, as
described in (7), we must have

<f®AT’%P> - < — (Bf)® At —if @ [H, A]f — iz f) ® [V,A]T‘P>
(10) :<—(Bf)®AT+if_®[H0,AT]—&-i)\(xf)@[V,AT}‘P>.

Taking adjoints in L?(du) ® Jo and then choosing f ® A from a dense subset of this
space, we find that

(11) %P:*{B@)IJriI@[H0,~]+i)\x®[v,.}}|3

where x denotes the operator u(z) — zu(z) in L?(du). In passing from (10) to (11)
we used the following observation: For any operator C' on L?(R/27Z) the adjoint
of map p — [C,p] on Jy is given by p +— [CT,p]. The demonstration of this is
simple:

(12)  (l[C.p)) = tr{oT(Cp — pC)} = tr{(67C — CaT)p} = ([CT, 5]lp).

In particular, if C' is self-adjoint on L? then [C, ] is self-adjoint on Js.

A more general derivation of the master equation, (11), for a quantum system
subjected to Markovian forcing is given in [10]. It is natural to call this a master
equation from it’s similarity to the purely classical and purely quantum mechanical
equations of the same name. For a highly readable account of both classical and
quantum mechanical stochastic processes with a strong physical motivation, we
recommend [9].

To simplify notation, we rewrite the evolution of P as

d
(13) aP:—LAP where Ly=B®I+iI® [Hp, | +idz®[V,-].
The linear operator Ly so defined is m-accretive and has domain D(B) ® H?. In
fact, it is the sum of a non-negative operator, B® I, and a skew-adjoint (AT = —A)

operator,
il ® [Ho,-]+idx®[V,-];

maximality follows from (vi) of Hypothesis 1. This said, we see that L) generates
a contraction semigroup so we can write

P(t) = e ""*P(0).
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Combining the equation above with (7) we infer that for any Hilbert—Schmidt
observable A,

%/O e TE {(p(t)|Alp(t))} dt
= %/ e_t/T<u0®AT’P(t)>dt
0

= %/ e T {ug @ At| e7> |P(0)) dt
0

<u0®AT‘ %ﬁrﬁ ‘P(O)>

where 3 = #. (Accretiveness ensures that Ly + 3 is invertible.) This trick, which
is standard is behind our choice of time averaging.

As it diagonalizes the Laplacian, it is only natural that we choose to work in a
Fourier basis. It will also simplify the study of the H*® norms. Because V(0) is as-
sumed even, the Hamiltonian is symmetric under the reflection 8 — —6. Therefore,
the natural choice of orthonormal basis for L*(R/27Z) is

(14)

(2m)~1/2 in=0
(15) In) =< n 2 cos(nf) :n=1,2,...
71 2sin(jnl@) n=-1,-2,...

The reflection symmetry of the Hamiltonian actually means that the odd and even
subspaces are invariant under the evolution. This is at the origin of the invariant
subspaces described in Lemma 3.1 below.

The natural basis for B is in terms of its eigenfunctions uy, N = 0,1,.... There-
fore, we introduce the following orthonormal basis for the Hilbert space L? (1) ® Jo:

(16) IN,n,m) =un(z) ® |n)(m| forn,meZ and N =0,1,...

with |n) and (m| defined as in (15).
With this notation, we can now reformulate the behaviour of H® norms in terms
of the operator Ly:

Proposition 2.1. For a quantum particle initially in the state ¥(t = 0) =1y € H®
and for X (t = 0) chosen independently according to the stationary distribution,

) 5[ e fuolf. de =50+ 0.0 22 [PO)

where P(0) = up ® |tho) (tbo|. Note that 8 plays the role of 7 in the Theorem.

Proof. This follows immediately from (14): For N > 0, let

N
A=) (1 [n*)[0,n,7){0,n,n|

n=—N

and then use the monotone convergence theorem to take N — oo. O
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3. THE OPERATOR L)

In the previous section, we reduced the study of the average behaviour of H?
norms to the consideration of the resolvent of the operator Ly. The purpose of
this section is to isolate the dominant terms in this resolvent; the main technical
estimates appear in the next two sections.

For expository reasons, we make the following:

Hypothesis. For the remainder of this paper we shall consider only the case where
V(0) = cos(0) and X (t) is the Ornstein—Uhlenbeck process.

Some remarks about the general case are given after Lemma 3.4.

To a first approximation, we will treat Ly as a perturbation of Lg, (that is, Ly
with A = 0). For this reason, we introduce the notation

(18) J=%(Ly— L) =z®([V,-] which implies Ly = Lo+ i)\
Notice that J is a self-adjoint operator. For convenience, we will always take A > 0.
Lemma 3.1. The basis |N,n,m) of (16) diagonalizes the operator Lo. Specifically,

(19) Lo|N,n,m) = {B®I +il ® [Hy, ]}|N,n,m)
= {N +i(n* —m?)}|N,n,m).
Also, each of the four subspaces
span{|N,n,m): N >0, n,m >0}, span{|N,n,m): N >0, n>0,m <0},
span{|N,n,m): N >0, n,m <0}, span{|N,n,m): N >0, n<0,m >0}
is invariant under J and hence also under Ly = Lo + i\J.

Proof. The first part is self-evident (recall Ky = N for Ornstein-Uhlenbeck). The
second is a reflection of the fact that because V' (6) is even, V|n) and |n) have the
same parity: even if n > 0 and odd if n < 0. O

As we are interested in H® norms, Proposition 2.1 shows that we need only
consider how Ly acts in two of these invariant subspaces, namely span{|N,n, m) :
N >0, n,m > 0}, which corresponds to the even part of the wave function, and
span{|N,n,m) : N > 0, n,m < 0}, which corresponds to the odd part.

