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1 Introduction
In this paper we consider the random operators of the Anderson model
Hu = Agau + dwu

acting on u € (*(Z%) with d = 1,2. Here {wy},cz¢ is an ii.d. sequence which will be assumed
to satisfy Ewg = 0, Ewg = 1, and wp bounded. By Aj. we mean the discrete nearest neighbor
Laplacian, i.e.,

Agau(n) = Z u(m).

|m—n|=1

Observe that we are not subtracting 2du(n), which would give the true discretization of the continu-
ous Laplacian. However, this only amounts to a translation of the spectrum. Our concern is mainly
to understand localization lengths in the limit A — 0. More precisely, as localization has not been
established for d = 2 at small disorders, we consider eigenfunctions of the operators restricted to the
cubes [~N, N]% as N — oo and estimate the localization lengths from below uniformly in N. Our
approach is based on the analysis of the Fourier transform of eigenfunctions. We show that with
probability one most eigenfunctions have the property that their Fourier transforms are concentrated
on annuli of thickness about A\? (strictly speaking, A>~", where n > 0 is arbitrary but fixed). These
annuli are neighborhoods of those curves which support the Fourier transform of the corresponding
eigenfunctions of the free Laplacian with the same energies. “Most eigenfunctions” here means up
to a set of density o(1) as A — 0 (with the “0”-term depending on 7). The concentration to annuli
of thickness A is almost immediate, whereas harmonic analysis techniques permit the improvement
to A\2. By the uncertainty principle this frequency concentration implies that eigenfunctions cannot
have most of their #2 mass on squares in Z? of side length much small than A=2. In one dimen-
sion it is know that this is optimal, i.e., that the localization length is on the order of A=2. In
two dimensions, however, it is suspected that if localization does occur, then the localization length
should in some sense be infinite (exponential in A=2). On the other hand, it is easy to see that the
frequency concentration to annuli of thickness A\? is optimal provided “concentration” is interpreted
in a certain way. Moreover, this appears to agree with predictions from statistical mechanics. The
length scale A~2 on the lattice Z2 has been observed in several instances, in particular in connection
with time dependent problems. The understanding of physicists is that diffusive behavior starts
after time A\=2, see Spohn [13] and Erdés, Yau [3].



Recently, Magnen, Poirot, and Rivasseau have achieved important results that are strongly
related to this paper, see [11], [8], and [9]. In particular, Poirot’s paper [11] contains a “multiscale
analysis in phase space” which is basically the same that we use. The aforementioned works are all
based on renormalization group techniques from statistical mechanics, and are primarily concerned
with asymptotic expansions of the expected value of the Green’s function in the disorder. These
expansions are well-known to be of fundamental importance in the field. Our approach is different.
The Green’s function is not used, and the eigenfunctions are estimated in a more direct way. Not
only do we not invoke any kind of renormalization group methods, but we also do not rely on
an interpretation of the Anderson model as a matrix model, which seems to be important in [11].
Rather, we are motivated by some well-known ideas from harmonic analysis that arose in the study of
Bochner-Riesz multipliers, see [2] and [4]. As our techniques appear to be somewhat more elementary
than those from [11], we hope that they might be of some interest.

This paper is organized as follows. In Section 2 we prove the one-dimensional result, see Theo-
rem 2.1. The two-dimensional result is proved in Section 3, see Theorem 3.12 and Corollary 3.13.
Optimality is discussed in Subsection 3.2. As some of the details in Section 3 are almost identical
with those from the one-dimensional case, we do not provide all of them but rather refer the reader
to the one-dimensional proofs where they are given in full.

The third author wishes to thank Frederic Klopp, since the possibility of proving a result of this
nature was suggested by their joint paper [7]. The first author is grateful to Tom Spencer for pointing
out references [13] and [3], as well as for providing some physical insight into the importance of the
scale A72. He gratefully acknowledges the support of the National Science Foundation DMS-9706889
and thanks Barry Simon for making it possible to visit Caltech. The second author was supported
by the grant NASA-NCC5-489.

2 Frequency concentration and localization lengths for the one-
dimensional Anderson model

In this section our goal is to prove the following theorem about the one-dimensional Anderson model.

Theorem 2.1. Consider the one-dimensional random operator
(Hu)p = Up+1 + Un—1 + Awnty (2.1)

where X > 0 and {w,} are i.i.d. with Ew, = 0, Ew? = 1, and bounded. For any positive integer

N let {ug-N)} be an orthonormal basis on ¢*([—N, N]) of eigenfunctions of H restricted to [—N, N],

i.e.,

N) (N)

(H—EM)ul™ =0 on [-N,N] and o) =ul}), =0.

Fiz any small 7 > 0 and n > 0. Then for sufficiently small X one has

1 .
lim sup N#{j ‘ Hug-N)Hﬂ(Z) > A%_”]]ugN)lllz(Z), —2+7< E}N) <2- T} < A9 AT (2.2)

N—oo

with probability one.



This says that for small A and with high probability most eigenfunctions have localization length
A2 up to logarithms, at least away from the edges of the spectrum. In one dimension this is known
to be the correct order of magnitude. The proof of Theorem 2.1 rests on the fact that the Fourier
transforms of eigenfunctions are basically concentrated on A?-intervals. Showing this is the main
difficulty in the argument, and the statement about ¢* norms then follows easily. Moreover, the
latter implication also shows that the support of the Fourier transforms of eigenfunctions cannot
be significantly smaller than \?. It is much easier to show that the Fourier transforms localize to
A-intervals, which would correspond to the localization length A~!. This will be done in the following
subsection.

2.1 A simple perturbative result

Let T = [0,1] be the circle. The Fourier transform of any u € ¢2(Z) is

o0

a(0) = Y upe(nd)

n=—oo

where e(f) = e?™®  For any interval I C R, let P; denote the projection operator onto the energies
in I. More precisely, with
S=SI)={0€T|2cos(2n0) € I} (2.3)

one defines I/D[\U(g) = xs(6)a(f), where g is the indicator function of the set S. If I C (—24+71,2—7),
then the length of S(I) satisfies C~1|I| < |S(I)| < C|I|, with a constant C' depending on 7 (this
will also be denoted as |S| < |I|). For any A > 0 it is known that Anderson localization takes place,
see [6], [12]. Thus, let {uy} be an orthonormal basis of eigenfunctions with energies {Ej}. Let u be
any one of them and F € (—2+ 7,2 — 1) its energy. Taking Fourier transforms one obtains that

[(H — E)u]"(0) = (2cos(210) — E)i(0) + AGu(0). (2.4)

Cover the energy axis by disjoint intervals I; of length Cy 27 )\, with I being centered at E. Here
Cy is some constant that will be determined below. For every j # 0 there are two copies of I, one
to the left of E' and the other to the right (see Figure 2.1, where the second copy of I containing
—2 is not shown). It suffices to consider 0 < j < |log A| many of those intervals (throughout this
paper a < b means that a < C'b for some constant C. Also, if a < C~'b with some large C, then
we write a < b). Observe that {I;} are chosen in such a way that |I;| < dist(I;, E) for j # 0.
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Figure 2.1: The intervals for a given energy E

Applying the projection P, for some j # 0 to the equation (2.4) yields

i1 Prulle S M Pr(wu)lla S A I1PwPrulla S lwlleo A Y I Prulle: (2.5)
k k
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Here we have used the trivial bound
|1 Pr;wPr || < llwllso (2.6)

as well as the fact that ), P;; = Id. Consider that interval I; that maximizes the expression
V|l Pr;ull2. Suppose that j # 0. Then one concludes from (2.5) that

i1 Pryulle S AZ 1Proullz < AZ ||PI ully

and thus vCoA S A) 7, |Ik|7% < \/% This is a contradiction for large Cp. Consequently, the
maximum has to be attained for j = 0, which is equivalent to

1Pyl [ IPrgl for il . (2.7

Loosely speaking, this means that the frequencies of any eigenfunction u; with energy Fj lie A-close
to those two frequencies 6 for which 2 cos(270y) = Ej. Therefore, the localization length is at least
AL, This can also be formulated in terms of a ¢* to 2 comparison by means of the following simple
technical lemma.

Lemma 2.2. Let f,g € L?>(T). Then

1
1 * gllr2(ry < min(|supp(f)], [supp(g)[)2 || fll2llgll2-
Moreover, this bound is sharp.

Proof. Let E = supp(f) and F' = supp(g). Assume that |F| < |E|. Then

2
[ re=namas| @ < [ [1re=wPxrwidy [ lo)P iz do
< [F[1F13 1913,
as claimed. Finally, one checks that these bounds are attained for indicator functions. U

Now suppose u is an arbitrary function satisfying (2.7). Then

lalf = NPl = i dllgar <ZHPIU*PIk I,
Jo.k
I
< Z|S 12 A ISU)IE 1Prulls [Prulle S 37 IT12 A L2 |70|1 1 Proul3
o L1311
| o] 1
S D lPull S ol 1 Prull. (28)

]<k;| k|2

This finally implies that
AL
[ulles(zy S Atllullez



2.2 A nonperturbative improvement of the frequency concentration

This subsection is devoted to an improvement of the argument of the previous section. More precisely,
our goal is to prove (2.7) with smaller intervals {I;} of length |I;| < 27 \>~%1. The calculation leading

to (2.8) then shows that ||ullsz) S Aéanqu(Z), which is basically what is claimed in Theorem 2.1.
The weakest part of the previous argument is inequality (2.6). However, with probability one that
bound turns out to be optimal as we shall show below. Nevertheless, a substantial improvement is
possible provided one restricts w to intervals of certain bounded sizes, see Lemma 2.8 for a more
precise statement.

For any subset A C Z let Ry denote the restriction operator to A. For example,

Ri-nmH BN
is the operator H restricted to [—N, N| with Dirichlet boundary conditions. Thus

[Ri wn(H — E)R_ynu]"(0) = (2cos(2n6) — E)a(6) + Aau(0)
—u_nye(—(N +1)0) —une((N +1)8). (2.9)

In this section it will be technically necessary for us to define P; by means of F[Tf = 1/1/5(\1) f , where
g is a smooth bump function. We make this precise in the following lemma. For any interval I C T
and ¢ > 1 we let the c-dilate of I be that interval I* with the same center as I and length c|I|. If
c|I] exceeds the length of the torus, then we set I* = T.

