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Abstract. The distribution νλ of the random series
∑

±λn is the infinite convolution product

of 1
2
(δ−λn + δλn). These measures have been studied since the 1930’s, revealing connections with

harmonic analysis, the theory of algebraic numbers, dynamical systems, and Hausdorff dimension

estimation. In this survey we describe some of these connections, and the progress that has been

made so far on the fundamental open problem: For which λ ∈ ( 1
2
, 1) is νλ absolutely continuous?

Our main goal is to present an exposition of results obtained by Erdős, Kahane and the authors

on this problem. Several related unsolved problems are collected at the end of the paper.
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1. Introduction

Let νλ be the distribution of
∑∞

0 ±λn where the signs are chosen independently with probability 1
2 .

It is the infinite convolution product of 1
2 (δ−λn+δλn), hence the term “infinite Bernoulli convolution”.

These measures have been studied since the 1930’s, revealing surprising connections with harmonic

analysis, the theory of algebraic numbers, dynamical systems, and Hausdorff dimension estimation.

There are several ways to think about νλ which hint at these connections.

Research of Peres was partially supported by NSF grant #DMS-9803597. Research of Solomyak was supported

in part by NSF grant #DMS 9800786, the Fulbright foundation, and the Institute of Mathematics at the Hebrew

University of Jerusalem.

1



2 YUVAL PERES, WILHELM SCHLAG, AND BORIS SOLOMYAK

(i) The Fourier transform ν̂λ(ξ) =
∫∞
−∞ eitξ dνλ(t) is easily computed:

ν̂λ(ξ) =
∞∏

n=0

cos(λnξ), (1.1)

and this formula has been crucial for number-theoretic considerations.

(ii) νλ can be characterized by the functional equation for its cumulative distribution function

Fλ(x) = νλ(−∞, x]:

Fλ(x) =
1

2

[
Fλ
(x − 1

λ

)
+ Fλ

(x + 1

λ

)]
.

In other words, νλ is the self-similar measure for the iterated function system {λx− 1,λx + 1} with

probabilities (1
2 , 1

2) (see [17]). This point of view is useful in applications to dynamical systems and

dimension estimation.

(iii) νλ can be viewed as a “non-linear projection”: let Ω = {−1, 1}N be the sequence space with

the Bernoulli measure µ = (1
2 , 1

2)N. Then

νλ = µ ◦ Π−1
λ where Πλ(ω) =

∞∑

n=0

ωnλ
n.

This representation has been most useful in the recent work on νλ which used ideas of geometric

measure theory.

The fundamental question about νλ is to decide for which λ ∈ (1
2 , 1) this measure is absolutely

continuous and for which λ it is singular. If the density exists, it is natural to inquire about its

smoothness. If the measure is singular, one would like to compute, or estimate, its dimension.

Denote by S⊥ the set of λ ∈ (1
2 , 1) such that νλ is singular. The only elements of S⊥ that are

known were found in [9] by Erdős (1939): they are the reciprocals of Pisot numbers in (1, 2). It is an

open problem whether they constitute all of S⊥. The first important result in the opposite direction

is also due to Erdős (1940): he proved in [10] that S⊥ ∩ (a, 1) has zero Lebesgue measure for some

a < 1. Later, Kahane [19] indicated that the argument of [10] actually implies that the Hausdorff

dimension of S⊥ ∩ (a, 1) tends to 0 as a ↑ 1. We included the Erdős-Kahane argument with explicit

numerical bounds since they have never appeared in the literature (see section 6). In [47] Solomyak

(1995) proved that νλ is absolutely continuous for a.e. λ ∈ (1
2 , 1). A simpler proof was found by

Peres and Solomyak [39] and we do not reproduce it here. In [38] Peres and Schlag established, as

a corollary of a more general result, that the Hausdorff dimension of S⊥ ∩ (a, 1) is less than one for

any a > 1
2 . Our main goal is to give a self-contained proof of this (see section 7).

The rest of the paper is organized as follows. In section 2 we give some additional historical

background. Sections 3 and 4 contain several results which hold for all parameters λ. In section 3

we discuss two “laws of pure type” for self similar measures, one classical and one recently proved
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by Mauldin and Simon [36]. Together, they imply that any self similar measure ν with support K

is either singular to Lebesgue measure L, or equivalent to the restriction of L to K.

In section 4 we discuss the Hausdorff and correlation dimensions of Bernoulli convolutions. We

prove that the upper and lower correlation dimensions of νλ coincide for all λ and use this to show

that the correlation dimension of νλ equals one on a residual set of λ ∈ (1
2 , 1); these appear to be new

results. In section 5 we make some comments on Bernoulli convolutions for Salem numbers. The

contents of sections 6 and 7 were described above. We conclude in section 8, with a brief discussion

of some applications, generalizations and problems.

2. Historical notes

This section is by no means comprehensive; we just add a few remarks to what was said in the

introduction. For instance, much of the early work on Bernoulli convolutions covers more general

random variables
∑

±rn for an arbitrary sequence rn with
∑

r2
n < ∞, but here we only discuss the

case rn = λn for λ ∈ (0, 1).

In the 1930’s Bernoulli convolutions were studied by Wintner and his co-authors. Jessen and

Wintner (1935) showed that νλ is either absolutely continuous, or purely singular, depending on λ

(see §3). Kershner and Wintner (1935) observed that νλ is singular for λ ∈ (0, 1
2) since it is supported

on a Cantor set of zero Lebesgue measure (in fact, νλ is the standard Cantor-Lebesgue measure on

this Cantor set). Wintner (1935) noted that νλ is uniform on [−2, 2] for λ = 1
2 , and for λ = 2−1/k

with k ≥ 2 it is absolutely continuous, with a density in Ck−2(R). For λ ∈ (1
2 , 1) the support of νλ

is the interval [−(1 − λ)−1, (1 − λ)−1], so one might surmise that νλ is absolutely continuous for all

such λ. However, in [9] Erdős (1939) showed that νλ is singular when λ is the reciprocal of a Pisot

number. Recall that a Pisot number is an algebraic integer all of whose conjugates are less than

one in modulus. This gives a closed countable set of λ ∈ (1
2 , 1) with νλ singular. Curiously, there

are only two Pisot numbers in (1, 21/2): the positive root θ1 ∼ 1.324718 of x3 − x − 1 = 0 and the

positive root θ2 ∼ 1.3802777 of x4 − x3 − 1. The golden ratio 1
2(1 +

√
5) is the only quadratic Pisot

number in (1, 2), and it is also the smallest limit point of Pisot numbers, see [3]. No λ ∈ S⊥, other

than reciprocals of Pisot numbers, have been found.

The proof of Erdős [9] proceeds by showing that the Fourier Transform ν̂λ(ξ) does not tend to

zero at infinity if θ = λ−1 is Pisot. Salem [43], using Pisot’s Theorem (see [44, p.11]), showed that

for all λ ∈ (0, 1) such that λ−1 is not a Pisot number, ν̂λ(ξ) does tend to zero when ξ → ∞. (I.e., νλ

is a Rajchman measure, see [31].) For λ ∈ (0, 1
2), this result is related to the fact that a Cantor set

with dissection ratio λ is a set of uniqueness for Fourier series if and only if λ−1 is a Pisot number,

see Salem [44].



4 YUVAL PERES, WILHELM SCHLAG, AND BORIS SOLOMYAK

Kahane and Salem (1958) obtained criteria for Bernoulli convolutions to have a density in L2.

Although they could not apply these criteria to νλ, they analyzed the distributions of certain series

±rn where the ratios rn/rn−1 are random.

Garsia (1962) found the largest explicitly given set of λ known to date, for which νλ is absolutely

continuous (and even has bounded density). This set consists of reciprocals of algebraic integers in

(1, 2) whose minimal polynomial has other roots outside the unit circle and the constant coefficient

±2. (Such are for instance the polynomials xn+p−xn−2 where p, n ≥ 1 and max{p, n} ≥ 2.) Garsia

showed that for these λ, all 2n sums
∑n−1

0 ±λk are distinct and at least C2−n apart for some C > 0.

This implies that νλ has a bounded density.

Starting with Garsia (1963), many authors studied the measure νλ in the Pisot case, computing

or estimating various dimensions and giving alternative proofs of singularity. This line of research

is not the focus of our paper, and we only discuss it briefly in section 8.