In calculating (Ly + 3)~! in each of these subspaces, a major role is played by
the kernel of Lg. This is given by span{|0,n,n) : n € Z}. To isolate this part we
define projections

P onto span{|0,n,n):n > 0},

P onto span{|N,n,m):n,m >0 and either N > 0 or n # m},
@ onto span{|0,n,n):n <0}, and

Q' onto span{|N,n,m):n,m < 0 and either N > 0 or n # m}.

Notice that PP+ = 0 and P + P is the projection onto span{|N,n,m) : N >
0, n,m > 0}, the invariant subspace associated with the even part of the wave
function. Similarly, QQ+ = 0 and Q + Q* projects onto span{|N,n,m) : N >
0, n,m < 0}. Further note that the ranges of both P and @ lie within the kernel
of LQ.

It is now easier to treat the two parts of L) separately. We begin with the ‘even’
part that is, the part invariant under P + PL. This is followed by a parallel but
abbreviated discussion of the ‘odd’ part.
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3.1. Even. On the range of P + P+, we can write Ly in block form

[ 0 iAPJPL}

(20) iNPLJP PLLy\P*

where we noted that since [V ()df = 0, PJP = 0. (This may also be derived
from the fact that f xdu =0.) Of course, LoP is also zero since P is a projection
onto a subset of the kernel of L.

By the well-know formulae for block inversion,

(21) P(Ly+B3)'P= {ﬂ + )\2PJPLR§(6)PLJP}_1

where Ry (8) = (P+Ly\P+ + 8)~! is the resolvent of the operator appearing in the
bottom right corner. Here, as elsewhere in this section, we regard the operator
inside the braces on the right hand side of (21) as an operator acting on the range
of P for the purposes of inversion. Similarly, R is the inverse of an operator acting
on the range of Pt.

The formulae for block inversion also show that

(22)  P(Ly+8)"'Pt = —i)\{ﬂ + A2PJPLR§(ﬁ)PLJP}_1PJPLR§(5).

Note the occurrence of our earlier expression (21) as a factor here. Indeed, control
of (22) will be a simple by-product (see Lemma 5.4) of the analysis of (21) to which
we now direct our attention. (We do not need the other two matrix entries of
(Ly + B)7!, that is, those mapping onto the range of P+: These are irrelevant to
(17) of Proposition 2.1 because |0,n,n) is orthogonal to the range PL.)

As we will eventually demonstrate, one can control (21) by replacing Ry (3)
by Rg(3) and then treating the error as a small perturbation. With this as our
inspiration, we define H : Range(P) — Range(P) by

(23) H = \PJP+ Ry (B)PLJP.

(Notice that H depends on both A and .) Equation (21) can now be written as
P(Ly+p)7'P

(24) = {H + B8+ XNPJP-[Ry(8) — Ry (8)] PLJP}_1

(25) => (H+ 5)’1{ — MPJPY[Rx(B) — Ry (3)|P-JP(H + 5)’1}j.
7=0

The convergence of this infinite resolvent series will not be justified until we derive
certain estimates in the next section; we merely offer it as a sign-post of where we
are headed.

In addition to H, the next two sections employ the operator

(26) D = ARy (3)P+JP

which is to be regarded as mapping Range(P) — Range(P+). The importance of
this operator will become clearer as we proceed.

We now give a trio of lemmas. The first describes the behaviour of J on the
range of P + PL, which it leaves invariant. The others give explicit formulas for
the way the operators D and H act on their domain, that is, on the range of P.
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Lemma 3.2. For any N,n,m > 0,
(27) J|N,n,m) = \/Ni—f—l{cn|N+ Ln+1,m)+c,—1|[N+1,n—1,m)
fcm|N+1,n,m+1>fcm_1|N+1,n,m71>}+
—|—\/N{cn|N,n—|—l,m>+cn_1|N,n—|—1,m)
—cm|N,n,m+1>—cm,1|N,n,m—1>}

where the co-efficients c, are given by

0 k=-1
L = % k=0
% k>0

Proof. Recall that J =2 ® [V,-]. The proof is a mundane calculation based on the
following two formulae: First, as was stated above, (4),

zun(z) = VN uy_1(x) + VN + Luy 1 (z)

and second,
1 —_
vz 1) =0
cos(B)|n) =cpln+1) +cp_qjn—1) = 7| >_|_%‘ ) 1
Lin41)+1n—1) n>2
in the ket notation of (15). 0

Lemma 3.3. The operator D acts like a vector-valued first order finite difference
operator. Specifically, one with two components: if |v) = > 1,|0,n,n) then

(28) <1>n + 1»n|D|¢> = Qn ["/’n - ’(/}nJrl}
(29) <17n’n + 1|D|1/)> = Qnp [wn-&-l - "/}n}
where

(30) Q=

i 1 V2 in=0
21+p8+i(2n+1) |1 n>0

and all other co-efficients (N,n,m|D|¢¥) are zero.

