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1 Introduction

Given an ergodic map T : Td → Td, a potential Vx(n) = v(Tnx), where v : Td → R is
analytic and nonconstant, define the Hamiltonian

Hx := −4Z + λVx. (1)

This is a version of the well-known Anderson’s model. In the late 1950’s, Phil Anderson
predicted that random impurities could turn conductors into insulators. In mathemat-
ical terms, he predicted that random potentials should lead to pure point spectrum
with rapidly decreasing eigenfunctions — at least for large disorders. Instead of ran-
dom potentials, one considers here potentials given in terms of deterministic dynamics.
The “randomness” is given by the parameter x ∈ Td.

Basic questions: Does (1) display pure point spectrum for large λ, and does
Anderson localization take place (exponentially decaying eigenfunctions)? One can also
ask about dynamical localization. This refers to the property supt ‖(1+|n|)AeitHψ0‖2 <
∞ for all A > 0, provided ψ0 decays very rapidly. Other topics of interest is the limiting
distribution of the eigenvalues of Hx restricted to [−N, N ] as N →∞ (this is known as
the integrated density of states or IDS). Other very interesting questions concern the
presence of a.c. spectrum for small λ, as well as the structure of the spectrum (Cantor
set).

We cannot review the long and rich history of this subject here, but rather refer
the reader to the monographs by Carmona and Lacroix [9] as well as Figotin and Pas-
tur [11] for this purpose. Another resource which is closely related to this note is the
forthcoming book by J. Bourgain [3]. Let us merely mention the fundamental results
by Dinaburg, Sinai [10] (a.c. spectrum for small λ), Fürstenberg [14] (positivity of the
Lyapunov exponent), Goldsheid, Molchanov, Pastur [15] (A.L. for the one-dimensional
model), Fröhlich, Spencer [12] (“multiscale analysis” in the random case), Aizenman,
Molchanov [1] (“fractional moment method”), Fröhlich, Spencer, Wittwer [13] and
Sinai [18] (A.L. for the quasiperiodic model), as well as the many deep and important
contributions by Avron, Bellissard, Campanino, Carmona, Delyon, Eliasson, Figotin,
Gordon, Jitomirskaya, Kirsch, Klein, Kotani, Last, Martinelli, Oseledec, Pastur, Ru-
elle, Simon, Simon-Wolff, Souillard, Thouless, Wegner.

We now consider the eigenvalue equation

(Hxψ)n = −ψn+1 − ψn−1 + λv(Tnx)ψn = Eψn. (2)

Examples of maps T are: the shift Tx = x + ω (modZd), the doubling map Tx =
2x (mod1), and the skew-shift T (x, y) = (x + y, y + ω) (modZ2). It follows from the
covariance relation

HTx = UHxU∗ with U=left shift

that Σx := spec(Hx) is constant for a.e. x. The same also holds for the spectral parts
Σac

x ,Σpp
x , Σsc

x .
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Recall the following basic objects in the study of (2). The monodromy matrices
and Lyapunov exponent are defined as

Mn(x, λ,E) :=
1

∏

j=n

[

λv(T jx)−E −1
1 0

]

Ln(λ,E) :=
1
n

∫

Td
log ‖Mn(x, λ, E)‖ dx

L(λ,E) := lim
n→∞

Ln(λ,E) = lim
1
n

log ‖Mn(x, λ, E)‖

where the last relation holds for a.e. x by Kingman’s subadditive ergodic theorem.
Furthermore, by the Ishi-Pastur theorem Σac

x ⊂ {E : L(λ, E) = 0}, whereas Kotani’s
converse statement is meas

[

{E : L(λ,E) = 0} \ Σac
x

]

= 0, a.e. x.
Let Tx = Tωx := x + ω (mod1) be the one-dimensional shift. We denote the

Lyapunov exponent by L(ω, λ, E) to emphasize the dependence on ω. The following
theorem is proved in [4].

Theorem 1 (Bourgain-Goldstein). Suppose infω,E L(ω, λ, E) > 0. Then for a.e. ω
and a.e. x the Hamiltonian Hx displays Anderson localization, as well as dynamical
localization.