The interest in Bernoulli convolutions was renewed in the 1980’s when their importance in various

problems of dynamics and dimension was discovered by Alexander and Yorke (1982), Przytycki and

Urbański (1989), and Ledrappier (1992) (see section 8 for details)..

The latest stage in the study of Bernoulli convolutions started with a seemingly unrelated de-

velopment: the formulation of the “{0, 1, 3}-problem” by Keane and Smorodinsky in the early 90’s

(see [22]). Motivated by questions of Palis and Takens on sums of Cantor sets, they asked how the

dimension and morphology of the set {
∑∞

n=0 anλn : an = 0, 1, or 3} depends on the parameter

λ. Pollicott and Simon (1995) proved that the Hausdorff dimension equals the similarity dimension

for a.e. λ ∈ (1
4 , 1

3 ) using self-similar measures obtained by taking the digits an ∈ {0, 1, 3} indepen-

dently with equal probabilities. A crucial tool in their paper was the notion of transversality for

power series. This notion turned out to be crucial in all the recent work on Bernoulli convolutions

[47, 39, 40, 38]; we discuss (a version of) transversality in section 7. Pollicott and Simon were influ-

enced by the important paper of Falconer [12], where methods originating from geometric measure

theory were used to obtain “almost sure” results on the dimension of self-affine sets.

3. Laws of pure type

Jessen and Wintner (1935) showed that any convergent infinite convolution of discrete measures

is of pure type: it is either singular or absolutely continuous with respect to Lebesgue measure. In

particular, this applies to νλ for any λ < 1. The purity of νλ can also be obtained from its self

similarity, as the following proposition demonstrates.
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Proposition 3.1. Suppose that ν is a self similar probability measure on Rd corresponding to the

contracting similitudes {Sj : j = 1, . . . '} and the (positive) probabilities {pj : j = 1, . . . '}, i.e.,

ν =
#∑

j=1

pj

(
ν ◦ S−1

j

)
. (3.1)

Let K denote the closed support of ν. If ν is not singular to Lebesgue measure L on Rd, then

(i) ν is absolutely continuous with respect to L.

(ii) The restriction LK of L to K is absolutely continuous with respect to ν.

Part (i) of this proposition is folklore; part (ii) was proved by Mauldin and Simon [36] for νλ, and

we extend their proof to general self similar measures below.

Proof: (i) Apply the similitude Sj to the Lebesgue decomposition ν = νac+νs of ν into an absolutely

continuous part and a singular part. Averaging the result over j with weights pj, we infer that νac

and νs also satisfy (3.1). Since ν is the only probability measure satisfying (3.1) (see [17]), it follows

that νac and νs are proportional, hence one of them must vanish.

(ii) Since ν is not singular to L, necessarily L(K) > 0 and for some β < 1,

sup
{
L(A)

∣∣∣A Borel, A ⊂ K, ν(A) = 0
}

= βL(K) (3.2)

Let A0 be a Borel subset of K such that ν(A0) = 0. Denote by c∗ the minimal contraction ratio for

the maps {Sj}#j=1. Fix x ∈ K and r ∈ (0,diamK). Since K = ∪#j=1Sj(K), there exist similitudes S

of the form S = Si1 ◦ Si2 ◦ . . . ◦ Sim such that S(K) is contained in the open ball B(x, r). Choose

such an S with m minimal; clearly diamS(K) ≥ c∗r, and therefore L[S(K)] ≥ ηL[B(x, r)], where

η > 0 does not depend on x and r (we can take η = cd
∗L[K]/L[B(0,diamK)]).

The preimage S−1
(
A0 ∩ S(K)

)
is a Borel subset of K, and ν assigns it measure zero, since self

similarity of ν implies that ν ◦ S−1 is dominated by a constant multiple of ν. By (3.2) and scaling,

L[A0 ∩ S(K)] ≤ βL[S(K)] and consequently

L
[
B(x, r) \ A0

]
≥ (1 − β)L[S(K)] ≥ (1 − β)ηL[B(x, r)] .

Thus A0 cannot have a Lebesgue density point, whence L(A0) = 0. !

Remark: Suppose that ν satisfies (3.1) and let K be the support of ν. Consider the lower derivative

D(ν, x) := lim inf
r↓0

(2r)−dν[B(x, r)] ,

and denote by A0 the set of x ∈ K where D(ν, x) = 0. If K \ A0 has nonempty interior then a

variant of the above argument shows that dim(A0) < 1.
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4. Dimensions of Bernoulli convolutions

Recall that the Hausdorff dimension of a Borel measure ν on R is defined by

dim ν = inf{dim A : A Borel, ν(R \ A) = 0} .

The correlation dimension of ν is defined by

C2(ν) = lim
r→0

log(ν×ν){(x, y) : |x − y| ≤ r}
log r

, (4.1)

if the limit exists; otherwise, one considers the upper and lower correlation dimensions, obtained by

taking lim sup and lim inf.

Proposition 4.1. (i) For any λ ∈ (0, 1) the limit in (4.1) with ν = νλ exists.

(ii) The set {λ ∈ (1
2 , 1) : C2(νλ) = 1} is a dense Gδ set in (1

2 , 1).

(iii) The set {λ ∈ (1
2 , 1) : dim νλ = 1} is residual in (1

2 , 1) (it contains a dense Gδ set).

Remarks. 1. Part (i) of the proposition appears to be new for λ ∈ (1
2 , 1); in the literature that we are

aware of, this limit is only proved to exist under some separation conditions. We can prove a similar

result in much greater generality (for arbitrary self-similar measures and quite general self-conformal

measures, with or without overlaps) but we do not describe this here.

2. Part (iii) is immediate from part (ii) since dim ν is at least the lower correlation dimension of ν

for any measure ν (see, e.g., [45]).

3. Of course, to prove (ii) we only have to show that the set under consideration is a Gδ set, since

we already know that νλ has a density in L2(R) for a.e. λ ∈ (1
2 , 1).

4. Ledrappier [29] indicated a proof of the statement that the set in (iii) is a Gδ set, based on the

fact that every νλ is “exact-dimensional”, which in turn relies on the Ledrappier-Young theory.

Proof of Proposition 4.1. We begin with the proof of the implication (i) ⇒ (ii) since it is easier.

Observe that for any positive r and t the following set is open:

{
λ : (νλ×νλ){(x, y) : |x − y| ≤ r} < t

}
=
{
λ : (µ×µ){(ω, τ) : |Πλ(ω − τ)| ≤ r} < t

}

where we denote Πλ(ω − τ) =
∑∞

j=0(ωj − τj)λj. Let εm → 0. We have

{λ : C2(νλ) = 1} =
⋂

m

∞⋂

n=1

∞⋃

k=n

{
λ :

log(νλ×νλ){(x, y) : |x − y| ≤ 2−k}
−k log 2

> 1 − εm

}

which is a Gδ set, and the claim follows.

(i) Let φr(x) = max{0, 1 − |x|
r } be the triangular kernel and define

an =
∫ ∫

φλn(y − x) dνλ(x)dνλ(y) =
∫

Ω

∫

Ω
φλn(Πλ(ω − τ)) dµ(ω)dµ(τ) . (4.2)
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Since 1
2 · 1[−r/2,r/2] ≤ φr ≤ 1[−r,r], it is enough to prove that the limit lim 1

n log an exists. Thus, it

suffices to show that for some C and k we have

am+n ≤ Caman−k for m ≥ 1, n ≥ k + 1

(then bn = log(Can−k) is sub-additive hence lim(bn/n) exists). Denote ω′ = σnω and τ ′ = σnτ

where σ is the left shift on Ω. We have

am+n =
∑

ω0,... ,ωn−1
τ0,... ,τn−1

2−2n
∫

Ω

∫

Ω
φλm+n

[n−1∑

j=0

(ωj − τj)λ
j + λnΠλ(ω

′ − τ ′)
]
dµ(ω′)dµ(τ ′) . (4.3)

The integral above equals
∫ ∫

φλm(y − x + c) dνλ(x)dνλ(y) =
∫

φ̂λn(ξ)e−icξ|ν̂λ(ξ)|2 dξ (4.4)

where c = λ−n∑n−1
j=0 (ωj − τj)λj , and we have invoked Plancherel’s theorem. Since φ̂r(ξ) > 0,

the integral (4.4) is maximized for c = 0, and then it equals am, see (4.2). On the other hand,

φλm(y−x+ c) ≡ 0 on the support of νλ× νλ if |c| > C1 = 3
1−λ . Combining the last two observations

with (4.3) we obtain

am+n ≤ am · Prob
{
|
n−1∑

j=0

(ωj − τj)λ
j | ≤ C1λ

n
}

≤ am · Prob
{
|Πλ(ω − τ)| ≤ 2C1λ

n
}

≤ am · 2
∫

Ω

∫

Ω
φ4C1λn(Πλ(ω − τ)) dµ(ω)dµ(τ)

≤ 2aman−k

where k is such that λ−k > 4C1. The proof is complete. !

