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Spectrum of ergodic Schrödinger operators
For self-adjoint operators

(Hxψ)n = ψn+1 + ψn−1 + vn(x)ψn, n ∈ Z

with vn(x) an “ergodic potential”, i.e., vn(x) = V (T nx) and
T : X → X ergodic transformation on a probability space X , and
V : X → R measurable. Then there exists fixed compact set
K ⊂ R with spec(Hx) = K for a.e. x ∈ X . This follows from
ergodic theorem and property of the spectral resolution Ex of Hx

Ex = S−1 ◦ ETx ◦ S , S = right shift

In addition, specac(Hx), specac(Hx), specsc(Hx) are also
deterministic. Eigenvalues are NOT deterministic, but their
closure is.
Anderson localization means precisely that specpp(Hx) = spec(Hx)
and eigenfunctions decay exponentially. Most famous problem in
this area: Anderson conjecture in three dimensions for the random
case.
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Localization via Oseledec

How to establish AL? Assume positive Lyapunov exponent
infE L(E ) > 0, ω fixed irrational.
By multiplicative ergodic theorem (Oseledec theorem), for every
energy and almost every x ∈ T there exist directions v±x (E ) which
are contracting as n→ ±∞, i.e.,

lim
n→∞

1

n
log ‖Mn(x ,E )v+

x (E )‖ = −L(E ) (1)

and same for n→ −∞. If these directions coincide we obtain a
globally exponentially decaying solution. If these directions do not
coincide, then on one side the solution will grow exponentially, and
thus the energy will not belong to the spectrum.
Conclusion: The spectrum consists purely of eigenvalues with
exponentially decaying eigenfunctions. So why haven’t we proved
AL?
FALLACY: We need to remove the zero measure sets in x FOR
ALL ENERGIES. This is not allowed.
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Oseledec theorem

Figure : The solutions of Hxψ = Eψ
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Localization theorem by Bourgain-Goldstein

“Localization is a game of resonances” (Phil Anderson). What this
means is that we need to make sure that we cannot have infinite
tunneling, as this would lead to extended states.

Theorem (Bourgain-Goldstein, Annals, 2000)

Let V be a trigonometric polynomial. Assume that L(E , ω) > 0 for
all (ω,E ). Then for almost every ω ∈ T the operator H0 exhibits
AL.
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remarks on the localization theorem

Note:

Preceded by seminal key result by S. Jitomirskaya for Harper
operator.

By Fubini, we also have AL for almost every (ω, x) for Hx .

In the argument, eliminate zero measure set from Diophantine
class precisely to prevent tunneling (eliminate double
resonance.

Extends to more than one frequency.

We can allow analytic potentials by approximation. Gevrey
class: see S. Klein “Anderson localization for the discrete
one-dimensional quasi-periodic Schrödinger operator with
potential defined by a Gevrey-class function”, J. Funct. Anal.
(2005), no. 2, 255–292; see also “Anderson localization for
quasi-periodic Scrödinger operators with multivariable Gevrey
potential function”, arXiv:1204.3086.
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remarks on the localization theorem

In case the Lyapunov exponent vanishes on some part of the
spectrum the eigenfunctions are expected to be non-localized
but rather oscillating similar to the Floquet eigenfunctions
from the theory of periodic Schrödinger equations. For
“small” quasi-periodic potentials such eigenfunctions were
discovered in the ground-breaking work E. I. Dinaburg, Ya.
G. Sinai,“The one dimensional Schrödinger equation with
quasiperiodic potential”, Funkt. Anal. i. Priloz. 9 (1975),
8–21.
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remarks on the localization theorem