Note: This does not explicitly require large λ. If v(x) = cos(2πx) (the almost
Mathieu operator), then Theorem 1 applies for λ > 2 (by Herman’s result L(ω, λ, E) ≥
log(λ/2) for λ > 2). Jitomirskaya [16] proved this result for the almost Mathieu
operator and all Diophantine ω and a.e. x. The proofs of both Theorem 1 as well
as [16] are nonperturbative, and are based on the transfer matrix formalism. The
following theorem is from [17].

Theorem 2 (Goldstein-S.). Suppose ω is Diophantine (which means here that
‖nω‖ ≥ Cω

n(log n)a for n > 1, a > 1). If L(ω, E) > 0 for all E1 < E < E2, then
L(ω, ·) as well as the integrated density of states N(ω, ·) are Hölder continuous in
E ∈ [E1, E2].

Note: The integrated density of states (IDS) is the deterministic limit

N(ω, E) = lim
N→∞

1
2N + 1

#{1 ≤ j ≤ 2N + 1 : E(N)
j < E}

where E(N)
j = E(N)

j (x, ω) are the eigenvalues of Hx restricted to [−N,N ]. Thouless’s
formula relates the Lyapunov exponent L and the IDS N :

L(ω, E) =
∫

log |E − E′|N(ω, dE′).

Sinai’s work on large disorder [18] shows that the IDS can be no better than Hölder–1
2

continuous, and Bourgain [3] obtained the exponent 1
2− for the almost Mathieu oper-

ator and large λ. In [17], the Hölder exponent depended on the Lyapunov exponent.
Bourgain refined [17] to obtain a Hölder exponent that is uniform in L(E). Bourgain
and Jitomirskaya [7] modified the method from [17] to show that L(ω,E) is jointly
continuous in ω, E at every point (ω0, E), ω0 ∈ R \ Q as well as continuous in E for
every ω (without assuming that L is positive).
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The skew-shift on T2 is defined to be Tω(x, y) = (x + y, y + ω) (modZ2). Note the
quadratic dependence on n in the nth iterate

Tn
ω (x, y) = (x + ny + n(n− 1)ω/2, y + nω) (modZ2).

It is conjectured to lead to L(ω, λ, E) > 0 for all λ > 0. The following theorem is
proved in [5].

Theorem 3 (BGS). Fix ε > 0. Then there exist λ0(ε) and Ω(λ, ε) ⊂ T3 such that
meas[T3 \ Ω(λ, ε)] < ε and for all λ > λ0(ε) and (ω, x, y) ∈ Ω(λ, ε), (Hω,x,yψ)n :=
−ψn+1 − ψn−1 + λv(Tn

ω (x, y))ψn displays Anderson localization.

This theorem is related to the following “quantum kicked rotor” model:

i∂tΨ(t, x) = a∂2
xΨ(t, x) + ib∂xΨ(t, x) + V (t, x)Ψ(t, x)

where V (t, x) = κ cos(2πx)
∑

n∈Z δ(t−n). Let its unitary evolution operator be denoted
by S(t). Then the monodromy operator is defined as W = S(1) = Ua,b ·W1,κ where

Ua,b = ei(a d2

dx2 +b d
dx ), and (W1,κf)(x) = eiκ cos(2πx)f(x) =: ρ(x)f(x) is a multiplication

operator by the function ρ.
The action of these operators on Fourier modes is given by Ua,b =

e−i(4aπ2n2+2πbn)δmn, W1,κ(m,n) = ρ̂(m − n). Note that ρ̂ decays exponentially, and
ρ̂(0) = 1 + O(κ2). Then the self-adjoint operator H := 1

2(W + W ∗) is of the form
Hnn = v(Tn

ω (0, y)), Hmn = φm−n(Tmx) + φn−m(Tnx) for m 6= n, with φ exponentially
decaying and small (for κ small). Therefore, H is a long-range version of the skew-
shift Hamiltonian from Theorem 3. In analogy with Theorem 3, one can show that
Anderson localization for H holds for small κ and most a, b. Hence, W also possesses
an orthonormal basis of exponentially decaying eigenfunctions (where the exponential
decay refers to the Fourier coefficients). More precisely, Bourgain proved the following
result in [2].

Theorem 4 (B). For small κ and (a, b) outside a set of small measure, one has:
Let Ψ(t, x) = (S(t)Ψ(0, ·))(x) be the solution of the kicked rotor equation. If Ψ(0, ·) is
a smooth function on T, then Ψ(t) is an almost-periodic H1(T)-valued function and
supt ‖Ψ(t)‖H1(T) < ∞.