Proof. This follows from the previous lemma plus the fact that
1
N+ B8+ i(n? —m?2)

RO( )N, n,m) = [N, n,m)

O

Lemma 3.4. The operator H is a discrete second order difference operator in
divergence form. Indeed, H = (1+3)D'D or, more explicitly, if |¢) = > 1,,|0,n,n)
then

apo — apP1 n=0

(an + an—l)wn — Op—1Pn—1 — ap¥py1 n2>1

(0,7, n|H¢p) = {

where a, = 2(1 + B)|an|?.
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Proof. Define an operator S by S|N,n,m) = |N,m,n); that is, S swaps n and
m. From (27) one sees that SJP = —JP and, by taking adjoints for example,
PJS =—-PJ so

(31) H = \PJPLRy (B)P-JP
(32) = \2PJSPR{(B)P*+SJP
(33) = \NPJP*R$(B) PP

In the last line here we used SR (3)S = Ry ()" which is easily checked since both
are diagonal in the |N,n,m) basis. Now we may write

(34) H = 3\*PJP* Ry (8) + Ry (8)'| PP
(35) = (L+ BN PJP Ry (8)' Ry (B)P+JP
(36) =(1+B)D'D.

Equation (35) requires some explanation: from (27) we know that the range of
PLJP is spanned by vectors of the form |1,n,m) and for such vectors we have

1+ 0

1pl 1@yt —
(37) 2 [RO (ﬁ) + RO (5) ]|1,n,m) - (1 +ﬂ)2 + (ng _ m2)2 |1,n,m)
(38) = (1+ B)Ry (8) Ry (B)[1,m,m).
The explicit formula for H follows easily from H = (14 3)D'D and the formula
for D given in the previous lemma. O

Remarks: 1. If we consider the matrix representation of H in the |0,n,n) basis,
the off-diagonal entries are non-positive and the sum of entries in each column
(and row) is zero. This makes H the generator of a continuous time Markov chain.
Indeed, from the state |0, n,n) there are two possible transitions: to |0,n+1,n+1),
which occurs at rate a,,, and to |0,n — 1,n — 1) with rate a,—1. In this way one can
interpret the Markov chain as a continuous time random walk in which the hopping
rate decays as n — oo. The physical interpretation of this is that H, which is a
good approximation to PLyP, represents a spatially inhomogeneous random walk
in momentum space.

2. For more general V and X, the expression (27) for operator J becomes far
more complicated since now both N and either n or m can change by an arbitrary
amount. (Notice that in (27), they change by one.) Apart from rendering the
explicit formulae unreadable, this generality creates no significant mathematical
problems. In particular, the operator D is still a vector-valued first order finite
difference operator (c.f. Lemma 3.3). Actually, it is better to regard it as a sequence
of such operators, {Dy : N > 0} corresponding to the final values of N such that
D, as defined by (26), is equal to ) Dn. From (18),

PLIPO )= Y ;%Ncn)k{|N,n+ k,n) — |N,n,n + k}}
N>0,k#0

where ¢, = (n + k|V|n) and &n = (un|z|up) = [2un(x)dp. This should be
compared with the formulae of Lemma 3.2 where ¢, ;, and £y are only non-zero for
two values of £ and N respectively. Note also that o = 0 so there is no need for
an N = 0 term in the sum. Similarly, [V (#)df = 0 implies ¢, o = 0.
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Because V' is a trigonometric polynomial, only values of k smaller than the degree
of V' contribute to the sum given above. In this way, each Dy can be regarded as
a vector of 2 - deg(V') finite difference operators:

(N",n+k,n|Dn|) = 6n NN nk [n — Yngr]-
<NI7 n,n + /‘5|DN|¢> = 5N,N/65N,n,k [1/Jn+k - 1/%} .

where 1 < k < deg(V) and

ATN .
kN + B+ i(2nk + k2) "M

AN n,k =

All other matrix entries of Dy are zero. The derivation of these formulae uses that
fact that for n > k > 1, cpyk,—k = Cn k-

3. In the general setting, H = > y(kn + B)D}L\,DN. In this way, Lemma 3.4
continues to hold, but with

deg(V)
an = > 2kn + B)lan il
k=1 N>1
deg(V)

2 \cn,kl2z( e el

2 N2
Pt = kN + 0)% + (2nk + k2)

This is how (v) of Hypothesis 1 enters our analysis: a, < n~2 as n — oo if and

only if Y kn|Zn|? < co. That is, if and only if u(x) = x belongs to the quadratic
form domain of B.

3.2. Odd. For the odd portion of the wave-packet, we must study Q(Lx + 8)71Q.
Equations (20-26) continue to hold if P and P+ are replaced by Q and Q+ respec-
tively. In particular, this defines new operators D and H associated to the odd
subspace. The exact form of these operators differs very slightly from those in the
even subspace. Indeed, they are slightly simpler as the following replacement for
Lemmas 3.3 and 3.4 demonstrates:

Lemma 3.5. The operator D associated to the odd subspace acts as follows: if

V) = ZZO:1 ¥n|0,—n, —n) then

(39) <17 -n - 1u —n|D|¢> = Qnp ["/}n - ¢n+1]
(40) <17 -n,—n— 1|D|¢> = Qnp [wnJrl - wn]
where

A 1
(41) YT+ B—i2n+ 1)

and all other co-efficients (N,n,m|D|¢) are zero. Further, H = (1+ 3)D'D so

(42) <0a —-n, —n|H|¢> = (an + an—l)wn - an—lwn—l - anwn+1

where a, = 2(1 + 3)|an|? forn > 1 and ag = 0.
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4. NORM ESTIMATES

This section is devoted to deriving weighted norm estimates involving the opera-
tors D and H = (1+ 3)D' D associated to the even portion of the wave packet (see
(23) and (26) in the last section). These are then used to obtain similar estimates
for P(Ly + 3)"'P.