Recently A. Avila made substantial progress towards a
“non-perturbative” result if the Lyapunov exponent vanishes
on the spectrum, similar to B-G theorem in the one frequency
case, see A. Avila, “Global theory of one-frequency
Schrödinger operators I: stratifed analyticity of the Lyapunov
exponent and the boundary of nonuniform hyperbolicity”.
Preprint (arXiv:0905.3902), A. Avila, “Global theory of
one-frequency Schrödinger operators II: acriticality and
finiteness of phase transitions for typical potentials”, Preprint,
2011, A. Avila, “Almost reducibility and absolute continuity.
I” Preprint (arXiv:1006.0704). In the case of several
frequencies the problem is wide open, see some further
comments below.
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Strategy of the proof

We know from elementary spectral theory (easy part of Shnol’s
theorem): For almost every energy E relative to the spectral
measure of H0 = H(0) we have that H(0)ψ = Eψ admits a
nonzero solution which grows at most linearly: |ψ(n)| . 1 + |n|.
GOAL: Show that ψ decays exponentially.
For any Λ := [−n, n] ⊂ Z locally on Λ we have “Poisson formula”

(HΛ(0)− E )ψ = ψn+1δn + ψ−n−1δ−n

Suppose ψ2
0 + ψ2

1 = 1 and ψ2
n+1 + ψ2

−n−1 < γ2. Then

dist(E , spec(HΛ(0))) ≤ γ (2)

We expect to be able to find “many” intervals Λ = [−n, n], in fact
along a sufficiently “dense” sequence of n→∞ so that (2) holds
with γ = γn → 0 quite rapidly.
Next, we introduce good and bad Green functions:
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Good and bad Green functions

Definition

We say that for any interval Λ ⊂ Z the Green function
GΛ(E , ω) = (HΛ(0, ω)− E )−1 is good iff

1 ‖GΛ(E , ω)‖ < e |Λ|
b1

2 |GΛ(E , ω)(n,m)| < exp(−L(E )|n −m|+ |Λ|b2) ∀ n,m ∈ Λ

where 0 < b1, b2 < 1. Otherwise, we say the Green function is bad.

Clearly, 2 implies 1 by square summation provided b1 = b2, but we
want to keep these two properties separate. What does LDT have
to say about good/bad Green functions?
Let Λ = [n, n + N]. We have

HΛ(0, ω) = H[0,N](nω, ω)

We already observed in Lecture 1 that the LDT (for the
determinants = entries of MN) implies that G[0,N](E , θ, ω) is bad

with probability at most e−N
σ

(and parameter b1 = b2 = 1− σ
determined by the LDT). Depends on Diophantine properties of ω.
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Good and bad Green functions

The properties of good Green functions is intrinsic to Anderson
Localization: Indeed, suppose HΛ has eigenbasis {ψj}j∈Z of
exponentially decaying eigenfunctions with eigenvalues Ej on some
finite volume Λ. Assume

dist(E , spec(HΛ)) > exp(−|Λ|b)

Then

(HΛ − E )−1(n,m) =
∑
j

ψj(n)ψj(m)

Ej − E

satisfies

|(HΛ − E )−1(n,m)| . exp(−γ|n −m|+ |Λ|b)
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Outline of the entire strategy

Basic AL strategy:

Start with a polynomially growing solution as above with
energy E .

Show that there exists a sufficiently dense sequence nj →∞
so that G[−nj ,nj ](0, ω,E ) is bad. This uses the “Poisson
formula” and averaging of the monodromy matrices over long
orbits, which produces uniform closeness to the Lyapunov
exponent.

Exclude double resonances: for each nj we will show that we
may eliminate a small set of ω (measure going to zero
sufficiently rapidly as j →∞) such that all Green functions
GΛ(0, ω,E ) are good for Λ of length nj (basically) which are
contained in a window [nCj , n

2C
j ]. This step is based on LDT,

semi-algebraic complexity bound, and an elementary measure
theory argument about small sets in [0, 1]2 that have not too
many intersection with horizontal lines.
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Outline of strategy
Resolvent identity implies that Green function
G[nCj ,n

2C
j ](0, ω,E ) is good. This then of course implies

exponential decay of ψ, since we have enough of these
intervals to cover the whole line Z.

