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Abstract. In this article we review some recent developments in the theory
of Schrödinger operators with quasi-periodic potentials on the discrete line.
We focus in particular on the work by the authors on the formation of a dense
set of gaps in the spectrum of such operators with general analytic potentials,
provided the Lyapunov exponent is positive.
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1. Introduction

In this brief review we consider the class of operators defined as

(Hθψ)(n) = −ψn+1 − ψn−1 + λV (θ + nω)ψn (1)

with n ∈ Z and ω ∈ T Diophantine or, in the continuum,

(Hθψ)(x) = −ψ′′(x) + λV (θ + xω)ψ(x) (2)

with x ∈ R and ω ∈ Tν , ν ≥ 2, Diophantine. In both cases we shall assume that V is
a real-analytic function on a suitable torus. An important special case is the almost
Mathieu operator (also known as Harper’s operator) for which V (θ) = cos(2πθ).
Although these operators Hθ depend on a parameter, it is a basic fact that their
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spectrum σ(Hθ) and its spectral parts, i.e., the absolutely continuous (a.c.), singular
continuous (s.c.), and pure point (p.p.) parts, are deterministic. This means that
there are fixed compact sets which equal these respective parts of the spectrum for
a.e. θ. In the case of (1) this follows from the ergodic theorem and the identity
HTθ = U−1 ◦Hθ ◦ U , where Tθ = θ + ω mod Z and U is the left shift.

We now recall some of the advances in this field:

• Dinaburg–Sinai (1975): For (2) and a large set of large energies, there
are Bloch–Floquet waves ψθ,E(x) = aθ,E(x)eik(θ,E)x where aθ,E is quasi-
periodic, Hθψθ,E = Eψθ,E . Their argument is perturbative off the peri-
odic case and they use KAM and Floquet theory.

• Avron–Simon, Craig–Simon (1981–1984): Discovered some of the most
basic general properties of Schrödinger operators with almost periodic po-
tentials. For example, they established purely s.c. spectrum for Liouville
rotation numbers and the existence of Cantor spectrum for limit-periodic
potentials. Furthermore, they gave a rigorous derivation of the Thouless
formula which provides a relation between the Lyapunov exponent L(E)
and the integrated density of states k(E), viz.,

L(E) =

∫

log |E − E′| dk(E′).

Here the Lyapunov exponent is defined to be

L(E) = lim
N→∞

N−1

∫ 1

0

log
∥

∥MN (θ, ω,E)
∥

∥ dθ

where

MN (θ, ω,E) =

1
∏

j=N

[

λV (T jθ) − E −1
1 0

]

(3)

and the IDS is defined as the limiting distribution of the eigenvalues, viz.,

k(E) = lim
N→∞

1

2N + 1
#{j : E

(N)
j (x, ω) ≤ E}

where E
(N)
j (x, ω) are the eigenvalues of H[−N,N ](x, ω). They observed

that the IDS is log-Hölder continuous as a consequence of the Thouless
formula. They also gave an exact argument for Aubry duality for the
almost Mathieu case.

• Johnson–Moser (1982) and Herman (1983): Introduced a rotation number
α(λ) := limx→∞ x−1 arg(φ+iφ′)(x, λ) for solutions of Hθφ(·, λ) = λφ(·, λ)
withHθ as in (2) (or more generally, with almost periodic potential). They
also proved continuity of α and related the intervals of constancy of α to
gaps in the spectrum; more precisely, the value of 2α(λ) belongs to the
frequency module of the almost periodic potential. Moreover, α is the
same as the IDS k(E) up to a factor of π.

• Avron–van Mouche–Simon (1990): For the almost Mathieu case and in
the limit over periodic approximants, they established that |σ(Hθ)| =
|4− 2|λ|| if |λ| 6= 2. Last then obtained the full theorem without the limit
over periodic approximants and also for |λ| = 2. Thus, for that case he
showed that the spectrum has measure zero. In particular, the spectrum
is nowhere dense.
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• Eliasson (1992): Again for the case of (2), Floquet–Bloch solutions exist
for a.e. large E and σ(Hθ) is purely a.c.. More precisely, he established
reducibility: the Schrödinger cocycle is conjugate to a constant one for
a.e. energy. Moreover, for generic potential the spectrum is a Cantor set.

• Jitomirskaya, Last, Simon (1994, 1997): Showed that the p.p. and s.c.
parts of the spectrum are not constant; rather, only a.e. constant, see
above. Moreover, the a.c. part is constant in the phase θ (this also due
to Kotani; see the following bullet). There is an open conjecture due to
Simon that the union of the s.c. and p.p. spectrum is constant.

• Kotani (1984–1997): Showed that the closure of the set of positivity of
the Lyapunov exponent equals the essential support of the a.c. part of the
spectral measure of an ergodic operator (2) (Simon extended these results
to the discrete case (1))—thus proving the converse of the Ishii–Pastur
theorem. Furthermore, Kotani introduced a natural notion of “determi-
nacy” of a ergodic potential Vω and showed that the Lyapunov exponent
is always positive (and thus there is no a.c. spectrum) unless Vω is de-
terministic in his sense. This body of techniques, which is based on the
Weyl–Titchmarsh m-function, has become known as “Kotani theory.”

