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LOCAL SMOOTHING ESTIMATES RELATED
TO THE CIRCULAR MAXIMAL THEOREM

Wilhelm Schlag and Christopher D. Sogge

1. Introduction

In 1976 Stein [18] showed that when n ≥ 3 the spherical maximal function

sup
t>0

∫

Sn−1
|f(x + ty)| dσ(y)

is bounded on Lp(Rn) if p > n/(n − 1). He also showed that no such result
can hold for p ≤ n/(n − 1) if n ≥ 2. Thus, the 2-dimensional case is more
complicated since the circular maximal operator corresponding to n = 2 is not
bounded on L2.

Some 10 years passed before Bourgain [2] finally showed that the circular
maximal function is bounded on Lp(R2) for every 2 < p ≤ ∞. Somewhat
later this result was extended to variable coefficients under the assumption of
cinematic curvature by Sogge [13] and then a somewhat stronger result involving
local smoothing estimates was obtained by Mockenhaupt Seeger and Sogge in
[9] and [10].

These local smoothing estimates, as well as Bourgain’s original techniques,
can be used to show that if one modifies the definition so that the supremum
is taken over, say, 1 ≤ t ≤ 2 then the resulting circular maximal function is
actually bounded from Lp(R2) to Lq(R2) for some q > p depending on p > 2.
In either case, though, it seems certain that the techniques in [2] or [9] will not
give sharp estimates of this type. Recently, though, Schlag [11] obtained bounds
which are of the best possible nature. Specifically, if we set

Mf(x) = sup
1≤t≤2

∫

S1
|f(x + ty)| dσ(y),

then M : Lp(R2) → Lq(R2) if (1/p, 1/q) lies in the interior of the triangle T
with vertices (2/5, 1/5), (1/2, 1/2) and (0, 0). In view of Bourgain’s theorem it is
also of course bounded when the exponents lie on the half open line connecting
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(1/2, 1/2) and (0, 0). Schlag also showed that, except possibly for endpoints, this
result is sharp (cf. §4 for similar arguments). The positive results were obtained
using the “combinatorial method” of Kolasa and Wolff [7].

Because of the earlier estimates in [2], [9] and [10], the key point was to
establish favorable bounds for operators related to M near L5/2 → L5. Our
main result also involves these spaces. Specifically, if we let

(1.2) (Aαf)(t, x) =
∫

R2
eix·ξ+it|ξ|f̂(ξ) dξ/(1 + |ξ|)α,

then we have the following

Theorem 1.1. Suppose that 1 ≤ p ≤ 5/2 and that q = 3p′, where p′ = p/(p−1).
Then

(1.3) ‖Aαf‖Lq([1,2]×R2) ≤ Cα‖f‖Lp(R2), α > 6(1/4 − 1/q).

This estimate can be used to give a different proof of Schlag’s theorem. Indeed,
if one interpolates with the Lp → Lp local smoothing estimates in [9], then one
sees that

‖Aαf‖Lq([1,2]×R2) ≤ Cα‖f‖Lp(R2)

for some α < 1/2 − 1/q if (1/p, 1/q) is in the interior of the triangle T men-
tioned before. Because of this and the fact that the circular averaging operator
is basically A1/2f(t, x) + A1/2f(−t, x), Schlag’s estimate follows from the last
inequality and Sobolev’s lemma. (See [9], [15] for similar arguments.) Also,
arguments from [13] show that, up to an endpoint, the bounds in (1.3) are of
the best possible nature.

Inequality (1.3) is related to a local smoothing conjecture stated in Sogge [13]
which would correspond to (1.3) when p = q = 4. Also, (1.3) can be thought of
as a generalization of estimates due to Strichartz [19] in (1+2)-dimensions. His
estimate in this context is equivalent to

(1.4) ‖A1/2f‖L6([1,2]×R2) ≤ C‖f‖L2(R2),

which, up to an endpoint, agrees with (1.3) when p = 2. The dual version of (1.4)
turns out to be equivalent to the following restriction theorem for the Fourier
transform

(1.4′)
(

∫

R2
|F̂ (|ξ|, ξ)|2 dξ/|ξ|

)1/2 ≤ C‖F‖L6/5(R3).

This and its version for higher-dimensions are related to the earlier
L2(Sn−1) restriction theorems of Fefferman [4] and Stein and Tomas [20].