This strategy has been implemented in a variety of settings, always
on the line Z:

1-dim shift, analytic (Gevrey) potentials. Nonperturbative for
1 ≤ s < 2 where |g (k)(x)| ≤ CRkksk , Perturbative for s ≥ 2.

multi-dimensional shift, same type of potentials.
Nonperturbative.

Skew shift on T2. Perturbative, meaning we eliminate small
set of rotation numbers rather than measure zero, and we
take analytic potential to be large, depending on the size of
the set we eliminate.

In the PDE setting on Z2 Bourgain-Goldstein-S, Acta, 2002 use a
similar approach, but the technique is very different due to absence
of transfer matrix formalism. Again perturbative.
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The AL strategy

Figure : The three main steps: resonance window about the origin,
exclusion of double resonances, paving and resolvent identity
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Semi-algebraic sets

Definition

The class of semi-algebraic subsets of Rn is the smallest collection
of subsets containing all {x ∈ Rn : P(x) > 0}, where
P ∈ R[X1, . . . ,Xn], and which is stable under finite intersection,
finite union and under taking the complement.

Lemma

The class of semi-algebraic sets is given by expressions of the form

J⋃
j=1

⋂
`∈Lj

{P` σj` 0} (3)

where P` ∈ {P1, . . . ,Ps} ⊂ R[X1, . . . ,Xn], and Lj ⊂ {1, 2, . . . , s},
with σj` ∈ {<,≤, >,≥,=}.

s is called combinatorial complexity, max` degP` is the algebraic
complexity.
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Properties of semi-algebraic sets

Basic questions: How “complicated” can a semi-algebraic set be?
This can be understood qualitatively and quantitatively. The latter
implying bounds in terms of the number and degrees of the
defining polynomials of, connected components, Betti numbers . . .
Here is an example of a qualitative theorem:

Theorem (Seidenberg-Tarski)

The projection of a semi-algebraic set onto any affine subspace is
again semi-algebraic in that subspace. I.e., π : Rn → Rn−1

preserves semi-algebraic sets.

The quantitative version took longer to develop.

Definition

Let S be semi-algebraic as in (3). Suppose deg(P`) ≤ d for each
polynomial. Then we say that deg(S) ≤ sd .
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A quantitative Seidenberg-Tarski theorem
Note that this definition does not involve J. This is surprising at
first sight since the total number of words is 2s .
For our applications crucial to have polynomial bounds in
degree; we will absorb polynomial losses with exponential gains
from measure estimates.
However: It suffices in our applications to work with more
elementary basic s-a sets, for which J = 1 in (3) (thus, they are
pure intersections).

Theorem (Basu-Pollack-Roy 1996)

Let S be semi-algebraic as in (3). Then π(S) is as in (3) with

deg(πS) ≤ C (degS)C

where C = C (n).

In other words, we have polynomial growth. A great resource in
this area is the 2006 Springer book by these authors: Algorithms in
real algebraic geometry (pdf on Saugata Basu’s website).
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Polynomial bounds on the components

Suppose we are given f , g ∈ R[X ,Y ] without common
non-constant factor. How many connected components does the
following set have?

S := {(x , y) ∈ R2 f (x , y) ≥ 0} ∩ {(x , y) ∈ R2 g(x , y) ≥ 0}

It is at most 1 + #{f = 0, g = 0} ≤ 1 + deg(f ) deg(f ) by
Bezout’s theorem. In general, we have the following result about
semi-algebraic sets.

Theorem

The number of connected components of S ⊂ Rn semi-algebraic is
at most C (n)(deg(S))n.

Special case of a stronger theorem, see book by Basu et al. For
basic semi-algebraic sets goes back to Oleinik, Petrovsky (1950s),
Thom, Milnor 1964.

W. S. Subharmonic techniques in multiscale analysis: Lecture 2



Illustration of Bezout

Figure : Applying Bezout’s theorem
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Tightness of the bounds on the components
Let

Pi = L2
i ,1 · . . . · L2

i ,d − ε, 1 ≤ i ≤ s

where Li ,j are generic linear polynomials in Rn, ε > 0 small. The
set S has ' (sd)k connected components.