In recent work, Bourgain and Jitomirskaya have obtained a version of Theorem 4
that applies to a.e. choice of the parameters (a, b). Theorem 3 is proved by means of the
transfer matrix formalism, whereas Theorem 4 cannot be obtained this way because of
long-range interactions. One uses instead an approach that originated in the proof of
the following theorem from [6].

Theorem 5 (BGS). Let v : T2 → R be analytic, nonconstant on any vertical and
horizontal line segment. Let (Hxyψ)nm = −4Z2ψnm + λv(x + nω1, y + mω2)ψnm for
(n, m) ∈ Z2. Then for all ε > 0, λ > λ0(ε) the operator Hxy displays Anderson
localization for all (x, y, ω1, ω2) ∈ T4 up to a set of measure at most ε.
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2 Transfer matrix formalism

As in the case of truly random potentials, it is of basic importance to control the
probability that a given energy E is close to an eigenvalue of the Hamiltonian H
restricted to a box. In other words, one needs to estimate

meas
[

x ∈ Td : dist(HΛ
x , E) < e−ρ]

where Λ = [−N, N ] and ρ is relatively large (say, � (log N)A). By self-adjointness,
this is the same as bounding the norm of the Green function

∥

∥(HΛ
x − (E + i0))−1

∥

∥ =
‖GΛ(x,E)‖. By Cramer’s rule, one has

GΛ(x,E)(n,m) =
f[−N,n−1](x,E)f[m+1,N ](x,E)

f[−N,N ](x,E)

where f[p,q](x,E) = det(H [p,q]
x − E). Moreover, there is the well-known relation

Mn(x, E) =
[

f[1,n](x,E) −f[2,n](x,E)
f[1,n−1](x,E) −f[3,n](x,E)

]

.

Recall that Kingman’s theorem implies that 1
N log

∥

∥MN (x,E)‖ → LN (E) for a.e. x ∈
T. A quantitative version of this statement are the following estimates on the devia-
tions: For large N

meas
[

x :
∣

∣ log
∥

∥MN (x, E)‖ −N LN (E)
∣

∣ > Nσ]

< e−Nτ
(3)

for some fixed 0 < σ, τ < 1. Such estimates are proved in [4], [17], [8], [5] for various
different underlying ergodic transformations T . There they are referred to as large
deviation theorems or LDT.

To motivate the proofs of these results, consider the following commutative model
case:

u(x) =
N

∑

n=1

log |e(x + nω)− 1| =
∫

log |z − ζ|µ(dζ)

where z = e(x) = e2πix, µ =
∑N

n=1 δe(−nω). The left-hand side can be thought of as a
Riemann sum. It is standard to estimate the error between such sums and their mean
via Koksma’s inequality: Let S := {xn}N

n=1 ⊂ T

∣

∣

N
∑

n=1

f(xn)−
∫ 1

0
f(x) dx

∣

∣ ≤ C DN (S)‖f‖BV

where DN (S) = supJ⊂T
∣

∣#{n : xn ∈ J} −N |J |
∣

∣.
The problem here is, of course, that log |e(x) − 1| 6∈ BV . A more direct approach

is to observe that u(x) is the Hilbert transform of a sum of saw-tooth functions. More
precisely, let f0(x) = −1

2 − x for −1
2 < x < 0 and f0(x) = 1

2 − x for 0 < x < 1
2 . Then,

with H being the Hilbert transform,

u(x) = H
(

N
∑

n=1

f0(·+ nω)
)

(x)

‖u‖BMO ≤ C
∥

∥

∥

N
∑

n=1

f0(·+ nω)
∥

∥

∥

∞
∼ DN ({nω}N

n=1).
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Since for a.e. ω and N large DN ({nω}N
n=1) < N ε, the John-Nirenberg inequality implies

meas
[

x : |u(x)− 〈u〉| > Nσ]

≤ exp
[

−Nσ−ε].

Observe the analogy of this estimate with the large deviation theorem (3).

The transition to the noncommutative case is typically accomplished by means of
two devices:
• subharmonic extensions of log ‖MN (x,E)|
• the so-called “avalanche principle” (this requires positive exponents L(E) > 0).