• Gordon–Jitomirskaya–Last–Simon (1997): Refined the |λ| = 2 analysis
for the almost Mathieu operator and established purely s.c. spectrum.

• Krikorian and Avila–Krikorian (2000–2004): Recent work on reducibility;
they established a dichotomy between nonuniform hyperbolicity (i.e., con-
tinuous Oseledts splitting) and reducibility for quasi-periodic Schrödinger
cocycles with analytic potentials; their results hold for a.e. ω and a.e. en-
ergy. They obtain further that for the almost Mathieu operator with
|λ| = 2 and Diophantine ω, the spectrum is measure zero and purely s.c.
for a.e. phase. This completes the analysis of Last (see above).

An important question about the operator class (1) and (2) concerns Anderson
localization (AL). This means that the spectrum is pure point with exponentially
decreasing eigenfunctions.

• Fröhlich–Spencer–Wittwer, Sinai (late 1980s): Established (AL) for cosine-
like potentials and large disorder. Their arguments are perturbative, treat-
ing the operators as perturbations of the multiplication operator given by
the potential.

• Jitomirskaya (1999): For almost Mathieu, |λ| > 2, as well as Diophantine
ω, proved (AL). By a lower bound on the Lyapunov exponent due to
Avron–Simon, as well as Herman, |λ| > 2 implies that infE L(E) > 0.
Moreover, by Aubry duality and the Ishii–Pastur theorem, this fails when
|λ| ≤ 2. Hence, this result shows that (AL) holds precisely when L(E) > 0
for all energies.

• Bourgain, Goldstein (2000): Established (AL) for analytic potentials, pos-
itive Lyapunov exponents, and almost all ω. They introduced large devi-
ation theorems and the use of semi-algebraic sets (for the elimination of
double resonances) into this field.

Finally, we turn to another important question, namely: When is the spec-
trum a Cantor set? This simply means that it is nowhere dense (a more refined
version of this statement is whether all gaps allowed by the gap labeling theorem
are open). So far, this question had apparently only been considered for the almost



4 M. GOLDSTEIN AND W. SCHLAG

Mathieu case. We now list a series of results that answer this question affirmatively
in the almost Mathieu case.

• Bellissard–Simon (1982): For a dense Gδ set of λ, ω.
• Choi–Elliott–Yui (1990): Liouville case, |λ| = 2 using methods of C∗

algebras; their proof also applies to all λ 6= 0.
• Puig (2003): |λ| 6= 2, ω Diophantine. His argument proceeds by contra-

diction. He shows that eigenvalues of H with phase 0 are necessarily the
endpoints of open gaps.

• Avila–Jitomirskaya (2005): For |λ| 6= 0, bridge the gap between the Liou-
ville and Diophantine cases. Thus, they show that whenever the potential
is nonperiodic (i.e., for irrational ω) there is a dense set of gaps. Thus,
they provide a solution of the so-called Ten Martini problem. As in Puig’s
argument, the proof again proceeds by contradiction.

• The case |λ| = 2 is covered by the previous reference, but had also been
settled earlier by Last and Avila–Krikorian (see above).

2. The IDS and Cantor Spectrum for General Potentials

We now discuss some recent work by the authors. We will in general emphasize
ideas over technical correctness. For a review which is much more technical by
design, we refer to reader to [29]. However, this reference does not contain any
material about gaps. Rather, it reviews the long paper [27] which develops the
machinery needed for the formation of gaps in [28]. This paper is intended as an
exposition of the main ideas needed to pass from [27] to [28].

We remark that unless indicated otherwise, Diophantine henceforth means that,
for all n ≥ 1,

‖nω‖ ≥ c

n(log n)a

with c > 0 and a > 1. The following is proved in [26, 27, 28].

Theorem 1. Consider (1) with λ = 1. Let V : T → R be analytic and suppose
that

inf
E,ω

L(E,ω) > 0.

Then the following properties hold:

(1) If ω is Diophantine, then the IDS is Hölder continuous. If V is in a small
L∞ neighborhood of a trigonometric polynomial of degree k, then the IDS
is Hölder (2k + ε)−1-continuous for all ε > 0.

(2) For a.e. ω, the following holds: Off a set of Hausdorff dimension zero the
IDS is Lipschitz continuous.

(3) For a.e. ω, the IDS is absolutely continuous.
(4) For a.e. ω, the spectrum is a Cantor set.

Further results include:

• estimates on the distribution of the zeros of

det(H[−N,N ](z, ω) − E)

in the z-plane
• a quantitative separation property of the eigenvalues of H[−N,N ](z, ω)
• a constructive, finite-volume mechanism for the development of Anderson

localization
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• a constructive finite-volume mechanism for the formation of gaps based
on resonances

We now give an example of some finite-volume statements which imply, and are
finer than, the corresponding statements concerning the IDS in the previous theo-
rem; they are obtained in [27] and address the problem of bounding the expected
number of eigenvalues at a finite scale falling into a small interval.