The investigation of dimension(s) of νλ for particular λ essentially goes back to Garsia (1963). In

[15] he considered HN(λ), the entropy of the distribution of the random sum
∑N

n=0 ±λn, and the

limit Gλ = limN→∞
HN (λ)
N+1 which he showed exists. If there are no coincidences among the finite

sums, then Gλ = log 2. If, on the other hand, there are coincidences, then Gλ < log 2. Garsia proved

that if Gλ < log( 1
λ) then νλ is singular, and this inequality holds for Pisot λ−1. Alexander and Yorke

[1] proved that Gλ/ log( 1
λ ) is always an upper bound for the Rényi (information) dimension of νλ,

and equality holds in the Pisot case. In fact,

λ−1 is Pisot ⇒ dim νλ = Gλ/ log(1/λ). (4.5)

As observed by Ledrappier and Porzio [30], this follows from νλ being “exact-dimensional” and [53].

A direct proof of (4.5) was given by Lalley [25].
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In several papers numerical estimates of dim νλ were pursued, especially for the golden ratio

case λg =
√

5−1
2 . Although the formula (4.5) looks simple, it is inefficient to use it directly for

such estimates. Alexander and Zagier [2] found a formula for dim νλg by analyzing the “Fibonacci

graph”, and used it to show that 0.99557 < dim νλg < 0.99574. Recently Sidorov and Vershik [46]

gave another proof of the Alexander-Zagier formula relating it to the entropy of the random walk

on the Fibonacci graph. (They also gave a nice ergodic-theoretic proof of singularity of νλg .) On

the other hand, Ledrappier and Porzio [30] and independently, Lalley [25], expressed dim νλg as the

top Lyapunov exponent of certain random matrix products; Lalley covered the general case of Pisot

numbers and biased Bernoulli convolutions.

We should also mention the paper by Bovier [5] who gave yet another proof of singularity in

the golden mean case using automata theory. Lau [26] and Lau and Ngai [27, 28] computed the

Lq-spectrum of Bernoulli convolutions for the golden ratio and other Pisot numbers. The spectrum

of local dimensions was investigated by Hu [16].

5. Bernoulli convolutions and Salem numbers

Recall that an algebraic integer θ > 1 is a Salem number if its Galois conjugates satisfy |θj| ≤ 1

and at least one of the conjugates has modulus equal to one (i.e. θ is not Pisot). The set of Salem

numbers is rather poorly understood. In particular, the following is open:

Problem: is there b > 1 such that every Salem number is greater than b?

This is related to the well-known Lehmer problem on the range of Mahler measure for integer

polynomials, see [7].

Below we show that obtaining a topological analog of “almost sure” results for Bernoulli convo-

lutions (such as Corollary 6.2(ii) below) would settle the problem on Salem numbers. Throughout,

fractional derivatives will be expressed in terms of the standard 2, γ–Sobolev space L2
γ which is

defined by the norm ‖νλ‖2
2,γ =

∫∞
−∞ |ν̂λ(ξ)|2|ξ|2γ dξ.

Proposition 5.1. If there exist γ > 0 and a < 1 such that the set {λ ∈ (a, 1) : νλ ∈ L2
γ} is residual

in (a, 1), then Salem numbers do not accumulate to one.

The proof is based on several easy lemmas.

Lemma 5.2. Let θ be a Salem number and λ = θ−1. Then

lim sup
ξ→∞

|ν̂λ(ξ)| |ξ|ε = ∞ for all ε > 0. (5.1)

Proof. Let ||x|| denote the distance of x ∈ R to the nearest integer. It has been observed by several

authors (see [6], [37, 6.9], [3, 5.5.1]) that for each Salem number θ and any δ > 0 one can find t ≥ 1
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such that

||tθn|| ≤ δ for all n ≥ 1. (5.2)

We have by (1.1) and (5.2) for λ = θ−1:

|ν̂λ(πtθn)| ≥ |ν̂λ(πt)|
n∏

k=1

cos(π||tθk||)

≥ |ν̂λ(πt)|(1 − cδ2)n ≥ c′|ν̂λ(πt)|(πtθn)−ε,

where ε = − log(1−cδ2)
log θ . Since ε → 0 as δ → 0, it remains to show that ν̂λ(πt) 2= 0.

Suppose ν̂λ(πt) = 0, then t = 2k+1
2 θl for some l ≥ 0. But {θn}n≥1 is dense mod 1 (see [44]), hence

tθn is dense mod 1
2 which contradicts (5.2) for δ < 1

2 . !

Lemma 5.3. Suppose that f ∈ L2(R) has compact support and ‖f‖2
2,γ =

∫∞
−∞ |f̂(ξ)|2|ξ|2γ dξ < ∞.

Then

|f̂(ξ)| = o(|ξ|−γ), |ξ| → ∞.

Proof. This is a standard fact from harmonic analysis but we provide a proof for the reader’s

convenience. Let f̃(x) = f(−x) and let φ be a smooth compactly supported function on R equal to

one on the support of f ∗ f̃ . Then f ∗ f̃ = (f ∗ f̃)φ hence

|f̂(ξ)|2 = (|f̂ |2 ∗ φ̂)(ξ) =
∫

R

|f̂(ξ − η)|2φ̂(η) dη (5.3)

≤ C
∫

|η|<|ξ/2|
|f̂(ξ − η)|2 dη + C

∫

|η|≥|ξ/2|
|φ̂(η)| dη.

Since |φ̂(η)| is rapidly decreasing, the second integral is O(|ξ|−q) for any q > 0. The first integral

can be estimated above by

|ξ/2|−2γ
∫

|η|<|ξ/2|
|f̂(ξ − η)|2|ξ − η|2γ dη ≤ |ξ/2|−2γ

∫

|η|≥|ξ/2|
|f̂(η)|2|η|2γ dη = o(|ξ|−2γ) ,

and the claim follows. !

Lemma 5.4. Let Γ be the set of λ ∈ (0, 1) for which there exists ε > 0 such that ν̂λ(ξ) = O(|ξ|−ε),
as |ξ| → ∞. Then (0, 1) \ Γ is a Gδ set.

Proof. Let εj → 0 for j ∈ N. It is enough to observe that

Γ =
⋃

j

⋃

k≥1

⋂

|ξ|≥k

{λ : |ν̂λ(ξ)| ≤ |ξ|−εj}

is an Fσ set. !
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Proof of Proposition 5.1. By Lemma 5.2, reciprocals of Salem numbers belong to (0, 1) \ Γ where Γ

is defined in Lemma 5.4. Any integer power of a Salem number is a Salem number, by definition.

It is easy to see that for any sequence xn ↓ 1 the union of its (integer) powers is dense in [1,+∞).

Thus, if Salem numbers accumulate to 1, the set (0, 1) \ Γ is dense Gδ in (0, 1). If νλ is generically

in L2
γ for λ ∈ (a, 1) for some a < 1, then using Lemma 5.3 we see that Γ is residual in (a, 1), a

contradiction. !

Remark. The statement (5.1) is contained in [19] but with a typo, claiming that it holds with lim

rather than lim sup. As a consequence of this typo, the statements in [8] concerning Salem numbers

are unjustified.