Lemma 2.3. Let {J;} be a finite collection of pairwise disjoint intervals on T such that |J, J, = T.
Fiz some small constant ¢ > 1 and denote the collection of c-dilates by {J;}. Assume that the
following two properties hold for some number A:

sup D xs0) <A (2.10)
V4

and if Jy NI # 0, then
AT < 1L < AR (2.11)

Then there exist 1y € £*(Z) with supp(@) C J; such that 1,/[12 € C*(T),

2@2 =1, (2.12)
l

and such that for every m = 0,1,2,... there exist constants C(m,c) with the property that
[e(n)| < C(m,c) A% || [1 + | Jo||n]] ™ Ve. (2.13)
Proof. Let ¢ € C*®°(R) such that 0 < ¢ <1, =1on (—1,3), and supp(p) C (—(1+¢)/2,(1+c)/2).

Define
o _ o0 —0)/17)
Pe(6) VS 02 (0 = 00)/17k])

(2.14)




where 6y is the midpoint of J,. Denote the denominator in (2.14) by D. By assumption (2.10), no
more than A terms are nonzero in the sum appearing in D. Hence,

1<D< VA
Moreover, (2.11) implies that if @ € .J;, then the derivatives satisfy
IDB)(9)] < Cy A2 Jy|™° forall s=1,2,3,...

where C; also depends on c¢. Consequently,

‘@(s)w)‘ < Cy A%|J,|7F forall s=1,2,3,....

This implies (2.13), whereas (2.12) holds by construction. O

The choice of squares in (2.12) turns out to be convenient in this context, but is otherwise arbitrary.
Lemma 2.3 is applied as follows: Fix some small 7 >0 andlet £ € (=2+ 7,2 —7),and 0 < {y < T
(below £y < X so that the latter assumption holds for small A). Cover the energy axis by pairwise
disjoint intervals I; of length |I;| = 274y where Ij is centered at E, see Figure 2.1. We denote this
partition by

Z(E). (2.15)

It give rise to a partition {S(/;)}; of T, where each S(I;) is the union of at most two intervals, say
S(1j) = Jj N J}, see (2.3). Since E is separated from —2 and 2, one has

|71 = |} < |1;] (2.16)

at least for those j with —2,2 ¢ I;. In case I; = (a,b) with a < 2 < b violates (2.16), one slightly
shifts a to the left so that the length of I; and that of its left neighbor changes by at most a factor
of two, say, but (2.16) holds. Similarly with —2. In this way one arrives at a partition {Jy, J;}, of T
with the property that adjacent intervals have comparable lengths. This property implies that the
hypotheses of Lemma 2.3 are satisfied with some ¢ > 1 sufficiently close to 1 and A = 2. Let {1},
be the functions given by Lemma 2.3 and set

Priu= (4, + g0 (2.17)

where S(I;) = Jy, U Jy, (if S(I;) is a single interval, then of course only one ¢ appears in (2.17)).
By our construction, . .
supp(the, ) N supp(e,) = 0.
Therefore, (2.12) implies that
> P =Tdpg, (2.18)
J

Moreover, one has (PIQJ u)(n) = > ez Kr;(n —n')u(n') with a kernel Ky, satisfying

|K1;(n)] < Cs|LI[1+|L||n]] % forall s=1,2,... (2.19)
supp(l?;?) C S(I)” (2.20)



where S(I;)* is a little bit larger than S(/;). Properties (2.18), (2.19), and (2.20) are going to be
used repeatedly in what follows. We shall also need the following construction involving Py;. Let

P= Y P (2:21)
k|| < |15

By construction,
Pru=u if supp(a) C U S(If)-
k| 1| <|1]

Consequently, ]3;] is given by a kernel f(\j; that satisfies
K7, (n)| < Cs || [L+ |Lj|[n[]] ™ forall s=1,2,... (2.22)

In addition to this smooth partition of unity on T we shall also require one on Z. One possibility of
doing this is given by the following lemma.

Lemma 2.4. There exists a positive Schwartz function ¢ on R such that supp(@) C (—3,3) and
with the property that

Z oz —n)=1 Vr € R (2.23)
nel

Proof. Taking Fourier transforms in (2.23) yields
(&) D _e(=n&) =D ¢(k)0k = b,
nez keZ

where the first equality sign is Poisson’s summation formula. To ensure the second equality sign, it

suffices to take supp(9) C (—1,%) and to set ¢(0) = 1. To obtain positivity, start with any even

Schwartz function ¢ with supp(9) C (—1,1) and 5(0) = 1. Since ¢ extends to an entire function

in C, one has
mes[p2 = 0] = 0.

Therefore ¢ := % * p3 > 0 everywhere, whereas
o = [P0 * ol’

has support in (—%, %) Finally, observe that
. o 2 o 2
o0 = ([@©m-ad) = ( [Fere) >o
The second equality sign uses that pg is even whereas positivity follows since pg is real. Hence,

Z(p(x—n):gé(()) Ve e R
neZ

by the preceding argument. Dividing by the right-hand side finishes the proof. O



Fix some ¢ as in Lemma 2.4. Given an interval () C Z so that 0 € @, define pg(z) = ¢(z/|Q]).
Then, with L = |Q)|,

Z po(n+1t) =1 Vn € Z. (2.24)
teLZ

If @ = {Q} is a partition of Z by means of congruent intervals, we define g as follows: Let Qo
be the unique interval from Q for which 0 € Q and define g, as before. If @) = Qo + ¢, then set
©Q = PQ, (- —t). An equivalent formulation of (2.24) is

> o =1 (2.25)

QeQ

Observe that with this definition, which we follow throughout this section,
— 1 1 ) _
supp(pq) C (— Tk m) and |pg(n)] < Cp, [1+ Q|7 dist(n, Q)] ™™ for allm >0 (2.26)

where C),, are constants that do not depend on Q.
We repeatedly use Schur’s lemma in this paper. For the sake of completeness, we now recall the
statement. The simple proof can be found in many places and will be omitted.

Lemma 2.5. Suppose (X,p) is a o-finite measure space. Let K : X x X — C be a measurable
function satisfying

sup [ |K(plduy) =4 < oo
zeX JX

Sup/ |K (z,y)|du(z) =: B < oo.
yeX J X

Then for any f € L?(X) the integral on the right-hand side of

Tf(@) = [ Klo.)f () duto)
converges for a.e. x and defines an operator T for which
|7 < VAB.

With this technical preparatory work behind us, we now turn to an entropy bound that will play an
essential role in bounding the norm || PrwgPy|| where wg denotes the restriction of {w} to ). More
precisely, Lemma, 2.6 limits the number of functions u, v for which one needs to estimate

|(wqPyu, Prv)|.

Statements of this type are quite well-known, see for example Buslaev and Vituskin [1]. Moreover,
a two dimensional version of the following lemma is in [7].



Lemma 2.6. Let I C T and Q C Z be intervals with |Q|-|I| > 1 and suppose that Q) is centered
at 0. Define the space
X7 :={u € ?(Z) | supp(a) C T}

and let By be its unit ball. Then for every 0 < x < 1 there exist functions {Uj}j]\/il in By with
M < exp (C KV*2|Q||I|>, C being an absolute constant, so that for any u € By one has

lupqg —ujpglle@) <
for some j € {1,2,...,M}.

Proof. Partition I into intervals {J} of length C; 'x|Q|~!, where C| is some large constant. Let 67
be the midpoint of J. For any u € X denote the conditional expectation of f := 4 with respect to
this partition by g¢. Thus g is constant on each of the intervals J, and [, gy df = [ f df. Clearly,
llgrll2 <1l fll2 and furthermore,

G (F=an®l = | [ @001 a0 av|

JCI
— | [ 170 -0 - G - 0,017 - 97)(0") dt
gcr’d
< [ X)) - 70 - 60|17 - ap@las.  (220)
JCI

Using the derivative bound H@'HI < Q] one easily checks that

sup S xs(0") [ |56 0~ F(0 — 0] b S 1QI| S C; '
JCI

Similarly, for fixed 6 € T one has
/ij(e’)‘@(o ~0)~ Fal0 - 0,)| a0’ S C; 'k
J

Hence, by Lemma 2.5 the L?-norm of the quantity in (2.27) is no larger than /3 provided C; was
large, i.e.,
lpqlu = (g9a) 12 = 19 * (f = gp)ll2 < &/3.

On the other hand, the functions {(,522 *gq | u € B[} are a subset of a ball of radius about one in

the d-dimensional Hilbert space {(,522 * g | u € X[} where d < k1 |Q]|I]. Thus there is a subset
{uj} C By of cardinality < x~“? such that if u € By, then

Hb’inH@*%_@*g’Tf 2§/§/3.



For this latter property see for example Pisier [10], formula (4.22). Consequently, for every u € By
there is 7 such that

19q * (@ = @j)lla < 15g * (& = ga)ll2 + 16q * (92 — ga7)ll2 + 2@ * (@5 — ga7)ll2 < %,
as claimed. O

The following lemma, presents some almost orthogonality statements that will be crucial in the proof
of Theorem 2.1. By Pr we mean one of the operators defined in the discussion following Lemma 2.3.
In particular, (2.18), (2.19), and (2.20) are satisfied. Also, recall that Pr is defined in (2.21). By x¢
we always mean the indicator of Q.

Lemma 2.7. There exist constants Cy, depending only on m = 1,2, ... and 7 such that for arbitrary
intervals I C (=24 7,2 —171) and Q,Q' C Z
Ix PExall < Con [TIVIQNQT L+ [11dist(Q, @)™ for all m > 1. (2.28)

In particular, let Pr, = {Q} be a partition of Z into congruent intervals of length L|I|~%, where
L > 1 is a parameter. Then

1Prall3 S IIPixqull3 + Con L™ ||ull} (2.29)
QePr,L

for all w € (2(Z). (2.28) and (2.29) remain correct if one or both of xq,xq are replaced with
VPQ, /Pq, respectively. Moreover, one can also replace Py with Pr without changing the statement.