The operators D and H associated to the odd portion of the wave so closely
resemble those for the even portion, that the same estimates can be derived with
only cosmetic changes to the proofs. We will not discuss these operators again in
this section.

The derivation of the weighted norm inequalities follows the well-known scheme
of Combes-Thomas [6] and Agmon [2]. In the section that follows this, we use
these weighted norm results to obtain pointwise estimates on (H + 3)~! and
P(Ly+ 3)~1P. However, the standard reduction from norm-estimates to pointwise
estimates is unsuitable in our situation; the incorrect prefactor it gives renders it
useless. Part of our remedy to this problem involves obtaining derivative estimates
for the Green function. Indeed, as D acts essentially as a (vector-valued) differen-
tial operator (c.f. Lemma 3.3), this is how we encourage the reader to interpret
(48-50). We will discuss this further in the next section.

Given a weight function w : {0,1,...} — (0, c0) we consider two weighted Hilbert
spaces: (i) Let £2, denote the range of P endowed with the norm

2
(43) |2 alomnt],, = 3wt wal’
and (ii) let £2 denote the span of {|N,n,m) : N,n,m > 0} together with the norm

(44) | S ewmlNonm)[, = 3 @0, m) o

N,nm N,n,m

where w(n,m) = \/w(n)w(m). Notice that by Lemma 3.3, D : £2, — (% when
w(n) = 1. In fact, this is true for a much broader class of weights.
The following lemma will be used in Corollary 4.4 to control the sum in (25).

Lemma 4.1. Consider the weight function w(n) = 2*(™) with
p(n) = cmin{n, \"'n%\/5}
and ¢ > 0 a (small) constant. There is an operator E : (%2 — (% such that
(45) ~A\PJP*[Rx(B) — Ry (B)|P+JP = D'ED
and, for \ sufficiently small (not depending on (),
1Bl e S
where the implicit constant holds uniformly as ¢, \, 3 — 0.

Proof. From the resolvent formula, one finds

[B5(8) ~ B (9)] = S (- R () PHIP RS (9) )

Jj=1
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This means that (45) holds with

E =Y (—iAt! RL(ﬁ)T]_1R§(5){PLJPlRé(ﬁ)}jPLJPl
7=0

and, since [R(J)- (ﬁ)f] 71R(J)- (B) is a unitary operator in %, that we need only show

(46) 1B (BPIPY e S1
We show this by employing the Schur test. Looking at the explicit formula (27)
for J shows that (in the |N,n, m) basis) the matrix representing J has only finitely
many non-zero elements in each row. Indeed the number of non-zero elements is at
most eight (there could be fewer since ¢_; = 0). The same holds for the columns
as well since J is self-adjoint in the unweighted space.

These matrix entries are of size v/ N + 1—indeed, J is not bounded—however,
we have

1

( )IN,n,m) = N + B+i(n? —m?)

[N, n,m)

and [N + 8 +i(n? — mQ)r1 < (N +1)~! when N # 0 or n # m; that s, for all
vectors in its domain. Therefore, each of the at most eight non-zero entries in every
row/column of the matrix for Rg (3)P+JP+ is bounded by a uniform constant.

The preceding discussion is sufficient to show that Rg (3)P+JP+ is bounded in
the unweighted space. To obtain the weight estimate one further needs to know
that

o= w(n,m)

W(n+1,m) = H|N,n:|:1,m)H 3 H|N’,n,m>
0=

and the corresponding result with m £ 1. This is easily checked to be the case
because |p(n + 1) — p(n)| < 1 for the weight in question. O

Remark: By delving a little deeper into the specifics of the Ornstein—Uhlenbeck
process, one can show that the main estimate holds with A? on the right-hand side
rather than just A. This need not be the case for more general processes.

Proposition 4.2. There exists a (small) constant ¢ > 0 so that for all A < 1 the
following hold:

(DD +8) 7|2 e <267
|D(D'D + )7 DYoo <3
|[D(DTD+8) 7 ,p e <3871/2

I(D*D+ 87 D, e

S 3&71/2
where w(n) = 2™ and p(n) = cmin{n, \"'n2y/B}.

Proof. The first estimate is standard Combes-Thomas/Agmon fare: Let e*” denote
the multiplication operators associated with the corresponding function of n:

et?|0,n,n) = M0, n,n).
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Then ||e”|0,n,n)|| = H|O’"7”>||zgu and so
I(DTD+8) 7y o = [e"(D'D+ ) e
= [le"@™D+pe] |
Now by brute calculation, we have that
e’D'De™ = D'D — ¢ +in

where € and n are self-adjoint operators defined as follows: for |¢) = > 1,]0,n,n),

(0,n,n[€|) = Enthnir + En1¢n

£, = 2|ay|? sinh? (W) n>0, £,=0
0,7,n|0|¢)) = Nutni1 + -1
N = |am|* sinh (p(n) — p(n + 1)) n >0, n-1 = 0.