In fact, for all λ ∈ (0, 1) and any ε > 0 we have

lim inf
|ξ|→∞

|ν̂λ(ξ)| · |ξ|
log 2

− log λ
−ε = 0. (5.4)

Indeed, let θ = λ−1. By Koksma’s theorem, for a.e. t > 0 the sequence {θnt}n≥1 is uniformly

distributed mod 1 (see [24, Cor. 1.4.3]). Fix such a t. We have by (1.1)

1

n
log |ν̂λ(πtθn)| ≤

1

n
log

n∏

k=1

| cos(πtθk)| →
∫ 1

0
log | cos(πu)| du = − log 2,

by the definition of the uniform distribution. This clearly implies (5.4).

6. Close to one; the Erdős-Kahane argument

In [10] Erdős proved that νλ is absolutely continuous for a.e. λ sufficiently close to one. However,

explicit bounds for the neighborhood of one were not given. Kahane [19] gave a brief outline of the

argument and indicated that it actually yields that the dimension of {λ ∈ (λ0, 1) : νλ is singular }
tends to zero as λ0 ↑ 1. Below we give an exposition of this argument since it remains the only way

to prove the statement, while Kahane’s paper [19] is not widely known and is tersely written. We

also give explicit numerical bounds for the neighborhoods where the statements hold.

Proposition 6.1. Let 1 < a < b < ∞. Fix k ≥ 3 and define

r =
1

2
(b + 1)−2, A = 1 + (b + 1)2.

Suppose that

B <
− log[cos(πr)]

log b
.

Then

dim
{
λ ∈ [b−1, a−1] : ν̂λ(u) 2= O(u−B/k)

}
≤

log[eA3k]

k log a
. (6.1)
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Corollary 6.2. (i) For any s > 0 there exists α(s) < 1 such that

dim {λ ∈ (α(s), 1) : νλ is singular} ≤ s.

(ii) For any k ∈ N and any s > 0 there exists α(k, s) < 1 such that

dim {λ ∈ (α(k, s), 1) :
dνλ
dx

2∈ Ck(R)} ≤ s.

The corollary is immediate from the proposition by the formula ν̂λ(u) = ν̂λ2(u)ν̂λ2(λu) which

implies

dim {λ ∈ [b−2−m

, a−2−m

] : ν̂λ(u) 2= O(u−2mB/k)} ≤
log[eA3k]

k log a
.

To get a concrete numerical estimate, take a = 2
1
2 and b = 2. Then log[eA3k]

k log a < 1 for k = 34 and
− log[cos(πr)]

k log b > 0.0006, so Proposition 6.1 implies

dim {λ ∈ [2−1, 2−1/2] : ν̂λ(u) 2= O(u−0.0006)} < 1,

hence

dim {λ ∈ [2−2−10

, 2−2−11

] : ν̂λ(u) 2= O(u−0.6)} < 1.

Therefore, by this argument νλ has a density in L2(R) for all λ ∈ [2−2−10
, 1) ⊃ [0.99933, 1) outside a

set of dimension less than one. This can be improved somewhat by optimizing the choice of a and

b but not very significantly.

Proof of Proposition 6.1. Denote θ = λ−1. From (1.1) we have

ν̂λ(πθ
N t) =

N∏

n=1

cos(πθnt)ν̂λ(πt) . (6.2)

Let θnt = cn +εn where cn ∈ N and εn ∈ [−1
2 , 1

2) (the dependence on θ and t is not written explicitly

but should be kept in mind). By assumption, we can fix δ > 0 so that

ρ := [2(b + 1)(b + 1 + δ)]−1 satisfies B ≤
− log[cos(πρ)]

log b
. (6.3)

Fix also 1 < a < b and k ≥ 3 and denote by EN the set of θ ∈ [a, b] such that there exists t ∈ [1, θ)

for which

card{n ∈ [1, N ] : |εn| ≥ ρ} ≤
N

k
.

Further, let E = lim supEN . Since by (6.2)

|ν̂λ(πθN t)| ≤
N∏

n=1

| cos(πεn)| ,

it is immediate that

θ 2∈ E ⇒ ν̂λ(u) = O(u−γ),
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where

γ =
− log[cos(πρ)]

k log θ
≥

− log[cos(πρ)]

k log b
≥

B

k
.

Thus, to prove (6.1) one only needs to estimate dim E. This is done with a beautiful argument

inspired by a theorem of Pisot (see [44]).

Observe that

∣∣θ −
cn+1

cn

∣∣ =
∣∣θεn − εn+1

cn

∣∣ ≤
b|εn| + |εn+1|

cn
≤

const

an
. (6.4)

We are going to cover EN by intervals of size ∼ a−N centered at cN
cN−1

, so we want to estimate the

number of possible pairs (cN−1, cN ) corresponding to θ ∈ EN (and some t). In fact, we will estimate

the number of sequences c1, . . . , cN with the help of the following lemma.

Lemma 6.3. The following holds for n sufficiently large (n ≥ n0(a, b, δ)).

(i) Given cn, cn+1 there are at most A′ := 1 + (b + 1)(b + 1 + δ) possibilities for cn+2, independent

of θ ∈ [a, b] and t ∈ [1, θ).

(ii) If

max{|εn|, |εn+1|, |εn+2|} < ρ =
1

2(b + 1)(b + 1 + δ)
,

then cn+2 is uniquely determined by cn and cn+1, independent of θ ∈ [a, b] and t ∈ [1, θ).

Proof of the lemma. It is easy to see that that cn+1

cn
≤ θ+δ ≤ b+δ for n sufficiently large (depending

on a and δ). Using this together with (6.4) we obtain

∣∣cn+2 −
c2
n+1

cn

∣∣ ≤ cn+1

(∣∣θ −
cn+2

cn+1

∣∣+
∣∣θ −

cn+1

cn

∣∣
)

≤ b|εn+1| + |εn+2| + (cn+1/cn)(b|εn| + |εn+1|)

≤ (b + 1)(b + 1 + δ)max{|εn|, |εn+1|, |εn+2|} .

Now both (i) and (ii) are immediate since cn+2 ∈ N. !

Proof of Proposition 6.1 concluded. For Γ ⊂ [1, N ] ∩ N consider those θ ∈ [a, b] for which there

exists t ∈ [1, θ) such that |εn| < ρ for n ∈ [1, N ] \ Γ. It follows from Lemma 6.3 that the number

of sequences c1, . . . , cN corresponding to such θ is bounded above by Ca,b,δ(A′)3 card(Γ). Thus, the

number of sequences c1, . . . , cN corresponding to EN does not exceed

const



 N

N/k



 · (A′)3N/k
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(dealing with the possible non-integrality of N/k is left to the reader). By (6.4), this is the number

of intervals of size const · a−N needed to cover EN . Therefore,

dim E ≤ lim
N→∞

log







 N

N/k



 (A′)3N/k





N log a
≤

log[e(A′)3k]

k log a
,

as one can easily deduce using Stirling’s formula. To complete the proof it remains to notice that

A′ = A′(δ) → A as δ → 0. !

7. Smoothness and the dimension of exceptions

Following [38], we show in this section that the density of νλ has fractional derivatives in L2 for

almost all λ ∈ (1
2 , 1) and we estimate the dimension of those λ so that νλ is singular with respect

to Lebesgue measure. Throughout, fractional derivatives will be expressed in terms of the standard

2, γ–Sobolev space L2
γ which is defined by the norm ‖νλ‖2

2,γ =
∫∞
−∞ |ν̂λ(ξ)|2|ξ|2γ dξ. First we recall

the definition of δ–transversality from [39].

Definition 7.1. Let δ > 0. We say that J ⊂ R is an interval of δ–transversality for the class of

power series

g(x) = 1 +
∞∑

n=1

bnxn, with bn ∈ {−1, 0, 1} (7.1)

if g(x) < δ implies g′(x) < −δ for any x ∈ J .

A useful criterion for checking δ–transversality was found in [39]. A power series h(x) is called a

(∗)–function if for some k ≥ 1 and ak ∈ [−1, 1],

h(x) = 1 −
k−1∑

i=1

xi + akx
k +

∞∑

i=k+1

xi.

In [47] Solomyak showed that among all convex combinations of series of the form (7.1), the power

series with the smallest double zero must be a (∗)–function. The following lemma from [39] bypasses

this fact and reduces the search for intervals of transversality to finding a suitable (∗)–function.

