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An overview
Pointwise decay for the free wave and Schrödinger evolutions

Perturbations by a (magnetic) potential, local L2 vs. global
L∞ decay. Role of zero energy resonances. Laplace transform
method. Global from local decay.

A nonlinear application to center-stable manifold for NLW.

Change of metric, trapping vs. nontrapping.

Surfaces of revolution, decay of waves on them. Periodic
geodesic, asymptotically conical.

Theorems: Decay at fixed angular momentum `, summation
over `; large ` semiclassical formulation. Role of negative
curvature. Elliptic vs. hyperbolic periodic geodesics.

Reduction to a one-dimensional problem with a smooth,
asymptotically inverse square potential on R (’critical decay’).
WKB in the double asymptotic regime (~→ 0, E → 0).

Mourre estimate at the top energy. Semiclassical
Hunziker-Sigal-Soffer propagation estimates.

Waves on a Schwarzschild black-hole background, Price’s law.

Donninger, S., Soffer, Costin, Staubach, Tanveer Decay of linear waves on curved backgrounds



The free case
Schrödinger evolution ψ(t) = e it∆ψ0 in Rd+1

t,x satisfies:

‖ψ(t)‖Hs = ‖ψ0‖Hs

‖ψ(t)‖∞ ≤ Ct−
d
2 ‖ψ0‖1

Follow from, respectively,

ψ(t, x) = (2π)−d

∫
Rd

e i(t|ξ|2+x ·ξ)ψ̂0(ξ) dξ

= c(d)t−
d
2

∫
Rd

e i |x−y|2
4t ψ0(y) dy

Wave equation �u = ∂2
t u −∆u = 0 in Rd+1 satisfies

E(u) = ‖∇u‖2
2 + ‖∂tu‖2

2 = const

and dispersive decay

‖u(t)‖∞ . t−
d−1

2 (‖u(0)‖
Ḃ

d+1
2

1,1

+ ‖∂tu(0)‖
Ḃ

d−1
2

1,1

)

Besov norm ‖f ‖Ḃα1,1 =
∑

j∈Z 2αj‖Pj f ‖1.
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The free case
Set j = 0. Apply stationary phase to

P0e±it|∇|f (x) =

∫
Rd

∫
Rd

e i((x−y)·ξ±t|ξ|)χ(ξ) dξ f (y) dy

in polar coordinates. Note: D2
ξ |ξ| degenerate in radial direction.

In odd dimensions stronger bound

‖u(t)‖∞ . t−
d−1

2 (‖u(0)‖
Ẇ

d+1
2 ,1 + ‖∂tu(0)‖

Ẇ
d−1

2 ,1
)

Ẇ α,p is homogeneous Sobolev space.
In R3,

‖u(t)‖∞ . t−1(‖D2u(0)‖L1(R3) + ‖D∂tu(0)‖L1(R3))

Follows from the Kirchhoff formula:

u(t, x) = (4πt)−1

∫
tS2

g(x + y)σtS2(dy)

solves �u = 0, (u(0), ∂tu(0)) = (0, g). Apply Gauss-Green

divergence theorem, Sobolev imbedding Ẇ 1,1 ↪→ L
3
2 .
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Lower order perturbations
Consider H = −∆ + V or H = (i∇+ A)2 with Schrödinger and
wave evolutions

e itH , cos(t
√

H),
sin(t
√

H)√
H

V ,A real-valued, sufficiently regular, decaying at infinity. H
self-adjoint.

Question: Decay estimates as in free case?
Obvious problem: bound states Hψ = Eψ, E ≤ 0. So restrict
attention to HPc = Hχ(0,∞)(H).

Jensen-Kato local decay theorem, late 1970’s:

‖〈x〉−σe itHPc f ‖L2(R3) . 〈t〉−
3
2 ‖〈y〉σf ‖L2(R3) =: 〈t〉−

3
2 ‖f ‖L2,σ(R3)

for some σ > 0, V polynomially decaying.