Recall that «,, comes from the explicit formula for D (see Lemma 3.3).
By Schur’s test,

— 1
sinh? (M)_
2
So, since |p(n + 1) — p(n)| < emin{l, A\"'n+/B}, one can ensure that ||£[| < 33 by
choosing ¢ small enough. As DD is a positive operator, it follows that
o<
2 e ~||DID—¢+in+p

€] < sup 216 < sup —
T on "= n 1+ﬂ2

1
S <2671
5o <
which proves (47).
By identical arguments, one can show that for ¢ small enough
’ 1

e <2871,
DDt + 3 <26

2,25) *»[%}
Equation (48) now follows from the following commutation formula
L pio b
DiD 4 3 DDt 4 3 DDt +p
which we learned from Percy Deift (see [7] for other, unrelated, applications).
Corresponding to the weight w(n,m) = \/w(n)w(m) we define
p(n) + 3p(m)

so that @(n,m) = e?(™™) As was the case for e” we regard e” as a multiplication
operator,

D DDf =1-

)
p(n,m) =3

e*P|N,n,m) = e | N, n,m).

To prove (49) we will use the following consequence of Lemma 3.3: if [¢p) =
> n|0,n,n) then

(51) (1,n+1, n|e2ﬁDe—2p‘w> =a, [e”("+1)_p(")wn _ eﬁ(ﬂ)—ﬂ(ﬂ-&-l)wn_i_l}
(52) (1,m,n + 1|e2 De™20[ih) = aiy, [ePM =Py ) — ep(ntD=p(n)y ]
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and all other co-efficients are zero. This shows, by Schur’s test, that e??De™2¢ =
D + ¢ where ( is an operator with

He_ﬁ(:epH < sup 2|ay|
n

sinh [p(n +1) = Lp(m)] | < 54/2

The second inequality here follows from our particular choice of p when ¢ is suffi-
ciently small. In particular, notice that |p(n + 1) — p(n)| < emin{1, \"*n\/B} and
|| S A1 +n)7L, see (30).

Now,
1 2 1 2
53 D——— = |[e’D——=——e"
(53) H DD+G | | " DDT5
1 - 1
54 —|le=P———— Dlte2hp___— o=r
(54) “ DiD+s” © "DID+5" ’
1 1
55 _ _pi[DTD Dt } e
(55) “"oiogplP P TP Bip 5
1
<93 1||le—r [ 1 T}p
(56) <287 |le DTD+ﬁDD+D<e

by employing €2’ D = (D + ¢)e?" and (47). We continue this chain by using, inter

alia, ﬁDTD =1- ﬁ-&ﬁ’ the triangle inequality, and (47) again,
-1 —p B8 p —p 1 TP H —p pH
(57) <24 {1+ e DTD+ﬁe + |le DTD—f—ﬁDe e Ple
1 _
58 <68 '+ B2 |leP———Dfe?
(58) <607+ e gl
- 1
59 <638 '+ B2 | D—"i—e"
(59) <68 +0 e DTD+56
1
60 <687+ 57?2 D :
©0) <6746 Dppg)

In passing from (58) to (59) we used the fact that the norm of an operator is equal
to the norm of its adjoint. Now, (53-60) show that

obeys 2 <6+ T,

1
FVBHDM

2 2
02—z

from which it follows that « < 3. This completes the proof of (49).

The proof of (50) is essentially the same as the above. Indeed, since the proof
of (47-49) did not require that ¢ be positive, only that it was small, it follows that
(49) holds with w and @ replaced with their reciprocals. Taking the adjoint of the
operator in this modified inequality (49) proves (50). O

Since H = (1 + B)D'D, the following follows trivially from this proposition.
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Corollary 4.3. There exists a (small) constant ¢ > 0 so that for all A < 1 and all
p<1,

(61) [CH+B) " gy o < 487
(62) |D(H + ﬁ)*lDTH%H% <6

(63) IDCH +8) 7,2 e < 667
(64) I(H +8)' Do e <6571/

where w(n) = 2™ and p(n) = cmin{n, \"'n2/B}.
The operator H was introduced as the ‘main part’ of PL)yP. We now estimate
the discrepancy between the two.

Corollary 4.4. There exists a (small) constant ¢ > 0 so that for A sufficiently
small and all f < 1,

(69) H ot T o SN
(96) PPt s e

(o7 PP ) g S
(68) H :P(L:H?) - Hiﬂ} D ;o <A

where w(n) = €’ and p(n) = cmin{n, \"*n\/3}.

Proof. By (25) and then Lemma 4.1,

1
P

(Lx+5)

M

<.
Il
—_

M

<.
Il
—_

M

<.
Il
o

where the operator F obeys

CH+8

(H + ﬁ)_l{DTED(H + 6)_1}j

< A

(H+5) " { = \2PIPL[R:(8) - R3(8)] PHIP(H +6) '}

J

(1 +8)"' D'E{D(H + ﬁ)‘lDTE}jD(H +0)7

2
1Bl ez

So, once A is sufficiently small, (62) from Corollary 4.3 permits us to sum the series
and prove (65-68). O
5. POINTWISE ESTIMATES

Given a weight function w(n) = ¢?*(") and an estimate such as (61),

G+ 8) ey <457
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there is a standard and simple way to obtain pointwise bounds for the Green func-
tion:

(69) (0,n,n|(H + 3)7*0,m, m)
(70) < e (H +ﬁ)*1e*f)‘
(71) < 4B exp {p(m) — p(n)}.

In terms of the exponential behaviour, estimates of this type cannot really be
improved. However, as we will show, the factor 37! in front can be significantly
improved.

As was remarked after Lemma 3.4, the operator H is the generator of a contin-
uous-time Markov chain. Indeed, since H is the dominant term in the operator Ly,
this shows that to a good approximation, the quantum particle undergoes a random
walk in momentum space. Note that the hopping amplitudes for this random walk
are a, < n~2 and so the diffusion is slower near infinity than for a homogeneous
random walk.