The former is well-known and straightforward: Since v is analytic, u(x) =
log ‖MN (x,E)‖ extends to a neighborhood of the unit circle as a subharmonic function.
Such functions have a Riesz representation:

u(z) =
∫

log |z − ζ|µ(dζ) + h(z)

with some measure µ ≥ 0, and a harmonic function h. Here ‖µ‖ ∼ N , but there is a lot
of cancellation in the integral to ensure, for example, that ‖u‖BMO ≤ (log N)A. This
latter property can only be captured by means of invoking the underlying dynamics.
More precisely, one obtains the structure of u as a sum of shifts of another function by
means of the following Avalanche Principle (Goldstein-S.):

Let {An}N
n=1 ∈ S`(2,R). Suppose ‖An‖ > µ > N , ‖An+1An‖ ≤

√
µ ‖An+1‖ ‖An‖

for all n. Then

∣

∣

∣ log ‖MN‖+
N−1
∑

n=2

log ‖An‖ −
N−1
∑

n=1

log ‖An+1An‖
∣

∣

∣ ≤ C
N
µ

where MN = AN · · ·A1.

In the work by Bourgain, Goldstein, and the author, this device has been used to
establish the following properties:

• positivity of the Lyapunov exponent for large disorder
• inductive proof of large deviation theorems
• Hölder continuity of the integrated density of states.

We now give a typical application of the avalanche principle. Write

MnN (x,E) =
0

∏

j=N−1

Mn(T jnx,E), where n ∼ (log N)A.

Suppose, for 0 < σ, τ < 1 fixed,

meas
[

x :
∣

∣ log
∥

∥Mn(x,E)‖ − n Ln(E)
∣

∣ > nσ]

< e−nτ
(4)

and the same for 2n, where Aσ ≥ 100. Furthermore, suppose Ln(E) ≥ L2n(E) ≥ 1 for
all E, and Ln(E)−L2n(E) ≤ 1/100. Then up to a set of measure < CNe−nσ ∼ N−99,
and for n large, one has for all j

‖Mn(T jnx)‖ > en−nσ
> en/2 =: µ

‖Mn(T (j+1)nx)Mn(T jnx)‖ > e2nL2n(E)−nσ

> e2nLn(E)−2nσ
> µ−

1
2 ‖Mn(T (j+1)nx)‖ ‖Mn(T jnx)‖.
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From the avalanche principle, one concludes that up to a set of measure < N−99,

∣

∣

∣ log ‖MnN (x, E)‖+
N−2
∑

j=1

log ‖Mn(T jnx,E)‖

−
N−2
∑

j=0

log ‖M2n(T jnx,E)‖
∣

∣

∣ < CNe−n/2. (5)

Typically, the sums are uniformly in x close to their means (since they represent
averages over very long orbits). The conclusion then is that

u(x) :=
1

Nn
log ‖MnN (x,E)‖ = u0(x) + u1(x)

where ‖u0 − 〈u0〉‖∞ ≤ CN−1+ε =: ε0, and ‖u1‖1 ≤ C N−90 =: ε1. Provided the Riesz
mass of the subharmonic extension of u(x) is < N20, the splitting lemma (see below)
yields ‖u‖BMO ≤ C

(

ε0 +
√

N20ε1
)

≤ C N−1+ε. By means of the John-Nirenberg
inequality, this implies that

meas
[

x :
∣

∣ log
∥

∥MnN (x,E)‖ − nN LnN (E)
∣

∣ > (nN)σ]

< C e−c Nσ−ε
,

which is (4) for N instead of n (provided τ < σ − ε). The same argument applies to
2nN . Moreover, averaging (5) over x yields that

|LnN (E) + Ln(E)− 2L2n(E)| < C N−1,

which implies LnN (E) ≥ 1−2(Ln(E)−L2n(E))−C N−1. Continuing inductively leads
to positivity of L(E) as well (4) for all n.

The following result is the aforementioned splitting lemma from [5]:

Lemma 1. Let u be subharmonic on a neighborhood of T with Riesz mass N . Suppose
u = u0 + u1 on T with ‖u0‖L∞(T) = ε0 and ‖u1‖L1(T) = ε1. Then ‖u‖BMO ≤ C(ε0 +√

Nε1).