Let us now give an overview of the proof of (1.3). The basic strategy is to
try to adapt the proof of the Carleson-Sjölin theorem [3], [5], [6] and the related
restriction theorems for S1 going back to Fefferman, Stein and Zygmund [4],
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[21]. As in all of these works, we exploit the fact that the exponent in the left
is larger than 4. In our case, we realize, by squaring the quantity in the norm,
that it suffices to prove that

(1.3′) ‖Tα(f ⊗ f)‖L5/2([1,2]×R2) ≤ Cα‖f‖2
L5/2(R2), α > 3/10,

if (f ⊗ f)(x, y) = f(x)f(y) and

TαG(t, x) =
∫∫

eix·(ξ+η)+it(|ξ|+|η|)Ĝ(ξ, η)
dξdη

(1 + |ξ|)α(1 + |η|)α
.

The rest follows from the easy estimate corresponding to p = 1. In practice we
shall only prove dyadic versions of this inequality since they are simpler and also
yield (1.3).

To obtain (1.3′) we use a slight variation of an inequality of Klainerman and
Machedon [8] which is also related to the restriction theorem for S1. To describe
this, let us first remark that it would be very convenient if Tα : L2 → L2

with α = 1/4. For then we would obtain (1.3′) easily using interpolation since
Tα : L∞ → L∞ when α > 1/2. Unfortunately this L2-inequality fails. Indeed
the version mentioned with α = 1/4 would be equivalent to (1.4′) holding with
p = 6/5 replaced by p = 4/3 in the right (and a slightly different measure
in the left). One can see that this is impossible by using a variant of Knapp’s
counterexample showing that there is no L4/3(R2) → L2(S1) restriction theorem
(see [20]). The sharp estimate would be that Tα : L2 → L2 when α = 3/8, which
is of no use for (1.3′).

Fortunately, though, there is a substitute for the inequality corresponding to
α = 1/4. Specifically, if ε > 0,

(1.5) ‖T1/4G‖2
L2([1,2]×R2) ≤ Cε

∫∫

∣

∣ Ĝ(ξ, η) angle−1/2−ε(ξ, η)
∣

∣

2
dξdη.

Here angle(ξ, η) ∈ [0, π] denotes the angle of the rays through the origin and
ξ and η, respectively. This is a slightly stronger version of an inequality of
Klainerman and Machedon [8] suggested also by subsequent work of Beals and
Bezard [1] and the proofs of L4 oscillatory integral theorems in the plane where
similar singular factors arise as the one in the right side of (1.5).

The singular factor complicates things; however, it turns out that we can
exploit the conormality of Aα and hence Tα to get around this. To be more
specific, if Ĝ(ξ, η) vanishes when ξ and η are outside of a small cone containing
(0, 1) then one can strengthen the L∞-inequality mentioned before and obtain

‖TαG‖L∞([1,2]×R2) ≤ Cα

∫ ∞

−∞

∫ ∞

−∞
sup

x2,y2∈R

|G(x, y)| dx1dy1, α > 1/2.

If we split the operator dyadically with respect to the size of angle(ξ, η) and
use elementary arguments involving microlocal analysis, it turns out that we can
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see that interpolation and the last two inequalities imply that, when α > 3/10,
the L5/2-norm of TαG is dominated by

(1.6) ‖ |x1 − y1|−2/5G(x, y) ‖
L5/3

x1,y1L5/2
x2,y2

.

Here we are using the mixed-norm notation that

‖H(v, w)‖p
Lp

vLq
w

=
∫

‖H(v, · )‖p
Lq dv.

If, as in the first step, we take G(x, y) = f(x)f(y) we see via the Hardy-
Littlewood inequality for fractional integrals that (1.6) is dominated by ‖f‖2

L5/2

which completes the proof.
These arguments and related ones from [14] will also allow us to prove sim-

ilar smoothing estimates for Fourier integral operators if, as in [13], we assume
cinematic curvature and conormality. For simplicity we shall postpone dealing
with these results until §3, after the simpler constant coefficient case has been
treated.

Finally, in §4, we shall present some results concerning higher dimensions.
Here, in particular, we shall be able to find (up to endpoints) the sharp range
of Lebesgue spaces between which the spherical maximal operator is bounded.