Figure : sd planes in generic position
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Relevance to AL
Consider a condition of the form (for the shift dynamics on the
circle)

n−1 log ‖Mn(ω, θ,E )‖ < Ln(ω,E )− n−σ (4)

How to describe this in terms of semi-algebraic sets? First, we
replace matrix norm on the left-hand side by the Hilbert-Schmidt
norm (or work with det on the left):

f 2
1 + f 2

2 + f 2
3 + f 2

4 < exp(2n(Ln(ω,E )− n−σ)) (5)

where the fj are determinants: f1 = det(H[1,n](ω, θ)− E ) etc.
Second, let V = V (θ) be a real-valued trigonometric polynomial of
degree ν. Then we can write det(HΛ(ω, θ)− E ) as polynomial in
e(θ), e(−θ) of degree at most |Λ|ν. So relative to θ we have a
semi-algebraic description of (4) in terms of a polynomial in
(x1, x2) ∈ R2 of degree O(n) intersected with {x2

1 + x2
2 = 1}.

So this was easy. More relevant to us, however, is a semi-algebraic
description of (4) in all three variables (ω, θ,E ).
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Relevance to AL
A small issue here is that ω,E sit in the Lyapunov exponent
(average over θ of the left-hand side) on the right-hand side. To
overcome it, we may resort to averaging over a long shift orbit.

Lemma

Suppose ‖kω‖ > c0|k |−A, ∀ 0 < |k | < n2A. Then for all J > n2A

we have

1

J

J∑
j=1

log ‖Mn(ω, θ + jω,E )‖ = Ln(ω,E ) + O(n−1) (6)

uniformly in θ,E (the latter in bounded set).

The O(·) depends on the c0 in the Diophantine condition. Note
that the latter is in a finite range of k . The lemma is again proved
by Fourier representation, but we need more regularity than just
subharmonicity as in the LDT: use derivative bound in θ, which is
Cn. So truncate Fourier series at exponentially large modes.
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Relevance to AL

Using this, we see that (4), or more precisely (5) together with the
Diophantine condition in the Lemma, is semi-algebraic in all three
variables (ω, θ,E ) of degree O(nC ).
Proof of lemma: Let u(θ) = n−1 log ‖Mn(ω, θ,E )‖. Then using
‖u′‖∞ ≤ Cn we conclude that∑

|k|>K

|û(k)| ≤ K−
1
2 ‖u′‖2 ≤ 2−n, K = (2C )2n

(7)

Thus, using also |û(k)| . |k |−1, we have

∣∣∣1
J

J∑
j=1

u(θ + jω)− Ln

∣∣∣ . K∑
k=1

|û(k)|(1 + J‖kω‖)−1 +
∑
|k|>K

|û(k)|

. J−1/A logK + 2−n . n−1

The implicit constant depends on c0,V ,E .
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The first step in AL

Figure : Finding the resonance window [−n0, n0]

Using lemma, we average k−1 log ‖Mk(ω, jω,E )‖,
3n/4 ≤ j ≤ 5n/4. Together with uniform upper bound this
produces some (or many) intervals [a, b], b − a ∈ {k , k − 1, k − 2}
for which Green function is good. Use Poisson formula to say that
|ψ(n0)| ≤ exp(−nδ0). Thus, we obtain the desired “almost
eigenvalue” dist(E , spec(H[−n0,n0](ω, 0))) ≤ exp(−nδ0).
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Step 2: double resonances
We now want to show that we can completely cover [N, 2N] by
good Green functions GΛ(ω, 0,E ). It will turn out that

reasonable choices of scales are N = nC0 , |Λ| ' n
δ/2
0 . This requires

removing a small set of ω.