Theorem 2. Let E
(N)
j (x, ω) be the eigenvalues of H[−N,N ](x, ω). Then

• For any η > N−1+δ, δ > 0, and ω Diophantine, there is the following
bound on the expected number of eigenvalues falling into small intervals:
for arbitrary E, κ > 0 and large N ,

1
∫

0

#{j : |E(N)
j (x, ω) − E| < η} dx ≤ Nη

1

2k
−κ

where k is the degree of the underlying trigonometric polynomial.
• Let ε > 0 be arbitrary but fixed. If ω 6∈ Ω(ε), E 6∈ Eω(ε), then

1
∫

0

#{j : |E(N)
j (x, ω) − E| < η} dx < exp((log ε−1)A)Nη

where |Ω(ε)| + supω 6∈Ω(ε) |Eω(ε)| < ε.

According to Yakov Sinai, “Anderson localization is a game of resonances”.

A resonance here means the following: Let Λ,Λ′ ⊂ Z be intervals, typically of
comparable length and separated by more than their length. Then the Hamiltonians
HΛ(x, ω) and HΛ′(x, ω) are said to be in resonance provided their spectra are very
close.

In order for this concept to be useful, it needs to be quantified. Note that for
any Λ, one can of course find Λ′ = Λ+k (a translate) for which the distance between
the spectra of HΛ(x, ω) and HΛ′(x, ω) is arbitrarily small. This follows simply from
recurrence of the rotation map. Therefore, the point will be to apply this definition
inside a fixed box Λ0 of a given size and then look for (much) smaller Λ,Λ′ ⊂ Λ0

which produce resonances (where the notion of distance between the spectra needs
to be adjusted to the length of Λ0—typically ≪ |Λ0|−C with C large). Of particular
importance is to keep track of how many smaller intervals Λ′ there are for a given
Λ ⊂ Λ0 which produce resonances with Λ and also satisfy dist(Λ′,Λ) ≫ |Λ|. If there
is exactly one such Λ′, then one speaks of a double resonance, otherwise of triple or
higher order resonance. It is particularly important to eliminate the occurrence of
such higher order resonances for Sinai [47], Fröhlich–Spencer–Wittwer [23], Bour-
gain [7], as well as the authors’ argument for gap formation [28]. In the former
three references this is accomplished perturbatively, by assuming that the potential
has no more than two monotonicity intervals; in [28] we proceed nonperturbatively
and no assumption other than analyticity is made on the potential—in order to
prevent triple resonances it is necessary to eliminate some small set of ω and E

(this process of elimination is essentially the one of Chan [12]).
We remark that it is also customary to speak of eigenfunctions of HΛ(x, ω)

and HΛ′(x, ω) to be in resonance. This simply means that these eigenfunctions
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correspond to close eigenvalues. At the larger scale, such eigenfunctions “merge”
to form a two-humped eigenfunction of HΛ0

(x, ω), cf. Figure 9.
To illustrate this concept, let us recall the KAM-type scheme used in Fröhlich–

Spencer–Wittwer’s as well as Sinai’s perturbative approach to localization. In it,
one starts off with singletons Λ,Λ′: consider the 2 × 2 matrix

A(x) =

[

V (x) λ−1

λ−1 V (x+ ω)

]

where V (x0) = V (x0 + ω) and V ′(x0) < 0, V ′(x0 + ω) > 0. Its eigenvalues E±(x)
for x close to x0 form two branches with

E±(x0) = V (x0) ± λ−1.

Figure 1 shows how the two separate branches of the potential (which are the
diagonal entries of A(x)) separate when they yield the eigenvalues of A(x). The
dashed line is supposed to have length exactly equal to ω. The projections of the
intersection points of this dashed line with the graphs are x0 and x0+ω, respectively.

If V has two monotonicity intervals and ω is Diophantine, then it is easy to see
that this 2 × 2 block determines the invertibility of the N × N Hamiltonian close
to x0 provided λ is large (however, this largeness depends on N). More precisely,
it follows from the Feshbach formula that

det (HN (x, ω) − E)

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

λV (x) − E −1 0 · · · · · · 0

−1 λV (x+ ω) − E −1 0 · · · 0

...
...

...
...

...
−1

0 . . . . . . . . . . . . . . . 0 −1 λV (x+ (N − 1)ω) − E

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= F (x, λ,E) detA(x)

where F (x, λ,E) 6= 0 for all x close to x0. It turns out that this fact can be
considered as the 0-order step in a KAM scheme. To pass to bigger scales one
again uses the Feshbach formula using the previous scale as the information needed
to invert the larger blocks.

−

E

E

+

Figure 1. A double resonance
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Sinai (1987) and Fröhlich–Spencer–Wittwer (1990) carried out versions of this
scheme. Later, Bourgain (2001) obtained in this way Hölder 1

2 − ε continuity of

the IDS for cosine-like potentials and large disorder. The point of the exponent 1
2

here is the following: the obstruction to invertibility of a finite volume Hamiltonian
always arises in the form of a second order polynomial. In the proof of Theorems 1
and 2, which are of course nonperturbative, it will also be of crucial importance
to obtain such fixed-degree control. Note that the degree of these polynomial will
vary with the degree k of the potential (for k = 1, it will again be quadratic and
more generally, be of degree 2k; hence the Hölder exponent (2k)−1 of the IDS). To
extract these polynomials of fixed degree we use a Weierstrass preparation theorem.
Finally, we note that in the free case the IDS is no better than Hölder 1

2 -continuous
at the edges of the spectrum.