2. Local smoothing for circular averages

In this section we shall prove our main inequality (1.3). The estimate for
p = 1 follows easily from stationary phase (cf. [15]), so it suffices to prove the
other endpoint, that is,

(2.1) ‖Aαf‖L5([1,2]×R2) ≤ Cα‖f‖L5/2(R2), α > 3/10,

if Aα is as in (1.2).
If we choose β ∈ C∞

0 ((1/2, 2)) satisfying
∑∞

−∞ β(2ks) = 1, s > 0, and set

Aλf(t, x) =
∫

eix·ξ+it|ξ|β(|ξ|/λ)f̂(ξ) dξ,

then this in turn would follow from the dyadic bounds

(2.2) ‖Aλf‖L5([1,2]×R2) ≤ Cαλ
α‖f‖L5/2(R2), α > 3/10.

Since low frequencies can be handled easily using Sobolev’s theorem and elemen-
tary multiplier operator bounds, it suffices to only verify this when λ is bigger
than a fixed large constant.

If we use another partition of unity we immediately see that it suffices to only
consider functions f whose Fourier transform vanishes outside of a small fixed
conic neighborhood of (0, 1). With this in mind, let us set

(TλG)(t, x) =
∫∫

eix·(ξ+η)+it(|ξ|+|η|)ψλ(ξ, η)Ĝ(ξ, η) dξdη,
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where ψλ(ξ, η) vanishes unless ξ and η are both in this conic neighborhood of
(0, 1) and satisfy |ξ|, |η| ∈ [λ/2, 2λ]. Also, we may assume that Dγ1

ξ Dγ2
η ψλ =

O(λ−|γ1|−|γ2|) for all multi-indices γj . With this notation we claim that (2.2)
must follow from

(2.3) ‖TλG‖L5/2([1,2]×R2) ≤ Cαλ
α‖ |y − z|−2/5G(y, z) ‖

L5/3
y1,z1L5/2

y2,z2
, α > 3/5.

To verify this, we first note that if f̂ is supported as before then (Aλf)2 =
Tλ(f ⊗ f) if ψλ is the product of an appropriate bilinear conic cutoff function
times β(|ξ|/λ)β(|η|/λ). Assuming this, we get from (2.3) that

‖Aλf‖2
L5([1,2]×R2) ≤ Cαλ

2α‖ |y1 − z1|−2/5f(y)f(z) ‖
L5/3

y1,z1L5/2
y2,z2

, α > 3/10.

This yields (2.2) since

‖ |y1 − z1|−2/5f(y)f(z) ‖5/3

L5/3
y1,z1L5/2

y2,z2

=
∫ ∞

−∞

∫ ∞

−∞
‖f(y1, · )‖5/3

L5/2(R)
‖f(z1, · )‖5/3

L5/2(R)
dy1dz1/|y1 − z1|2/3

≤ C
(

∫ ∞

−∞

(

‖f(y1, · )‖5/3
L5/2

)3/2
dy1

)4/3 = C‖f‖10/3
L5/2(R2)

,

using the Hardy-Littlewood inequality for fractional integrals in the last step.
The next step is to realize that (2.3) follows via interpolation from the fol-

lowing two inequalities

(2.4) ‖TλG‖L∞([1,2]×R2) ≤ Cλ‖G‖L1
y1,z1

L∞
y2,z2

,

(2.5) ‖TλG‖L2([1,2]×R2) ≤ Cλα‖ |y − z|−1/2G(y, z) ‖L2(R4), α > 1/2.

The first inequality is the easiest to handle. Let Kλ denote the kernel of Tλ

and recall that the symbol of ψλ vanishes unless λ/2 ≤ |ξ|, |η| ≤ 2λ. Because of
this elementary stationary phase arguments give the uniform bounds

|Kλ(t, x; y, z)| ≤ CNλ
3
(

1 + λ
∣

∣ t − |x − y|
∣

∣

)−N(

1 + λ
∣

∣ t − |x − z|
∣

∣

)−N

(cf. [15]).
One also has the uniform bounds

|Kλ(t, x; y, z)| ≤ CNλ
−N if |x1 − y1| + |x1 − z1| > 1/2,

assuming, as we are, that the symbol ψλ(ξ, η) vanishes when ξ or η are outside
of a sufficiently small fixed conic neighborhood of (0, 1). Our first estimate relies
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on the fact that Kλ is essentially supported in a λ−1-neighborhood of the set
where both |x − y| and |x − z| equal t. The second bound relies on the fact
that, if the cutoff is chosen as above, then the kernel is also supported in a small
neighborhood of the set where y = z = (x1, x2 + t).