Lemma

Let n� 1, and define Sn ⊂ T2 set of all (ω, θ) so that
(i) ‖kω‖ > c0|k|−A, ∀ 0 < |k| < n2A

(ii) for some n0 ' n, E ∈ I (some bounded interval)

dist(E , spec(H[−n0,n0](ω, 0))) ≤ exp(−nδ0)

(iii) for some k ' n
δ/2
0

k−1 log ‖Mk(ω, θ,E )‖ < Lk(ω,E )− k−σ (?)

Then |Sn| < e−
1
2
kσ and every horizontal section of Sn is covered

by at most nB intervals.
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Step 2 continued

For the proof, note that by (ii) |E − Ej | < exp(−nδ0) for some eval
Ej of H[−n0,n0](ω, 0). Then we may replace E in (iii) with Ej just

by differentiation. Indeed, we pay |E − Ej |C k for this which is

exp(O(n
δ/2
0 )) exp(−nδ0)� k−σ since n0 large. Now apply LDT to

say that probability in θ for (iii) to happen at Ej is at most
exp(−kσ). We need to take the union of O(nC ) such sets, which
can be absorbed.
For the complexity bound: we already know that (iii) is
semi-algebraic in (ω, θ,E ) of a degree at most a power of n.
Similar for (ii): write the condition as∥∥(H[−n0,n0](ω, 0)− E )−1

∥∥ > exp(nδ0)

Express the inverse by Cramer’s rule, recast as condition in
determinants. So semi-algebraic again to degree some power of n.
Now project out E .
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Removing double resonances
We need to remove the set

{ω ∈ T : (ω, `ω) ∈ Sn mod Z2 for some N ≤ ` ≤ 2N}

` gives position of small interval to the right of [−n0, n0].

Figure : Eliminating “bad” ω
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The lemma on steep lines

Lemma

Let S ⊂ T2 be a measurable set with the following properties:

For each θ ∈ T the horizontal section Sθ is covered by at most
M intervals.

|S | < N−3, where N > M

Then

|{ω ∈ T : (ω, `ω) ∈ S mod Z2 for some N ≤ ` ≤ 2N}|

. N
3
2 |S |

1
2 + MN−1

We apply this to Sn with M = nB , N = n2B , |S | < exp(−nε). So
we eliminate a set Bn of bad ω of measure |Bn| . n−2, say. This is
summable, and we can apply Borel-Cantelli to conclude that we
just need to remove a measure zero set.
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Final step: resolvent identity
What he have so far is enough to conclude that spec(H(ω, 0))
consists entirely of eigenfunctions with decay like
|ψ(n)| . exp(−|n|ε). For this note that the converse of (?) in (iii)
of the definition of the set Sn together with uniform upper bounds
implies that one of the entries of Mk(ω, `ω,E ) is good, and since
these are determinants, we conclude that the Green function on the
associated interval is good. The one applies “Poisson formula” on
that interval, together with the at most polynomial growth of ψ.
But to obtain exponential decay need to do one more thing,
namely pave the interval [N, 2N] with all the good intervals we
have so far (see picture on AL strategy above).
Resolvent identity: A,B Hermitian matrices, then for Im z 6= 0

(A− z)−1 − (B − z)−1 = (A− z)−1(B − A)(B − z)−1,

Apply this to Λ′ ⊂ Λ ⊂ Z. With χ∂Λ′ the hopping operator

(HΛ − E )−1 = (HΛ′ − E )−1 + (HΛ − E )−1χ∂Λ′(HΛ′ − E )−1

where the first resolvent on the right vanishes off of Λ′.
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Applying the resolvent identity

To be specific, let n ∈ Λ = [N, 2N] and put short interval Λ′ ⊂ Λ
around this point. Then (suppressing the argument (ω, 0))

(HΛ − E )−1(n,m) = (HΛ′ − E )−1(n,m)χΛ′(m)

+ (HΛ − E )−1(m, b + 1)(HΛ′ − E )−1(n, b)

+ (HΛ − E )−1(m, a− 1)(HΛ′ − E )−1(n, a)