3. A Finite-Volume Mechanism for Anderson Localization

Because of the self-adjointness of H and the analyticity of V , the solutions of

0 = det
(

H[1,N ](x, ω) − E
)

.

are real-analytic functions (which we refer to as Rellich functions)

E1(x, ω) < E2(x, ω) < · · · < EN (x, ω)

One cannot have equality here since the eigenvalues of the Dirichlet problem are
simple. Figure 2 displays the graphs of such Rellich functions for the periodic
Mathieu operator with periodic boundary conditions. The interval is [1, N = 12]

where the latter number arises as denominator of a convergent of ω =
√

2. In
Figure 3 the same is plotted for the almost Mathieu operator with ω =

√
2 and

Dirichlet conditions at the boundary. Although the graphs appear to intersect at
many points, they actually separate at these points, as can be seen in a much finer
resolution. Finally, Figure 4 shows the Rellich functions for a potential given by a
third degree polynomial again with the same ω but the next larger denominator in
the sequence of convergents.

At this point it seems natural to ask some basic quantitative questions:

• What is the width of the strip around R to which Ej(z, ω) can be analyt-
ically continued?

• What is the size of the separation between the Ej(x, ω)?
• What is a reasonable lower bound on the absolute values of the slopes of

the Ej(x, ω) away from critical points?

The answer turns out to be e−Nδ

provided ω ∈ T\ΩN , Ej(x, ω) 6∈ EN (ω). Here
ΩN , EN (ω) have small measure and complexity (the latter refers to the number of
connected components a set needs to have to cover EN (ω) without increasing the
measure significantly—by a multiplicative constant, say). More precisely, we have
the bounds

|ΩN | < exp(−(logN)2A), compl(ΩN ) < exp((logN)A)

and similarly for EN (ω). Note that these bounds reflect that the “bad sets” have
Hausdorff dimension zero.

Central to the separation of the Ej(x, ω) is a finite-volume understanding of
(AL), which we now describe: Let H[−N,N ](x, ω)ψ = Eψ with ‖ψ‖2 = 1. We seek
a window Λ0 ⊂ [−N,N ] so that ‖ψ‖ℓ2(Λ0) = 0.999, say, and |Λ0| ≪ Nε. Consider
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Rellich functions, almost Mathieu, periodic case,  N= 12

Figure 2. Rellich functions in the periodic case

all intervals Λ ⊂ [−N,N ] with |Λ| = n ∼ (logN)C : there exists such an interval Λ
so that with fΛ(x, ω,E) = det(HΛ(x, ω) − E),

log |fΛ(x, ω,E)| < |Λ|L(ω,E) − |Λ| 12 .
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5
Rellich functions, almost Mathieu, Dirichlet BC,  N= 12

Figure 3. Rellich functions in the aperiodic case I
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Otherwise each Green’s function GΛ(x, ω,E) would exhibit exponential off-
diagonal decay. Indeed, by Cramer’s rule,

∣

∣

∣

(

H[−N,N ](x, ω) − E
)−1

(k,m)
∣

∣

∣
=

∣

∣f[−N,k]

(

e(x), ω, E
)∣

∣

∣

∣f[m+1,N ]

(

e(x), ω, E
)∣

∣

∣

∣f[−N,N ]

(

e(x), ω, E
)∣

∣

.

In [27] the following uniform upper bounds are proved:

log
∣

∣f[−N,k]

(

e(x), ω, E
)∣

∣ + log
∣

∣f[m+1,N ]

(

e(x), ω, E
)∣

∣ ≤ 2NL(ω,E) + (logN)A1

for any x ∈ T. Therefore,

∥

∥

(

H[−N,N ](x, ω) − E
)−1∥

∥ ≤ N2 exp
(

2NL(ω,E) + (logN)A
)

∣

∣f[−N,N ]

(

e(x), ω, E
)∣

∣

for any x ∈ T. Moreover, one obtains the aforementioned off-diagonal decay in this
way. This latter property, however, would force ψ to be very small everywhere in
contradiction to the fact that ‖ψ‖2 = 1.

0 0.2 0.4 0.6 0.8 1
−10

−8

−6

−4

−2

0

2

4

6

8

10
Rellich functions, V of 3rd degree,  N= 29

Figure 4. Rellich functions in the aperiodic case II

We shall now outline three main points related to the phenomenon of Anderson
localization and the property of separation of the eigenvalues:

• Point 1: By eliminating bad ω and E (i.e., ω 6∈ ΩN , E 6∈ EN (ω)) we can
ensure that

log |fΛ′(x, ω,E)| ≥ |Λ′|L(ω,E) − |Λ′| 12 (4)

for all |Λ′| ∼ |Λ|, dist(Λ′,Λ) > Nε. This will be obtained by means of a
reduction to a statement about close zeros of two determinants; see below.
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• Point 2: From the avalanche principle (see Lemma 1 below), conclude
that (with L(E,ω) > γ > 0)

|ψ(n)| ≤ exp(−γdist(n,Λ0) +Nε).

This step can be considered to be in the spirit of the multi-scale analysis
of Fröhlich–Spencer, albeit with the avalanche principle instead of the
resolvent identity.

