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AL theorem for Z 2

We now turn to the higher-dimensional case. For any ω, θ ∈ T2

consider the Schrödinger operator on `2(Z2) defined as

Hω(θ) = −∆ + λV (θ).

The potential V (θ) at site (n1, n2) ∈ Z2 is given by

V (θ)(n1, n2) = v(θ1 + n1ω1, θ2 + n2ω2)

with a real-analytic function v on T2 which is nonconstant on
every horizontal and vertical line.

Theorem (Bourgain-Goldstein-S., 2002)

For any ε > 0, θ ∈ T2 there is a set Fε = Fε(θ) ⊂ T2 so that
mes(T2 \ Fε) < ε and such that for any ω ∈ Fε and any
λ ≥ λ0(ε, v) the operator Hω(θ) displays AL.

Applies equally well to long-range operators in place of the
Laplacian.
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A.L. on Z2

We define Green functions on cubes Λ ⊂ Z2 as

G Λ
ω (θ,E )(n,m) :=

[
(Hω(θ)− E ) � Λ

]−1
(n,m)

As before, we call a Green function good if

‖G Λ
ω (θ,E )‖ < eNb

, b < 1

|G Λ
ω (θ,E )(n,m)| . exp(−γ|n −m|), |n −m| > N/10

where N = diamΛ.
Two main ingredients in the proof:
(A) Large deviation estimates for fixed energies

mes
[
θ ∈ T2 : G Λ

ω (θ,E ) is bad
]
< e−(diam Λ)σ (1)

We need this for all slices.
(B) Elimination of the energy.
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A.L. on Z2

We prove (1) by induction on scales, starting from large N0. Then
(1) holds for λ ≥ λ0(N0). This is the only reason for the largeness
assumption.
To pass to the next scale N1 = NC

0 we partition a cube of that size
into smaller N0 cubes. The number of bad cubes on the small
scale is

#
{

(n1, n2) ∈ [−N1,N1]2 : (n1ω1, n2ω2) ∈ BN0,ω(E )
}

(2)

where BN0,ω(E ) := {θ ∈ T2 : G Λ0
ω (θ,E ) is bad}, Λ0 being a

square centered at the origin of side length N0.
In order to apply the resolvent identity and the matrix-valued
Cartan theorem from above we need to show that (2) is bounded
by Nb

1 , b < 1.
Indeed: We cannot apply the res-id. if there is a linear chain of
bad cubes.
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The chains in the resolvent identity

Figure: Applying the resolvent identity with good and bad cubes

Notice that we need more general regions than cubes: the
difference of two cubes may have a corner. This is only technical.
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The key sub-linear technique in Z 2

How to ensure the sublinear estimate?

Proposition

A ⊂ [0, 1]2 semi-algebraic of degree ≤ B. Sections satisfy

mes(Aθ1) < η, mes(Aθ2) < η ∀ (θ1, θ2) ∈ T2 (3)

Let

log B � log N � log
1

η
. (4)

There exists ΩN with

mes([0, 1]2 \ ΩN) < N−ε,

and for all ω ∈ ΩN , δ0 > 0 some absolute constant,

#
{

(n1, n2) ∈ Z2
∣∣ |n1| ∨ |n2| < N, (n1ω1, n2ω2) ∈ A (mod Z2)

}
< N1−δ0 .
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An arithmetic condition

Several comments:

The set ΩN determined by purely arithmetic considerations
that do not depend on the curve Γ. In particular, elimination
of “bad” ω does not involve the potential at this stage.

The idea behind the lemma: if too many points (n1ω1, n2ω2)
fall very close to an algebraic curve Γ, then there would have
to be many small triangles with vertices close to Γ. Here
“small” means both small sides and small area. So we need to
precisely exclude such ω.

Now we can pass to the next scale measure estimate along
slices by means of the matrix Cartan theorem of Lecture 3.
This gives the LDT at the large scale N1 on each horizontal
and vertical slice.

For AL then use semi-algebraic sets to eliminate double
resonances.
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The arithmetic lemma
Lemma

0 < N ∈ Z be a positive integer. ∃ΩN ⊂ [0, 1]2 so that
mes([0, 1]2 \ ΩN) < N−ε s.t. ω = (ω1, ω2) ∈ ΩN satisfies: let
q1, q

′
1, q2, q

′
2 ∈ Z \ {0} bounded in abs.val. by N and suppose{

θ1 ≡ q1ω1, θ′1 ≡ q′1ω1

θ2 ≡ q2ω2, θ′2 ≡ q′2ω2
mod Z

satisfy
|θi |, |θ′i | < N−1+δ (i = 1, 2) (5)

and

−N−3+δ <

∣∣∣∣∣∣
θ1 θ′1

θ2 θ′2

∣∣∣∣∣∣ < N−3+δ

with δ > 0 sufficiently small. Then with δ′ → 0 with δ

gcd(q1, q
′
1) > N1−δ′ , gcd(q2, q

′
2) > N1−δ′
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A simple observation

What is the relevance of the greatest common divisor?

