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Introduction

Consider an operator H(z) depending on a complex parameter
z ∈ Ω ⊂ C. For example,

(H(z)ψ)n = ψn+1 + ψn−1 − vn(z)ψn, n ∈ Z

where {vn(z)}n∈Z collection of analytic functions such as

vn(z) := F (z · ωn), |ω| = 1,

F analytic near S1 := {|z | = 1}. Restricting to finite volume
[−N,N] with Dirichlet conditions, we obtain a matrix HN(z).
Assume HN(z) self-adjoint on S1.
It is often important to study the resolvent

GN(E ; z) := (HN(z)− E )−1

on S1.
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Introduction

By Cramer’s rule, we are lead to consider the vanishing of the
analytic function

f (z) := det(HN(z)− E )

Basic question: What is the measure of z ∈ S1 for which |f (z)| is
close to zero?
We will need some type of transversality condition to ensure
nondegeneracy of HN(z)− E . This is the same as asking when
u(z) = log |f (z)| is very large and negative.
The function u(z) is an example of a subharmonic function, and
classical potential theory provides tools for that purpose.
A subharmonic function is one for which the Laplacian ∆u = µ is a
non-negative measure. Two important (and elementary) tools:

Riesz representation of subharmonic functions

Cartan’s estimate on the size of level sets of subharmonic
functions near −∞.
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Subharmonic functions 1
Definition

We say u : Ω→ R ∪ {−∞} is subharmonic provided

upper semi-continuity:

u(z) ≥ lim sup
ζ→z

u(ζ), ζ 6= z

sub mean-value property: for all z ∈ Ω there exists r0(z) > 0

u(z) ≤
∫ 1

0
u(z + re(θ)) dθ, ∀r < r0(z)

and e(θ) := e2πiθ.

Examples: log |z − z0|, log |f (z)| for any analytic f (z), logarithmic
potential

∫
log |z − ζ|µ(dζ) for measure µ ≥ 0; Fatou gives upper

s-c, e.g. for µ =
∑

2−nδ2−n the potential at z = 0 not continuous,
only upper s-c. However: in applications typically have continuity.
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Subharmonic functions 2
About upper-semicontinuous functions: sub-level sets {u < λ} are
open, they attain supremum on compact sets.
Some properties of subharmonic functions (s-h) u(z):

ϕ increasing, convex. Then ϕ(u(z)) is s-h. So eu, |f |λ are s-h
where f analytic, λ > 0.
uα s-h collection, then supα uα is s-h provided it is upper s-c.
limit of decreasing or uniformly convergent sequence of s-h
functions is s-h
finite sums of s-h functions are s-h
maximum principle: if u has a local maximum, then
constant. Indeed, if M = u(z0) local max, then we see that
u = M locally near z0 by sub-mv and upper s-c property. So
{u = M} open. Closed by upper s-c.
Averages

N(r , z , u) :=

∫ 1

0
u(z + re(θ)) dθ, r < dist(z , ∂Ω)

increasing in r , limr→0 N(r , z , u) = u(z). Convex in log r .
W. S. Subharmonic techniques in multiscale analysis: Lecture 1



Subharmonic functions 3
Every s-h function is decreasing limit of smooth s-h functions:
ϕ ≥ 0 radial smooth compactly supported bump-function

fε(z) :=

∫
uε(z − w)ϕε(w) dw , uε := max(u,−ε−2)