Essential condition: zero energy is neither an eigenvalue nor a
resonance of H (zero is regular)
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Lower order perturbations, local decay
This means:

sup Im z>0 ‖〈x〉−σ(−∆ + V − z)−1〈x〉−σ‖2→2 <∞
Nonexistence of f 6≡ 0 with

Hf = 0, f ∈
⋂
ε>0

L2,− 1
2
−ε(R3)

Laurent expansion of resolvent: as z → 0 in Im z > 0,

R(z) := (−∆ + V − z)−1 = z−1B−1 + z−
1
2 B− 1

2
+ B0 + z

1
2 B 1

2
+ρ(z)

B−1, . . . ,B 1
2

bounded in L2,σ

‖〈x〉−σρ(z)f ‖2 . |z |‖〈x〉σf ‖2 for z small.

B−1 is the orthogonal projection onto the zero eigenspace

zero energy is regular iff B−1 = B− 1
2

= 0

B−1,B− 1
2

are of finite rank

Jensen-Kato theorem:
∫∞

0 e itλ[R(λ)− R(λ)∗] dλ
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Lower order perturbations, local decay
Examples:

V = 0 in three dimensions, z = ζ2:

(−∆− ζ2)−1(x , y) =
e iζ|x−y |

4π|x − y |
, Im ζ > 0

Taylor expand exponential. Zero energy regular.

V = 0 in one dimension:

(−∆− ζ2)−1(x , y) =
e iζ|x−y |

2iζ
, Im ζ > 0

Zero energy is a resonance.

In Rd :

(−∆− ζ2)−1(x , y) = cd ζ
d−2

2 |x − y |−
d−2

2 H+
d−2

2

(ζ|x − y |)

with Hankel function. If d even, logarithmic branch point at
ζ = 0.
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Laplace transform method, Hille-Yoshida theorem

e itHPc =
1

2πi

∫ p0+∞

p0−∞
etp(H + ip)−1Pc dp p0 > 0

Meromorphic continuation of (H + ip)−1(x , y) to Re (p) ≤ 0
(for example, H = −∆ + V , V compactly supported), poles
equal complex resonances.

Deform contour into “thermometer” around (−∞, 0].
Residues contribute

∑
j eζj tφj , Re (ζj) < 0.

As t →∞, dominant tail comes from expansion around p = 0:∫ ∞
0

e−tppα dp = t−α−1Γ(α + 1)

So t−
1
2 if α = −1

2 as in the resonant case for d = 3, and t−
3
2

if zero is regular (α = 1
2 ).

In odd dimension d > 3 branching starts at p
d−2

2  t−
d
2 .
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Laplace transform, wave equation

u(t) =
sin(t
√

H)√
H

Pcg =
1

2πi

∫ p0+i∞

p0−i∞
etp(H+p2)−1Pc gdp, p0 > 0

In odd dimensions, R(p2) is analytic at p = 0 exponential
local decay. Sharp Huygens principle (SHP)

In even dimensions, R(p2) exhibits logarithmic branching at
p = 0 specific power law for the local decay (failure of
SHP).

Summary: Local decay for Schrödinger and wave evolutions
determined by smallest non-analytic contribution to the resolvent
as p → 0.
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Some history

Vainberg, Rauch 70’s: local decay for wave and Schrödinger
for exponentially decreasing potentials, role of resonance for
d = 3

Jensen, Kato late 70’s: expansion of the local evolution in
powers of time for polynomially decaying V

Murata, early 80’s: most complete analysis of the local decay
for Schrödinger, asymptotic expansion in time, also for the
case of zero energy being singular

Global L1(Rd)→ L∞(Rd) decay for e it(−∆+V ), d ≥ 3 under
decay and regularity assumptions on V , zero energy regular,
by Journé, Soffer, Sogge 1991 (JSS).

Beals, Strauss 93,94: global pointwise decay for wave
equation, V ≥ 0 or V small.

Yajima 1995-2005: boundedness of the wave-operators
W± := limt→±∞ e−itHe itH0 on Lp and W k,p, 1 ≤ p ≤ ∞. W
intertwines evolutions: f (H)Pc(H) = Wf (H0)W ∗. Improves
previous global decay results.
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Some history

2000 - present: Rodnianski, S., Krieger, Goldberg, Erdogan,
Beceanu, Vodev, Moulin, Cuccagna, d’Ancona, Georgiev
obtained various results weakening assumptions on V

time-dependent potentials: present major difficulties, no
general theory. Partial results by Rodnianski-S., Goldberg,
Beceanu. For time-periodic case (ionization problem) major
advance by Costin, Lebowitz, Tanveer, as well as Yajima et al.