Let 0 < n,m ∈ Z, 1 > ρ > 0. Then

mes[θ ∈ T | ‖θm‖ < ρ, ‖θn‖ < ρ] ' ρ2 +
ρ gcd(m, n)

m + n
, (6)

where ‖ · ‖ denotes the distance to the nearest integer. This
implies that the fractional parts of θm, θn, considered as random
variables, are strongly dependent if and only if gcd(m, n) is large
relative to m + n.

(5)+DC gives q1, q
′
1 > N−1−2δ. If gcd(q1, q

′
1) < N1−δ′ , δ′ = 2δ,

then by (6) measure of those ω1 is

. N−1+δ−δ′ = N−1−δ

But this cannot be summed over q1, q
′
1.
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Sketch of proof of lemma

|θi | = ‖qiωi‖ = |qiωi −mi | < N−1+

|θ′i | = ‖q′iωi‖ = |q′iωi −m′i | < N−1+

So by Diophantine condition, |qi |, |q′i | > N1−. Partition T into
intervals of size N−2. Number of admissible (q,m) with

|qωi −m| < N−1+

is at most N0+. Area condition with ωi = ωi ,0 + κi , |κi | < N−2

and fixed ωi ,0. Write

−N−3+ <

∣∣∣∣∣∣
q1ω1 −m1 q′1ω1 −m′1

q2ω2 −m2 q′2ω2 −m′2

∣∣∣∣∣∣ < N−3+

in the form

|(q1q′2 − q′1q2)κ1κ2 + α1κ1 + α2κ2 + β| < N−3+
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Proof of lemma

This determines an area, assuming |q1q′2 − q′1q2| ≥ 1 of size

.
N−3+

|q1q′2 − q′1q2|
log N

If |q1q′2 − q′1q2| ≥ N1+ε, then this is . N−4−ε+. Summing over
the N4 choices of little squares gives a total measure . N−ε+ in
that case. If |q1q′2 − q′1q2| < N1+ε, simplify: gcd(q1, q

′
1) = 1,

gcd(q2, q
′
2) = 1. By definition, have∣∣mi/q1 −m′i/q′i | < N−2+, |miq

′
i −m′iqi | < N0+

Number of admissible (q1, q
′
1, q2, q

′
2) is . N3+, and of

(m1,m
′
1,m2,m

′
2) is . N0+. So measure bound in (ω1, ω2) space is

. N−4+ × N3+ = N−1+. We have N1− room to move here, which
allows summing up over all cases mini=1,2 gcd(qi , q

′
i ) < N1−.
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The geometry behind the arithmetic proposition

Figure: Curve, points, triangles

If an algebraic curve comes very close to N1−-many points in
(n1ω1, n2ω2) mod Z2 with good (ω1, ω2), then this increases the
degree of the curve due to many oscillations.
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More semi-algebraic machinery

Gromov-Yomdin triangulation/uniformization theorem.

Theorem

For any positive integers r , d there exists C = C (d , r) with the
following property: any semi-algebraic set S ⊂ [0, 1]d can be
triangulated into N . (1 + degS)C simplices, where for every
closed k-simplex ∆ ⊂ S there exists a homeomorphism h∆ of the
standard simplex ∆k,0 ⊂ Rk with unit edge-length onto ∆ such
that h∆ is real analytic on the interior of each face ∆.
Furthermore, supx∈∆ sup|α|≤r |∂αh∆(x)| ≤ 1.

Gromov, M. Entropy, homology, and semialgebraic geometry,
Séminaire Bourbaki, Vol. 1985/86. Astérisque No. 145–146
(1987), 5, 225–240.
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Connecting curves
We may connect any two points along a curve passing through a
chain of simplices given by the previous triangulation theorem.

Corollary

Let S ⊂ [0, 1]d be semi-algebraic of degree B.

(A) If p, q ∈ S, then there exists a path γ : [0, 1]→ S s.t.
γ(0) = p, γ(1) = q and |γ̇| < BC .

(B) Let S ⊂
∏d

j=1[0, ρj ] be semi-algebraic of degree B. If
p, q ∈ S, then there exists a path γ : [0, 1]→ S s.t.
γ(0) = p, γ(1) = q and

d∑
j=1

ρ−1
j |γ̇j | < BC

(C) If mes(S) < εn, then S can be covered by at most BCε1−n

balls of radius ε.
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Proof of proposition
If it fails then

#{(n1, n2) ∈ Z2 : |ni | ≤ N, (n1ω1, n2ω2) ∈ A mod Z} > N1−

We have mes(A) < η, dist(x , ∂A) <
√
η for all x ∈ A.