Lemma 7.2. Suppose that a (∗)–function h satisfies

h(x0) > δ and h′(x0) < −δ

for some x0 ∈ (0, 1) and δ ∈ (0, 1). Then Definition 7.1 is satisfied on [0, x0].
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In [39] a particular (∗)–function was found that satisfies h(2−2/3) > 0.07 and h(2−2/3) < −0.09,

so transversality in the sense of 7.1 holds on [0, 2−2/3] by this lemma. On the other hand, in [47]

Solomyak proved that there is a power series of the form (7.1) with a double zero at roughly 0.68,

whereas 2−2/3 6 0.63. We will return to this issue below.

Following [39] and [38], we consider Bernoulli convolutions from the point of view of “projections”

— in an appropriate sense. More precisely, let Ω = {−1,+1}N be equipped with the product

measure µ =
∏∞

0 (1
2δ−1 + 1

2δ1). For any distinct ω, τ ∈ Ω we define

|ω ∧ τ | = min{i ≥ 0 : ωi 2= τi}.

Fix some interval J = [λ0,λ1] ⊂ (0, 1) and define Π : J × Ω → R via Πλ(ω) =
∑∞

n=0 ωnλn. The

metric on Ω (depending on J) is given by d(ω, τ) = λ|ω∧τ |
1 . By definition the distribution νλ is

equal to νλ = µ ◦ Π−1
λ . The α–energy of µ is defined as Eα(µ) =

∫
Ω

∫
Ω

dµ(ω1)dµ(ω2)
d(ω1,ω2)α . One checks that

Eα(µ) < ∞ if and only if λα1 > 1
2 . Here we address the following question: How much regularity

does νλ inherit from µ for a typical value of λ? In [39] it was shown that νλ has an L2–density for

a.e. λ > 1
2 . This is based on the fact that E1(µ) < ∞ for any compact J ⊂ (1

2 , 1). In [38], Peres and

Schlag improved this statement in two ways. Firstly, they showed that νλ ∈ L2
γ for a.e. λ1+2γ > 1

2

using that E1+2γ(µ) < ∞ on intervals J = [λ0,λ1] with λ1+2γ
0 > 1

2 . In fact, they proved that
∫
J ‖νλ‖2

2,γ dλ < ∞. Secondly, they used this “mean derivative bound” on the densities to show that

the Hausdorff dimension of the set of parameters λ ∈ J for which ν̂λ 2∈ L2 is strictly less than one.

A rigorous formulation of these principles is given by the following theorem, which is a special case

of Theorem 2.8 in [38] (see also section 5.1 in that paper).

Theorem 7.3. Suppose J = [λ0,λ′
0] ⊂ (1

2 , 1) is an interval of δ–transversality for the power series

(7.1). Then
∫

J
‖νλ‖2

2,γ dλ < ∞ if λ1+2γ
0 >

1

2
. (7.2)

Furthermore,

dim {λ ∈ J : dνλ/dx 2∈ L2(R)} ≤ 2 −
log 2

log 1
λ0

. (7.3)

The relation between the dimension of a set in Euclidean space and that of a generic projection has

been studied by many authors, see [21], [11], [34]. In these works the dimension of the exceptional

parameters is typically estimated by averaging a suitable functional (e.g. energy) against a Frostman

measure on the set of exceptional parameters, see [11]. This depends crucially on a simple relation

between the Fourier transform of a measure and the Fourier transform of its projections. Such a
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relation is not available in the case of Bernoulli convolutions, and a new idea is required. In [38]

this is accomplished by means of Lemma 7.4 below, which allows one to derive (7.3) from (7.2).

The idea behind that lemma is as follows: Let {hj}∞j=0 be a family of nonnegative smooth functions

on [0, 1] whose derivatives grow at most exponentially in j. If
∫ 1
0

∑∞
0 Rjhj(x) dx < ∞, then one

can bound the dimension of the set of x ∈ [0, 1] for which
∑∞

0 rjhj(x) = ∞ for any 1 ≤ r < R.

To apply this lemma, we rely on the dyadic decomposition of frequency space. More precisely, let

hj(λ) = 2−j
∫
2j−1≤|ξ|≤2j |ν̂λ(ξ)|2 dξ. Then

∫
J

∑∞
j=0 2(1+2γ)jhj(λ) dλ is controlled by the square of the

2, γ–Sobolev norm of νλ averaged in λ, whereas
∑∞

j=0 2jhj(λ) = ∞ characterizes those λ ∈ J so that

νλ does not have an L2–density. In order to keep the presentation as transparent as possible, we

establish only the weaker bound

dim {λ ∈ J : dνλ/dx 2∈ L2(R)} ≤
3

2
−

log 2

2 log 1
λ0

(7.4)

and then sketch briefly how (7.3) can be obtained. For more details concerning the full statement

of Theorem 7.3 above, we refer the reader to [38], section 3.

The following lemma (essentially Lemma 3.1 in [38]) is the basic tool for bounding the Hausdorff

dimension of the exceptional parameters.

Lemma 7.4. Let I ⊂ R be a nonempty open interval and N ∈ N. Suppose {hj}∞0 ∈ CN(I) satisfy

sup
j≥0

A−jn∥∥h(n)
j

∥∥
∞ ≤ Cn for all n ≤ N and sup

j≥0

∫

I
Rj|hj(λ)| dλ ≤ C∗ < ∞ , (7.5)

where A > 1. Suppose that R > r ≥ 1 satisfy Aαrα/N = R
r ≤ Ar1/N with 0 < α ≤ 1. Then

dim
{
λ ∈ I :

∞∑

j=0

rj|hj(λ)| = ∞
}
≤ 1 − α . (7.6)

Proof for N = 1. Define Ej =
{
λ ∈ I : |hj(λ)| > j−2r−j

}
. Then

{
λ ∈ I :

∞∑

j=0

rj|hj(λ)| = ∞
}
⊂ lim sup

j→∞
Ej. (7.7)

Let s > 1 − α. We will estimate the s–Hausdorff measure of lim supEj by covering each Ej with

intervals of side length 6 (rA)−j . The idea is that any point in Ej has a neighborhood of size 6
(rA)−j on which |hj | is at least Cj−2r−j. More precisely, fix some j and let {Iij}

Mj

j=1 be a covering

of Ej by intervals of size j−2(rA)−j(2C1)−1. We can assume that all {Iij}
Mj

j=1 are contained in I and
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no point of I is covered more than twice. Since supλ |hj(λ + y) − hj(λ)| ≤ C1Aj |y|, it follows that

Mj⋃

i=1

Iij ⊂
{
λ ∈ I : |hj(λ)| >

1

2j2
r−j}. (7.8)

By Markov’s inequality and assumption (7.5), we conclude from (7.8) that

Mj ≤ 8C1j
4(rA)jrj

∫

I
|hj(λ)| dλ ≤ 4C1C∗j

4(rA)j
( r

R

)j
. (7.9)

Let s > 1 − α. In view of (7.9),

Hs(lim sup Ej) ≤ lim
k→∞

∞∑

j=k

Mj∑

i=1

|Iij|s ≤ lim
k→∞

∞∑

j=k

C j4(rA)j
( r

R

)j(
j−2(rA)−j)s = 0,

using that (rA)α = R
r when N = 1. Thus (7.6) follows from (7.7) by letting s ↑ (1 − α). !

Next we sketch briefly how the cases N > 1 are handled. It turns out that any point in Ej (defined

in the same way as for N = 1) has a neighborhood of size 6 r−j/NA−j on which the average of |hj |
is at least C 1

j2 r−j. This follows by considering Nth order differences. Using a covering of Ej by

intervals of this size leads to the desired estimate. Let us make this more precise for N = 2. We

have

sup
λ

|hj(λ + 2y) − 2hj(λ + y) + hj(λ)| ≤ C2A
2j |y|2,

hence for L > 0 and λ0 ∈ Ej

2C2

3
A2jL3 ≥

∫

[−L,L]
|hj(λ0 + 2y) − 2hj(λ0 + y) + hj(λ0)| dy

≥ 2L · |hj(λ0)|−
∫

[−L,L]
|hj(λ0 + y)| dy −

∫

[−L,L]
2|hj(λ0 + 2y)| dy

≥
2L

j2
r−j − 2

∫

[−2L,2L]
|hj(λ0 + y)| dy.