• Point 3: Suppose

H[−N,N ](x, ω)ψ = Eψ, H[−N,N ](x, ω)ψ̃ = Ẽψ̃

with ‖ψ‖2 = ‖ψ̃‖2 = 1 and 0 < |E − Ẽ| < e−Nδ

, and ω 6∈ ΩN , E, Ẽ 6∈
EN (ω). Then provided ε≪ δ,

‖ψ − ψ̃‖2 < |E − Ẽ|eNε ≪ 1.

Clearly, this is a contradiction to ψ ⊥ ψ̃ (note that this step requires
self-adjointness of the Hamiltonian). So

|E − Ẽ| > e−Nδ

.

This step requires knowing that (4) holds, not just localization; in fact, we
need to use that ψ(n) = µ(x, ω,E)·f[−N,n−1](x, ω,E) for all −N ≤ n ≤ N .

It is not surprising that ψ and ψ̃ are close if E and Ẽ are close; indeed, this
can be thought of as continuity in E or differentiability in E. Of course,
the differentiation has to be carried out on determinants of a smaller scale
and not the large-scale determinants. This is achieved by means of the
avalanche principle and the fact that the small-scale Hamiltonians are not
in resonance with those inside the window of localization.

We now recall the Avalanche Principle (AP) from [26] and [27]. It is a purely
deterministic statement.

Lemma 1 (Avalanche Principle). Let A1, . . . , An be 2 × 2 matrices whose de-
terminants satisfy

max
1≤j≤n

| detAj | ≤ 1.

Suppose that

min
1≤j≤n

‖Aj‖ ≥ µ > n

max
1≤j<n

[log ‖Aj+1‖ + log ‖Aj‖ − log ‖Aj+1Aj‖] < 1
2 logµ.

Then
∣

∣

∣
log ‖An · . . . · A1‖ +

n−1
∑

j=2

log ‖Aj‖ −
n−1
∑

j=1

log ‖Aj+1Aj‖
∣

∣

∣
< C

n

µ

with some absolute constant C.

4. Elimination of Bad Phases and Energies

We now return to Point 1 from above in an attempt to explain some of the
underlying issues, especially the need for elimination of bad ω and E. In order to
obtain our window of localization, we need to exclude resonances. The latter here
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refers to the situation where for some energy E there exists a phase x0 for which
we have two small determinants:

log |fΛ(x0, ω, E)| < |Λ|L(ω,E) − |Λ| 12

log |fΛ′(x0, ω, E)| < |Λ′|L(ω,E) − |Λ′| 12
(5)

where Λ,Λ′ ⊂ [−N,N ], dist(Λ,Λ′) ≫ |Λ| = |Λ′| = n. This can of course happen;
indeed, if we formally “eliminate” the phase x from these inequalities, then we
obtain a condition on (ω,E) that describes a set of bad parameters that need to be
removed. Using large deviation theorems for the determinants (see (9) below), as
well as Jensen’s formula (7) from complex analysis, one can show that (5) implies

the following: there exist z1, z2 with |z1 − z2| +
∑

j |Imzj | < e−n
1

4 and

f[1,n](z1, ω, E) = f[1,n](z2 + tω, ω,E) = 0. (6)

Hence, we are required to exclude close zeros of two such determinants which we
do by means of the method of resultants (we will return to this issue below). We
now recall Jensen’s formula from complex analysis1: if f is analytic on |z− z0| ≤ r,
then

1
∫

0

log |f(z0 + re2πiθ)| dθ = log |f(z0)| +
∑

ζ:f(ζ)=0

log
r

|ζ − z0|
(7)

In order to use this to pass from (5) to (6) we simply need to show that the sum

on the right-hand side cannot vanish for r = e−n
1

4 ; or, in other words, that the
difference

1
∫

0

log |f[1,n](x0 + re2πiθ, ω, E)| dθ − log |f[1,n](x0, ω, E)| 6= 0.

In view of (5) this is accomplished by showing that with e−n < r ≤ n−1, the
integral satisfies

1
∫

0

log |f[1,n](x0 + re2πiθ , ω, E)| dθ = nL(E,ω) +O((log n)C) log
1

r
.

This in turn follows from the following estimate, which we call large deviation
theorem (LDT) for the determinants; see [27]:

|{x ∈ T : log |f[1,n](x+ iy, ω,E)| < nL(ω,E) − h}| < e−ch/(log n)C

(8)

uniformly in |E| ≤ C and |y| ≤ n−1. Figure 5 illustrates this bound for the case
of log ‖MN(x, ω,E)‖ instead of the determinant, with MN as in (3), N = 100 and
V = cos. The picture displays the self-similar nature of this function together
with its subharmonic features: there are large deviations in the direction of small
values, but for large values the function looks relatively “flat.” We remark that the
(LDT) for MN goes back to [9] and [26], whereas the case of the determinant was
established in [27].