ϕε(w) := ε−2ϕ(w/ε), 0 < ε < 1

with 2π
∫∞

0 sϕ(s) ds = 1. Then uε, fε are s-h, fε smooth. Further,
we have

fε(z) = 2π

∫ ∞
0

N(εs, z , uε)sϕ(s) ds ↘ u(z)

since
N(εs, z , uε) ≤ N(εs, z , uε′) ≤ N(ε′s, z , uε′)

for ε < ε′. And N(εs, z , uε) ≤ N(ε′s, z , uε)↘ N(ε′s, z , u) as
ε→ 0 by monotone convergence; then N(ε′s, z , u)↘ u(z) as
ε′ → 0. Apply monotone convergence again.
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Subharmonic functions 4

u ∈ C 2(Ω) s-h if and only if ∆u ≥ 0 in Ω

Green’s formula:∫
D

(v∆u − u∆v) dx =

∫
∂D

(
v
∂u

∂n
− u

∂v

∂n

)
dσ

Apply to u above and v(w) = 1
2π log R

|z−w | , D = D(z ,R). Then
∆v = −δw and

u(z) +
1

2π

∫
|z−w |<R

log
R

|z − w |
∆u(w)m(dw) = N(z ,R, u)

If ∆u(z) < 0, then get a contradiction for R > 0 small.

S-h functions remain s-h under conformal change of variables:
∆(u ◦ F ) = |F ′|2 (∆u) ◦ F
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Subharmonic functions 5
The distributional Laplacian of any s-h function is a positive Borel
measure

First, if u is s-h, then it is in fact a distribution. We need to check
that

∫
uϕ is finite (thus, not −∞) for any test function ϕ. By

sub-mv property, if u = −∞ on an open set, then it is in fact
constant = −∞ in Ω. So we can assume that u > −∞ on a dense
set.
But then

∫
D u > −∞ for any (small) disk D ⊂ Ω: consider

N(z , r , u) ≥ u(z) > −∞ for a suitably chosen point z ∈ Ω, and
integrate in r1 ≤ r ≤ r2 so that this annulus contains the disk. So
u is a distribution.
Let uε ↘ u with smooth s-h functions uε. Then by monotone conv

0 ≤
∫
ϕ∆uε =

∫
uε∆ϕ→

∫
u∆ϕ = 〈∆u|ϕ〉

for all test functions ϕ ≥ 0. Riesz representation (Rudin RCA)
says that 1

2π∆u = µ is a positive Borel measure, called Riesz mass
of u. We have µ(K ) <∞ for all compact K ⊂ Ω.
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Disk and annulus

Figure : The geometry in the previous proof
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Riesz representation theorem for subharmonic functions

Theorem

Let u be s-h in Ω. Then for any open G b Ω

u(z) =

∫
G

log |z − ζ|µ(dζ) + hG (z) ∀ z ∈ G

and hG harmonic in G .

Let vε(ζ) = 1
2 log(|z − ζ|2 + ε2). Then ∆v0 = 2πδz , and

〈µ, χvε〉 =
1

2π
〈u, vε∆χ+ 2∇vε · ∇χ+ χ∆vε〉

where χ compactly supported in Ω, χ = 1 on G . Limit ε→ 0

u(z) =

∫
G

log |z − ζ|µ(dζ)− 1

2π
〈u, v∆χ+ 2∇v · ∇χ〉

+

∫
Ω\G

χ(ζ) log |z − ζ|µ(dζ)

as desired.
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Examples of Riesz representation
Let f (z) = P(z)g(z) where f analytic in Ω, polynomial
P(z) =

∏N
j=1(z − zj) with zj (multiple) zeros, and g 6= 0 analytic

in Ω. Then

log |f (z)| =
N∑
j=1

log |z − zj |+ log |g(z)|, µ =
∑
j

δzj

Total Riesz mass µ(C) = deg(P). Recall Jensen’s formula: if
f (z) 6= 0 then∫ 1

0
log |f (z + re(θ))| dθ − log |f (z)| =

∑
j :|zj−z|<r

log
r

|zj − z |

So we have a zero count:

#{j : |z−zj | < r/2} ≤ C
(

sup
w∈D(z,r)

log |f (w)|− sup
ζ∈D(z,r/2)

log |f (ζ)|
)
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A more quantitative version of Riesz representation
Introducing estimates in the previous argument yields the following
more useful quantitative version, see Lemma 2.2, Goldstein-S.,
GAFA 2008.