Therefore,
1

4L

∫

[−2L,2L]
|hj(λ0 + y)| dy ≥

1

4j2
r−j −

C2

12
A2jL2,

so taking L = C−1/2
2 j−1r−j/2A−j yields that the average of |hj | on [λ0 − 2L,λ0 + 2L] is at least

1
6j2 r−j.

The following proposition shows how to obtain a dimension bound from a suitable Sobolev estimate

by means of the previous lemma.

Proposition 7.5. If
∫
I ‖νλ‖2

2,γ dλ < ∞ with some I ⊂ (0, 1) and 0 < γ < 1/2, then

dim {λ ∈ I : ν̂λ 2∈ L2(R)} ≤ 1 − 2γ.
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Proof. For any j = 1, 2, . . . define

hj(λ) = 2−j
∫ 2j

2j−1
|ν̂λ(ξ)|2 dξ = 2−j

∫ 2j

2j−1

∫

Ω

∫

Ω
exp
(
iξ
[
Πλ(ω) −Πλ(τ)

])
dµ(ω)dµ(τ)dξ.

It follows that
∥∥h(n)

j (λ)
∥∥ ≤ Cn2jn

n∑

k=1

∥∥ dk

dλk
Πλ(ω)

∥∥
L∞(I×Ω)

≤ C ′
n2jn .

Thus, the first condition of (7.5) is satisfied with A = 2, for all N ∈ N. The second condition of

(7.5) holds with R = 21+2γ by the main assumption and the definition of the L2,γ-norm. Letting

r = 2 and N → ∞ yields by Lemma 7.4 that

dim
{
λ ∈ J : ν̂λ 2∈ L2(R)

}
= dim

{
λ ∈ J :

∞∑

j=0

2jhj(λ) = ∞
}
≤ 1 − 2γ.

Observe that the case N = 1 of Lemma 7.4 (for which complete details were given) yields (7.4). !

Next we turn to the proof of (7.2). As a preliminary step we present the standard construction of

a Littlewood–Paley decomposition, see Stein [50] or Frazier, Jawerth, Weiss [13]. Recall that S(R)

is the Schwartz space of smooth functions all of whose derivatives decay faster than any power. It

is a basic property of the Fourier transform that it preserves S.

Lemma 7.6. There exists ψ ∈ S(R) so that ψ̂ ≥ 0,

supp(ψ̂) ⊂ {ξ ∈ R : 1 ≤ |ξ| ≤ 4}, and
∞∑

j=−∞
ψ̂(2−jξ) = 1 if ξ 2= 0. (7.10)

Moreover, given any finite measure ν on R and any γ ∈ R

‖ν‖2
2,γ 8

∞∑

j=−∞
22jγ

∫

R

(ψ2−j ∗ ν)(x) dν(x) (7.11)

where ψ2−j (x) = 2jψ(2jx).

Proof. Choose φ ∈ S(R) with φ̂ ≥ 0, φ̂(ξ) = 1 for |ξ| ≤ 1 and φ̂(ξ) = 0 for |ξ| > 2. Define ψ via

ψ̂(ξ) = φ̂(ξ/2) − φ̂(ξ). It is clear that ψ̂(ξ) ≥ 0 and that ψ̂(ξ) = 0 if |ξ| < 1 or |ξ| > 4. (7.10)

holds since the sum telescopes. Moreover, it is clear from (7.10) that there exists some constant Cγ

depending only on γ so that for any ξ 2= 0

C−1
γ |ξ|2γ ≤

∞∑

j=−∞
22jγψ̂(2−jξ) ≤ Cγ |ξ|2γ .

Since ψ̂2−j (ξ) = ψ̂(2−jξ), Plancherel’s theorem implies
∫

R

(ψ2−j ∗ ν)(x) dν(x) =
∫

ψ̂(2−jξ)|ν̂(ξ)|2 dξ
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and (7.11) follows. !

Now we come to the main technical statement needed to prove the Sobolev estimate (7.2).

Lemma 7.7. Let J = [λ0,λ1] be an interval of δ-transversality for some δ > 0 and let β = log λ0
log λ1

−1.

Suppose that ρ ∈ C∞(R) is supported in the interior of J and ‖ρ‖∞ ≤ 1. Let φ be any function in

the Schwarz space and ψ(x) = 2φ(2x) − φ(x). Fix s ∈ (1, 2). Then for any distinct ω, τ ∈ Ω, with

|ω ∧ τ | = k, and any R > 0,

|J | :=

∣∣∣∣
∫

R

ρ(λ)ψ
(
R[Πλ(ω) −Πλ(τ)]

)
dλ

∣∣∣∣ ≤ C
(
Rλk(1+3β)

1

)−s
, (7.12)

where C depends only on ρ,β and s.

Proof. Fix ω, τ ∈ Ω such that |ω ∧ τ | = k, and R > 0. We may assume that

Rλk(1+3β)
1 ≥ 1 (7.13)

since otherwise the estimate is obvious. We can write Πλ(ω) − Πλ(τ) = 2λkf(λ) where f(λ) is a

power series of the form (7.1). Recall that δ-transversality says that f ′(λ) < −δ for λ ∈ J whenever

f(λ) < δ. Let η be the distance between the support of ρ and the boundary of J . δ-transversality

implies that if |f(λ)| < δη for some λ ∈ supp(ρ), then f has a zero λ ∈ J which is the only zero of

f on J . Denote u = λ− λ. We are going to linearize everything around λ. Clearly,

|λkf(λ) − λ
k
f ′(λ)u| ≤ ‖f ′′‖∞λk

1u
2 + ‖f ′‖∞kλk−1

1 u2 ≤ C1kλ
k
1u

2, (7.14)

with the constant C1 depending only on J . Let χ ∈ C∞ be non-negative with χ = 1 on [−1
2 , 1

2 ] and

supp(χ) ⊂ (−1, 1). Then
∫

R

ρ(λ)ψ
(
2Rλkf(λ)

)
dλ =

∫
ρ(λ)ψ

(
2Rλkf(λ)

)
χ
( 2C1k

δ2ηλkβ
1

f(λ)
)

dλ

+
∫

ρ(λ)ψ
(
2Rλkf(λ)

)[
1 − χ

( 2C1k

δ2ηλkβ
1

f(λ)
)]

dλ. (7.15)

The integrand of the second integral is non-zero only if

|f(λ)| >
δ2ηλkβ

1

4C1k
≥ Cβλ

2kβ
1 .

Then, using that λk ≥ λk(1+β)
1 for λ ∈ [λ0,λ1] we conclude that |2Rλkf(λ)| ≥ 2CβRλk(1+3β)

1 . By

the rapid decay of ψ, the second integral in (7.15) is therefore less than C ′
β(Rλk(1+3β)

1 )
−s

.

Thus it suffices to estimate the first integral in (7.15), which we denote by J1. Notice that its

integrand is nonzero only if |f(λ)| ≤ δ2ηλkβ
1

2C1k , hence

|u| = |λ− λ| ≤
δηλkβ

1

2C1k
<

δλkβ
1

2C1k
(7.16)
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by δ-transversality. This implies that

C1kλ
k
1 |u|2 < 1

2 λ
k
δ|u| ≤ 1

2 λ
k|f ′(λ)|u,

hence by (7.14)

1
2 λ

k|f ′(λ)|u ≤ λk|f(λ)| ≤ 3
2 λ

k|f ′(λ)|u. (7.17)

Let g(λ) = χ
( 2C1k
δ2ηλkβ

1

f(λ)
)
ρ(λ). Since g(λ) = g(λ + u) = g(λ) + O(‖g′‖∞u) we have

J1 =
∫

g(λ + u)
[
ψ(2Rλkf(λ)) − ψ(2Rλ

k
f(λ)u)

]
du

+
∫

g(λ)ψ(2Rλ
k
f(λ)u) du (7.18)

+
∫

O(‖g′‖∞u)ψ(2Rλ
k
f(λ)u) du = I1 + I2 + I3.

The integral I2 is the easiest one: since ψ(t) = 2φ(2t) − φ(t) we have
∫
ψ(t) dt = 0, so I2 = 0.