Magnetic case: No pointwise global decay results known.
Strichartz estimates by Erdogan, Goldberg, S., and Metcalfe,
Tataru, Marzuola, 2006, 2007.

Applications to asymptotic stability problems for nonlinear
Schrödinger and wave equations: Soffer-Weinstein,
Buslaev-Perelman, Rodnianski-S.-Soffer, Krieger-S.,
Cuccagna, Mizumachi.
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Global decay for Schrödinger

Ginibre’s argument: H = H0 + V , |V (x)| . 〈x〉−2σ, assume

‖e itH0f ‖L2+L∞(Rd ) . 〈t〉−α‖f ‖L1∩L2(Rd )

‖〈x〉−σe itHPc f ‖L2(Rd ) . 〈t〉−α‖〈y〉σf ‖L2(Rd )

Applying Duhamel twice yields

e itHPc = e itH0Pc + i

∫ t

0
e−i(t−s)H0Ve isHPc ds

= e itH0Pc + i

∫ t

0
e i(t−s)H0VPce isH0 ds

+

∫ t

0

∫ s

0
e i(t−s)H0Ve i(s−s′)HPcVe is′H0 ds ′ ds

Important feature: evolution of H sandwiched between two weights
(namely V ) and Pc placed correctly. So can use local decay for H.
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Global decay for Schrödinger

If α > 1, then for ‖f ‖L1∩L2(Rd ) = 1 one has

‖e itHPc f ‖L∞+L2(Rd ) . 〈t〉−α +

∫ t

0
〈t − s〉−α〈s〉−α ds

+

∫ t

0

∫ s

0
〈t − s〉−α〈s − s ′〉−α〈s ′〉−α ds ′ ds . 〈t〉−α

For H0 = −∆, works for d ≥ 3: α = d
2 . Remove L2: difficulty of

(t − s)−α, nonintegrable at s = t. Use

sup
1≤p≤∞

‖e−it∆Ve it∆‖p→p ≤ ‖V̂ ‖1
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Some applications

Energy critical wave equation �u − u5 = 0 in R1+3.

locally well-posed in Ḣ1 × L2, global existence for small data,
large data can blow up in finite time.

Stationary solutions Wλ(x) := λ(1 + λ2|x |2/3)−
1
2 for λ > 0

(extremizers of Ḣ1(R3) ↪→ L6(R3))

Linearizing around Wλ leads to H = −∆− 5W 4
λ

Negative eigenvalue, ∂λWλ is a resonant mode of zero energy.

Wλ is linearly exponentially unstable.

There exist data arbitrarily close to Wλ in energy which blow
up in finite time (Krieger-S.-Tataru, 07). Duykaerts, Kenig,
Merle 09: all radial type II blowup near W of this nature.

There exists a codimension one Lipschitz manifold near Wλ in
the space of radial data with enough regularity and decay such
that data on it obey asymptotic stability. {Wλ} acts as an
attractor. Exists in energy space, center stable mf?
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Global decay for a wave equation with singular zero energy

Theorem

V ∈ R, |V (x)| . 〈x〉−κ with κ > 3. If zero energy is regular for
H = −∆ + V , then∥∥∥sin(t

√
H)√

H
Pc f

∥∥∥
∞
. t−1‖f ‖W 1,1(R3)

for all t > 0. If zero is a resonance but not an eigenvalue of
H = −∆ + V , let ψ be the unique resonance function normalized
so that

∫
Vψ(x) dx = 1. Then ∃ c0 6= 0 s.t.∥∥∥sin(t
√

H)√
H

Pc f − c0(ψ ⊗ ψ)f
∥∥∥
∞
. t−1‖f ‖W 1,1(R3)

for all t > 0.
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Metric perturbations
−∆ H := −

∑d
j ,k=1 ∂j(ajk(x)∂k)