As probability is conserved, for any m,

e ?10,n, n)’

e”|0,m,m>H

(72) Z(O, n,nle 0, m,m) =1 for all ¢t > 0,

where each summand is positive. (Those unfamiliar with continuous-time Markov
chains may see Chapter VI of [8].) From (72),

(73) > (0.nm.n|(H + 5)71[0,0,0) = / TS (0, et H10,0,0) dt = 577,
0

n n

However, if we use the pointwise estimate that we derived above, (69-71), with
p(n) = cmin{n,n?y/B}, then, ignoring the \ dependence, we have

> {0, m,n|(H + 3)710,0,0) <4871 et < g=>/%,

n

The reason for the discrepancy is not in the choice of p, but rather that too much
was given away in passing from (69) to (70). The weighted norm estimate on
(H + 8)7! is of the correct size, however, the vectors that realize that norm are
spread out, not localised as |0,m,m) is. Indeed, H is a differential operator, so
the vectors |¢) for which ||H|v)|| is small must have slowly varying co-efficients.
Another manifestation of this is the fact that the norm of D(H + (3)~'—which
should be regarded as the derivative of the Green function—is /3 times smaller
than the norm of (H + 3)~!. The following lemma shows how one may represent
|0,n,n) so as to utilise this extra information.

Lemma 5.1. Let w(n) = e*™) with p(n) = cmin{n, \""n*y/B} and ¢ < 1 a
constant. For each n > 0, there are vectors |A,,) € (% and |2,) € €2 so that

0,n,n) = DT|A,) + Q)
and
>\71/4573/8 0<n< )\1/2[371/4
eip|A">H < );1/2571/4\/5 »\1/2571/4 <n< )\5,1/2
0 A3V <n

(74) eTr(n)
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)\—1/461/8 ZOSTL§>\1/2ﬂ_1/4
(75) T e, | S AR A2EA < < AG
1 ATV <

uniformly for B, € (0,1).

Proof. In the case A\3~'/? < n we choose |Q,) = |0,n,n) and |A,) = 0. The
inequalities are trivial in this case.
For n < \371/2, let

n+N-—1

An) = D o (1= E2) Lk k+1)

k=n
where N ~ min{\/25=1/4 A\n~1371/2} is an integer:

")\1/2ﬁ71/4'| 0<n< )\1/2571/4
N = D\n—lﬁ—l/Tl CAV2671/4 <y < ABL/2
([] is the least integer greater than or equal to x). For ease of reading, we use

the symbol ~ to indicate that two things are equal modulo the rounding of N to
an integer. By Lemma 3.3,

n+N
DAL = > (1= 252) {10,k k) = [0,k + 1,k +1)}
k=n
n+N
:|O,’I’L,7’l>— Z %loakvk‘»
k=n-+1

so we choose [Q,,) = ZZ;LVH 410,k k).

We now proceed to calculate the norms:

n+N

— N2 Z e—2p(k)

k=n-+1
< N1 e—2p(n)

/S maX{Afl/2ﬂ1/47>\fln/81/2}672p(n)

|

2 n+N
= N2 Z e2p(k)
k=n-+1
< N—l e2p(n+N)

o0

< max{A_1/2ﬁ1/47/\_1nﬂ1/2} o2p(n)

Here we used the fact that p(n+N) < p(n)+5. The justification of this is as follows:
for n < A3=Y2, p(n) = cA~'n?\/B and then either (a) 0 < n < A/2471/% in which
case A\T'N2\/B ~ 1 and \"12nN/B < A™/22NBY4 = 2; or (b) A/23-1/4 < n <
AG71/2 in which case A"'N2y/B ~ A(n?y/B)~' < 1 and \~'2nN/B ~ 2. This
completes the proof of (75).
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For 3 < 1, we have |ay,| > A(1 +n)~! and so

n+N-—1

[ an]| < 30 a1 - %) < NA2 o W2
k=n
9 n+N-—-1 ) 5
ler 18| = 2 fan] (1 - E2) e < N2 4 )20 N
k=n

By using p(n 4+ N) < p(n) + 5 these simplify to

2
P20 0|0, |7 S NA“2(n + V)2

Now, when n < AY/2371/4 we have n < N ~ A/2371/4 and so A™2N(n + N)? <
A"1/23-3/4 When A/2371/4 < n < A37Y2, we have n > N ~ A\~ /2n! from
which it follows that A=2N(n + N)? < A~nB~1/2, In both cases, this is just what
is required to give (74). O

Proposition 5.2. Let p(n) = cmin{n, \"1n2\/B} with ¢ > 0 sufficiently small.
For all X sufficiently small and oll 8 < 1,

1
- < B 1(B) ,—Ip(n)—p(m)]
(76) 0<<0,n,n‘H+ﬂ0,m,m>_Cn cle
and
1 1
_ < \CB) (B) p—lp(n)—p(m)]
(77) ‘<O,n,n‘PLA+6P T O,m,m>‘ <ACP OB
where
A1/43-3/8 L0 < k< A\/23-1/4
Clgﬁ) = C{ A28 VA A2371A < | < A3TL/2
512 ATV <k

with some constant C' which does not depend on (3 nor on \.

Proof. The result depends only on the fact that the operators in question admit
the estimates (61-64) and (65-68). We discuss only the operator H.