Theorem

Let u : Ω→ R be s-h on Ω ⊂ C. There exists a positive measure µ
on Ω such that for any Ω1 b Ω

u(z) =

∫
Ω1

log |z − ζ|µ(dζ) + h(z)

where h is harmonic on Ω1 and µ is unique with this property.
Moreover, µ and h satisfy the bounds

µ(Ω1) ≤ C (Ω,Ω1) (sup
Ω

u − sup
Ω1

u)

‖h − sup
Ω1

u‖L∞(Ω2) ≤ C (Ω,Ω1,Ω2) (sup
Ω

u − sup
Ω1

u)

for any Ω2 b Ω1.
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A more quantitative version of Riesz representation

The control of the Riesz mass here follows from the analogue of
Jensen’s formula:∫ 1

0
u(z + re(θ)) dθ − u(z) =

∫ r

0

µ(D(z , t))

t
dt

Controlling deviations from above allows to bound the Riesz mass.
In the following lecture we will address the question about the
structure of the set where a subharmonic function can be very
large and negative. This will be covered by Cartan’s estimate.
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An application to large deviation estimates
Let V be analytic, real-valued on Td , and Tx := x + ω ergodic
shift. Consider the Schrödinger equation on Z

(Hx ψ)(n) = −ψ(n + 1)− ψ(n − 1) + V (T nx)ψ(n) = Eψ(n) (1)

Rewrite as a system (linear cocycle):[
ψ(n + 1)
ψ(n)

]
= A(T nx ,E )

[
ψ(n)

ψ(n − 1)

]
,

A(x ,E ) =

[
V (x)− E −1

1 0

]
.

Propagator Mn(x ,E ) := A(T nx ,E ) . . .A(Tx ,E ). Lyapunov exp.:

Ln(E ) :=
1

n

∫
Td

log ‖Mn(x ,E )‖ dx

Subadditivity: Ln(E )→ L(E ) exists. Since detA = 1, one
has L(E ) ≥ 0. Pointwise: for a.e. x

L(E ) = lim
n→∞

n−1 log ‖Mn(x ,E )‖
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LDT
We now establish a quantitative version of this convergence under
a Diophantine condition: ‖nω‖ > n−1(log n)−2 for all n ≥ n0(ω).
A.e. ω ∈ T satisfies such a condition.

Theorem

Let ω ∈ T satisfy a Diophantine condition. Then there exists
σ > 0 such that∣∣{x ∈ T : |n−1 log ‖Mn(x ,E )‖ − Ln(E )| > n−

1
4
}∣∣ < e−n

σ
(LDT)

for all n ≥ n0(E ,V , ω).

On some strip around the real line

u(z) := n−1 log ‖Mn(z ,E )‖

subharmonic, ≥ 0, and 1-periodic, and of size . 1. By RRT,

u(x) =

∫
log |e(x)− ζ|µ(dζ) + h(x) ∀ x ∈ R (2)
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Plot of log of norm for almost Mathieu

Figure : The graph of 1
100 log ‖M100(x)‖, ω =

√
2, λ = 2.2
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Plot of log of norm

Figure : The graph of 1
200 log ‖M200(x)‖
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Plot of log of norm

Figure : The graph of 1
400 log ‖M400(x)‖

W. S. Subharmonic techniques in multiscale analysis: Lecture 1



Proof of LDT
µ ≥ 0 and finite on some nbhd of {|z | = 1} and h harmonic and
1-periodic on a strip around the real line, and |h| . 1 there. From
this alone cannot derive (LDT).
Examples: P1(z) = (z − 1)n, P2(z) = zn − 1, generate s-h
functions

u1(z) = n−1 log |P1(z)| = log |z − 1|, u2(z) := n−1 log |zn − 1|

of Riesz mass 1, average = 0 over S1. Deviation estimates:

|{x ∈ T : |u1(e(x))| > n−
1
2 }| ∼ 1

|{x ∈ T : |u2(e(x))| > n−
1
2 }| ∼ e−

√
n

We want to be closer to the second example, obviously. Note: u2

is 1/n periodic, and u is almost invariant under shift by ω:

sup
x∈T
|u(x + kω)− u(x)| ≤ C

k

n
(3)

from the matrix product structure of Mn.
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Proof of LDT
Indeed:

u(x + kω)− u(x) =
1

n
log
‖Mn(x + kω,E )‖
‖Mn(x ,E )‖

‖Mn(x + kω,E )‖ ≤ ‖A(T n+kx ,E ) . . .A(T n+1x ,E )‖·
· ‖Mn(x ,E )‖‖A(Tx ,E )−1 . . .A(T k+1x ,E )−1‖
≤ C k‖Mn(x ,E )‖

In order to prove the LDT, we need to combine (2) and (3). Use
Fourier series, with K = K (n)� n

u(x) = Ln(E ) +
∑

0<|ν|≤K

û(ν)e(νx) +
∑
|ν|>K

û(ν)e(νx) (4)

From (2)

û(ν) =

∫ ∫ 1

0
log |e(θ)− ζ|e(−νθ) dθ µ(dζ) +

∫ 1

0
h(θ)e(−νθ) dθ

Now ĥ(ν) = O(ν−N), whereas the logarithmic integral satisfies
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Proof of LDT∫ 1

0
log |e(θ)− ζ|e(−νθ) dθ = O(ν−1)

Since µ(C) . 1, we have |û(ν)| . |ν|−1. Thus,

‖uK‖2 . K−
1
2 , uK (x) :=

∑
|ν|>K

û(ν)e(νx) (5)

We need to use the properties of the shift by ω. Average (4) using
almost invariance (3):

u(x) =
1

m

m∑
j=1

u(x + jω) + O(
m

n
)

= Ln(E ) +
∑

0<|ν|≤K

û(ν)
1

m

m∑
j=1

e(ν(x + jω))

+
1

m

m∑
j=1

uK (x + jω) + O(
m

n
)

(6)
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Proof of LDT

Now

sup
x

∣∣∣ 1

m

m∑
j=1

e(ν(x + jω))
∣∣∣ . min(1,m−1‖νω‖−1) (7)

Inserting this into (6) yields by Diophantine condition

sup
x

∣∣∣ ∑
0<|ν|≤K

û(ν)
1

m

m∑
j=1

e(ν(x + jω))
∣∣∣

.
∑

0<|ν|≤K

|ν|−1 min(1,m−1‖νω‖−1)

. m−1(logK )3 . n−
1
3

+3σ

(8)

where we set m = n
1
3 ,K = exp(2nσ). To pass to last line, divide

into cases ‖νω‖ ≤ m−1, 2km−1 ≤ ‖νω‖ ≤ 2k+1m−1.
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Sharp LDT
Again from (6) we conclude that for σ small and n large,∣∣{x ∈ T : |u(x)− Ln(E )| > n−

1
4
}∣∣

≤
∣∣∣{x ∈ T :

∣∣∣ 1

m

m∑
j=1

uK (x + jω)
∣∣∣ > 1

2
n−

1
4

}∣∣∣ . n
1
2K−1 . e−n

σ

which is the LDT. Under our strong Diophantine condition one
can prove a sharper estimate, see Goldstein-S., Annals Math, 2001.

Theorem (Sharper LDT)

For any δ > 0 and any positive integer n,∣∣{x ∈ T : |un(x)− Ln(E )| > δ}
∣∣ ≤ exp

(
−cδ2n + C (log n)A

)
.

The constants c ,C only depend on the size of E , the potential,
and ω. A is absolute.

Notice the δ, δ2 dependence. Can we do better? Yes if L > 0.
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Further remarks on LDT
Under a weaker Diophantine condition ‖nω‖ > n−a, a > 1, the
same proof gives this weak LDT∣∣{x ∈ T : |un(x)− Ln(E )| > n−σ

}∣∣ < e−n
σ

where σ > 0.