New obstruction: trapping. Classical Hamiltonian flow

ẋk := 2
d∑

j=1

ajk(x)ξj , ξ̇` =
d∑

j ,k=1

∂`ajk(x)ξkξj

exhibits time-periodic trajectories.
Murata 1984: if I ⊂ (0,∞) has no trapped energies, then

sup
Im z>0,Re z∈I

‖〈·〉−σ(H − z)−1χI (H)〈·〉−σ‖2→2 <∞

Tsutsumi 1984: local decay for Schrödinger outside a
nontrapping obstacle, Dirichlet BC.
Ikawa 1988: wave equation outside of several convex bodies,
trapped rays, local energy decay, complex resonances.
Doi 1996: trapped trajectories destroy the 1

2 -Kato smoothing
effect of the Schrödinger flow
witout trapping: Craig, Kappeler, Strauss; Staffilani, Tataru;
Rodnianski, Tao; Hassel, Tao, Wunsch; Tataru; Nakamura
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Elliptic versus hyperbolic geodesics, continued

quantify “destroy”: no global in time Strichartz estimates
possible; local in time: Burq, Gerard, Tzvetkov obtained
Strichartz estimates for compact M with losses of derivatives,
some losses necessary.

Flat 2-dim torus: Bourgain early 90’s obtained L4
tx Strichartz

without loss, Tatakoa-Tvetkov same for S1 × R.

hyperbolic case: pioneered by Ikawa (starting 80’s), remove
convex obstacles from R3, distribution of resonances, local
energy decay. Some loss in terms of data, but same
exponential decay for local energy as in non-trapping case.

Beginning systematic developments (2000-present):
Anantharaman, Nonnenmacher, Zworski, Christianson, Burq,
Guillarmou, Hassell. Find ε-loss or no loss in Strichartz, study
semi-classical resonances

Doi: some loss must occur in smoothing estimate for the
Schrödinger if there is a trapped trajectory.

No general theory at this point.
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Surfaces of revolution, conic ends

Ω ⊂ RN embedded compact d-dimensional Riemannian mfld

Define the (d + 1)-dimensional manifold

M := {(x , r(x)ω) | x ∈ R, ω ∈ Ω}
ds2 = r 2(x)ds2

Ω + (1 + r ′(x)2)dx2

r ∈ C∞(R) and infx∈R r(x) > 0.

conical ends:

r(x) = |x | (1 + h(x)), h(k)(x) = O(x−2−k) ∀ k ≥ 0

as x → ±∞.

Example: one-sheeted hyperboloid, r(x) =
√

1 + x2.

Geodesic flow trapped on (x0, r(x0)Ω) provided r ′(x0) = 0

For simplicity: Ω = S1.
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Decay of waves onM
Consider e it∆M and sin(t

√
−∆M)√
−∆M

, cos(t
√
−∆M).

What type of local/global decay does one have?

Does the trapped geodesic destroy the Euclidean decay rates?

What is the difference between a one-sheeted hyperboloid and
M that has an equatorial sector of S2 in the middle?

Some answers:

For fixed angular momentum ` the same global decay holds
as for R2.

In fact, one has faster local decay for ` > 0. These rates are
universal, i.e., independent of the local geometry.
Non-Euclidean behavior.

The local geometry determines the constants C (`) involved in
the decay bounds. Summation over ` possible only if M has
negative curvature (can be relaxed somewhat).
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Decay of waves onM
Theorem (S.-Soffer-Staubach, Donninger-S.-Soffer)

M a surface of revolution as above. Define weights
wσ(x) := 〈x〉−σ on M. ∀ ` ≥ 0, ∀ 0 ≤ σ ≤

√
2`, ∃ C (`,M, σ),

C1(`,M, σ) s.t. ∀ t > 0

‖wσ e it∆M f ‖L∞(M) ≤
C (`,M, σ)

t1+σ

∥∥∥ f

wσ

∥∥∥
L1(M)

‖wσ e it
√
−∆M f ‖L∞(M) ≤

C1(`,M, σ)

t
1
2

+σ

∥∥∥(∂x f , f )

wσ

∥∥∥
L1(M)

provided f = f (x , θ) = e i`θ f̃ (x).

Note the non-Euclidean decay for σ > 0!