1We use this device in [27] repeatedly. However, since it is hard to work with a fixed z0 we
are forced to average over this point as well; this is the origin of the double Jensen averages in
that paper. Here, however, it suffices to freeze z0. See also the review [29] for these matters.
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Figure 5. The logarithm of a monodromy matrix

By the John–Nirenberg inequality (see Garnett [25]), the bound (8) is equiva-
lent with the statements that

‖ log |f[1,n](· + iy, ω,E)|‖BMO ≤ (log n)C (9)

and
1

∫

0

log |f[1,n](x+ iy, ω,E)| dx = nL(E,ω) + (log n)C (10)

where (10) is uniform in |y| ≤ n−1. We remark that these estimates imply that

sup
x∈T

log |fΛ′(x, ω,E)| < nL(ω,E) + (log n)C (11)

via the sub-mean property of subharmonic functions. Another immediate conse-
quence via Jensen’s formula is the following bound

#{ζ ∈ D(x0, n
−1) : f[1,n](ζ, ω,E) = 0} ≤ (logn)C (12)

for all x0, E and Diophantine ω. These four facts (9)–(12) are basic to our entire
analysis; see [27] and [29]. We remark that the large deviation estimate, and thus
the BMO bound (9), are a reflection of that fact that the zeros of f[1,n](·, ω, E) are
uniformly distributed.

To see this, consider the following classical result of Erdös–Turan: Let {ζj}N
j=1 ⊂

T be a collection of N points on the circle. Consider the polynomial

P (z) =

N
∏

j=1

(z − ζj).
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Figure 6. Zeros I

Then

sup
z∈T

|P (z)| < eτ ⇒ ‖ log |P (e(·))|‖BMO ∼ DN ({ζj}) <
√
Nτ

where

DN ({ζj}) = sup
I⊂T

∣

∣#{j : ζj ∈ I mod 1} −N |I|
∣

∣

is the usual discrepancy. There is the following analogue for subharmonic functions:
Let u : A → R be subharmonic with T ⊂ A ⊂ C an annulus of width 1

2 , say. Then
the Riesz representation theorem (see Levin [43]) yields that

u(z) =

∫

log |z − ζ| dµ(ζ) + h(z)

with µ ≥ 0 and h harmonic. Suppose µ(C) ≤ N . Then the analogue of the result
of Erdös–Turan is the following:

‖u(e(·))‖BMO .
√

N [sup
x∈T

u(e(x)) − 〈u〉] .

However, this is insufficient for our purposes (it is inconsistent in the sense that
the supremum bound (11) does not imply the BMO bound (9)). Luckily, it can be
improved (see Bourgain–Goldstein–Schlag [10] and [8, 29]): Write u−〈u〉 = u0+u1

on T. Then

‖u(e(·))‖BMO . ‖u0‖∞ +
√

N‖u1‖1

It is easy to check that this bound is consistent with our estimates.
In order to obtain the estimates for the determinants which we just described,

we need to reveal their “almost-invariance” under the shift. This can be done by
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means of a “factorization of the determinant” via the avalanche principle. Indeed,
write

[

fN (x, ω,E) 0
0 0

]

=

[

1 0
0 0

] 1
∏

j=N

[

V (T jx) − E −1
1 0

] [

1 0
0 0

]

=

1
∏

k=n

Ak(x, ω,E)

where each Ak is the product of about (logN)C many factors. One needs to use the
large deviation theorems for the determinants and monodromies on the small scale
to conclude that the conditions of the avalanche principle hold. This requires the
removal of a set of phases x ∈ T of measure < exp(−(logN)B). For the remaining
good phases we conclude that:

log |fN(x, ω,E)| = −
n−1
∑

j=2

log ‖Aj‖ +

n−1
∑

j=1

log ‖Aj+1Aj‖ +O(N−1000).

Note that this resembles an ergodic average since most of the Aj can be chosen
to be shifts in the phase of a fixed one. This is what we mean by “self-similar
structure” of the determinants fN . In Figures 6 and 7, we display two sets of zeros
of the determinants in the almost Mathieu case. The first one is for an energy in
the spectrum, whereas the second is for an energy outside of the spectrum. Observe
that the zeros look approximately evenly distributed with the exception of a few
“errant” ones. Loosely speaking, these are related to nonlocalized states in the
same way that the “errant” segments of Rellich graphs crossing what appears to be
a gap in Figures 3 and 4 correspond to nonlocalized states (see the gap containing
energies [−2,−1]∪[1, 2] in Figure 3 as well as that around energy E = 3 in Figure 4).
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Recall that we have only discussed so far how to pass from (5) to (6) but not
how to exclude the latter. As indicated above, for this we need to eliminate close
zeros. The following is proved in [27]:

Lemma 2. There exists Ωn ⊂ T, |Ωn| < e−n
1

10 , so that for all ω 6∈ Ωn,

t > e(log n)C

there exists En,t,ω ⊂ C, |En,t,ω| < e−n
1

10 so that

f[1,n](z1, ω, E) = f[1,n](z2 + tω, ω,E) = 0 ⇒ |z1 − z2| > e−n
1

4

inf
x∈T

dist
(

spec(H[1,n](x, ω)) \ En,t,ω, spec(H[1,n](x + tω, ω))
)

> e−n
3

4

This is only one of several statements one can prove in this direction; more
precisely, the powers of n can be lowered to nε with ε > 0 arbitrary. Further, we
remark that one can also remove x instead of E by a Wegner estimate; see [27] and
[29]. Finally, and crucially, we are also able to bound the complexity of the bad
sets Ωn and En,t,ω.