Clearly the two estimates for the kernel yield

sup
t,x,y1,z1

∫∫

|Kλ(t, x; y, z)| dy2dz2 ≤ Cλ.

Since this is equivalent to the desired pointwise estimate, the proof of (2.4) is
complete.

We still have to prove the L2-estimate. To do this it is convenient to make a
further dyadic decomposition. To this end, if β ∈ C∞

0 ((1/2, 2)) is as above, let
us set

ψλ,j(ξ, η) = β(λ1/22−jangle(ξ, η))ψλ(ξ, η), j = 1, 2, . . . .

We then set

(Tλ
j G)(t, x) =

∫∫

eix·(ξ+η)+it(|ξ|+|η|)ψλ,j(ξ, η)Ĝ(ξ, η) dξdη,

and define Tλ
0 by setting

Tλ
0 G = TλG −

∑

j≥1

Tλ
j G.

Notice that the sum is finite, only involving ≤ C0 log λ terms, where C0 is a fixed
constant. Notice also that

(2.6) ψλ,j(ξ, η) = 0 if angle(ξ, η) /∈ [λ−1/22j−1, λ−1/22j+1], j ≥ 1.

With all of this in mind, we claim that (2.5) is a consequence of the following
uniform estimates

(2.5’) ‖Tλ
j G‖L2(R3) ≤ Cλ1/2

√

λ1/22−j‖G‖L2(R4).

To verify this claim, let us first fix ε > 0. We then note that if λ is large and
ψλ,j(ξ, η) )= 0, then |(∇ξ−∇η)ϕ| ≥ |y−z|/2 if 1 ≤ t ≤ 2 and |y−z| ≥ 2jλ−1/2+ε,
with ϕ = (x − y) · ξ + (x − z) · η + t(|ξ| + |η|) being the phase function for the
kernel Kλ

j of Tλ
j . Since Dγψλ,j = O((2jλ1/2)−|γ|) routine integration by parts

arguments therefore yield the following bounds for this kernel stationary phase
arguments

sup
(t,x)∈[1,2]×R2

∫

|y−z|>2jλ−1/2+ε

|Kλ
j (t, x; y, z)| (1 + |y − z|) dydz

+ sup
{(y,z): |y−z|≥2jλ−1/2+ε}

(1 + |y − z|)
∫ 2

1

∫

R2
|Kλ

j (t, x; y, z)| dtdx ≤ CN,ελ
−N ,
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for every N . Hence, if we set G = Gj + G̃j where Gj(y, z) = G(y, z) if |y − z| ≤
2jλ−1/2+ε and 0 otherwise, then Young’s inequality and (2.5′) yield

‖TλG‖L2 ≤
C0 log λ
∑

j=0

‖Tλ
j Gj‖L2 +

C0 log λ
∑

j=0

‖Tλ
j G̃j‖L2

≤ C
C0 log λ
∑

j=0

λ1/2(λ1/22−j)1/2‖Gj‖L2 + CNλ
−N‖ (1 + |y − z|)−1G ‖L2 .

From this we obtain (2.5) since the support properties of Gj give

(λ1/22−j)1/2‖Gj(y, z)‖L2 ≤ Cλε/2‖ |y − z|−1/2G(y, z) ‖L2 .

To prove (2.5′), let us first handle the terms involving j ≥ 1. The other term
Tλ

0 should be thought of as a remainder term. We shall deal with it at the end.
To obtain the bounds corresponding to j = 1, 2, . . . , we need to make one last

decomposition. If λ and j are fixed, let us define a conic partition of unity of
R2\0, 1 =

∑

χν(ξ) where the χν are characteristic functions of nonoverlapping
sectors of aperture ≈ λ−1/22j . If we then set

Ĝν,ν′
(ξ, η) = χν(ξ)χν′

(η)Ĝ(ξ, η),

it follows from orthogonality that, for fixed t,
∫

|Tλ
j G(t, x)|2 dx ≤ C

∑

ν,ν′

∫

|Tλ
j Gν,ν′

(t, x)|2 dx,

with C being a uniform constant. Since orthogonality also gives
∑

ν,ν′

‖Gν,ν′
‖2

L2 = ‖G‖2
L2 ,

we conclude that it suffices to establish the uniform bounds

(2.7) ‖Tλ
j Gν,ν′

‖L2 ≤ Cλ1/2
√

λ1/22−j‖Gν,ν′
‖L2 .