Rapid growth: C (`) ∼ e`
2+

For fixed `: change of variables reduces to 1-dim evolution
e it(−∂xx +V ), ` = 0 zero resonance, ` > 0 non-resonant.
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Underlying one-dimensional problem
Separation of variables for fixed ` ≥ 0. Reduction to operator
in ξ = arclength along a generator of M.
H` = −∂2

ξ + V`(ξ)

V`(ξ) =
ν2 − 1

4

ξ2
+ O(ξ−3), |ξ| → ∞

with ν :=
√

2 `. Inverse square decay “critical”.
Determine local/global decay of

e itH` ,
sin(t
√
H`)√
H`

, cos(t
√
H`)

on the line.
Essential issue as before: Zero energy resonance or not?
In the surface of revolution case ` = 0 leads to zero energy
resonance (as in R2), but ` > 0 does not.
No accelerated local decay possible for ν = 0, for ν > 0 one
has faster local decay.
Open problem: understand ν > 0 in the resonant case.
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Decay of waves onM, summation in `

Theorem (Donninger-S.-Soffer, fall 2009)

M as before, K < 0. Then for all t > 0, and any ε > 0,

‖w1+εe
it∆M w1+εf ‖L2(M) ≤

C (M, ε)

〈t〉
∥∥(1− ∂2

θ ) f
∥∥

L2(M)

‖w1e it∆M w1f ‖L∞(M) ≤
C (M, ε)

t

∥∥(1− ∂2
θ )2+ε f

∥∥
L1(M)

For the wave equation one has, with L := 1− ∂2
θ ,

‖w1+εe
±it
√
−∆M w1+εf ‖L2(M) ≤

C1(M, ε)

〈t〉
1
2

∥∥L 5
4 (∂x f , f )

∥∥
L2(M)

‖w 1
2
e±it

√
−∆M w 1

2
f ‖L∞(M) ≤

C1(M, ε)

t
1
2

∥∥L 9
4

+ε (∂x f , f )
∥∥

L1(M)

Also admissible: K < 0 away from unique geodesic, K = 0 on it,
but finitely degenerate. Lose higher powers of ∂θ depending on
order of degeneracy.
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Elliptic versus hyperbolic geodesics, some history

M 2-dim manifold, Γ periodic geodesic. Poincaré map on
T0(T ∗pM) has eigenvalues 1, 1, λ1, λ2.

elliptic: λ2 = λ1 ∈ S1, hyperbolic: |λ1| < 1 < |λ2|
elliptic case: under further stability conditions on Γ, there exist

quasimodes: uε concentrated near Γ in ε
1
2 neighborhood,

‖(∆M − E (ε))uε‖2 ≤ CM εM‖uε‖2

uε(x) = e iψ(x)/ε(a0(x) + εa1(x) + . . .)

Gaussian beam, “geometric optics”: Imψ ≥ 0 satisfies eikonal
equation, aj transport equations.
Studied from 1960’s-present by Keller, Babich, Lazutkin,
Ralston, Colin de Verdiere, Stefanov, Zelditch, Zworski etc.;
important relation to spectrum of ∆M, resonances

quasimodes destroy local energy decay, Stichartz estimates

Donninger, S., Soffer, Costin, Staubach, Tanveer Decay of linear waves on curved backgrounds



Proof ideas
Define arclength dξ2 = (1 + r ′(x)2) dx2. For ` fixed

e−i`θr
1
2 (ξ)∆M(r−

1
2 (ξ)e i`θf (ξ)) = H`f

with

H` = −∂2
ξ + V`, V`(ξ) =

2`2 − 1
4

〈ξ〉2
+ O(〈ξ〉−3)

Inverse square decay “critical”; Jost solutions
H`f±(·, λ) = λ2f±(·, λ) not continuous as λ→ 0:

f+(ξ, λ) = e iξλ +

∫ ∞
ξ

sin(λ(η − ξ))

λ
V`(η) f+(η, λ)dη

Behavior of these functions near λ = 0 crucial; for ξ > ξ′

e itH`(ξ, ξ′) =

∫ ∞
0

e itλE`(dλ)(ξ, ξ′)

=
2

π

∫ ∞
0

e itλ2
Im
[ f+(ξ, λ)f−(ξ′, λ)

W (λ)

]
λ dλ
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Proof Ideas 2

At ξ = ξ′ = 0 and for small λ reduces to∣∣∣ ∫ ∞
0

e itλ2
λ1+2νχ(λ) dλ

∣∣∣ ≤ Ct−1−ν

where ν :=
√

2 `.

Why is E (dλ2) so flat near λ = 0?