To estimate I1 we use that ‖g‖∞ ≤ 1, the mean value theorem, (7.14), (7.17), the rapid decay of

ψ′, and that |f ′(λ)| > δ, to obtain

∣∣ψ(2Rλkf(λ)) − ψ(2Rλ
k
f(λ)u)

∣∣ ≤ CkRλk
1u

2 min
{
1, (Rλ

k
u)−4} . (7.19)

(The exponent −4 above can be replaced by any negative integer by changing the constant but is

sufficient for our purposes.) Since s < 2 we can find ε so that

0 < ε <
2 − s

3
. (7.20)

We write

I1 ≤
∫

R

CkRλk
1u

2 min
{
1, (Rλ

k
u)−4} du =

∫

|u|≤(Rλk
1)ε−1

+
∫

|u|≥(Rλk
1)ε−1

= I11 + I12.

We have

I11 ≤
∫

|u|≤(Rλk
1)ε−1

CkRλk
1u

2 du = C ′k(Rλk
1)

−2+3ε =: C ′S11.

Estimating I12 we use that λ
−1 ≤ λ−(1+β)

1 to get

I12 ≤
∫

|u|≥(Rλk
1 )ε−1

CkRλk
1 · R−4λ−4k(1+β)

1 u−2 du = C ′′kR−2−ελ−k(2+4β+ε)
1 =: C ′′S12.

A straightforward computation shows that max{S11, S12} ≤ Cβ
(
Rλk(1+3β)

1

)−s
. Let us demonstrate

this for S11. Since k ≤ Cβλ
−kβ
1 it is enough to establish that

R−2+3ελ−k(2+β−3ε)
1 ≤

(
Rλk(1+3β)

1

)−s
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which is equivalent to

Rs−2+3ελk[(1+3β)s−(2+β−3ε)]
1 ≤ 1.

Applying (7.20) and (7.13) reduces the last inequality to 3(2 − 3ε) ≥ 1 which is certainly true. The

expression S12 is handled similarly, eventually reducing the estimate to 3(2+ ε) ≥ 5. This concludes

the estimation of the integral I1 from (7.18).

It remains to estimate I3. First recall the definition of g(λ) to get

‖g′‖∞ ≤ Ckλ−kβ
1 .

By the rapid decay of ψ and since |f ′(λ)| ≥ δ we obtain

I3 ≤
∫

Ckλ−kβ
1 u min

{
1, (Rλ

k
u)−3} du =

∫

|u|≤(Rλk
1)ε−1

+
∫

|u|≥(Rλk
1)ε−1

= I31 + I32.

where ε is again defined by (7.20). Now

I31 ≤
∫

|u|≤(Rλk
1)ε−1

Ckλ−kβ
1 u du = C ′kR−2+2ελ−k(2+β−2ε)

1 =: C ′S31

and

I32 ≤
∫

|u|≥(Rλk
1)ε−1

Ckλ−kβ
1 R−3λ−3k(1+β)

1 u−2 du = C ′′kR−2−ελ−k(2+4β+ε)
1 =: C ′′S32.

It remains to check that max{S31, S32} ≤
(
Rλk(1+3β)

1

)−s
which is done similarly to the above (in

fact, S32 = S12 and the estimate of S31 reduces to s < 2 − 2ε and 3(2 − 2ε) ≥ 2). This concludes

the estimation of the integral I3, and the proof of the lemma is complete. !

Proof of Theorem 7.3. If an interval of δ-transversality is enlarged slightly, it is obviously going to

be an interval of δ2 -transversality. Thus, (7.2) will be established if we show that for an arbitrary

interval of δ-transversality J = [λ0,λ1] ∈ (1
2 , 1) and any function ρ ∈ C∞(R) supported in its

interior,
∫
R
‖νλ‖2

2,γ ρ(λ) dλ < ∞. Let λα0 = 1
2 . We have α < 2 by the discussion of transversality

above. Fix some γ < 1
2 with λ1+2γ

0 > 1
2 and s ∈ (1 + 2γ, 2). Assume first that J is so short that

0 < (1 + 2γ)(1 + 3β) ≤ α where β = log λ0
log λ1

− 1. Let ψ be the Littlewood-Paley function from
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Lemma 7.6. In view of (7.11), the definition of νλ, and Lemma 7.7

∫ ∞

−∞
‖νλ‖2

2,γ ρ(λ) dλ 8
∫ ∞∑

j=−∞
22jγ
∫ ∞

−∞
(ψ2−j ∗ νλ)(x) dνλ(x) ρ(λ) dλ

≤
∫

Ω

∫

Ω

∞∑

j=−∞
2j(1+2γ)

∣∣∣∣
∫

ψ
(
2j [Πλ(ω) −Πλ(τ)]

)
ρ(λ) dλ

∣∣∣∣ dµ(ω)dµ(τ)

≤ Cβ,γ

∫

Ω

∫

Ω

∞∑

−∞
2j(1+2γ) min

{
1,
(
2jλ|ω∧τ |(1+3β)

1

)−s}
dµ(ω)dµ(τ)

≤ Cβ,γ

∫

Ω

∫

Ω

dµ(ω)dµ(τ)

λ(1+3β)(1+2γ)|ω∧τ |
1

≤ Cβ,γ Eα(µ) < ∞,

as claimed. This argument depended on β being sufficiently small. In the general case fix any small

β > 0 and partition J into subintervals Ji = [λi,λi+1] for i = 0, . . . ,m so that λi > λ1+β
i+1 . Applying

the previous calculation to each of the Ji and summing concludes the proof of (7.2). The dimension

estimate (7.3) follows from (7.2) and Proposition 7.5, letting γ → 1
2( log 2

− log λ0
− 1). !

It is well–known that for 0 < λ < 1
2 the support of νλ is a Cantor set of dimension log 2

− log λ . In

fact, νλ is a Frostman measure on that set, which implies that dim(νλ) = log 2
− log λ for 0 < λ < 1

2 .

Solomyak [47] showed that the first double zero for a power series of the form (7.1) lies in the

interval [0.649, 0.683]. In particular, the previous theorem will apply only up to some point in this

interval. Nevertheless, one can show that νλ has some smoothness for a.e. λ ∈ (1
2 , 1). This follows

from Theorem 7.3 by “thinning and convolving”, see [47] and [39]. As one expects, the number of

derivatives tends to ∞ as λ → 1.

Lemma 7.8. For any ε > 0 there exists a γ = γ(ε) > 0 so that

∫ 1
√

2

1
2
+ε

‖νλ‖2
2,γ dλ < ∞. (7.21)

Furthermore, there exists some '0 ∈ (2−1/2, 2−1/4) and a γ0 > 0 so that

∫ #0

#20

‖νλ‖2
2,γ0 dλ < ∞. (7.22)

Proof. As mentioned above, [0,λ1] is an interval of transversality for the power series (7.1) for

some λ1 > 2−2/3. Fix any λ0 ∈ (1
2 , 2−2/3]. Partitioning the interval [λ0,λ1] as in the proof of

Theorem 7.3, one obtains from (7.2) that

∫ λ1

λ0
‖νλ‖2

2,γ dλ < ∞ provided λ1+2γ
0 >

1

2
. (7.23)
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To go beyond 2−2/3 we remove every third term from the original series. More precisely, let Π̃λ(ω) =
∑

3- |n ωnλn and denote the distribution of this series by ν̃λ. It was shown in [47] and [39] that the

class of power series (7.1) that satisfy either b3j+1 = 0 for all j ≥ 0 or b3j+2 = 0 for all j ≥ 0

have [0,λ3] as an interval of δ–transversality for some λ3 > 1/
√

2. After some straightforward

modifications the argument given above for the full series shows that

∫ λ3

λ2
‖ν̃λ‖2

2,γ dλ < ∞ provided λ1+2γ
2 > 2−2/3. (7.24)

For more details we refer the reader to section 5.1 of [38]. Since |ν̂λ| ≤ |̂̃νλ| and λ1 > 2−2/3, (7.21)

follows from (7.23) and (7.24). Moreover, we have shown (7.22). !

Corollary 7.9. For any λ0 > 1
2 there exists ε(λ0) > 0 such that

dim {λ ∈ (λ0, 1) : νλ does not have L2–density} < 1 − ε(λ0).

Proof. This follows from the previous lemma and Proposition 7.5 using the identity

ν̂λ(ξ) = ν̂λ2(ξ)ν̂λ2(λξ) .