For the proof, we need to use the resultant of two polynomials f(z), g(z). It is
defined as

Res(f, g) =
∏

j,k

(zj − ζk)

where f(zj) = 0, g(ζk) = 0. One can show that it is a polynomial in the coefficients
of f, g (see [39]). Suppose

f(z, ω,E) = zν + aν−1(ω,E)zν−1 + · · · + a1(ω,E)z + a0(ω,E)

g(z, ω,E) = zµ + bµ−1(ω,E)zµ−1 + · · · + b1(ω,E)z + b0(ω,E)

with aj , bk analytic in ω,E. It follows that Res is also analytic in ω,E. This allows
one to use analytical methods to estimate Res from below, at least for most ω,E.
Clearly, if we are able to bound the resultant from below, then we are also able to
give a quantitative estimate on the separation of the zeros. Figure 8 depicts the
algebraic curve Res(ω,E) = 0 in the (ω,E)-plane. For most values of ω there will
be only finitely many E-values on this curve, but we need to remove those ω for
which there is a “flank”; this refers to the vertical or near vertical segments of the
curve that would lead to a large set in energy for which the resultant is too small.

On a more technical, albeit crucial, point we remark that we cannot use resul-
tants on the full determinants because of their large degree. Rather, we apply the
Weierstrass preparation theorem on f[1,n](z, ω,E) before applying the resultants lo-

cally in ω: the factors which we pull out have very small degree = (logn)C because
of the control over zeros provided by (12). For more on this topic, see [27] or [29].

We now list some important consequences of the finite-volume Anderson local-
ization and the quantitative separation of the eigenvalues:

• Use a Sard-type argument to conclude that the slopes of the Rellich func-

tions E
(N)
j (x, ω) off a bad energy set EN (ω) are bounded below by e−Nδ

in
absolute value. The Sard theorem is needed to remove the critical values
of the Rellich functions. Particular care needs to be taken concerning the
complexity of the resulting set of energies. Of course, it is essentially used
in [27] that the Rellich functions are solutions of algebraic equations of
controlled degrees.
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Res(f,g)=0

Figure 8. Zero set of the resultant

• Use (AL) to obtain almost shift-invariance of the Rellich graphs. Provided

E
(N)
j (x, ω) 6∈ EN (ω) and for most choices of m ∈ [−N,N ], there exists ℓ

such that

|E(N)
j (x, ω) − E

(N)
ℓ (x +mω,ω)| < e−N

1

2

.

This follows from the following fact: if H[−N,N ](x, ω)ψ = Eψ with ψ

localized, then ψ(n+m) is almost an eigenfunction of H[−N,N ](x+mω,ω).
This self-similarity of the Rellich graphs is basic to the formation of gaps.

• Gaps (in some finite volume) are formed by the interaction of two local-
ized eigenfunctions with separate supports but close eigenvalues; more-
over, their respective Rellich graph segments should have opposite slopes.
The following figure describes this schematically. The separate bumps on
the left (which depict eigenfunctions on a smaller scale) combine to form
an eigenfunction on a larger scale. The curves below depict the Rellich
graphs of the two small-scale eigenfunctions which then produce the sep-
arated arcs on the right as Rellich graphs of the larger scale (cf. Figure 1)
in that regard. An exact way of formulating this requires the notion of
a double resonance. Roughly speaking, this means that there are exactly
two windows of localization in our finite-volume scheme of Anderson lo-
calization. To avoid a third or more windows requires elimination of triple
resonances as in Chan [12].

We say that (x0, E0) is a point of double resonance for H[−N,N ](x0, ω) provided
there exist Λ1 = [N ′

1, N
′′
1 ],Λ2 = [N ′

2, N
′′
2 ] as shown in Figure 10 so that for j = 1, 2,
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Figure 9. A schematic description of a double resonance

and with ρ = e−Nε

,

specHΛj
(x0, ω) ∩ (E0 − ρ,E0 + ρ) = {E0}

#{z ∈ D(e(x0), ρ) : fΛj
(z, ω,E0) = 0} = 1

where |Λ1| ∼ |Λ2| ∼ N2ε and which are separated from the boundaries of [−N,N ].
Finally, we need to avoid triple or higher order resonances: for all Λ ⊂ [−N,N ]
separated from Λ1 ∪ Λ2 by an amount ≫ N2ε, we have

specHΛ(x0, ω) ∩ (E0 − ρ,E0 + ρ) = ∅.
The importance of this notion of a point of double resonance lies with the fact
that it captures the nonperturbative essence of Figure 1. Recall that there we
were able to extract a second degree polynomial from the characteristic polynomial
of a finite-volume Hamiltonian, i.e., from the determinant fN(·, ω, E). This was
done perturbatively by means of the Feshbach formula. Here we have to proceed
differently—in fact, this extraction of a quadratic factor is accomplished by means
of (a quantitative version of) the Weierstrass preparation theorem.