We have made this last conic decomposition since we can trivially make a
pointwise estimate for Tλ

j Gν,ν′
using Schwarz’s inequality. Specifically, if we use

polar coordinates η = ρΘ, ρ > 0, Θ ∈ S1, then

|Tλ
j Gν,ν′

(t, x)|2 ≤

C(λ1/22−j)−1

∫

S1

∣

∣

∣

∫∫

eix·(ξ+ρΘ)+it(|ξ|+ρ)Ĝν,ν′
(ξ, ρΘ)ψλ,j(ξ, ρΘ) dξρdρ

∣

∣

∣

2
dΘ.
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To prove (2.7) we notice that because of Plancherel’s theorem and (2.6) it
suffices to show that the frozen operators

(SΘh)(t, x) =
∫∫

eix·(ξ+ρΘ)+it(|ξ|+ρ)h(ξ, ρ)dξdρ

satisfy

(2.7′)
∫∫

|SΘh(t, x)|2 dtdx ≤ C

∫∫

∣

∣h(ξ, ρ) angle−1(ξ, ρΘ)
∣

∣

2
dξdρ.

For then, by integrating this inequality, we obtain

‖Tλ
j Gν,ν′

‖2
L2(dtdx)

≤ C(λ1/22−j)−1

∫∫∫

∣

∣ρĜν,ν′
(ξ, ρΘ)ψλ,j(ξ, ρΘ)angle−1(ξ, ρΘ)

∣

∣

2
dξdρdΘ

≤ Cλ(λ1/22−j)
∫∫

|Ĝν,ν′
(ξ, η)|2 dξdη,

using in the last step, the fact that

ρ1/2ψλ,j(ξ, η)angle−1/2(ξ, η) = O(λ1/2
√

λ1/22−j).

Inequality (2.7′) is due to Klainerman and Machedon [8]; however, for the
sake of completeness, let us indicate the proof here. The main step involves
making the change of variables

(τ, ζ) = (|ξ| + ρ, ξ + ρΘ),

while noting that the Jacobian satisfies

|d(τ, ζ)/d(ρ, ξ)| = | 1 −Θ · ξ/|ξ| | ≥ c
(

angle(ξ,Θ)
)2

,

for some c > 0. Because of this, another application of Plancherel’s theorem
gives

∫∫

|SΘh(t, x)|2 dtdx ≤ C

∫∫

∣

∣ h(ξ, ρ) |d(τ, ζ)/d(ρ, ξ)|−1
∣

∣

2
dτdζ

= C

∫∫

∣

∣h(ξ, ρ) |d(τ, ζ)/d(ρ, ξ)|−1/2
∣

∣

2
dξdρ.

This along with the preceding inequality yields (2.7′) which completes the proof
of (2.5′) when j ≥ 1.

The remaining term Tλ
0 is easier to handle. One first realizes using orthog-

onality considerations as above that in order to prove (2.5′) for j = 0, it is
enough to assume that Ĝ(ξ, η) vanishes when ξ and η are outside of a fixed
sector of aperture ≈ λ−1/2. Since the symbol of Tλ

0 vanishes when |η| ≥ 2λ, this
assumption and Schwarz’s inequality yield

|Tλ
0 G(t, x)|2 ≤ Cλ3/2

∫

∣

∣

∫

eix·(ξ+η)+it(|ξ|+|η|)Ĝ(ξ, η) dξ
∣

∣

2
dη.

From this one immediately obtains the remaining case of (2.5′) using Plancherel’s
theorem.
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3. Local smoothing estimates involving cinematic curvature

In this section we shall see how results from the last one can be extended to
the variable coefficient case if, as in [13], one assumes cinematic curvature and
conormality. Let us start, though, by recalling the definitions.

We shall be concerned with maximal functions involving averages over curves
Σt,x in the plane depending smoothly on (t, x) ∈ [1, 2] × R2. We want the t-
dependence to be non-trivial, so, working locally, we shall assume that Σt,x is
given by

(3.1) Σt,x = {y : Φ(x, y) = t},

where the defining function Φ is in C∞. We then, as in [17], make the non-
degeneracy assumption that the Monge-Ampere determinant of Φ is non-
singular:

(3.2) det
(

0 ∂Φ/∂x
∂Φ
∂y

∂2Φ
∂x∂y

)

)= 0 when Φ(x, y) = t.