Proof. For simplicity, we restrict ourselves to the case of the indicators x¢o and x¢r. The smooth
bump functions ¢g and ¢¢ represent only a small technical variation requiring the use of (2.26).
By Schur’s lemma, it suffices to control the L'-norm of the kernel K of x¢or P? x¢. By definition,

K(z,y) = xq () K1(z — y)xq(y)-

Recall that here K7 is a kernel satisfying (2.19). Hence
> K (z,y)]

T
> K (z,y)]

y

IA

Cn|I|Q"|[1 + |I|dist(Q, Q)] ™ for all m > 1, (2.30)

IA

Cn|I||Q|[1 + [T|dist(Q,Q")] ™ for all m > 1. (2.31)

By Lemma 2.5, the norm ||xg P? x¢l| is controlled by the square root of the product of the terms
on the right-hand side of (2.30) and (2.31), which implies (2.28).

10



To prove (2.29), one expands relative to the partition Py 1, i.e., u = ZQEPL L XQU

1Prulls = Y (Prxqu, Prxqru) = > (Prxqu, Prxqu)
Q,Q'€Pr,L Q,Q'€Pr L
dist(Q,Q")<diam(Q)
+ > (xqu, xq Pf xqru)

dist(Q,Q")>diam(Q)
S Y IPixeuld+ ). C L[+ (Tdist(Q, @)™ lIxqull2lxqrulla (2.32)

QEPr,L dist(Q,Q")>diam(Q)
S Y IPrxulls + G L' ull3 (2.33)
Q€EPr,L

where (2.32) follows from (2.28), and (2.33) follows from (2.32) by means of Schur’s test.

To obtain the statement involving Pr, one uses (2.22) instead of (2.19). Otherwise the proof is
unchanged. O

The following lemma is a key ingredient in our argument.

Lemma 2.8. Fiz small 7> 0 andn > 0. Let I,J C (=24 7,2 — 1) be intervals with 0 < |I| < |J|.
For any interval Q C Z so that |Q| = N > |J|~! there is the estimate

P[||Pywg Pil| = ||Prwq Pyl > CA\/|J|} < N|J|e 4 (2.34)
for all A > |J|™" and some constant C which depends only on T and 1. Here wq denotes the
restriction of {wy} to Q.

Proof. Since the distribution of

|Pywgq Pr|| = || Prwq Py|| = sup (wgPru, Prv)

l|ull2=[v][2=1

does not depend on the position of @), we may assume that @ is centered at 0 (the first equality
follows by passing to adjoints). Let e = |J|. Suppose that there is some u € £2(Z) so that for a fixed
sequence {w}

|PrwePrull3 > B?|lull3 > B?||Prull3 (2.35)

with some B > €°. Let Q = |JQ' be a partition of @ into pairwise disjoint intervals Q' of size
e~ By Lemma 2.7, more precisely (2.29) applied to wg Pru with L =¢77,
1PrwoPrully S ) | PrwgrPrull3 + &' Prull3
Q'CQ

and

1Prull3 2 Y llog Prulls.
Q'cQ

11



One therefore concludes from (2.35) that there exists Q' C @ so that
|1PrwqrPrullz 2 Bllpg Prull2.
Hence,
P[|PwoPr] > B] < 3 IP’[E! u‘ 1Pywor Prully > B||<pQ/PIu||2]
Q'CQ

< Y P[3uv | egtweva Pru vq Pl 2 Blleg Prulllipe Pl
Q'CQ

< Ne ]P’[Elu € g 'Xs(i)” v € g - Xg(g)-

(pgrwayuv)l 2 BHquHvHZ]. (2.36)

Here Q) is the interval from the partition that contains 0, and I is the interval with the same center
as I, but length |J|. To pass to line (2.36), we used that the probabilities in the preceding line do
not depend on the position of Q'. Moreover, we replaced I with I in line (2.36) because

diam(7) = |Qp| ! = 17,

see (2.26). Let u,v be as in (2.36). Then by (2.20) the Fourier supports of u and v have measure at
most C; |J|. By Lemma 2.2 therefore

[uvllez(z) = (1@ % 0llz2(ry < Cr /|| Nlull2]|v]]2- (2.37)

Denote (pégw% by @. Notice that these random variables are uniformly bounded as ©q; is bounded

below by some positive constant on @Qf which does not depend on Q. Combining (2.37) with the
standard large deviation estimate

1
IP[| Zdznunvn| > t(z |unvn|2) 2] < e—ct?
n n

yields
~ a2
P(I S @ntnval > CH/IT] Julsllolls] S e (2.38)
n

for any u, v as in (2.36), C' = C; being some constant. By Lemma 2.6 the space
Br:={pquw | w € Xgjy., lwllz <1}
has a Cy Lnet NV of size exp (C 036*’7) where () is some constant to be specified below. Similarly,

the space
B = {pgyuw | w € Xggy-, lwll2 <1}

has a C[;l—net N of size exp (C C’ge_”). Now suppose that
. B
| g wnunvn| < 5

12



for all @ € N7 and & € N>. Moreover, assume that

|Zd}nunvn| < 2B for all u € By, v € Bjy.

n

Thus, for any v € By, v € By there are @ € N7 and © € N5 so that

| Z(Dnunvn| | Za]n(un - an)vn| + | Z(bn(vn - 6n)an| + | Z(Dnﬂnﬂﬂ
n n n n

IA

B
< 4BC '+ 3 <B (2.40)

if Cy was chosen large enough. Therefore, by (2.38),

P[3u € pg,  Xg(iyr v € Py - Xs(y- | 1@u,0)| > Bllulla|lo]o]

< IP’[E u € Qg Xgipyer v € gy - Xs(ny- | {@u,v)| = 2BHUH2HUH2]
1
+P[Jue M, 0 € N | [{@u, )] 2 Blulla]l]]
< Y Y Pflau, o) > 2 Bllulllvl)
£>0 uENT VEN>
< Zexp(cgfﬂ)exp(—cB2 22‘5/|J|) < exp(—cBQ/|J|>, (2.41)
>0

provided B > ¢~/2,/|.J]. Combining this with (2.36) yields
P[|PywoPill > B] S Ne exp (— cB/|J])

for those B, and the lemma follows. O

In contrast to Lemma 2.8 we would like to point out that for any choice of nonempty I,J C (—2,2)
one has a.s. ||P;w Py|| < 1. Indeed, assume without loss of generality that |I| < |J| and partition Z
into congruent intervals @ of size about |I|~!. Denote the resulting partition by Q. Observe that for
any pair @, Q' of disjoint intervals the variables || Pr wg Py|| and || Pr wg Py|| are independent. Since
one can easily check that | Py wg Py|| < 1 with positive probability, this implies that with probability
one there exists some ) € Q with this property. By almost orthogonality of the operators

{PrwgPriqeo

one has
| PrwPy|| < sup || Prwg Py,
QEQ

and the claim follows. Hence the restriction of w to @) in Lemma 2.8 is essential. This argument will
be carried out in full detail in Subsection 2.3 below, see Proposition 2.13.
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Definition 2.9. Fiz some small n > 0 and let A > 0 be the disorder in (2.1). For any small § > 0
let Qs denote a partition of Z into disjoint, congruent dyadic intervals of size < X™16~". We shall
consider only finitely many scales &, namely those of the form 2922741 0 < j < |logA|. These
scales are called \-admissible. We fix some collection Cy of about \™2 many intervals whose lengths
are A-admissible with the property that for any energy E C (=2 + 7,2 — 1) one has Z(E') C Cy for
some E' with |E' — E| < A2~ where Z(E') is defined in (2.15). We refer to those intervals as
A-admissible. Let I and J be A-admissible. For a given realization of the random sequence {wy} we
say that an interval Q € Quin( 1),y 5 (I, J)-good, provided

|ProgPs || S X7 |17 V|2, (2.42)
and (I, J)-bad otherwise.

If1,J C (—2+ 7,2 —7), then Lemma 2.8 states that
IP[Q is (I, J)-bad] <A (2.43)

for all @ € Quin(r1,17))- Therefore, for fixed (I,J) and with high probability any large interval

[~N, N] C Z should contain no more than Ne=*~"" many (I, J)-bad intervals. Lemma 2.10 makes
this precise.

Furthermore, it suffices to consider families of about A~2 many M-admissible intervals, see the
discussion following Lemma 2.3.

Lemma 2.10. For any A-admissible I,J one has

#{Q C [=N,N]| Q € Quin(ry,)) s (I, J)—bad} < e N. (2.44)

up to probability at most e~ N | with some constant ¢\, depending on A and n. In particular, a.s.

all but finitely many N satisfy the bound (2.44) for any given I, J.

Proof. We shall use the following well-known large deviation theorem: Let Y; be i.i.d. Bernoulli
variables with P(Y; =0) =1 — p and P(Y; = 1) = p. Then for large M

M
IP’[ZYJ > 2Mp] < e_bpM,
j=1

where b, > 0 is a constant depending only on p. Here the Y; =1 or 0 depending on whether or not
the j-th interval Q € Quin(j7),7)) 1s bad or good. Observe that the Y; are an i.i.d sequence. Because

of (2.43) one can take p = ¢ ", and M > NA2. The final statement of the lemma follows from
the first one by means of the Borel-Cantelli lemma. U

The next idea is that of all eigenfunctions {ug-N)} as in Theorem 2.1 only few can have significant
mass on the sparse set of bad intervals from the previous lemma.
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Lemma 2.11. Let {u;} be an arbitrary orthonormal sequence in ¢*(Z) and suppose S C Z is some
finite subset. Then

#[7 | Iuslles) > t] < s 2
for any t > 0.
Proof. Fix an t > 0. Define J = {j | lujllp2(s) > t}. Let (ex)n =1 if n =k and (ex), = 0 else. By

Bessel’s inequality
PHT <Yl < DD Hujren)” < #8,
JjeT keS j
as claimed. O

In the following lemma we present some additional almost-orthogonality properties that will be
relevant in the proof of Theorem 2.1. Let P 1, be defined as in Lemma 2.7. It will be convenient to
use the following notation: For any @Q, Q' € Pr , one has Q ~ Q" iff @ = Q' or Q and Q' are nearest
neighbors.