By symmetry, it suffices to study the case n > m. By Lemma 5.1 and Corol-
lary 4.3,

(0,m,n|(H +8) " |0,m, m)
— {(An|D n <Qn|}e"’ e (H+p) 'er eP{DT|Am> + |Qm>}

<6{[le 1A + 572l 12u) | }{lle” 1Am) | + 572 e” 12|}
< CP B grlm)=p(n)

Positivity in (76) follows from integrating (0,n, n|e=t#]0,m, m) > 0. O
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Remark: This new pointwise estimate gives results in line with the conservation of
probability (c.f. (73)):

> (0,n,n|(H + 3)7110,0,0)

n

< Z A"U/Ap=3/80(B) g=p(n)

n
A3—1/2

o [ g
A

1/23-1/4
o0 2
Sote [ atetviar
1
<ot
In this computation we estimated the sum over 0 < n < A/23-1/4 by replacing
C’r(f) by its largest value, namely A=1/4573/8. The sum over A\3~/2 < n is of a

geometric series and so can be computed exactly. Lastly, we changed variables in
the integral according to n = A/235-1/4¢,

Proposition 5.3. For all ) sufficiently small, 3 < X2, m >0, and s > 0,
1
2s - n—1 2s sn—s/2
(78) En n <0,n,n’7H+ﬂ >AB (m=* +X\°p ),

and

. 1 1
(79) En:rﬂ <0,n,n‘PL/\+ﬁPf

where the constants do not depend on X\ or 3. Combining these two estimates shows
that for \ sufficiently small

80) S (1+ n25)<0,n,n‘ -

Proof. The proof of (79) is the same as that of the upper bound in (78), differing
only in that it uses (77) instead of (76). It is therefore omitted.

We will use the following simple observation repeatedly: for any function f with
f(z) > 0and |f'(z)/f(x)] S 1,

(s1) Z F(n) < f(xo) / e

for any o € [a,b]. The assumption that A='4%/2 < 1 is sufficient to ensure the
hypothesis on the logarithmic derivative in each of the instances below.
We will also use the following simple inequalities

o0 S
(82) / nYe "dn < s7e”?, / nYe"dn < s7e’
s 0

and their corollaries

> 5 )\ﬂfl(mle + )\5673/2).

P‘O m m>‘“1—|—m25+/\sﬁ /2,
At

2

[e ) S
2.2 _ 2.2 2 2 _ 2.
(83) / n e dn <y e S, / e W dn <um2s7e .
s 0

In (82) and (83), the implicit constants depend only on v > —1.
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We now begin the proof of the < part of (78); it is much like the argument
given in the remark above. The first step is to replace the matrix elements of the
resolvent of H by the upper bounds given in (76) of Proposition 5.2. Now we need
to calculate the sum over n. The reasoning necessary depends on the value of m
and so we consider separately three cases:

Case 1: 0 < m < A\'/23=1/4 In this regime, p(m) < ¢ and so

S n2 P O e ltm=pml < \=1/4=3/8 37 p2s(B) g=p(r)

<S4 52+ 83
where Sy, Sy, and Sz are given by restricting the sum to those n in [0, \1/23~1/4],
A/23=1/4 \p=1/2], and [\3~'/2, 00) respectively. Using (81) with zq = 0,
Al/2g=1/4
S < )\—1/26—3/4 Z n23 < )\Sﬁ_lﬁ_s/Q-

n=0

Next, using (81) with zo = AY/2571/* and (83), we get

/\ﬁ71/2
Sy < )\—3/45—5/8 Z n2s+%€—cﬁl/2n2/>\ < ()\—1/25—3/4 +ﬁ—1)/\35—s/z
n=A1/23-1/4

But 8 < A? and so the above implies Sy < A\*5~1375/2,
Finally, in S5, we can extend the sum from A\3~'/2 < n < oo to all positive n:

S3 < )\*1/4577/8 Zn2sefcn < /\71/4577/8 < )\5671675/2'

n=0

where the last inequality uses 8 < 2.

Case 2: \'/2371/4 < m < AB~1/2. In this regime, p(m) = cA~'m?3'/2 and we
proceed as above, i.e., we divide the sum over all n into three pieces S, So, and S;3
each corresponding to the same interval of ns as in case 1.

For the sum over 0 < n < A/2371/4 we use (81) with o = 0, and the fact that
zl/4e—cx < 1 uniformly for z > 0 and so in particular when x = A~ im2p1/2.

)\1/2ﬁ71/4
Sl5)\73/4/875/8m1/2675)\_1m2,81/2 Z n2s

n=0

< )\56—s/2)\—1/4ﬂ—7/8m1/26—c)\71m251/2
/S )\Sﬂflﬂfs/Q'
Next, applying (81) twice with xg = m and then both parts of (83),

Sy < )\_1/2,6’_1/2m1/2 {)\—1/2m2s+; _|_/m n25+%efc)\71(m27n2)ﬁ1/2 dn
0

o0

m

< A_lmQS'Hﬁ_l/Q + m235—1

~

5 571m28.
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In the last inequality, we used the fact that m < A3~/2. Finally, using (81) and
(82),
S < )\—1/25—3/4m1/2 Z nQSe—cn—&-c)\*lszl/z
n=\3-1/2
< )\71/2673/4m1/2)\25/675670)\6_1/2+C)\_1m2ﬁl/2

5 6—1m2s.
To obtain the last inequality, consider the cases s > 1/4 and s < 1/4 separately.
Case 3: \3~/? < m. We proceed similarly: By (81)

Al/2g-1/4
S S, /\71/4ﬂ77/867cm Z n2s

n=0

< ASﬂfs/Q)\l/élﬁfQ/Se—cm

S )\Sﬁfs/2671m1/4efcm

5 ﬁ_lAsﬁ_S/2.
because z!/4e~¢* < 1. Extending the summation region down to n = 0, applying
(81) with zg = 0 and then (83),

AB~1/2

Sa ,S )\—1/25—3/46—cm/ n28+%60/\71n2ﬁ1/2 dn
0
< ﬁ—l/\236—se—c(m—>\5*1/2)

g /BflmQS.