More precisely, if (x0, E0) is a point of double resonance, then one can show by
means of the (AP) (see “factorization of a determinant” from above) that for all
x ∈ I := (x0 − ρ, x0 + ρ) there are exactly two zeros in both the z and E variables
locally around the points we are considering:

#
[

specH[−N,N ](x, ω) ∩ (E0 − ρ,E0 + ρ)
]

= 2

#
{

z ∈ D(e(x0), ρ) : fN (z, ω,E0) = 0
}

= 2
(13)

and the corresponding Rellich functions are separated (without any E removal!):

E+(x, ω) − E−(x, ω) > e−Nδ ∀x ∈ I.
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Figure 10. The eigenfunction corresponding to a double resonance

It is obviously essential here that we are not forced to eliminate the energy E,
as otherwise we would be eliminating the gap which we are trying to construct.
The fact that we can obtain separation of the eigenvalues here without eliminating
an interval around E relies on the properties of a double resonance; the features
needed to obtain the separation property have been included in the definition,
see the discussion of Point 3 above. To obtain the zero count (13), we use the
avalanche principle (see the “factorization of a determinant” from above) and the
Jensen formula. Heuristically, this is a variant of the obvious fact that the number
of zeros of any polynomial is the sum of the numbers of the zeros of all factors
in a factorization of the polynomial. Here we of course do not have an exact
factorization, but only an additive one for the logarithm that holds for most phases
and up to a small error. But since the Jensen formula is based on averages and
the number of zeros is integer valued, we can afford to make small errors—they
produce small errors after averaging and do not affect the zero count.

Finally, in view of Figures 1 and 9, we require that the Rellich functions of
the two small-scale windows Λ1 and Λ2 which attain the energy E have slopes of
opposite signs. The appearance of such slopes is a consequence of the 1-periodicity
of the continuous Rellich graphs and the fact that we are working a priori on
intervals of energies on which the slopes of the Rellich functions do not vanish.
Hence, it is important to realize that our construction does involve the elimination
of energies and can thus, in its present form, not capture something that occurs on
the entire spectrum (in particular, the argument in [28] shows that the gaps are
dense but not much more beyond that).

If we do have graph segments of opposite slopes as in Figure 9, then we do get
much more, namely, the desired gap between the branches E± as in Figure 1 and
Figure 9:

min
I
E+(x) > max

I
E−(x) + e−N2δ

. (14)
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To see this, we need to be able to show that locally in z the determinant of the large
scale at energy E behaves like a quadratic polynomial; the same is needed also in
the E variable. As mentioned before, we use the Weierstrass preparation theorem
to extract these quadratic polynomials based on the zero count (13).

As mentioned above, the definition of a double resonance point is tailored to
our needs in the sense that it produces the exact zero count of two, and thus allows
for the Weierstrass preparation argument. The question arises how to find points of
double resonance—obviously, they are essential for our gap construction. The fact
that there have to be at least two small-scale Hamiltonians which are in resonance is
relatively simple and can basically be deduced from the Rellich graphs at the small
scale. Much trickier is to ensure that there cannot be more than two resonances—
this requires the elimination of ω via an implicit function type argument. For
this we crucially need to have some information on the nondegeneracy of certain
derivatives, which itself is a consequence of the quantitative nonvanishing of the
slopes of the Rellich graphs; recall that we remove energies for this purpose. The
elimination of triple resonances employed in [28] is a variant of that introduced by
Chan [12].

Returning to (14), we have finally arrived at a gap between two large-scale
Rellich functions locally around x0; we call this construct a pre-gap. Using (AL)
we can now move this pre-gap around in x by shifting the phase. This is due to the
aforementioned “self-similarity” or “almost shift-invariance” of the Rellich graphs.

It remains to show that this pre-gap is not destroyed when passing to larger
scales. Among other things, we need to insure that the energies which we remove
at the next scale N̄ are much smaller in measure than the size of any pre-gap at a

previous scaleN ; however, the latter is at least e−N2δ

, whereas the former is at most
exp

(

−(log N̄)C
)

. Hence, we define scales Ns = exp(N δ1

s−1) with δ1 > 0 sufficiently
small. This ensures that we can safely remove “bad” energies of scale Ns+1 inside
the pre-gap at scale Ns. We can therefore repeat the pre-gap construction at scale
Ns+1 inside the pre-gap of the previous scale provided, of course, Rellich graphs of
scale Ns+1 enter that pre-gap (the case where they do not is easier).

It remains to show that this process has to terminate, i.e., one needs to find
a mechanism that will ensure that after some number of steps, no more pre-gaps
can form inside a pre-gap of the previous scale. At that point the pre-gap will
become a gap of the infinite-volume operator. It turns out that a pre-gap cannot
be filled in more than k times if the underlying potential function V has degree
k. This involves a counting argument involving complex zeros. The point there is
that every pre-gap at scale Ns and locally around (x0, E0) corresponds to a pair of
complex zeros of

det(H[−Ns,Ns](z, ω) − E0)

in the z variable. This pair of zeros lies off the unit circle and close to the point
e(x0). Moreover, their separation from the circle is basically proportional to the
size of the gap. By the aforementioned shifting procedure of pre-gaps (which is
based on the almost shift-invariance of the Rellich graphs and finite-volume (AL)),
each such pair generates almost Ns further pairs. If there was a sequence of con-
secutive scales producing pre-gaps, then one can show that this would lead to an
accumulation of zeros which ultimately violates some degree considerations. This
process is somewhat involved and we refer the reader to Lemma 2.24 and Section 9
of [28].
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