Lemma 2.12. Assume that {w} satisfies ||w||cc < 1, and let wg denote the restriction of {w} to
any Q € Pr,r. Then for any J C (=2 + 1,2 — 1) satisfying |I| < |J| one has (the sums are over
Q' S P[,L)

1PrwoPFully S ) IPrwePipquulls + Cpn LIJNIITH D7 [L+1J]dist(Q, @)™ | /pgrully  (2.45)

Q'~Q Q'2Q
for all w € £2(Z) and m > 1. Furthermore,
1PrwoPrull; S IPrwgProgrulls + Cm LY [1 4 [I[dist(Q, @)™ | /egrull3 (2.46)
Q'~Q Q'#Q

for all uw € (%(Z) and m > 1. Here P is the operator defined in (2.21).

Proof. As far as (2.45) is concerned, the expansion u =} ncp, | P u yields:

1PrwqPiull3

2
S Y IPwePivuld + (Y lixe P vealllveaul:) (2.47)
Q'~Q Q'%Q
S D IPwePiequlll+ Y. lixe PEveall Y lixe P vealllveaulh.  (248)
Q'~Q Q'*Q Q'*Q

Here (2.48) follows from (2.47) by means of Cauchy-Schwarz. Now (2.45) follows from (2.48) by
means of (2.28). Indeed,
> IxePivegll < Cwm D LI+ |J|dist(Q, Q)] ™™
Q'#Q Q'#Q
L
G 21111 (]

IA

—-m
) <Cn L',

as claimed. The proof of (2.46) is basically the same (see the last sentence in the statement of
Lemma 2.7). O
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We are now ready to prove Theorem 2.1. The basic approach is the same as in Subsection 2.1.
The main ideas are as follows: (2.6) is replaced with Lemma 2.8. This can only be done for good
intervals (). However, Lemma 2.10 insures that with high probability the union of all bad intervals is
a set of density o(1) as A — 0. Finally, one can use Lemma 2.11 to conclude that most eigenfunctions
have very little mass on this bad set. Most work in the following proof has to do with carrying out
the details of the micro-local analysis. As usual, the reader might find it helpful to assume that
various cut-off functions have no tails. In that case the proof becomes very simple.

Proof of Theorem 2.1. Pick some eigenfunction u = ug-N) with energy F = EJ(-N) €(-2+712-r1).

For E fixed, we partition (—2,2) into intervals I; where Iy is centered close to E and |I;| = 2/ X217,
As mentioned in Definition 2.9, it suffices to consider at most about A2 such partitions in total,
which we fix beforehand. For a given E, we choose that partition for which the smallest interval is
centered as close to F as possible. It follows that dist(F, I;) < |I;| for j # 0, see Figure 2.1. Recall
that .
P[2]f = Kfjfa

where (2.18), (2.19), and (2.20) hold. Now choose any I = I; with j # 0. Let § = |I|. Then (2.9)
and (2.29) applied to wu (with L = A~ and m large) imply that

ol Prulla < AllPr(wu)ll2 + 6(ju—n|+ |un)

1
B 1
S ALY IPrwqui)® + alfun ? + fu-n[2)F + X lulls (2.49)
QEQ;s

We call Q € Qs a bad interval, if it is (I, J)-bad for some choice of A\-admissible J. By Lemma 2.10
we may assume that there are at most

Al NN (2.50)
many such bad intervals Q € Qs. By (2.18),
S Pwquil S gL S S PwePRuli+ Y IPwePuld,  (251)
QeQs |L;|>]I] QEQs QEQs
Q good Q@ good Q@ good

where we have used (2.21). The appearance of |log A| is due to the fact that there are < |log A
many intervals I;. To deal with the first term on the right-hand side of (2.51), we invoke (2.45) with
L =X""and J = I;. More precisely,

o > PwePRul3 S D Y Y 1P P |IPI P egrully (2.52)

[;[>]1] QE€Qs [1;|>]1] Q€Qs Q'~Q
Q good Q good
+ D D CuLIGIIT Y0 [+ 11ldist(Q, Q)] lv/Porully  (2.53)
11> /1] QEQs Q'%Q
Q good
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The triple sum (2.53) is a small error term. In fact, for large m,

@53) s > unli S (1nln) " lveeul

;> 1] Q'€Q;s
Ly 1-m )
S 2 (5 T S B S A 2.54)
151> 1]

since L = A7". By the definition of good intervals the sums on the right-hand side of (2.52) are no
larger than

YD ML euls S D Y D AL, o ull3, (2.55)

I11>[1] Q€Qs 1>11) QEQs kil I =]1;]
Q@ good Q good

where we have again used (2.18) and the fact that
PrpqPr, =0 if |Ii| # |1,

see (2.20) and (2.26). One now estimates (2.55) as follows:

Yo > Y WliPyeePiuli S0 Y Y0 klleePul’

|L;|>|1| QEQs k:|It|<|I;] QEQs k:| I | 2|1
Q good
2
S D InlIPyul3. (2.56)
k| I, | > |1

Combining (2.54), (2.55), (2.56), yields

(2:52) + (2.53) S AT Y Ll Proull3 + A lull3:
ke T 2 ]

Therefore, the first term in (2.51) is bounded by

Sog AN > L[| Prully + X lull3. (2.57)
AR

The second term in (2.51) can be estimated similarly, but one uses (2.46) instead. In fact,

S NPwePrul3 < Y. Y I1PwePregul (2.58)
QeQs QEQs Q'~Q
Q good Q good
+ ) G AT Y L |IIdist(@Q, @) el (2.59)
QEQs Q'2Q
Q good
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As in the case of (2.53), one checks that (2.59) is no larger than A'9|u||3, cf. (2.54). Recalling the
definition of P;, one obtains for the term in (2.58)

> Y PwoProguly S ogAl > Y0 > IPwPy ||| P egrull3

QEQs Q'~Q QEQs Q'~Q j:|I;|<|I|
Q good Q good

S APegAlL Yo >0 Y Pyl

QEQs Q'~Q j:|1;|<|1]
Q good

S N Peg AT Y > Y 1Py Phulls

QeQs Q'~Q j:|1;|<|I|

Q good ez | T [ ST
S ATlog AT Y [1Prul3,
kil g | S|
Combining this with (2.57) shows that
Y Pwoully S AT log AlY ~ max(| 1], 1) | Pryull3 + X||ull3. (2.60)
QEQ;s J
Q good
By Lemma 2.11 and (2.50) all but at most
A% NN

many eigenfunctions {ug-N)} satisfy

XU poa @uell2 S A Jlull3.

For these eigenfunctions one therefore has

> IPwqulls < IXUq g @ullz S A°llull3. (2.61)
QEQs
Q bad

Combining (2.49), (2.60), and (2.61), implies that

1 1 1
1I[[Prulls < A" log A2 Y max(|1], |1;]) 2 || Pryully + X[l + 6(jun |* + Ju-n[*)? (2.62)
J
1 1
< M log A2 max(|T], | 1;]) 2 || Pryull2. (2.63)
J

To remove the last two terms in (2.62), one uses (2.18) and Lemma 2.11. Maximize the quantities
VI | Pr;ull2. If the maximum is assumed for j # 0, then the maximizing interval would have to
satisfy (2.63). Since |I;| > A2~ for all j, this can easily be seen to lead to a contradiction.

We have reached the following conclusion: a.s. and for all large integers N most eigenfunctions

u= ug-N) of the Dirichlet problem on [—N, N] have the property that

1|
|1 Prullz < il | Prull2, (2.64)
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where I is the interval of length =< A\2~%" centered at the energy E = EJ(-N) of ug-N), and J is any of
the other intervals with the property that dist(.J, E) =< |J|. “Most eigenfunctions” here means up to
A2 e=2""" N many, as A — 0.

Now fix a sufficiently large N and let u be any such eigenfunction. The theorem follows from (2.64)

and Lemma 2.2 by means of the calculation leading up to (2.8). O

2.3 The question of optimality

The order A? for the concentration of the Fourier transform cannot be improved. Indeed, suppose
that (2.7) holds for some eigenfunction u at energy E with intervals I; so that |I;| = 2/X2%" for
some 1 > 0. Then the calculation leading up to (2.8) would show that

lulli S A7 3.

On the other hand, by the theory of Anderson localization, there is some ny € Z such that for any
e>0
lu(n)| < C. e~ (VA =2)In=no|

where v(E,\) > 0 is the Lyapunov exponent. By the Figotin-Pastur formula, see Theorem 14.6
in [5], one has

V(BN ~ C(E)N?
as A = 0. Here 0 < C(E) < 0 if E € (-2 + 1,—7) U (7,2 — 7). However, the preceding three
inequalities are incompatible. Hence A? is optimal, as claimed.
Inspection of the proof of Theorem 2.1 shows that therefore one cannot have a better estimate than

[1PrwqPsll S VIV V]| (2.65)

with high probability. Here Q@ € Quin(jr),7)- Observe that (2.65) is basically what Lemma 2.8
provides. In this subsection we show directly, i.e., without recourse to the proof of Theorem 2.1
that (2.65) is optimal. Moreover, we show that the left-hand side of (2.65) is a.s. of size one
if Q =7Z.

Proposition 2.13. Suppose {w,} is a sequence of i.i.d. variables with Ewg = 0 and P(wy # 0) > 0.
Then for any pair of nonempty intervals 1,J C (—2,2) one has
P(I1PwP| > ¢ =1

where ¢ > 0 is a constant that only depends on the distribution of wq.