To motivate this statement, consider N points zj = e(xj) in T. Suppose that
P (z) =

∏N
j=1(z − zj) satisfies sup|z|=1 |P (z)| < eτ . We claim that DN ({xj}N

j=1) ≤
C
√

Nτ where DN is the usual discrepancy (see above).
Proof: u(x) = log |P (e(x))| = H

( ∑N
j=1 f0(· − xj)

)

. Set F :=
∑N

j=1 f0(· − xj). Let KN

be a smooth bump function KN (θ) = K(Nθ), K ≥ 0,
∫

K = 1, suppK ⊂ [−.01, .01].
Then

(KN ∗ f0)
(

· −C
N

)

− C
N

< f0(·) < (KN ∗ f0)
(

·+ C
N

)

+
C
N

Using
∫

T u = 0, ‖u‖1 ≤ Cτ , F = H−1u = −Hu, one now has

‖F‖∞ ≤ 2‖H−1(u ∗KM )‖∞ +
CN
M

≤ C
√

M‖H−1(u ∗KM )‖2 +
CN
M

≤ C
√

M‖u ∗KM‖2 +
CN
M

≤ C
√

M‖u‖1‖KM‖2 +
CN
M

≤ C Mτ +
CN
M

.
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Setting M =
√

N/τ gives ‖F‖∞ ≤ C
√

Nτ (and thus also ‖u‖BMO ≤ C
√

Nτ). Finally,
it is easy to check that ‖F‖∞ ∼ DN ({xj}N

j=1), as desired.

Note that this argument shows that if u(z) =
∫

log |z − ζ| dµ(ζ) with supp(µ) ⊂ T,
supT u ≤ 〈u〉+ τ (here 〈u〉 = 0 and thus ‖u‖1 ≤ τ), then ‖u‖BMO ≤ C

√

‖µ‖ τ .
A small variation of this argument proves Lemma 1 above.

Final remarks on the transfer matrix formalism:
• For the shift and skew-shift, large deviation theorems for u(x) = log ‖MN (x, E)‖
are obtained via (a) subharmonicity (b) almost invariance u(x) ≈ u(Tx). The latter
can be either be the simple invariance property supx |u(x) − u(Tx)| ≤ C (suffices for
the shift) or the avalanche principle (needed for the skew-shift). The main difference
between these cases is that the Riesz mass of u in the former is N , in the latter N2

(or NC for higher-dimensional versions of the skew-shift). The avalanche principle re-
quires positive exponents, and the first step (but only that one) is perturbative. This
means that both the initial positivity of the Lyapunov exponent, as well as the large
deviation theorem at the initial scale are obtained by making the disorder very large.
It is conceivable that the required information at the first step could also be provided
by a numerical calculation. We would like to emphasize that for the plain shift, large
deviation theorems do not require positive exponents and are non-perturbative. This
allows Bourgain and Goldstein [4] to prove localization on the basis of L(E) > 0 alone.
• The avalanche principle gives positive Lyapunov exponents for large disor-
ders under very general circumstances. But this either requires the Riesz mass of
log ‖MN (x,E)‖ to grow at most like NC (so that the necessary large deviation theo-
rem can be obtained simultaneously), or one needs to prove the LDT by other means
at all scales. One case where the Riesz mass grows exponentially rather than polyno-
mially is the doubling map Tx = 2x (mod1). For this model, one proves the LDT by
means of well-known subgaussian bounds for sums of martingale differences, see [8].
• In recent work, Goldstein and the author have obtained large deviation theorems
for the entries of the monodromy matrix rather than the entire norm. Recall that the
entries are the determinants fN (x,E).

3 Localization

The large deviation theorems from the previous section only control the probability of
a single resonance at a fixed energy E, i.e.,

meas
[

x ∈ T : dist(E, H [−N,N ]
x,ω ) < e−Nσ]

.

It is well-known that this does not suffice in order to prove Anderson localization.
Rather, one needs to control the probability of double resonances. More precisely, let
DCA,c ⊂ T denote the set of ω with ‖nω‖ ≥ c

|n|A for all n 6= 0 and define

δN := meas
[

ω ∈ DCA,c : dist(E, spec(H [−n,n]
0,ω )) < e−nσ

,

G[k,k+N ](0, ω, E) is bad for some E and |k| ∼ NC]

.