This means that, if t is fixed, the associated Fourier integral mapping E ′(R2) →
D′(R2) is locally a canonical graph.

The main part of the cinematic curvature condition takes into the way the
curves change with respect to the t-parameter. For this we need to assume that
there is a function p(t, x, ξ) ∈ C∞([1, 2] × R2 × R2\0) which is homogeneous of
degree one in ξ and satisfies

(3.3)
{

p(Φ(x, y), x,Φ′
x(x, y)) ≡ 1,

corank p′′ξξ ≡ 1.

Assuming this, if 0 ≤ a ∈ C∞
0 (R2 ×R2), we shall consider maximal functions

of the form

(3.4) (Mf)(x) = sup
1≤t≤2

∫

Σt,x

|f(y)| a(x, y)dσt,x(y),

where dσt,x denotes arc length measure on Σt,x. As noted in [13], the hypotheses
are fulfilled when Σt,x are geodesic circles of radius t about x coming from a C∞

Riemannian metric g (with injectivity radius > 2). Here, the function p in
(3.3) is simply p = ±

√

∑

gjkξjξk, where gjk is the cometric. The conormality
assumption mentioned earlier just refers to the fact that the singular support,
as above, is a smooth hypersurface in [1, 2]×R2 ×R2 (see below). Also, in what
follows, we of course only need to assume that our assumptions (3.2) and (3.3)
hold on the support of a.

We can now state the main result in this section which extends Schlag’s [11]
constant coefficient estimates.
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Theorem 3.1. Assume that Σt,x is as in (3.1) with Φ ∈ C∞ satisfying (3.2)
and (3.3). Then the maximal function in (3.4) satisfies

‖Mf‖Lq(R2) ≤ Cp,q‖f‖Lp(R2),

if (1/p, 1/q) ∈ T , where T is the interior of the triangle with vertices (0, 0),
(1/2, 1/2) and (2/5, 1/5).

The inequality for 2 < p = q ≤ ∞ was established in Sogge [13]. Also, the
arguments in Schlag [11] (see also §4) show that, up to endpoints, the above
results are of the best possible nature.

As in the constant coefficient case, we can obtain these estimates from a simple
application of Sobolev’s theorem and the appropriate smoothing estimates. To
see this we need to first recall that the averaging operators in (3.4)

(3.5) Af(t, x) =
∫

Σt,x

f(y)a(x, y) dσt,x(y)

can always be written, modulo smoothing operators which satisfy better bounds,
as a finite sum of Fourier integral operators of the form

(3.6) (Aαf)(t, x) =
∫

eiφ(t,x,ξ)a(t, x, ξ)f̂(ξ) dξ/(1 + |ξ|)α,

where α = 1/2 and a ∈ C∞([1, 2] × R2 × R2) vanishes for x outside of a fixed
compact set and satisfies

|Dγ1
t,xDγ2

ξ a(t, x, ξ)| ≤ Cγ(1 + |ξ|)−|γ2|.

Also, the phases are real, in C∞([1, 2]×R2 ×R2\0) and homogeneous of degree
one in ξ. If they arise from operators as in (3.5) with (3.2) holding, this will
translate to the condition

(3.2′) det ∂2φ/∂x∂ξ )= 0 on supp a.

Condition (3.3) will translate to

(3.3′) ∂φ/∂t = p(t, x, φ′x), corank p′′ξξ ≡ 1 on supp a.

The final condition, which was automatically satisfied by the above averaging
operators is the conormality condition

(3.1′) corank φ′′ξξ ≡ 1 on supp a.

This ensures that the singular support of Aα is contained in the smooth hyper-
surface

Σ = {(t, x, y) : y = φ′ξ(t, x, ξ), some ξ ∈ R
2\0}.

Under these hypotheses we have the following result which, along with the
Lp → Lp estimates in [13] yields Theorem 3.1.
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Theorem 3.2. Assume that Aα is as in (3.6) where, as above, a ∈ S0
comp and

the phase function satisfies (3.1′) − (3.3′). Then if 1 ≤ p ≤ 5/2

(3.7) ‖Aαf‖L3p′ ([1,2]×R2) ≤ Cα‖f‖Lp(R2), α > 6(1/4 − 1/3p′).

The estimate for p = 1 follows easily from stationary phase and our conor-
mality assumption (3.1′). Thus, to prove (3.7) it suffices, as before to show that
(2.3) holds if now the squared-operator is given by

(TλG)(t, x) =
∫∫

eiφ(t,x,ξ)+iφ(t,x,η)aλ(t, x, ξ, η)Ĝ(ξ, η) dξdη,

with
aλ = ψλ(ξ, η)a(t, x, ξ)a(t, x, η).