Proof. Fix two intervals I,J as above and let S(I),S(J) be as in (2.3). For simplicity, we shall
assume that o o
P[u = XS'(I)'& and PJ’U = XS'(J)"A) (266)

rather than letting the multipliers of P and P; being smooth. This latter case is just a small
technical variation. Now let § > 0 be sufficiently small such that S(I) D (6; — 6,0; + ¢) and
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S(J) D (85 — 4,05 + 9) for suitable 0;,07. Let ¢ be as in Lemma 2.4. Pick k € Z arbitrary and
define

>

(0) = @((0—0r)/0)e(0k)
o(0) = o((0—0,)/0)e(0k).

Thus,

Pru=wu and Pjv=v

regardless of the choice of k. Moreover, ||lu||2 =< v/d and ||v||z < V¢ independently of k. Since
(PywPru,v) anunvn = 522wn 05 — 01 (n + k) 0*(6(n + k))
it follows that with probability one
PPyl 2 dsup ‘ S wnk (8 — 67)n)p(0n)*

2 6> p(dn)’ < 1. (2.67)

To understand the argument leading up to (2.67) let us assume first that {w} are Bernoulli variables.
Then use the following two elementary facts:

IP’[for every N > 1 the sequence {w} contains a copy of every word of length NV } =1 (2.68)

for all finite complex sequences {zj};'v:l one has sup ‘ Z 6Jz]‘ > Z |zil.  (2.69)
ej=+1

The constant ¢; in (2.69) can be taken to be 4—\1/5. To obtain (2.67) in the Bernoulli case, pick a
large integer N such that

> w(on)? <07, (2.70)

[n|>N

say. This is possible because of (2.26). Secondly, choose a word {¢; };VZ_ n of £1 with the property

that
|3 (B = 0m)p(an)?| > e > wlom)®.

In|<N In|<N

y (2.68), with probability one, {w} contains a copy of {Ej};y:_N, which implies (2.67) for the
Bernoulli case. In case of general random variables one uses that Plwy > ] > 0 and Plwy < —7y] > 0
for some y > 0. Then (2.67) follows along the same lines as before, with a constant that also depends
on 7. U

The brief argument preceding Definition 2.9 is only superficially different from the proof of Propo-
sition 2.13. Indeed, observe that in (2.70) one can choose N = A§~! with A large. Thus the proof
is indeed based on independence and almost orthogonality of the operators PrwgP; where () ranges
over a partition at scale 1. Next we consider the case where w has finite support.
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Proposition 2.14. Let I,J C (—=2+ 7,2 — 7). Assume that |I| < |J| and let Q C Z be an arbitrary
interval satisfying |Q| < |I|~t. Then

1
|1PrwPrll 2 [7]2
with probability at least %

Proof. Let 6 = |I|, ¢ = |J|, and denote the centers of I,J by 6,607, respectively. As already
observed several times, we may assume that @ = [~ !, 1]. Pick a sequence {nk}le C @ so that
ngy1 —np = Ae7! and K < A_I%. Here A is a large number to be fixed. Define

a®) = A((9 —01)/6)

b(0) = Zbk e(—0ng)@((0 — 07)/¢), (2.71)
where by = 0, £1 are random. This means that they depend on the choice of {w}. In what way will
be explained below. Inverting the Fourier transform yields

u(n) = e(nbr)dp(dn)

K
v(n) = Zbk e(0y(n —ng))ep(e(n — ng)). (2.72)
=1

Clearly, ||ul|z < /8, whereas

K
I3 = " kel + O (=Y bibe 1+ el — nl] 2)
k=1 k#0
1 K
> ge D [l llgll3 = etk € {1,... K} [ b # 0} (2.73)
k=1

provided A is large, see (2.26). Under the simplifying assumption (2.66) one obtains

(PjwgPru, v) Z WnUp Uy = €0 Z b e(0ynk) sk (w), (2.74)
neq
where we have set
= 3 wne(0r — 0)n)p(e(n — ni) o (0m). (2.75)
new
Clearly,
E|Sk |2 =

Applying Lemma 2.15 to s(w) therefore shows that

]P’[|sk| < A_ls_%] <At
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assuming, as we may, that ¢ is small. Define random variables X}, by setting Xy = 1 if |sj| < Aile_%,
and X = 0 otherwise. In view of the preceding,

K

E Z X, <AK.

k=1

Hence
IP’[the majority of k € {1,2,..., K} satisfy |si| > Ailgfﬂ > %

Now define by, in (2.71) to be = 0 if X}, = 1, and 1 if X = 0. Taking the supremum over all choices
of £1 for those by in (2.74) shows that, with probability at least %,

K
1PrwoPill 2 llullz'es sup fiolly"| 32 brse(w)
bp=0,%1 o1

> 1 i -1_-1 2
> Aze 555AA €72 (2.76)
as claimed. To pass to line (2.76) one uses that ||ul|2||v|2 < Afés, see (2.73). O

The following lemma, is a very weak form of a central limit type estimate. It is most likely a well-
known fact from the classical probability literature, but we include it for the reader’s convenience.

Lemma 2.15. Let {w,} be an i.i.d. sequence with Ewy =0, Ew? =1, and E|wy|> < co. Then

N
P H Z WnGn
n=1

<B(Xlanl)?] £ 8 (2.78)

n

N
=1

provided |a,| <1 and (227:1 |an|?) 3 SpB<I.
Proof. The characteristic function fy of wy satisfies
¢?
2
with a constant ¢y that depends only on the distribution of wy. Let Sy = Z;V:l Wnay, and 0]2\, =
SN |an|?. Then

. 2
fol&)] = [Ee 0| =1 - = + O(¢3) < e provided [¢] < ¢

N
R~ | = T Ifolcan)] < exp (~ 1£%03) (279)
k=1

provided |¢| < ¢g. Hence,

P[|SN|§,BUN} S /90(;7—]\];)(11?

N
S [ powi(pone) [T 1o(can)ld¢

k=1
N B/ONeXp(— 3620%) d¢ (2.80)
< B
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as claimed. To pass to (2.80), observe that the integrand on the line above vanishes if |¢| > (Bon) L.
Therefore, on can apply (2.79) if (Boy)~! < co. However, this is our assumption. O

If wg = 1 with equal probability, then one has

il 1
IP’[ Wy = 0] =
2 =0 = 7y
This shows that the lower bound on S in the lemma is optimal.

3 The two-dimensional case

3.1 Frequency concentration in two dimensions

The purpose of this section is to develop an analogous approach for the two-dimensional Anderson
model given by the random operators on ¢2(Z?)

Hu = Aypu + dwu. (3.1)

We start by establishing some simple technical facts. The following lemma is the analogue of
Lemma 2.4. As the proof is almost identical with the one-dimensional case, we do not write it out.

Lemma 3.1. There exists a positive radial Schwartz function b on the plane such that

Y blz-n)=1 VzeR (3.2)
nez?

and so that supp(b) C [—1,1]°.

Fix such a function b for the rest of this section. In this section, we let ¢(™)(z) := min (1, ]z[7M).

It will suffice to take M = 10 for our purposes, and we set ¢ := 19 for the rest of this section.

For any radial function f in the plane and rectangle p, the function f, is defined to be f o A, where
A is an affine map that takes p onto the unit square. Since f is radial, f, is well-defined. For any
rectangle p, a dual rectangle p* to p is defined to have the same pair of axes as p but reciprocal side
lengths. The following lemma is from [14].

Lemma 3.2. Assume that M is sufficiently large, and let ¢ = <p(M). Let G be a function on R?. If
G 1is supported in o rectangle p and if p* is any dual rectangle, then

ley GlIZ < lol leop2Gli3-
Taking the Fourier transform of the two-dimensional discrete Laplacian leads to the multiplier
ma(61,02) == 2 cos(2m0;) + 2 cos(27ms).

The following lemma describes the level curves of this function.
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Lemma 3.3. Define
v(E) = {9 € T? ‘ 2 cos(2m01) + 2 cos(27l,) = E}

Then for any small T > 0 there exists a constant C; such that for all E € (=4 + 7,—7)U (1,4 — T)
the curve y(E) is a closed curve satisfying

C-l < inf k() < sup k(9) < C;
bev(E) 0cvy(E)

where k(0) is the curvature at the point 6. Moreover, if I C (=4 + 1,—7) U (1,4 — 7), then
mes[f € T? | ma(0) € I] < C,|1). (3.3)

Proof. The gradient
Vma = 4mw(—sin(276; ), — sin(276s))
1
2

only vanishes at the points (0,0), ( ,%), (0, %), (%,0). Clearly, these points lie on the curves v(0),
v(4), and y(—4). Hence

inf |Vma(0)| > C, >0
HGI;I(E)I ma(0)| >

forall E € (-4 + 7,—7) U (7,4 — 7). This implies (3.3). By calculus,

(D*ma (Vma)®, (Vma)t) '

"= |[Vma |3
One checks that
(271r)4 (D?ma (Vma)®, (Vma)t)(0) = 8[cos(2r8;) sin?(276) 4 cos(2m0y) sin? (276, )]
= 4m(0)(1 — cos(2mh;) cos(27by)). (3.4)

Clearly, (3.4) is nonzero provided m # 0 and

11
(61,02) # (0,0), (01,02) # (57 5)7
and the lemma follows. Ol

From now on it will be understood that some arbitrary but fixed small 7 has been chosen. Further-
more, v will denote an arbitrary curve of the form (F) as in the lemma. The e-neighborhood of
will be denoted by ¥v*. By 27° we mean the double of 4%, i.e., the annulus with twice the thickness
of ¢ and the same center curve. As in Section 2, we associate with a given F € (—4+47, —7)U(7,4—7)
a dyadic family of intervals {I;} on the energy axis, which we refer to as Z(F), see Figure 2.1. Here
I is centered at E, but otherwise dist(/;, E) < |I;| for j # 0. For given > 0 and A > 0 the lengths
satisfy |I;] =< 29 A2-% for all j. The following lemma shows that such a dyadic family gives rise to a
partition of unity on T? similar to Lemma 2.3.
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Lemma 3.4. Let Z(E) C (—4+71,—7)U(7,4—7) be some dyadic family of intervals {Ij}jj\io centered
at E. There exist functions {g?}?fﬁl C C™(T?) with the property that

M41
Y g’=1 on T (3.5)
7=0
and such that for 0 < j < M
supp(g;) C 2[0 € T? | ma(0) € I;]. (3.6)
Finally, for all0 <7< M +1,
195 ()] < G || 1+ [ ][] (3.7)

for every m > 1 with constants C,, depending only on m and 7.