Here n ∼ (log N)A, and G[k,k+N ](x, ω, E) is good if both ‖G[k,k+N ](x, ω, E)‖ < eNσ

(σ < 1 fixed) and |G[k,k+N ](x, ω,E)|(j, `) < e−γN if k ≤ j, ` ≤ N + k, |j − `| ∼ N
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with γ > 0 a lower bound on the Lyapunov exponents. One then needs to show that
∑

j δ2j < ∞. By means of standard methods (resolvent identity plus the polynomial
Shnol-Simon bound on generalized eigenfunctions) this ensures that for a.e. ω ∈ DCA,c
the operators H0,ω display Anderson localization. Finally, letting c → 0 in the Dio-
phantine condition allows one to extend this to a.e. ω ∈ T, thus proving Theorem 1.

To estimate δN , note that

δN ≤
∑

E∈spec(H[−n,n]
0,ω )

meas
[

ω ∈ DCA,c : log ‖MN (kω, ω,E)‖

< NLN (ω, E)−Nσ, for some |k| ∼ NC]

.

The set on the right-hand side is the projection onto the ω-axis of the intersections
ΩN :=

⋃

|k|∼NC SN ∩ `k of the lines `k := {(ω, kω) : ω ∈ T} with

SN :=
{

(ω, x) ∈ DCA,c × T : log ‖MN (x, ω, E)‖ < NLN (ω, E)−Nσ}

.

The measure of SN is very small by the LDT, but this by itself does not preclude
ΩN = T (consider the case where SN is one of the lines `k). We need to know that the
intersections of SN with any horizontal line consist of a small number (say NC many)
connected components. This property is given by the Milnor-Thom bound of dC on
the number of connected components of semi-algebraic sets of degree d, at least if the
potential v is a trigonometric polynomial (the case of general analytic v then follows by
approximation). Indeed, if v is a trigonometric polynomial, then the horizontal sections
of SN are contained in semialgebraic sets of very small measure and degree NC , as can
be seen from the fact that the entries of MN are polynomials in ω of degree < NC .
From this complexity bound and the LDT bound get δN ≤ Cn meas[ΩN ] < N−τ for
some τ > 0 by means of the following lemma from [4].

Lemma 2. Let S ⊂ T2 be such that {ω ∈ T : (ω, x) ∈ S} consists of at most M
intervals for every x ∈ T. Then

meas
[

ω ∈ T : (ω, kω) ∈ S for some |k| ∼ N
]

≤ C NC(meas[S])
1
2 + C MN−1.

Concluding remarks:
• Localization can be obtained by this method for shifts of any dimension, as well as
the skew-shift. In the latter case the main difficulty is the LDT (only known for large
disorders).
• The long-range case as well as the Laplacian on Z2 cannot be treated by the transfer
matrix formalism, so no LDT or avalanche principle are available. In those cases one
needs to develop estimates on the probability that a given Green’s function is bad (in
the spirit of Fröhlich-Spencer’s multiscale method), which again relies on subharmonic
function arguments and reductions to smaller scales.
• Establishing Hölder regularity of the IDS requires a sharp LDT

meas
[

x ∈ T : | log ‖MN (x,E)−NLN (E)| > δN
]

< e−cδ N .

This LDT is known, but only for the shift on T. Averaging the avalanche principle
over x by means of this LDT yields

|LN (E) + Ln(E)− 2L2n(E)| < N−1+ε where n ∼ log N.
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Thus |L(E)− LN (E)| ≤ CN−1+ε and

|LN (E)− LN (E′)| ≤ CN−1+ε + eC2n|E −E′|.

Hence |L(E)− L(E′)| ≤ C|E − E′|α, for some α > 0, as desired.
Open problems:
• Hölder regularity of IDS for shifts on Td with d ≥ 2. Does the IDS become more
regular as the number of frequencies increases? Currently, the results deteriorate with
the number of frequencies. Related question: Is there a LDT of the form

meas
[

x ∈ T : | log ‖MN (x,E)−NLN (E)| > δN
]

< e−cδ N

for shifts in higher dimensions?
• Determine the Hölder exponent for the IDS. More precisely, can one get Hölder 1

2−
provided the potential has only non-degenerate critical points? This is known (Bour-
gain) for the almost Mathieu model and large disorders.
• Prove a version of Theorem 5 on Zd, d ≥ 3.
• Positivity of the Lyapunov exponent for small disorders for the skew-shift.
• Positivity of the Lypunov exponent and Anderson localization for all positive disor-
ders with Tx = 2x (mod1), see [8].
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