(8)

where Λ′ = [a, b]. If, say, a coincides with the left endpoint of Λ,
then the last term is not there. Now the Green function on each Λ′

is good. So this means that with some small 0 < b < 1

‖(HΛ − E )−1‖ . exp(Nb)

Moreover, by iterating (8) we obtain exponential decay of the
Green function on Λ as desired.
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The resolvent expansion

Figure : Applying the resolvent identity iteratively

So we gain (exp(−Lk/2))|m−n|/k = exp(−L|m − n|/2) decay.
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The proof of the lemma with the steep lines
We first write

|{ω ∈ T : (ω, `ω) ∈ S mod Z2 for some N ≤ ` ≤ 2N}|

≤
∑
`'N

∫
T
χS(ω, `ω) dω =

=
∑
`'N

`−1∑
j=0

1

`

∫ j+1
`

j
`

χS((j + θ)/`, θ) dθ

(9)

Let Sθ denote the horizontal section. Then |Sθ| > γ happens at
most with probability |S |γ−1. So the contribution to (9) is at most

∑
`'N

`−1∑
j=0

1

`

∫ j+1
`

j
`

χ[|Sθ|>γ] dθ . γ−1|S |. (10)

Next, |{θ ∈ T : inf1≤k≤2N ‖kθ‖ ≤ 4N2γ}| . N3γ. So it remains
to consider to contribution to (9) of all other θ. We assume
N3γ � 1.

W. S. Subharmonic techniques in multiscale analysis: Lecture 2



The proof of the lemma with the steep lines

By assumption, Sθ ⊂
⋃M

m=1 Jm, covering by intervals, |Jm| < γ. If

j + θ

`
,
j ′ + θ

`′
∈ Jm, (j , `) 6= (j ′, `′)

then we have |(`− `′)θ + (j`′ − j ′`)| < 4N2γ. If ` = `′ then get
the contradiction 1 < 4N2γ. Otherwise, ‖(`− `′)θ‖ < 4N2γ which
is the case treated before.
Conclusion: At most one pair (j , `) contributes to (9) for each
interval Jm, resulting in a bound of M/N.
Total estimate:

γ−1|S |+ N3γ + M/N . N
3
2 |S |

1
2 + M/N

as claimed.
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Further remarks on AL
This scheme has been applied in various contexts, still based on
transfer matrix formalism. In each case we need to resolve two
main issues:

Obtain large deviation measure estimates. Ideally, this is
done nonperturbatively, i.e., free of any assumption on large
potentials, or even assuming positive Lyapunov exponents.
But in more difficult situations, such as for the skew shift, or
for general Gevrey class potentials, we need an inductive
scheme, based on avalanche principle. In Lecture 3 we will
discuss other analytical techniques (Cartan estimates) which
are helpful for LDTs.
Elimination of double resonances based on semi-algebraic
complexity estimates as above. This also goes by the name of
elimination of the energy (note: LDT is for a fixed energy).
This is often delicate, requiring ad hoc arguments. For
example, for two or more frequencies the lemma on lines does
not directly apply. More semi-algebraic machinery is needed,
e.g. Gromov-Yomdin triangulation/parametrization theorem.
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Further remarks

But what do we do if we consider quasi-periodic operators on
higher-dimensional lattices? For example

(Hx1,x2ψ)(n1, n2) := −(∆Z2ψ)(n1, n2)

+ λV (x1 + n1ω1, x2 + n2ω2)ψ(n1, n2)
(11)

where V : T2 → R is a non-constant trigonometric polynomial on
any line, and ω := (ω1, ω2) generic in some sense. We lose the
notion of a Lyapunov exponent, so we instead assume that λ is
large (we will need to remove a set of ω which is small but of
positive measure depending on the size of this λ).

W. S. Subharmonic techniques in multiscale analysis: Lecture 2



Higher-dimensional case
Our proof of localization for (11) is in the spirit of KAM.