Proof. For simplicity and w.l.o.g., we assume that F € (7,4 — 7). Identify the interval [—4,4] with

T and let Ipr4q := T\ U;'Vio I;. Clearly, |Ipr41] < 1. The family of intervals {Ij}j.vfgl satisfies the

hypotheses of Lemma 2.3 with a constant ¢ > 1 that depends on 7. Hence there exist functions
{;}}25" with the properties (2.12) and (2.13). Define

G(0) = P;(ma(8) for 0<j <M +1.

By construction,
M+1

|Vmal| >c¢; >0 on U Supp(z/p;,).
=0

Hence, g; C C°°(T?) for all 0 < j < M + 1, and (3.5) and (3.6) hold. To prove (3.6), fix some j and

denote the support of g; by 7. where ¢ < |I;|. Now divide T into (57%} many congruent intervals
{Je}e of size about /e. Let 3y be a smooth partition of unity as provided by Lemma 2.3 for these

~ 2
intervals (i.e., here By = 1y ). Therefore,

70) =" GO)B0/16]) = > Iy (3.8)
l l

Here we are identifying T? with R?, which is _justified since all y(E) are symmetric with respect
to 0 if £ > 0. Observe that the functions hy on the right-hand side of (3.8) are supported in
£ x y/e-rectangles which we denote by py. It is a well-known fact that

he(@)] < Cure ol (a) Yz e,

where pj is the dual rectangle to p, that is centered at the origin, see [4] and [2]. Thus
he(m)| < 3" Cares <p§)]21/[) (n) < Cprell+eln|| ™ (3.9)
14
for all M > 1, as claimed. O
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Figure 3.1: The decomposition into ¢ x /e-rectangles

Given a dyadic family Z(£) as in Lemma 3.4, fix some ¢ and set ¢ = |I;|. Let P. be defined as

P.u:= gp,
where g, is given by Lemma 3.4. Throughout this section it will be assumed that P. arises in this
way. For any € and v let

Xe = {u € (2(7?) ‘ supp(t) C ’yg}.

As already apparent in the proof of Lemma 3.4, angular decompositions are crucial in this section.
In this context it is more natural to consider the projective angle rather than the usual one. More
precisely, for any nonzero vectors £1,& € R? let Z(£1,&) € [0,7] be the usual angle, measured
counter clockwise. The projective angle <((£1,&5) is defined as

<(€1, 52) = min[é(gh 52)’ 4(513 _52)]‘

Observe that this angle is always in [0, 7/2]. The (projective) angle between two sets S, So C R?\ {0}
is defined as

<I(Sl,82) = inf{<{(f1,fg) | fl S 81, 52 S SQ}.

Lemma 3.5. Let u € X, ,, and v € X, ,, be such that <[supp(u),supp(0)] = a. Then

€
luvlls S ——===llull2l[v]2- (3.10)
va+ e
Proof. For technical reasons, we first reduce ourselves to the case where
dist(supp(a@) + supp(v),0) 2 1. (3.11)
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Figure 3.2: The supports of & and ¢ with angular separation «

Firstly, decompose 7 into ten pieces {I'; }]1-21 each of which has angular width %. Fix one of them,
say I';. Split 75 into four pieces {flk}%ﬂ by drawing the line that joins the midpoint of I’y with the
origin and the line perpendicular to it through the origin. Suppose that IN“H lies opposite [';. It is
clear that (3.11) holds for xr, % and Xflkﬁ if k = 2,3,4, whereas it fails for £k = 1. In the latter case
let

w(0) := xg,, (—0)0(-0),
which is the same as
W = X5, 0]-
On the one hand, xp, % and w satisfy (3.11). On the other hand, switching to w does not change the
2 norms in (3.10). Consequently, if we can prove (3.10) under the additional assumption (3.11), then

summing up over the decomposition we just described leads to the result in the general case. Thus
suppose that (3.11) holds. Decompose u = Zp u, so that @, is supported in an € x y/e-rectangle p.

Similarly, v = )" _ v,, see Figure 3.2. Let uf = b,-u, and 09" = byev,. In view of (3.2),
3 S ) s 12
P p* o o

—

By construction, every uz* is supported in a dilate Cp for some absolute constant C'. For simplicity,
we do not distinguish between p and Cp. It is a well-known observation by C. Fefferman, see [4]
and [2] that

D Xpio S1 (3.13)
p,o
under the assumption (3.11). Indeed, the equivalent inequality

Z Xi(p+o) S 1
P,
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basically states that the midpoint of a secant inside a circle determines its endpoints. This is clearly
true provided the secant is not a diameter. The latter case is excluded, however, because of (3.11).
We refer the reader to the aforementioned works for more details. Since

supp(, * 05) C p + 0o,

one concludes by means of Plancherel that

| S w Y], = [
u v =

p o

P p 2 R2

Sl + T xorr (6)]

0

S IDS 28] SECEE (3.14)
R? o

S > lupvs . (3.15)
p,0

To pass to line (3.14) one uses Cauchy-Schwarz, whereas (3.15) follows from (3.13).
Suppose p Nsupp(i) # 0 and o Nsupp(v) # B. Assume first that o > \/e. Then the longer sides of
p* and o* make an angle of size about a. This implies that

lp*No*| <etat and also /R2 Qoo dr S e ta L (3.16)

On the other hand, if & < /e, then it is clear that

lp* No*| < e 2 and also / P Po+ dx S e s.
R2
Therefore,
* — * — 2
O A B DR A=
< / D o P S 0 P g e D p oo da (3.17)
R2 p*,o* p*,o*
S X g g e N [ o do (3.18)
pr,o*

E_l

a+ /e

where the last line invokes (3.16). To pass to line (3.18) one needs to remove the second sum in (3.17).
This is possible since

Z Pp* 5 1’

p*

* -1 * -1
I (7 [y 8 (3.19)
P,

which is the same as
sup Z plr —n) < 1.

2
v€R® 72
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Hence

2
luollezy = | upeol|, (3.20)
P,
S D llupvoll3 (3.21)
P,
p* o* 2
= Y| X w |,
P p* a*
< B I ey et
S ZZH@p*up oo‘gog*vg = (3.22)
P, p*,o*
-1
< S5 et |Ll|enzer |1t = (3.23)
~ PmP g 70 T a4 e ’
po p*,o*

2

2

€ €
S ; 3= ————|lul3|v]l3. 3.24
3 a+ﬁ2p:uupu2§g:uvgu2 e K AL (3.24)

The first equality (3.20) is given by (3.12). To pass to line (3.21), one uses (3.15). (3.22) is obtained
from (3.19), whereas (3.23) follows from Lemma 3.2. Finally, to pass to line (3.24) one uses that

> et <1

p*

By definition this is the same as

sup Z o Yz —n)b*(z—n) <1,
z€R? nez?
which holds since b is a Schwartz function. O

The importance of Lemma 3.5 lies with the following probabilistic estimate.

Lemma 3.6. Let {w,}>% be a sequence of independent mean-zero random variables with |w,| < 1.
Suppose u € X, ., and v € X, ,, are such that <[supp(a),supp(d)] = . Then for all s >0

82
P[|> " wattaal > Csllulls [0]2] S exp (= 5 (@ +7))

with some absolute constant C > 0.

Proof. By the usual subgaussian estimate
P[| 3 wnttnBa| > t||m;||2} <et
n

for all £ > 0. In view of Lemma 3.5,

luollz S

T P]
———||U||2]|V]]|2,
Va+/e

and the lemma follows with ¢ = 2/ + /e. O
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As in the one-dimensional case, we shall use Lemma 3.6 in order to control the norms ||PswqF||
where Q C Z? is a square of side length §~! (assuming w.l.o.g. that ¢ > §). This again requires
an entropy bound that limits the number of functions one needs to test the operator PswgP: on.
Moreover, it turns out to be crucial to split the square @ into smaller squares Q' of side length .
This requires simple almost orthogonality arguments that are presented in Lemma 3.7, whereas the
entropy estimate is given by Lemma 3.8. Those results are then used in Lemma 3.9, which is a basic
result of this section.

Lemma 3.7. Let 0 < e < 1 and Q1,Q2 C Z? be squares. Then there exist constants Cy, so that

Ix@: P2x@. | < Crme/1Qu]1Q2] [1 + e dist(Q1, Q2)] ™™ (3.25)

for all m > 1. In particular, let Q. 1, be a partition of Z? into squares of side length Le~' where
L >1. Then

IPull3 S D I1Pxqull3 + Cre™ L™ Jull3 (3.26)
QEQE,L

for all u € ¢%(Z2).
Proof. The kernel of XQ1P52XQ2 is given by
K(z,y) = xq (#)Ke(z — y)x@.(y)
where I/(\E = 2 is a smooth cut-off function on the annulus 4°. In particular, there is the estimate
|Ke(2)] < Cme[l +elz|]™™

for all m > 1, see Lemma 3.4. The norm in (3.25) is now estimated by means of Schur’s lemma.
To obtain (3.26), one argues as usual:

HPEU’H% = Z (PEXQ1U7P€XQZU>
Q13Q2€Q€,L
< > (Pex@iu, Pexq,u) + > Ix@2 P2x@: |l 1xQuullz [1xQsull2
QhQZeQE,L Q17Q2€Q5,L
dist(Q1,Q2) <diam(Q1) dist(Q1,Q2)>diam(Q1)
S Y. IPxqulls + Com L2 L7 Jul3. (3.27)
QEQE,L

To pass to line (3.27), one uses Cauchy-Schwarz to derive the first term, whereas the second term is
obtained by means of (3.25) and Schur’s lemma. O

The following lemma is the analogue of Lemma 2.6 from the one-dimensional case. It will be
important to control the length of the support of @ for any u € X, . To this end we define

X, = {u € X,y ‘ supp(u) is contained in an arc of length a}.