What is the LDT good for? When do we need the sharp LDT?

How to prove the LDT on higher-dimensional tori with the
shift dynamics? Or for other underlying dynamics, such as the
skew shift T (x , y) = (x + ω, x + y)? Note: this involves n2ω.
Is there a proof that does not involve the Fourier transform?

Main applications are (i) Anderson Localization for (1) assuming
L > 0 (LDT + elimination of energies via exclusion of DOUBLE
RESONANCES) Bourgain-Goldstein, Annals, 2000. (ii) Regularity
properties of the integrated density of states, distribution and
separation of eigenvalues of (1) on finite volume, gaps in the
spectrum in infinite volume Goldstein-S., Annals, 2001, GAFA
2008, Annals 2009.
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Avalanche Principle
We know from subadditivity that Ln(E )→ L(E ). What can we say
about the rate? In other words, can we control Ln(E )− L2n(E )? It
turns out we can, assuming L(E ) > 0. We need a tool that
produces exponential growth in the norm of a long product of
matrices. This need not be the case: AA−1AA−1AA−1AA−1 . . ..

Proposition (Goldstein-S)

Let A1, . . . ,An ∈ SL(2,R) so that

min
1≤j≤n

‖Aj‖ ≥ µ > n (9)

max
1≤j<n

[log ‖Aj+1‖+ log ‖Aj‖ − log ‖Aj+1Aj‖] <
1

2
logµ (10)

Then∣∣∣log ‖An · . . . · A1‖+
n−1∑
j=2

log ‖Aj‖ −
n−1∑
j=1

log ‖Aj+1Aj‖
∣∣∣ < C

n

µ

(11)
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Proof of Avalanche Principle

Fix K ∈ SL(2,R). Polar decomposition: K = RP, R rotation,
P > 0. Eigenvectors of P =

√
K ∗K are u+

K , u−K , respectively. One
has Ku+

K = ‖K‖v+
K , Ku−K = ‖K‖−1v−K with unit vectors v+

K , v−K .
Given K ,M ∈ SL(2,R), let b(+,+)(K ,M) = v+

K · u
+
M , similar for

b(+,−), b(−,+), b(−,−). We have

‖K‖‖M‖|b(+,+)(K ,M)| − ‖K‖‖M‖−1 ≤ ‖MK‖
≤ ‖K‖‖M‖|b(+,+)(K ,M)|+ ‖K‖−1‖M‖+ ‖K‖‖M‖−1.

In particular,

‖Aj+1Aj‖
‖Aj+1‖‖Aj‖

− 1

‖Aj‖2
≤ |b(+,+)(Aj ,Aj+1)|

≤
‖Aj+1Aj‖
‖Aj+1‖‖Aj‖

+
1

‖Aj‖2
+

1

‖Aj+1‖2
.
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Binary structure in the proof of the Avalanche Principle

Figure : The expanding, contracting structure in the proof
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Proof of Avalanche Principle
In view of our assumptions therefore

1−
√
µ

µ2
≤ |b(+,+)(Aj ,Aj+1)|

‖Aj+1‖‖Aj‖
‖Aj+1Aj‖

≤ 1 +
2
√
µ

µ2
(12)

which implies |b(+,+)(Aj ,Aj+1)| ≥ 1√
µ(1− µ−

3
2 ) ≥ 1

2µ
− 1

2 if n ≥ 2,

say. One checks easily by induction that for any vector u

An · . . . · A1u

=
∑

ε1,...,εn=±1

‖An‖εn
n−1∏
j=1

‖Aj‖εjb(εj ,εj+1)(Aj ,Aj+1)(uε1
A1
· u) v εnAn

Hence

‖An · . . . · A1u‖ = ‖An‖
n−1∏
j=1

‖Aj‖|b(+,+)(Aj ,Aj+1)||u+
A1
· u|[1 + Rn(u)]
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Proof of AP

|Rn(u)| ≤
∑

ε1, . . . , εn = ±1
minj εj = −1

n∏
j=1

‖Aj‖εj−1
n−1∏
k=1

∣∣∣∣∣b(εk ,εk+1)(Ak ,Ak+1)

b(+,+)(Ak ,Ak+1)