!

As observed by Kahane [19], Erdős’s argument yields that ε(λ0) → 1 as λ0 ↑ 1 (see section 6).

8. Applications, generalizations and problems

8.1. Applications to dimension and dynamics. Alexander and Yorke [1] considered the “fat

baker’s transformation”

Tλ(x, y) =





(λx + (1 − λ), 2y − 1) if y ≥ 0

(λx − (1 − λ), 2y + 1) if y < 0

on the square [−1, 1]2. They proved that the Sinai-Bowen-Ruelle measure ηλ for Tλ is the product

of νλ (more precisely, its affine copy supported on [−1, 1]) and the uniform measure in y-direction.

They showed further that absolute continuity of νλ implies the equality of the information (Rényi)

and Lyapunov dimension for ηλ but this breaks down in the Pisot case.

Another application of Bernoulli convolutions has to do with fractal graphs. Let φ be a Z-periodic

function and λ ∈ (1
2 , 1). Define

Γλ,φ =
{
(x, y) : x ∈ [0, 1], y =

∞∑

n=0

λnφ(2nx)
}
.
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If φ(x) = cos(2πx) this defines a family of Weierstrass nowhere differentiable functions. It is an open

problem to compute dimΓλ,cos(2πx), even for a typical λ. This problem served as a motivation for

studying Γλ,φ with an easier choice of φ.

Przytycki and Urbański [42] considered the case φ(x) = r(x) = 1 if x ∈ [0, 1
2 ) mod 1 and r(x) = −1

otherwise. This is a discontinuous function with a self-affine graph. It is proved in [42] that if

dim νλ = 1 then

dimΓλ,r(x) = dimM Γλ,r(x) = 2 −
log(1/λ)

log 2
.

Here dimM is the Minkowski (box) dimension. The equality for Minkowski dimension holds for all

λ ∈ (1
2 , 1) but the Hausdorff dimension drops for reciprocals of Pisot numbers. We note that the

methods of [42] readily extend to the case of more general self-affine sets invariant for the iterated

function system {(γx,λx−1), (γx+(1−γ),λx+1)} for γ ∈ (0, 1
2). In particular, dim νλ = 1 suffices

for the equality of the Hausdorff and Minkowski dimensions.

Ledrappier [29] studied the family of continuous graphs Γλ,φ where φ(x) = dist(x, Z) (sometimes

called Takagi graphs). Their analysis is quite a bit harder. Ledrappier proved that if dim ν(2λ)−1 = 1

then dimΓλ,φ = 2 − log(1/λ)
log 2 .

Observe that in all applications mentioned here it is the equality dim νλ = 1 that gets used, not

the absolute continuity of νλ.

8.2. Generalizations. There are many natural generalizations of Bernoulli convolutions; many of

them can be treated similarly to the classical case with some additional work.

(i) Biased Bernoulli convolutions: as in the classical case but the signs are taken with proba-

bilities (p, 1 − p). We will generalize a bit further:

(ii) Suppose that D ⊂ R is an arbitrary finite set of digits, with card(D) = m, and p =

(p1, . . . , pm) is a probability vector. Let νD,p
λ be the distribution of the random series

∑∞
n=0 anλn where an ∈ D independently with probabilities pi.

“Almost sure” results on the existence of a density in Lq(R) for νD,p
λ , when q ∈ [1, 2],

were obtained in [40], and the dimension of exceptions was estimated in [38] (for q = 1 and

2). These results were proved on an interval of transversality which, in this case, means

an interval free of double zeros for power series with coefficients in D − D. Checking

transversality is not always easy, so some of these results are less complete than those

for classical Bernoulli convolutions. For instance, it is proved in [40] that the (p, 1 − p)

Bernoulli convolutions are absolutely continuous for a.e. λ ∈ (pp(1 − p)1−p, 1), but only

for p ∈ [1/3, 2/3].
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It is easy to see that the Erdős-Kahane argument transfers to the case of νD,p
λ . The

question of convergence to zero at infinity of ν̂λ
D,p was considered by Salem (Borwein and

Girgensohn [4] were apparently unaware of this when they discussed some special cases.)

Making a linear change of variable we can assume that the first two digits in D are 0 and

1. Then ν̂λ
D,p tends to zero at infinity if and only θ = λ−1 is Pisot and and D lies in the

field of θ, see [44, Ch.VII].

(iii) Consider the same set-up as in (ii) but with complex ai and λ complex of modulus less than

one. Some results were obtained in [49] (and the dimension of exceptions was estimated in

[38]) but checking transversality becomes more formidable. Note that here, determining

the support of the measure in the two-digit case is non-trivial.

(iv) Convolutions of self-similar measures and arithmetic sums of Cantor sets: see [48, 40, 38] for

some “almost sure” results; see also the references in [48] for other work on sums of Cantor

sets and the connection with smooth dynamics and the Palis-Takens problem.
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8.3. Problems on the Bernoulli convolutions νλ.

1. Other properties of the density. Since νλ has a density dνλ
dx in L2(R) for a.e. λ ∈ (1

2 , 1), it

follows from the formula

νλ(·) = νλ2(·) ∗ νλ2(λ·) (8.1)

that dνλ
dx is continuous for a.e. λ ∈ (2−1/2, 1). It is not known whether dνλ

dx is continuous,

or even bounded, for a.e. λ ∈ (1
2 , 2−1/2). Using (8.1) again and the result of Mauldin and

Simon [36], we may infer that for a.e. λ ∈ (2−1/2, 1), the density of νλ is strictly positive in

the interior of its support. We do not know whether for a.e. λ ∈ (1
2 , 2−1/2), the essential

infimum of dνλ
dx on any compact subinterval of supp(νλ) is positive.

Numerical approximation of self-similar measures was studied in several papers, among

them [51] which contains histograms of νλ for some λ.

2. Is absolute continuity generic? We saw in Proposition 4.1 that for λ ∈ (1
2 , 1), the Bernoulli

convolution generically has correlation and Hausdorff dimension equal to one. The anal-

ogous question for absolute continuity is open. We are grateful to Elon Lindenstrauss for

simplifying the original proof of the following proposition.

Proposition 8.1. The set S⊥ = {λ ∈ (1
2 , 1) : νλ is singular } is Gδ.

Proof. It is easy to see that the function λ 9→ νλ(a, b) is continuous for any interval (a, b).

Let G be the collection of all finite unions of open intervals. Fix a sequence εn converging

to 0. Now observe that

S⊥ =
⋂

n

⋃

L(G)<εn

{λ ∈ (1/2, 1) : νλ(G) > 0.5}

where the union is over all G ∈ G with L(G) < εn. Thus S⊥ is a Gδ set.

A consequence of this proposition is that if absolute continuity holds on a residual set

in (1
2 , 1), then the exceptional set S⊥ is nowhere dense, and hence, by (8.1), there is a left

neighborhood of 1 which is disjoint from S⊥.

3. Let 1
2 < a < 1. Is it possible to prove that the set {λ ∈ (1

2 , 1) : νλ is singular } has

packing dimension strictly less than 1?

(The methods of [38] only give such a bound for the Hausdorff dimension.)

4. Let

Jn(λ) :=
∫ 2n+1

2n
ν̂λ(ξ)

2 dξ .
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Does the limit limn→∞ Jn(λ)1/n exist for all λ ∈ (1/2, 1)?

A positive answer would imply that some neigborhood of 1 does not contain Salem num-

bers. To see this, fix 1
2 < λ0 < 1. As proved in [38] (see §7), there exists γ > 0 such that

νλ ∈ L2
γ for a.e. λ ∈ [λ0, 1). The set

Wε :=
∞⋂

k=1

∞⋃

n=k

{
λ ∈ [λ0, 1) : Jn(λ) < (1 − ε)n

}

is a Gδ set in [λ0, 1) for any ε > 0. Moreover, Wε is dense in [λ0, 1) provided that

1 − ε > 2−2γ . If existence of limn→∞ Jn(λ)1/n could be proved for all λ ∈ Wε, then

it would follow that Wε ⊂ {λ ∈ (λ0, 1) : νλ ∈ L2
γ0} provided that 2−2γ0 > 1 − ε;

Proposition 5.1 could then be invoked to deduce that 1 is not a limit of Salem numbers.
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