Let Bgﬂ denote the unit ball in X onv.
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Lemma 3.8. Let 0 < e < 1 and Q C Z? be a square of side length Le™' centered at the origin. For
every 0 < k < 1 there exist functions {u]-}évil in Bg., with M < exp (Cﬁ_3L2a/5> such that for any
u € B2, one has

1bQu — boujll2 < &

for some j.

Proof. Partition T? into small squares of side length about C; 'x diam(Q)~'. Denote the resulting
partition by P and the conditional expectation of any f € L?(T?) by

E[f|P] =: gs-
Thus, if u € X2, then g; is constant on each square J € P. Moreover,
9a 1 J #0
for at most 5o
coe _Gla (3.28)
|J]| K2e

many of the squares J € P. This implies that the dimension of the Hilbert space {I;C\Q*gu |u € X, 37}

is at most Cd. Hence there are functions {Uj}j]\/il with M := £~ ¢ such that
min [[b = g3 = bg * 955, < w/3 (3.29)
for all u € BZ,. To finish the proof it suffices to show that for large Cy
1bg * @ — b * gall2 < /3

for any u € BY,. This can be done by means of Schur’s lemma as in the one-dimensional case. As
the details are almost identical we skip them. O

Lemma 3.9. Fiz some small 7 > 0. Let Q C Z? with diam(Q) =M > e~ and let £ > e > > 0.
Then

2
2.2 A
p[IPsar = PPl = 6y AVE] S MPeheno (- i)

for all A > e~ where C), only depends on n and 7.

Proof. Let Q@ =|J Q' be a partition into squares Q' of size e~1=1/2, By Lemma 3.7 with L = ¢ /2,

IP.woPsull3 $ ) [1Pewgy Psull3 + &'lull3. (3.30)
Q'CQ
Moreover,
ull3 > > [lbgrull3. (3.31)
Q'CQ
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Let B > € be such that ||P.wgPsull2 > B||ul|2 for some u. Then (3.30) and (3.31) imply that
| P.wgy Pyull2 2 Bllbgrullz for some Q' C Q.
Therefore,

P[a u ‘ | Powo Psullz > Bllullz ]

< ¥ IP’[E! w, v ‘ (wor Pyu, Pov)| > B||bQ:u||2||v||2]
QCQ

< ¥ IP’[E! w, v ‘ |(bg?war by Pru, by P-v)| > Bllbgrula|lbgrollz } (3.32)
QcQ

S MPP|Ju € by - Xepy, v € by - X,

(bfwayu )| = Bllullzllolls]  (3:33)

where Q) is the square centered at the origin. To pass to line (3.32) note that by is uniformly
bounded below on @’ by a positive constant. Moreover, ||v]|2 > ||bgrv||2 since 0 < b < 1. This allows
one to replace |lv]|2 with ||bgiv||2. To obtain (3.33) one uses that the probabilities in (3.32) do not
depend on the position of '. The appearance of u € be - X, , instead of u € b% » X5, (which can
only increase (3.33) since € > §) is due to the fact that

diam(supp(bgy ) < diam(Qh) " < " +7/2, (3.34)

This implies that the two aforementioned classes of functions are basically the same. More impor-
tantly, in view of (3.34),

u € by - Xey = supp(a) C i (3.35)
for small e. The next step is to estimate the probability in (3.33) by means of Lemma 3.6 with the
random variables

W= béiw%. (3.36)

This requires angular separation of the supports of % and ¢, which can be obtained as follows. As

above, there is a decomposition 7] = Uj R; into rectangles of size ¢ x /e and 75 = Uj R; so that

R; and }N%j belong to the same angular sector when viewed from the origin. We may assume that in
both cases the number of rectangles appearing in the decomposition is equal to the same power of
two. We now describe a partition of the set of all pairs (R;, Rj) into sets

A< {(Ry, Re) | 2°VE - OVE) § (B, Ba) S 2'VE) (3.37)
for =0,1,2,.... In case £ =0 we let

A= J{ (=R 2R | i €(2),2) +1}, k€ {25 - 1,2,2j + 1,2 + 2} }.
J
—R; we mean the rectangle opposite to R;. Figure 3.3 shows this situation for the case of one j.

The idea is simply to group those rectangles together that make an angle about /e or less. To
define the next set of pairs A, one divides the set of all rectangles {R; C 77} into groups of four
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Figure 3.3: The first set of pairs Ay

adjacent ones and also combines antipodal rectangles. One such group of eight rectangles (four on
each side) is shown in Figure 3.4. They are the ones that lie on 7§ close to the solid line through the
origin. Fix such a group and let R; be one of these rectangles. We then let (R;, Ry) € A; provided
}N%k C 75 belongs to one of the four sets of eight rectangles each, which are shown in Figure 3.4.
Those four sets are chosen in such a way that they are adjacent to those }Niz C 5 with the property
that (R, éz) € Ay for the R; under consideration. Observe that by this construction

<(Rj7 ék) = \/E

for any pair (R, Ry;) € Ay

Proceeding inductively, one defines the sets of pairs Ay as follows: start with 16 rectangles in ~{
consisting of two groups of eight antipodal ones. Associate them with the four groups of 16 rectangles
each that lie on v5 and which are adjacent to those from the previous steps Ag and A;. It is clear that
this process gives rise to a partition as in (3.37). Furthermore, returning to (wu, v), our constructions

allows one to write
(Wu,vy = Z Z (Wup,vg) = Z Z(C} urg,vf%> (3.38)
¢ (p,o‘)E.A[ @ k

where I'{f are pairs of sectors in 77 of size about o = 2¢y/e and 'Y are unions of four sectors on 75
of similar sizes. Here we have set
UF% = E up

pel'y

and similarly for v. Moreover, B
a-0We) SATE,TR) S a
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Figure 3.4: The second set of pairs A;

for all o and k, see Figure 3.4 where one configuration I'{}, fg for £ = 1 is shown. Finally, observe
that for all « ) )
= 3 g2 ana o = 3 oy
k k

Suppose that for all angles o = 2¢y/ with 0 < £ < |loge| one has
(@ urg,vfgﬂ < Cullurgllz logell2 Y, (3.39)

where C; is some constant that does not depend on «, k and @ is a fixed sequence. Setting uq , = ure
and vk = V5, for simplicity, (3.38) therefore implies that
k

‘(Gju,v)‘ < Z ‘Z(@Ua,kyva,w

0<¢<|loge| k
a=2t/

< D D Cilluaglizllvallz
0<¢<|loge| k
a=2t/c
1 1
3 2
< Y (X Muanl) (3 el
0<¢<|log €] k k
a=2t/
S Cillogellullzflo]l2- (3.40)
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This means that if the reverse inequality holds in (3.40), then (3.39) has to be violated for some
choice of o and k. Define

xek ={ue X,

e T

supp(d) € If, [loll2 < 1}.

supp(@) C I, flulls <1} and X2 = {ve X.,

€,72

The argument between (3.39) and (3.40) allows one to introduce angular separation into (3.33).
Indeed,

P[3u € gy Xeny v € bgy - Xep,

B
| log e

[(@u,0)| > Bllulls o]:]
2

< Y S PFuchg - X2, ve by, - Xk
0<¢<|loge| k
a=2t/¢

[{wu, v)] lull2 llvll2|.  (3-42)

Now fix a pair o, k. By Lemma 3.8 there exists a -net Nj of by - ngkl with

#N1 < exp (a 6‘1"’), (3.43)
and let A5 be the analogous net for v5. Set
0y = %. (3.44)
Then the probabilities in (3.42) can be estimated as follows:
P[3u € bo, - X, v € bgy - X2 | (@ u,0)] > C1 ulls v]o]
< IP[E! u € bgy Xff:fl, v € by Xff:fz (@0 u,v)| > 2C ||ull2 ||v||2}
—I—IP’[EI u € N, vE Ny ‘ (@ u,v)| > %Cl w2 ||v||2] (3.45)
< ZP[EI u € N, vE Ny ‘ H@u,v)| > 2771 C ||ull2 ||v||2} (3.46)
J20
< j;oexp (ae™7) exp (- c2¥CY &%) S exp(ae™' ™) exp (- cCf &%) (3.47)

Inequality (3.45) is obtained by means of a 3e-argument just as in the one-dimensional case, see (2.40).
Line (3.46) follows by induction and to pass to (3.47) one uses Lemma 3.6 and (3.43).
The lemma now follows by combining (3.33), (3.36), (3.42), and (3.47). In fact, let B = Aeé_%| logel.
With €} as in (3.44),
2 2

0—21a = A—s_"a > el

€ € €
for large A. This implies that the entropy term in (3.47) is dominated by the probabilistic bound.
One concludes therefore that

P[3u | |PwoPsuls > Blulls] S M exp (- 4%/ V)
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and after a suitable rescaling of A,

2 2 A?
PH | Pewq Psl| > CqA\/E] SM 52€XP(— W>

provided A > 6_%, as claimed. O

Fix some small n > 0 and let A > 0 be the disorder in (3.1). For any small § > 0 let Q5 denote
a partition of Z? into disjoint, congruent dyadic squares of side length < A~7§~!. Recall that we
have fixed 7 > 0 and are considering about A\~ many dyadic partitions of T? by means of annuli
with thickness 2/ \2=%" as given by Lemma 3.4. It will be understood from now on that P. denotes
a projection onto one such annulus belonging to this fixed family of annuli.

Definition 3.10. Let ¢ > § be given. We say that Q € Qs is (0,¢€)-good, if
|PewoPs| < A7"Ve
holds (this of course depends on the randomness w).

As in the one-dimensional case, Lemma 3.9 allows one to conclude that with high probability the
bad squares are very sparse. This can easily be expressed in terms of densities as in Lemma 3.11
below. The proof is basically identical with the proof of Lemma 2.10.