∣∣∣∣∣

≤
n∑
`=1

(
n

`

)
µ−2`(2

√
µ)2` =

n∑
`=1

(
n

`

)
(4/µ)` =

(
1 +

4

µ

)n
− 1 < 4e4 n

µ

So we have shown with b(+,+)(Aj ,Aj+1) =: b
(+,+)
j ,∣∣∣log ‖An · . . . · A1‖ −

n∑
j=1

log ‖Aj‖ −
n−1∑
j=1

log |b(+,+)
j |

∣∣∣ < C
n

µ

(11) follows from this and the sum of (12):∣∣∣∣n−1∑
j=1

[
log |b(+,+)

j | − log ‖Aj+1Aj‖+ log ‖Aj‖+ log ‖Aj+1‖
]∣∣∣∣ ≤ Cµ−

3
2 n
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Rate of convergence for Lyapunov exponents
Assume L(E ) > γ > 0. Let N = nk and apply AP to

MN(x ,E ) =
n−1∏
j=0

Aj , Aj := Mk(T jkx ,E )

Let k ∼ C (logN)
1
σ , and apply (weak) LDT. Then on T \ B with

|B| < N−10, conditions (9), (10) hold (using that
Lk(E )− L2k(E )� 1 for k large):

| log ‖Aj‖ − kLk(E )| < kσ

| log ‖Aj+1Aj‖ − 2kL2k(E )| < kσ

whence averaging over x yields

|NLN(E ) + (n − 2)kLk(E )− 2k(n − 1)L2k(E )| < N−9

|LN(E ) + Lk(E )− 2L2k(E )| < k

N

(13)

Repeat the same analysis with twice as many matrices, i.e., with
2N instead of N.
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Applying the AP to the propagators MN

Figure : Writing MN as product of shifted shorter Mk
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Rates of convergence
Hence

|L2N(E ) + Lk(E )− 2L2k(E )| < k

N

Subtracting from the previous estimate we obtain

0 ≤ LN(E )− L2N(E ) <
(logN)C

N
(14)

whence LN(E )− L(E ) . (logN)CN−1 (works for any Diophantine
condition). By a more careful rendition of the same argument we
see that in fact

LN(E )− L(E ) . N−1

and that this is optimal unless the convergence takes place
exponentially fast due

|L(E ) + Ln(E )− 2L2n(E )| < e−n
σ

Moreover, convergence is uniform on any compact interval on
which L > 0.
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Regularity of Lyapunov exponent and IDS assuming L > 0
Combine (14) with (13), this time using the sharper LDT:

|L(E ) + Lk(E )− 2L2k(E )| < exp(−ck)

and so taking difference for E ,E ′ and differentiating on small
scale Lk(E ) one obtains:

|L(E )− L(E ′)| ≤ |Lk(E )− Lk(E ′)|+ 2|L2k(E )− L2k(E ′)|+ e−ck

≤ eCk |E − E ′|+ e−ck

Theorem

Assume sharp Diophantine condition, and L(E ) > γ > 0 for
E ∈ I = [E0,E1]. Then L is Hölder continuous on I .

The Hölder exponent depends on γ, but in fact in can be shown by
a refinement of this argument from G-S 2001 that it does not.
Under a weaker Diophantine condition we have
exp(−| log |E − E ′||b) continuity with b < 1. However: You, Zhang
2013 refined LDT and showed Hölder for all Diophantine ω.
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Integrated Density of States
EΛ,j(x), j = 1, . . . , b − a + 1 = |Λ| are the eigenvalues of (1)
restricted to the interval Λ = [a, b] with Dirichlet BC
ϕ(a− 1) = ϕ(b + 1) = 0. Consider

NΛ(E , x) =
1

|Λ|
∑
j

χ(−∞,E)(EΛ,j(x)).