The cutoff ψλ is as before. In particular, we recall that it vanishes when ξ or η
does not belong to the intersection of a λ-annulus with a small conic neighbor-
hood of (0, 1).

The last assumption implies that the direction (0, 1) must be transverse to
the singular support of y → Kλ(t, x; y). Given a fixed (t, x) we recall that this
set is contained in the smooth curve

Σt,x = {y : φ′ξ(t, x, ξ) = y, some ξ }.

Because of this (2.4) must hold in the present context.
Therefore, to finish matters, we just need to check that the L2-estimate (2.5)

also extends to this more general setting. If we modify the definition of Tλ
0 in

the obvious way we can easily adapt the constant coefficient argument to see
that (2.5′) holds when j = 0. Here one uses Schwarz’s inequality and the L2-
boundedness of Fourier integral operators with phase functions satisfying (3.2′).
Thus, since (2.5) follows from (2.5′), we are left with verifying that the latter
holds when j ≥ 1. As before, one can use orthogonality to see that this in turn
follows from (2.7′) if now

(SΘh)(t, x) =
∫∫

eiφ(t,x,ξ)+iφ(t,x,ρΘ)aλ(t, x, ξ, ρΘ)h(ξ, ρ) dξdρ.

This inequality was essentially proved in [14] (see (2.19′) p. 1803). The
argument was carried out for operators arising from solving variable-coefficient
wave equations in (1+3)-dimensions. Since the proof only relies on the fact that
the phases involved satisfy (3.1′)− (3.3′) we conclude that (2.7′) must hold here
as well, completing the proof.
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4. Remarks on higher dimensions

Let us conclude by showing how we can extend the earlier results to higher
dimensions and find the optimal range of Lebesgue spaces between which Stein’s
spherical maximal function is bounded. As before, for simplicity, we shall only
deal with truncated maximal operators where the supremum is taken over dila-
tions 1 ≤ t ≤ 2. This assumption can be removed if one multiplies the averaging
operators by the appropriate power of t so that the resulting operators are scale
invariant between Lp(Rn) and Lq(Rn).

Since we can easily obtain estimates for the variable coefficient case, let us
handle this situation as well. Thus, let us consider maximal functions defined
by (3.4) where now Σt,x is a smooth hypersurface in Rn given by (3.1) with
Φ ∈ C∞(Rn × Rn). We then have the following

Theorem 4.1. Let M be a maximal function associated with smoothly varying
hypersurfaces Σt,x ⊂ Rn, n ≥ 3, as above. Then, if the defining function satisfies
(3.2) and (3.3)

(4.1) ‖Mf‖Lq(Rn) ≤ Cp,q‖f‖Lp(Rn),

provided that (1/p, 1/q) ∈ Q, where Q is in the interior of the quadrangle with
vertices V1 = (0, 0), V2 = ((n − 1)/n, (n − 1)/n), V3 = ((n − 1)/n, 1/n) and
V4 = (n(n − 1)/(n2 + 1), (n − 1)/(n2 + 1)). Furthermore, these results are of
the best possible nature in that (4.1) can never hold if (1/p, 1/q) is outside of the
closure of Q and q ≥ p.

The proof of the positive results only relies on known Lp estimates for Fourier
integral operators. We first recall that if Af as in (3.5) is the averaging operator
occurring in the definition of Mf , then, modulo smoothing operators, Af can
be decomposed as a finite sum of operators of the form (3.6) with α = (n−1)/2.

If (3.2) and hence (3.2′) hold results from Seeger, Sogge and Stein [12] say
that for 1 < p < ∞

(4.2) ‖Aαf(t, · )‖Lp(Rn) ≤ Cq‖f‖Lp(Rn), α = (n − 1)|1/2 − 1/p|.

The conormality assumption (3.1′) along with (3.2′) and stationary phase implies
that for 1 ≤ t ≤ 2 and 1 ≤ p ≤ 2

(4.3) ‖Aαf(t, · )‖Lp′ (Rn) ≤ C‖f‖Lp(Rn), α > (n + 1)(1/p − 1/2).