Lemma 3.11. With probability one

limsup N 2#{Q C [-N,N)* | Q € Qs is (6,¢)-bad} < e

N—x

for any pair 0 < 6 < e.

Theorem 3.12 below is the main result of this section. It is the two-dimensional analogue of The-
orem 2.1. In order to formulate it, we introduce the notion of frequency concentration. More
precisely, we say that an eigenfunction u of the operator H in (3.1) (or a restricted version of it)
with eigenvalue E satisfies property FC(9) if

5
1Py < \E 1Psulls for all e, (3.48)

Here Py denotes the projection onto the annulus centered at y(E) of thickness § and P. are the
projections onto other annuli of thickness ¢ from the family Z(F). Clearly, (3.48) means that the
Fourier transform of u is basically localized to an annulus of size §. In the following theorem we
show that a.s. all eigenfunctions on the square [—N, N]?, up to a set of size o(N?), satisfy FC(\2~7)
provided their energies lie in the usual range. As the proof is very similar to that of Theorem 2.1, we
only provide a sketch. The missing details can be transfered verbatim from the proof of Theorem 2.1.
We use the notation

O[-N,N* ={n € Z*\[-N,N]*||m —n| =1 for some m € [-N, N]J*}.
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Theorem 3.12. Consider the two-dimensional random operator (3.1) where X > 0 and {wy,} are
i.i.d. with Ew, =0, Ew? = 1, and bounded. For any positive integer N let {ug-N)} be an orthonormal
basis in 02([—N, N1|?) of eigenfunctions of H restricted to [-N, N2, i.e.,

(H — EJ(-N))UE-N) =0 on [-N,N)* and u™) =0 on 9[-N, N]?.

Fiz any small 7 > 0 and n > 0. Then for sufficiently small X\ one has
1 .
lim sup —2#{j ‘ ug-N) does not satisfy FC(N\2~), E](-N) € 57} <A 9N (3.49)
N—00 N
with probability one, where & = (=4 +1,—71)U (1,4 — 7).
Proof. Let u = ug-N) be an eigenfunction with energy E = EJ(-N) € &;. Denote the restriction to the
square A = [-N, N]? by Ry. Taking Fourier transforms of

RyA(H — E)Ryu =0

yields
0= (ma(0) — B)a(0) + Xoii — »_ u(n)e(nd)
neoA

where n' € A, In—n'| =1 (we denote the set of those n’ by 9~A). Let Ps denote the projection onto
some annulus of thickness ¢ from the dyadic family associated with E. If this annulus is not the one
centered at y(E), the it has distance about § from y(£). Hence, applying Pj to the equation shows
that

NPl S APswll + (Y fum)?)?

ned~A

1
< A 1Brwould)* + Nl + flu To-a o (3.50)
QEQ;s

The sum in (3.50) follows from 3.7. By Lemma 2.11,
; N N -
#1{7 | Hu§-  o-all2 > A1°Hu§ M2} < NA=20,

Hence, we may assume that the final term in (3.50) is no larger than A'||u||2, without affecting (3.49).
Furthermore, by Lemma 3.11 and Lemma 2.11, we may assume that all but

A% NN
many eigenfunctions {ug.N)} satisfy
N N
1XUg e @ U5 1B S X713 (3.51)

Here Q is called bad, if for some choice of €, § it does not satisfy the condition in Definition 3.10. It
therefore suffices to treat the sum over good squares in (3.50). To this end one splits u as follows:

IPswqull3 < [log Al Y | PswoPlull3 + [[Pswe Y Prull3. (3.52)
e>0 e<d
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As in the previous section we use the notation @ ~ Q' for squares Q, Q' € Qs satisfying

dist(Q, Q") < diam(Q).

By the two-dimensional analogue of Lemma 2.12, whose straightforward proof we leave to the reader,
one obtains for € > § and with the sums running over squares ) € Oy,

Yo NPswoPully S Y > IPwePlbgrul3 + Alull3
Q good Q good Q'~Q

S Y0 D IPswo PP Pbgrull + A uly
Q good Q'~Q

> > A e Pabgrulld + A0ul3 (3.53)
Q good Q'~Q

SO D Ae Y Pbg PRulli + N ull3
Q good Q'~Q e'xe
S ATy | Poull3 + A ull5. (3.54)

e'=<e

N

In addition to the two-dimensional analogue of Lemma 2.12 we used the definition of good squares
to pass to line (3.53), as well as the fact that

P.bgP3 =0
if € % ¢’. On the other hand,

S Bwe Y Pl £ Y Y I1Bwe Y Prhgul3 + A0l

Q good e<d Q good Q'~Q e<d

S NogAl Y >0 D IPswoPllIPbgrull3 + A lull3
£<8 Q good Q'~Q

S logAl Y0 Y > AT | Pabgrull3 + AOfull3

£<8 Q good Q'~Q

S HogAl Yo > D AT Y |IPebo Phull + A lull

AN

e<d Q good Q'~Q e/xe
S Hog Al D A28 P34+ Al 3. (3.55)
e<d

Summing (3.52) over good squares and using (3.54), (3.55) as well as (3.51), yields
SPsuls S A log AR S VEV VB Paalls + 32 ull (3.56)
€

< AlogAZ Y VE V V| Pl (3.57)

€

To pass to line (3.57), one uses that the first term in (3.56) dominates the second because £, > 2.
The theorem now follows by the exact same maximization argument involving

Vo | Pyullz
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as in the proof of Theorem 2.1. O

The following corollary combines Theorem 3.12 with an uncertainty-type argument to conclude that
the localization length is about A~2 in size. More precisely, we show that with probability one most
eigenfunctions have the property that any square of size much smaller than A=2%" can contain only
a small fraction of its £2-mass.

Corollary 3.13. Suppose u satisfies (3.48). Then

sup, luxQ,r)le2z2) S VRS log o] [|ull2
fAS

where Q(x, R) is the square of side length R centered at x. In particular, with probability one, most
eigenfunctions {ugN)}j as described in Theorem 3.12 have the property that for R = \=2T"

N N
sup (4" XaGmllee) S VP Iyl
TE

“Most eigenfunctions” here means up to a set of density o(1) as A — 0 (where the o depends on 7).

Proof. Fix some square ) = Q(z, R) and consider the operator
T.1(6) = [ xa.(0)ba(6 ) 1(6) a8

on L%(T?). Here A, is an annulus of thickness ¢ and b is the bump function from Lemma 3.1. Since
supp(bg) is a disk of radius about R, a standard application of Schur’s lemma shows that

IT|| < VERe. (3.58)
Indeed,
sup/XAE (6o (6 — 6') d6' < Re,
[/}
and

sup/XAE (6")bo(6 —0")do < 1
01

so that (3.58) follows from Lemma 2.5. Since T (P2u) = bg P2u if C' is large, the corollary follows
from (3.58), (3.5), and (3.48). O

3.2 Optimality in two dimensions

It is easy to see that eigenfunctions of (3.1) cannot satisfy (3.48) with § < A2. Thus Theorem 3.12
is optimal up to the factors A" (and perhaps also up to the removal of a small fraction of eigen-
functions). Indeed, assume that

Ag2u + dwu = Fu.
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For simplicity, we now let w be Bernoulli, i.e., wg = £1. Then

NMlalli = (A = Byuly =) lxa (ma — EYal3

€

> lxadlls (3.59)
€

N

where A, are the annuli dyadic annuli around the curve ma = E with e = 2/6. As above, As is the
annulus centered around ma = E. We want to show that § > A\? if (3.48) holds. Thus, suppose

. 0 .
il < /2 lasil,

for all e. Inserting this estimate into (3.59) yields

Nlull3 < 255 HXA(;ﬂH; S9 HXA(;ﬂH;
€

This requires § > A2, as claimed. This argument shows that concentration to thinner annuli can
only hold under a weaker requirement of “concentration” than (3.48). For example, \* would require
replacing /6 /¢ in (3.48) with (¢§/ s)i It is important to notice, however, that this weaker inequality
would no longer allow one to apply the uncertainty principle in the sense of Corollary 3.13. Indeed,
one needs to balance the v/Re in (3.58) against the rate of decay as the annuli grow thicker. In
order to do this one needs at least \/m-decay. Hence any improvement of Corollary 3.13 in terms
of larger negative powers of A would have to proceed along different lines.

Since A? cannot be improved, inspection of the proof of Theorem 3.12 therefore shows that the
bound on ||PswqP:| provided by Lemma 3.9 is optimal. In the next lemma we show this directly,
without any recourse to the proof.

Lemma 3.14. Let € > § > 0 and Q C Z? be a square of side length at least 6~'. Then
E|PswoP:ll3 2 €.

Proof. We may assume that Q = Q(0,07!/2). Take a smooth function u with |lu/ = 1 and
| Psulls 2 1 and such that Psu is supported in the square Q0,5 !/2). In particular, notice that

~

woPsu = wPsu. Pick a \/e-net {{,}, in 75. Here o are /e x e-rectangles in 75 and the £, can be
taken to be their centers. Consider all functions v of the form

v(n) =Y > hG-be-(n)e(és - n) (3.60)

where the inner sum runs over all rectangles o* that are dual to e x y/e-rectangles o C 5. It follows
from the usual orthogonality considerations that

o3 < 37 |hg. 262
o,0*
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Indeed, observe that the Fourier transform of the inner sum in (3.60) is supported in o, so that these
sums are orthogonal for distinct choices of 0. On the other hand, for ¢ fixed, one uses (3.2). Hence
(with v as in (3.60))

2
IPwaPsll 2 sup [(woPsu Pl = sup | 5745 (eléer) woPsu br)
vl[2=1 vl[2=1

> o5 SIS weel€s - n) (Pyu) (m)by- (n) . (3.61)

Taking expectations in (3.61) shows that

E|[P.wgPsl? 22 Y ST 1(Psu) (n)be- (n) 2 = 3" 3 S |(Pyu) ()2 2 ellull3,

og,0* n

as claimed. The final inequality follows from the fact that there are about e > many rectangles o. [
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