To approach AL for (11) we work directly with the resolvent
identity. We also need to allow for many resonance sites, but
of course this is delicate since we do not want an entire chain
of resonant cubes at the smaller scale. So in our first work on
this problem (Bourgain-Goldstein-S, Acta 2002) we obtained
that the number of such bad cubes is sub-linear.

Semi-algebraic/arithmetic arguments used to eliminate ω s.t.
number of resonant sites is too large for fixed energy.

To apply the resolvent identity, the issue is really to obtain an
exponential measure estimate at the next larger scale at fixed
energy. For this we develop a so-called Cartan estimate for
matrix valued functions. Here it is essential to keep the
number of resonant sites sub-linear, too, so that we can pack
all resonance sites into a black box which then determine the
size of the Riesz mass of the subharmonic functions along
each coordinate direction. Will become clearer in Lecture 3.

W. S. Subharmonic techniques in multiscale analysis: Lecture 2



Positivity of the Lyapunov exponent

We now return to the 1-dim equation, and introduce M. Herman’s
subharmonicity method for proving positivity of L(ω,E ) for Harper:

(Hλ(x)ψ)n = ψn+1 + ψn−1 + 2λ cos(2π(nω + x))ψn

We proceed as follows, with z = e(x),w = e(ω):∫ 1

0
log ‖MN(e(x),E )‖ dx =

∫ 1

0
log
∥∥∥ 1∏
j=N

(
λ(zw j + z−1w̄ j)− E −1

1 0

)∥∥∥ dx
=

∫ 1

0
log
∥∥∥ 1∏
j=N

(
λ(z2w j + w̄ j)− zE −z

z 0

)∥∥∥ dx
≥ log

∥∥∥ 1∏
j=N

(
λw̄ j 0

0 0

)∥∥∥ = N log |λ|

So L(ω,E ) ≥ log |λ| > 0 if |λ| > 1.
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Positivity of the Lyapunov exponent

This is uniform in E , ω. Known to be optimal: for |λ| ≤ 1 we have
L(ω,E ) = 0 on the spectrum. For |λ| > 1 we have
L(ω,E ) = log |λ| > 0 on the spectrum.
This method applies to other trigonometric polynomials, but the
bound is in terms of the coefficient of the largest power.

For analytic potentials we have alternative arguments, of course
not as precise (Sorets-Spencer). But they give positivity for large
disorders nonperturbatively – which means depending on the
potential, but not the rotation number ω.

Duarte-Klein 2012 introduced a new method for establishing lower
bounds for Lyapunov exponents nonperturbatively, also for
higher-dimensional co-cycles. It is a variant of
Sorets-Spencer/Bourgain approach which uses harmonic measure.

W. S. Subharmonic techniques in multiscale analysis: Lecture 2



Positivity of the Lyapunov exponent
The Duarte-Klein method hinges on the following analytical fact: a
radial function is sub-harmonic if and only if it is convex in log r .
This means that for all r1 < r < r2 we have

u(r) ≤ log r2 − log r

log r2 − log r1
u(r1) +

log r − log r1
log r2 − log r1

u(r2) (12)

This is not so surprising if we recall that radial harmonic functions
are exactly affine in log r .
If u(z) is any subharmonic function, then the means

ζ 7→
∫ 1

0
u(z0 + ζe(x)) dx

form a radial sub-harmonic function and therefore these means
satisfy (12). The logic is now that we obtain a lower bound for
r1 = 1 if we have one for 1 < r and an upper bound for r2 > r .
The latter are gotten by exploiting the benefits of complexification
in x .
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Aubry duality
Consider Harper’s (or almost Mathieu) as above. Assume |λ| > 1
so that we have AL. Let ψ be an exponentially localized
eigenfunction, Hλ(0)ψ = Eψ. Define analytic function by means
of Fourier transform

F (θ) =
∑
n

ψn e(nθ)

and set ϕk = F (x + kω) ∀ k ∈ Z. Then

ϕk+1 + ϕk−1 =
∑
n

ψn e(n(x + kω)) 2 cos(2πnω)