To motivate, we demonstrate for ` > 0

W`(λ) = cλ1−2ν(1 + o(1)) λ→ 0

WKB heuristics:

W (λ) =
−2iλ

T (λ)
= −2iλeS(λ)

where the action S(λ) is

S(λ) =

∫ x1

x0

√
ν2〈y〉−2 − λ2 dy

with x0 < 0 < x1 being the turning points
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Proof Ideas 3

Therefore

S(λ) = 2ν| log λ|(1 + o(1)) λ→ 0

which gives the claim on W`(λ) above.

Rigorous proof constructs f+(·, λ) perturbatively. For |ξ|λ� 1
perturb in λ around zero energy solutions. For |ξ|λ > λε

perturb around Jost solutions of the Bessel equation

H0,ν := −∂2
ξ + (ν2 − 1

4
)ξ−2

Then conclude by matching these representations in the
overlap.

This method applies to all ` ≥ 0 (special care required for
` = 0 in the surface case: zero energy resonance!), but gives
super-exponential growth in `. Unsuitable for summing in `.

For summation, convert to a semiclassical representation,
~ := `−1, control constants in terms of powers of ~−1.
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WKB

Given ~2f ′′(x) = Q(x)f (x) with Q 6= 0 on interval I .

Seek f in the form

Q(x)−
1
4 e

1
~

R x
x0

√
Q(y) dy

(1 + ~a(x , ~))

a(x , ~) satisfies a Volterra integral equation, can be controlled
away from points where Q = 0.

Special case of Liouville-Green transform: define

g(w) := (w ′(x))
1
2 f (x) where w = w(x) diffeomorphism.

Then f ′′ = Qf equivalent to g ′′(w) = Q̃(w)g(w) where

Q̃(w) :=
Q(x)

(w ′(x))2
− (w ′(x))−

3
2∂2

x (w ′(x))−
1
2

=
Q(x)

(w ′(x))2
− 3

4

(w ′′(x))2

(w ′(x))4
+

1

2

w ′′′(x)

(w ′(x))2

Choose Q(x)
(w ′(x))2 to be simple, such as constant or linear
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Proof Ideas 4

Challenge for WKB: need precise error bounds in the whole
range 0 < ~ < ~0, 0 < λ < ε. We restrict to positive
(asymptotically) inverse square potentials.

It turns out that one needs to modify the positive inverse
square potential before applying WKB by adding 1

4~2〈x〉−2 to
it.

Losses in ~−1 come from the top of the potential, nowhere
else. Top is a nondegenerate maximum by assumption.

Could use suitable WKB near the top as well. Instead we rely
on Mourre estimate, followed by Hunziker-Sigal-Soffer type
propagation estimates (elegant time dependent approach to
Mourre theory).

Mourre despite trapping: use semiclassical harmonic oscillator
(or HUP) as comparison, Briet-Combes-Duclos, Shu
Nakamura (mid 80’s).
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Proof Ideas 5

Theorem (Hunziker-Sigal-Soffer)

A,H s-a on H-space; Mourre estimate, θ > 0, I ⊂ R compact:

EI i [H,A]EI ≥ θEI (1)

[A, f (H)], [A, [A, f (H)]] etc bounded, f ∈ C∞0 (R). Then ∀ m ≥ 1,

‖χ−(A− a− θ′t)e iHtg(H)χ+(A− a)‖ ≤ C (m, θ, θ′) t−m

∀ g ∈ C∞0 (I ), any 0 < θ′ < θ, uniformly in a ∈ R. ∀ α > 0

‖〈A〉−αe iHtg(H)〈A〉−α‖ ≤ C (α) 〈t〉−α

V (x) = 1− 1
2〈Qx , x〉+ O(|x |3), Q > 0, h(x , ξ) = 1

2ξ
2 + V (x),

a(x , ξ) = xξ,

{h, a} = ξ2 − x · ∇V = ξ2 + 〈Qx , x〉+ O(|x |3) ≥ θ(ξ2 + x2)

Use harmonic oscillator, or HUP
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Proof Ideas 6

Theorem (Costin-S.-Staubach-Tanveer)