The limit (in the weak sense of measures)

lim
a→−∞,b→+∞

NΛ(·, x) = N(·)

exists for a.e. x and is deterministic. N(·) is the IDS. Connection
with Lyapunov exponent given by the Thouless formula

L(E ) =

∫
log |E − E ′| dN(E ′). (15)

In other words, L is the Hilbert transform of N. Hence we have a
corollary of Hölder regularity theorem: the IDS is also Hölder
continuous.
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Controlling the resolvent
The entries of the propagator matrix Mn(x ,E ) are as follows:

Mn(x ,E ) =

[
f[1,n](x ,E ) −f[1,n−1](Tx ,E )
f[1,n−1](x ,E ) −f[1,n−2](Tx ,E )

]
(16)

Here f[a,b](x ,E ) stands for the characteristic polynomial of the
problem (1) on the interval [a, b] with zero boundary conditions
ψ(a− 1) = 0, ψ(b + 1) = 0, i.e.,

f[a,b](E ) =

∣∣∣∣∣∣∣∣∣∣
v(a)− E −1 0 · · · 0
−1 v(a + 1)− E −1 · · · 0

0 · · · 0 −1 v(b)− E

∣∣∣∣∣∣∣∣∣∣
Is there a LDT for the entries rather than the whole matrix? Yes,

by Goldstein-S. GAFA, 2008. Exploit that determinants are
solutions of Schrödinger equation, and relation between entries
given by detMn = 1.
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Controlling the resolvent
Connection with the resolvent:

(HN(x)− E )−1(m, n) =
f[1,m]

(
x ,E

)
f[n+1,N]

(
x ,E

)
f[1,N]

(
x ,E

)
We have a LDT for the determinants:

Proposition

For some small constant τ > 0∣∣{x ∈ T : |N−1 log |f[1,N](x ,E )| − LN(E )| > N−τ}
∣∣ ≤ e−N

τ
.

By |LN(E )− L(E )| . N−1 we may replace LN(E ) with L(E ).
Conclusion: if L(E ) > 0 then

|(HN(x)− E )−1(m, n)| . exp(−L(E )(m − n) + N1−τ )

up to set of measure . exp(−Nτ ).
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Uniform upper bounds
We do not need LDT for the numerator: subharmonic functions
can only fall significantly below the average but not rise much
above it. Proof of LDT, work with a regularized form of (2):

u(x) ≤
∫

log(|e(x)− ζ|+ δ)µ(dζ) + h(x) ∀ x ∈ R

with δ = N−1. Work with 1
m

∑m
j=1 u(T jx) as in the proof of LDT.

Harmonic part is harmless, and we have better decay of the Fourier
transform∣∣∣ ∫ 1

0
log(|e(x)− ζ|+ δ) e(−νx) dx

∣∣∣ . min(|ν|−1, δ−1|ν|−2)

This gives

sup
x

N−1 log ‖MN(x ,E )‖ ≤ L(E ) + N−
1
2

+

Assuming L(E ) > 0 we may further improve this to (G-S 2008)

sup
x

N−1 log ‖MN(x ,E )‖ ≤ L(E ) + N−1(logN)A
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Higher-dimensional matrices
Let A : T→ GL(d ,K ) be continuous, co-cycle

T× Kd ∈ (x , v) 7→ (x + ω,A(x)v) (17)

where ω is (strongly) Diophantine. (E , d) compact metric space.