= Eϕk −
1

λ

∑
n

(ψn+1 + ψn−1) e(n(x + kω))

= Eϕk −
2

λ
cos(2π(x + kω))ϕk

Conclusion: H 1
λ

(x)ϕ = Eϕ. Since ϕ ∈ `∞ we see that H 1
λ

(x) has

purely continuous spectrum for |λ| > 1.
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Aubry duality

Suppose we apply the Fourier transform to a more general operator

(Hλ(x)ψ)n = ψn+1 + ψn−1 + λv(x + nω)ψn (13)

with v analytic real-valued on the circle. Assume we are in regime
of AL: Hλ(0)ψ = Eψ. Dualizing yields a long-range operator

(H̃λ(x)ϕ)k =
1

λ

∑
`

v̂(`)ϕk+` + 2 cos(2π(kω + x))ϕk = Eϕk (14)

Laplacian replaced by Töplitz operator.
LOGIC: If we prove AL for (14) and λ small, then we have shown
that (13) has continuous spectrum for small disorder. Also note
that for multi-frequency shift dynamics Aubry duality establishes a
correspondence between an operator on the integer line Z with one
on a higher-dimensional lattice Zd .
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AL for long-range difference operators

The long-range operators do not fall into the frame work of the
transfer matrix formalism developed here. Other approach needed
to establish Anderson localization. In Lectures 3 and 4 we will
describe in detail a method based on resolvent
expansions/matrix-valued Cartan theorem. These give exponential
measure estimates for the event that a Green function at fixed
energy is bad (or more precisely: resonant). But these methods
are inductive in the scale and therefore perturbative requiring the
removal of sets of positive but small measure in frequency and
phase.
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AC Spectrum

In contrast to this, one has this nonpertubative result.

Theorem (Bourgain-Jitomirskaya 2002)

For |λ| < λ0(v) any Diophantine ω, a.e. x the operator (13) has
absolutely continuous spectrum.

Proof based on a careful analysis of the determinant in the
denominator of the Green function (random walk expansion).
The strongest results in this setting were obtained in
remarkable paper by Avila, Jitomirskaya, “Almost
localization and almost reducibility”, Journal EMS 12 (2010),
93–131. Their approach goes via conjugation of the
transfer-matrix cocycle with fixed E to a constant co-cycle (
this is so called reducibility ). As a striking application they
establish the optimal 1/2- Hölder continuity of the Lyapunov
exponent L(E ).
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Summary of Lecture 2
Anderson localization is a game of resonances.

LDT is for fixed energy. Tells us that with very high
probability (depending on scales) any given Green function is
good.

For AL we need to handle double resonances. Eliminate the
energy.

In the random case, any two such resonances are independent
events. So we get to square the probability - energy frozen
from first box.

In the case of deterministic dynamics, we bring some degree
of independence (relative to the parameter of the dynamics,
such as the frequency ω) back into the picture by means of
two ingredients (i) control the complexity in the parameter via
semi-algebraic considerations (ii) separation of boxes ensures
sufficient decoupling (this is why we want steep lines in the
lemma.

Analyticity of the potential (or something close - Gevrey)
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Summary of Lecture 2

AL for long-range difference operators can also be obtained,
but not by the transfer matrix formalism. One method which
we will encounter later is based on the matrix-valued Cartan
theorem and the resolvent expansion. The crux there is to
control the number of bad or resonant sites at the smaller
scale, which however is not a problem for difference operators
on the line Z. It becomes much more delicate, though for
higher-dimensional lattices Zd .

Aubry duality is basically conjugation by the Fourier transform
and allows one to switch between small and large disorders.
For the Harper operator this is especially clean, as the class of
these operators is self-dual.

Using Aubry duality we may establish (absolute) continuity of
the spectrum for small disorder.

Important topic we did not touch upon: Floquet theory for
small disorders and quasi-periodic potentials. Closely related
to KAM. Dinaburg-Sinai, Eliasson, Krikorian, Avila etc.
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