0 < V ∈ C∞(R), V (x) = µ2
±x−2 + O(x−3). Let

V0(x ; ~) := V (x) +
~2

4
〈x〉−2 (2)

turning points, E > 0 small, x2(E ; ~) < 0 < x1(E ; ~). Define

S(E ; ~) :=

∫ x1(E ;~)

x2(E ;~)

√
V0(y ; ~)− E dy

T+(E ; ~) := x1(E ; ~)
√

E −
∫ ∞

x1(E ;~)

(√
E − V0(y ; ~)−

√
E
)

dy

T−(E ; ~) := −x2(E ; ~)
√

E −
∫ x2(E ;~)

−∞

(√
E − V0(y ; ~)−

√
E
)

dy

T (E ; ~) := T+(E ; ~) + T−(E ; ~).
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Proof Ideas 6, continued

Theorem (continued)

0 < ∀ ~ < ~0, ~0 = ~0(V ) > 0 small, 0 < E < E0

Σ11(E ; ~) = e−
1
~ (S(E ;~)+iT (E ;~))(1 + ~σ11(E ; ~))

Σ12(E ; ~) = −ie−
2i
~ T+(E ;~)(1 + ~σ12(E ; ~))

correction terms satisfy

|∂k
E σ11(E ; ~)|+ |∂k

E σ12(E ; ~)| ≤ Ck E−k ∀ k ≥ 0,

Ck only depends on k and V .
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General Relativity: waves on Schwarzschild background

coordinates (t, r , (θ, φ)) ∈ R× (2M,∞)× S2, metric

g = −F (r)dt2 + F (r)−1dr 2 + r 2(dθ2 + sin2 θdφ2)

with F (r) = 1− 2M
r , mass M > 0

Regge–Wheeler tortoise coordinate r∗ defined by F = dr
dr∗
.

Metric

g = −F (r)dt2 + F (r)dr 2
∗ + r 2(dθ2 + sin2 θdφ2)

Explicitly, r∗ = r + 2M log
(

r
2M − 1

)
.

With ψ(t, r∗, θ, φ) = r(r∗)ψ̃(t, r∗, θ, φ) wave equation
�g ψ̃ = 0 becomes

−∂2
t ψ + ∂2

xψ −
F

r

dF

dr
ψ +

F

r 2
∆S2ψ = 0

where x = r∗.
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General Relativity: waves on Schwarzschild background
Analogies with surface of revolution case:

Separate variables, i.e., project onto spherical harmonic Ym,`

Reduces to one-dimensional wave equation with a potential

V`,σ(x) =

(
1− 2M

r(x)

)(
`(`+ 1)

r 2(x)
+

2Mσ

r 3(x)

)
where σ = −3, 0, 1.

Basic question (from physics): local decay of solutions to this
wave equation. “Price’s law”: t−2`−3.

V`,σ has unique nondegenerate maximum: photon sphere,
trapped geodesics. Decays exponentially to the left, inverse
square to the right. Harder to deal with than in the surface of
revolution case; x−3 decay  t−3 for ` = 0.

Exclude gauge modes (σ, `) ∈ {(−3, 1), (−3, 0), (0, 0)}. These
are precisely the values which lead to zero energy resonance!
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Result for Schwarzschild

Theorem (Donninger-S.-Soffer, 09)

�gψ = 0, data ψ[0] = (ψ0, ψ1), satisfies the following local decay:

‖〈x〉−
9
2
−ψ(t)‖L2 . 〈t〉−3‖〈x〉

9
2

+(/∇5∂xψ0, /∇5ψ0, /∇4ψ1)‖L2

‖〈x〉−4ψ(t)‖L∞ . 〈t〉−3‖〈x〉4(/∇10∂xψ0, /∇10ψ0, /∇9ψ1)‖L1

/∇ = angular derivative, L2 := L2
x(R; L2(S2)), L1 := L1

x(R; L1(S2)),
and L∞ := L∞x (R; L∞(S2)).

Similar and simultaneous result by Tataru.

Previous work by Blue-Soffer, Finster-Smoller-Yau,
Dafermos-Rodnianski, Blue-Sterbenz.

Many more questions remain (fundamental solution, optimal
estimates, pointwise bounds for Ikawa’s model, etc.)!

Vielen Dank für Ihre Aufmerksamkeit!

Donninger, S., Soffer, Costin, Staubach, Tanveer Decay of linear waves on curved backgrounds