Theorem (S., 2012)

A : T× E → GL(d ,K ) continuous (K = R,C), analytic
x 7→ A(x ,E ) uniformly in E ∈ E . Suppose E 7→ A(x ,E ) Hölder
continuous, uniformly in x ∈ T. Lyapunov exponents satisfy the
gap condition

λj(E )− λj+1(E ) > κ > 0 ∀ E ∈ E , ∀ 1 ≤ j < d (18)

Then all λj(E ) are Hölder continuous as a function of E ∈ E . If
(18) holds at some point E0 ∈ E , then each λj(E ) is Hölder
continuous locally around E0. In other words, if all exponents are
distinct at E0, then they are all Hölder continuous locally
around E0, and therefore also remain distinct near E0.
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Avalanche Principle for d × d matrices
Lemma

{Aj}nj=1 ⊂ GL(d ,K ) satisfy: for each 1 ≤ j ≤ n ∃ a 1-dimensional

subspace Sj ⊂ Kd s.t.

|Ajv | = ‖Aj‖ |v | ∀v ∈ Sj
|Ajw | ≤ αj |w | ∀w ∈ S⊥j
‖Aj‖ ≥ αjµ, µ ≥ 16n2

In addition, assume

‖Aj+1‖ ‖Aj‖ < µ
1
4 ‖Aj+1Aj‖ ∀ 1 ≤ j < n.

Then∣∣∣log ‖An · . . . · A1‖+
n−1∑
j=2

log ‖Aj‖ −
n−1∑
j=1

log ‖Aj+1Aj‖
∣∣∣ < C

n
√
µ

for some absolute constant C .W. S. Subharmonic techniques in multiscale analysis: Lecture 1



One-dimensionality condition in the AP

Figure : The unique expanding direction condition
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Remarks on higher dimensions
The 2× 2 AP is a special case, “line condition” holds
automatically. Gap condition is the same as L(E ) > 0, since the
two Lyapunov exponents are {L(E ),−L(E )}.
Oseledec multiplicative ergodic theorem guarantees a filtration of
Rd associated with the sequence of Lyapunov exponents.
Higher-dimensional cocycles arise in the transfer-matrix formalism
of higher-order difference equations. Duarte, Klein 2013: very
general investigation of avalanche principle, LDT etc. for such
cocycles. In particular, they also investigate the situation where
the Lyapunov gaps collapse and obtain a version of the AP in that
case. They also announce that they will come out with a paper in
which they give sufficient conditions for different types of
Lyapunov spectrum.
For the 1-dimensional Schrödinger operator we can change the
underlying dynamics: instead of T we consider a potential on Td

with the multi-dim shift, or the skew shift.
Or we switch from a 1-dim operator to a higher-dimensional one,
and we lose the entire transfer matrix formalism.
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Summary of Lecture 1

Subharmonic functions arise naturally in the context of
Schrödinger operators with potentials determined by
evaluating analytic functions along an orbit of an ergodic
deterministic transformation. Examples: log ‖Mn‖,
log | detHΛ|. Also relevant to higher-dimensional lattices Zd

where we do not have a transfer matrix formalism; then s-h in
each coordinate direction (pluri-s-h).

Modulo harmonic functions, subharmonic ones are logarithmic
potentials of positive Borel measures (Riesz representation).
The latter are the key to analytic control, and the derivation
of large deviation estimates.

But size of Riesz measure alone too crude to imply a large
deviation estimate. We require also some structural
information on the measure, such as near invariance of the
function itself under the dynamics. Easier to implement
structure directly for the subhamonic function itself rather
than for its Riesz measure.
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Summary of Lecture 1

Avalanche principle in combination with LDT allows for
induction on scales arguments. Essential for nonperturbative
approach assuming only positivity of the Lyapunov exponent.
Gives rates of convergence for these exponents. Can also be
used to derive perturbatively (need big potentials for the
initial step) large deviation estimates, such as for the skew
shift. See Lecture 3.

In the PDE setting (higher-dimensional lattices Zd) cannot
use AP, instead rely on resolvent identity. This will again be
perturbative. We control the Green functions directly in this
way. A key analytical ingredient in this approach are the
Matrix-valued Cartan estimates, see Lecture 3.

All of the analysis in this lecture was for fixed energy. In the
following lecture, we will encounter the so-called elimination
of the energy which is needed for Anderson Localization.
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