Lastly, if (3.2′) and (3.3′) hold, the generalization of Strichartz’s estimates [19]
to variable coefficients in Mockenhaupt, Seeger and Sogge [10] yields

(4.4) ‖Aαf‖Lq([1,2]×Rn) ≤ C‖f‖Lp(Rn),

provided that 2(n + 1)/(n − 1) ≤ q < ∞ and

q = (n + 1)p′/(n − 1), α = (n + 1)/2 − n(n + 1)/(n − 1)q.
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Notice that the fourth vertex of Q satisfies q = (n + 1)p′/(n − 1). Also, the
third, as those in (4.3), lies on the line of duality. The other two, like those in
(4.2), involve p = q. Keeping this in mind one sees that the last three inequalities
and interpolation yield

‖Aαf‖Lq([1,2]×Rn) ≤ Cp,q,α ‖f‖Lp(Rn)

for some α < (n − 1)/2 − 1/q if (1/p, 1/q) ∈ Q. Since this along with Sobolev’s
lemma yields (4.1) the proof is complete.

The arguments in Schlag [11] can be adapted to yield the sharpness results.
For the first step, let us assume without loss of generality that the cutoff function
a occurring in the definition of M does not vanish identically on Σ1,0. If then

Σδ
1,0 = {y ∈ R

n : dist(y,Σ1,0) < δ}

is a δ-neighborhood of Σ1,0, we conclude that for small δ > 0 we have uniform
lower bounds of the form

∫

{y∈Σδ
1,0∩Σ1,x}

a(x, y) dσ1,x(y) > c0 > 0,

as long as |x| < c1δ for some fixed constants c0, c1 > 0. Therefore, if fδ denotes
the characteristic function of Σδ

1,0, we conclude that Mfδ(x) > c2 > 0 for some
uniform constant c2 if |x| < c1δ with δ small. Hence, for such δ > 0 we have
uniform bounds of the form

‖Mfδ‖Lq(Rn) / ‖fδ‖Lp(Rn) ≥ c3δ
n/q−1/p.

This implies that we must have

(4.5) 1/p ≤ n/q if M : Lp(Rn) → Lq(Rn).

To get another condition, we note that, after a change of coordinates, we may
assume that for some x0 ∈ Rn the hypersurface Σ1,x0 passes through the origin
with normal (1, 0, . . . , 0). We may also assume that a(x0, 0) )= 0. Since we are
assuming cinematic curvature, the equation

φ′ξ(t, γ(t), 1, 0, . . . , 0) = 0

determines a smooth curve γ(t), 1 ≤ t ≤ 2 satisfying x0 = γ(1). If

Rδ = {y ∈ R
n : max

1≤i≤n−1
|yi| < δ1/2, |yn| < δ}

then our choice of γ(t) implies that
∫

{y∈Rδ∩Σt,x}
a(x, y) dσt,x(y) ≥ c0δ

(n−1)/2
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for some c0 > 0 if
|x − γ(t)| < c1δ

1/2

and t − 1 > δ1/2, c1 > 0 and δ > 0 are sufficiently small. In the case
of Stein’s spherical maximal function, the lower bound would be satisfied if
max1≤i≤n−1 |xi| < cδ1/2 and 1 < |xn| < 2 for some c > 0. If we take gδ = χRδ

then the preceding lower bound implies that for small δ > 0

‖Mgδ‖Lq(Rn) / ‖gδ‖Lp(Rn) ≥ c2δ
(n−1)/2·(1+1/q)−(n+1)/2p,

for some positive constant c2, from which we conclude that

(4.6) 1/p ≤ (n − 1)/(n + 1) · (1 + 1/q) if M : Lp(Rn) → Lq(Rn).

Finally, if make the preceding assumptions, then Stein’s [18] example

h(x) = |x|1−n/ log |x|, |x| < 1, h = 0, |x| ≥ 1

implies that

(4.7) 1/p < (n − 1)/n if M : Lp(Rn) → Lq(Rn).

For Mh is infinite on a set of positive measure under the above hypotheses and
h ∈ Lp(Rn) for every p ≤ n/(n − 1).

We conclude from (4.5)-(4.7) that if M : Lp(Rn) → Lq(Rn) then (1/p, 1/q)
must be in the region bounded by the lines 1/p = n/q, 1+1/q = (n+1)/(n−1)p
and 1/p = (n − 1)/n. Since these along with the line 1/p = 1/q determine the
boundary of the quadrangle Q in the statement of Theorem 4.1, the proof is
complete.
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