Where the last line follows from m > )\ﬁ_l/ 2,
To complete the proof of case 3 and so of the < part of (78) we estimate S3 by
extending the sum to all n > 0 and applying both parts of (82):

oo
S5 5 E n2567c|m7n\ 5 671m2s
n=AB-1/2

To prove the 2 part of (78) we use

(84) > (0., n|(H + 8) 710, m,m) = 57
which was derived earlier (see (73)).
Let G(n,m) = (0,n,n|(H + 8)~10,m, m) and, given € > 0, define

. B A/23-1/4 .y < \1/23-1/4
(85) no = em > AL/23-1/4

For € sufficiently small (independent of m, 8 and A) one can check that

(86) > Gn,m) < 357,

n<ng
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using computations similar to those performed earlier in this proof. By (84), this
means that the sum over n > ng must be at least %6*1 and so

Zn2SG(n,m) > Z n2*G(n,m) > %6‘17%3 > B (m* + )\Sﬂfsﬂ).
n=0

n=ngo

The final inequality here should be checked separately for each case in (85). O

Lemma 5.4. If w(n) = 1+ n?*, to be considered as a weight on the range of P,
and W(n,m) = (1 + |n —m|?)~1\/w(n)w(m), to be considered as a weight on the

range of P+ P+, then
HPJPLR/%(B)PLHQV <1,

1 ~
-4,

Proof. The resolvent formula implies that

PJPR{(B)P* = PIRS (B)P-Y { - i)\PlJRé(ﬂ)PL}]
§=0
Thus, the claim will follow from
(87) |TRg (B)PH] o ST,
w w

whose proof is very much like that of (46) in Lemma 4.1. For variety, we present
the argument slightly differently.

Notice that the weight W obeys

W(n+1,m) <1 and W(n,m=£1)
W(N,n,m) ~ W(N,n,m) ~
and let 9N denote the multiplication operator NN, n,m) = (1 + N)|N,n,m).

By Schur’s test, (27), and the above, JM~! is a bounded operator on £;,. As
Ri(B)|N,n,m) = [N+ B+i(n? —m?)]~1|N,n,m), the operator MRy (3) P+ is also
bounded on this space. Taking the product of these two bounded operators proves
equation (87). O

We are now ready to complete the proof of the Theorem, which we restate for
the reader’s convenience.

Theorem. Let X (t) be a process obeying Hypothesis 1 and let V(0) be an even
trigonometric polynomial. If the coupling constant X\ is sufficiently small then for
any iitial wave-function Yo € H?,

o0
(88) x /0 e TR {03} dt < XT3 ||yho 132 + [|vboll s

as T — oo. The expectation is over possible trajectories of the Markov process X (t).
In particular, the energy grows on average as the square-root of time.

Proof. By Proposition 2.1, we need to estimate

p
89 1+ |n|? <0, : } ’PO>.
(59) > @+ )0 mn| - ZlPO)

where P(0) = uo ® |1bo) (10| and 8 = . Recall from Section 3 that |0,7,n) is in the
range of P, if n > 0, or of @, if n < 0. Recall also that by Lemma 3.1 the ranges
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of both P + P+ and Q 4+ Q* are invariant subspaces for Ly. Combining these two
facts, we can re-write (89) as

Z(1+\n|25)<0,n,n’P p [P+PJ‘]’P(O)>

n>0 Ly+p
(90) - 5
£ 30 (1P {(0.nnjQ 25 [0 + @ [PO).
n<0

As earlier, we will treat the even part of the wave function (the top line above); the
odd part may be treated identically.
By (21) and (22),

(91)  P(Lx+B) '[P+ P'] = P(Ly+ B)"'P[P —iA\PJP Ry (3)P*].

So let |¢1) = P|P(0)) and |¢2) = —iAPJPLRy(B)PL|P(0)). We will write
¢j(m) = (0,m, m|¢;), j = 1,2, for their components. Of course, ¢;(m) = [¢o(m)[?
so by Proposition 5.3 equation (80),

(902 > (1+ ”28)<0’”’”)PLAB+ 5P|¢1> =3 Gu(m)(1+m* + AB2)
n>0 o

= tllyge + X670

By similar reasoning,

(93) g (1+ n23)<0,n,n‘PLAﬁ+ 5P‘¢2> S ; g (m)|(1 +m? 4+ X*37%/2)

S llalley, +2787"2 2]l -

where w is as in Lemma 5.4 (we will also use the W notation found there). By this

Lemma and the fact that (0,n, m|P(0)) = tho(m)io(n),
o2l S APl

DY 1 (e lamP ) {wtld e}

n,m
S Mool

where the last inequality used the £2-boundedness of the matrix with entries (1 +
|n —m|?)~!. In the particular case that s = 0, the above argument says

2
192l < Allbo]| -

Substituting these two estimates for ¢, into (93) gives

s ﬂ 2 s —s/ 2
00 3 () Ol P LIPS+ 3

The combination of (92) and (94) shows that (88) does indeed hold once A is
chosen sufficiently small. (I
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