Yomdin-Gromov:

#{(n1, n2) ∈ Z2 : |ni | ≤ N, dist((n1ω1, n2ω2), Γ) <
√
η mod Z} > N1−

where Γ parametrized by

γ : [0, 1]→ Γ, |γ′| < 1, |γ′′| < 1

Cover Γ by N1−δ disks Dα of radius N−1+δ. Each corresponds to
. Nδ+ pairs (n1, n2) ∈ K1. There is α so that #Kα > Nδ− and if
P0,P1,P2 ∈ Dα ∩ Γ then

∠(P0P1,P0P2) < N−1+δ

From DC and measure conditions can ensure that there are
≤ N0+ points niωi on any slice.
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Turning of the curve

Figure: The geometry in the proposition
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Proof of proposition

Cover Dα by disks of radius Nδ−δ2
. Find n̄, n ∈ Kα with distinct

coordinates such that

‖(n1 − n̄1)ω1‖+ ‖(n2 − n̄2)ω2‖ < N−1+δ2

Set qi = ni − n̄i , θi ≡ qiωi same with prime. Then |θi | < N−1+δ2
,

|θ′i | < N−1+δ. Area of triangle . N−3+3δ.

Hence by the Lemma: ri = gcd(qi , q
′
i ) > N1−δ′ , i = 1, 2.

Write qi = riQi , q′i = riQ
′
i with |Qi |, |Q ′i | < Nδ′ relatively prime.

Euclidean algorithm gives

kiQi + k ′i Q
′
i = 1, |ki |, |k ′i | < Nδ′

One has

‖riωi‖ ≤ |ki |‖qiωi‖+ |k ′i |‖q′iωi‖ < Nδ′N−1+δ < N−
1
2
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Proof of proposition

Therefore

|θi | = ‖qiωi‖ = ‖Qi riωi‖ = |Qi |‖riωi‖, |θ′i | = |Q ′i |‖riωi‖

Hence

|θi |
|θ′i |

=
|qi |
|q′i |

, |θ′i | =
|θi |
|qi |
|q′i | ≤ N · N−2+2δ2+

since |θi | < N−1+δ2
, |qi | > N1−δ2−. This means that

‖q′iωi‖ = |θ′i | < N−1+2δ2+

But by DC the number of such q′i ∈ [0,N] is at most N2δ2+. So

the total number of points in the smaller disk is . N4δ2+,
contradicting the lower bound from above.
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Some remarks

Together with matrix-valued Cartan theorem this allows one
to pass to the next scale in the exponential measure estimate
on the event of having a bad Green function at fixed energy.
In fact, along all coordinate slices.

For AL then need elimination of energy, done by combining
exponential estimate with semi-algebraic machinery. We’ll
discuss this later.

Easier case v(x1, x2) = F (x1 + x2) where F analytic on T.
Can allow for any number of variables. No need for arithmetic
lemma, reduction to one dimension.

Previous example shows that non-perturbative version of the
theorem is FALSE. See Bourgain’s book.

Obstacle in passing to higher dimensions Z3 etc: sub-linear
bound. We will next describe a non-arithmetic way of
overcoming this issue.
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Bourgain’s method for Zd , d ≥ 3
We now present Bourgain’s 2007 GAFA paper, extending AL
theorem to higher-dimensional lattices.

No arithmetic analysis, carry out inductive scheme based on
resolvent identity for exponential measure estimates by
removing sets of ω depending on the potential.

Use a multi-dim generalization of the lemma on steep lines to
exclude these sets. Apply Yomdin parametrization and other
semi-algebraic techniques.

This implies no chains of bad boxes satisfying certain
lacunarity condition between boxes. These chains are long but
of finite length (16 in Z3).

Ultimately leads to bound of Nε for the number of bad sites
in N-box, thus much better than sublinear.

Apply matrix-valued Cartan theorem along all slices with Riesz
mass of this size. This gives the exponential estimate at the
larger scale.
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The localization theorem

Let with v : Td → R analytic

H = ∆ + λv(x + nω)δnn′

and nω = (n1ω1, . . . , ndωd). Assume that

θi 7→ v(θ1, . . . , θi−1, θi , θi+1, . . . , θd)

nonconstant.

Theorem

Fix x ∈ Td , say x = 0 and δ > 0. There exists λ(v , δ) so that for
λ > λ(v , δ) there is Ω = Ωλv ⊂ Td with mes(Td \ Ω) < δ and for
ω ∈ Ω the operator H exhibits AL.

Applies equally well to long-range operators in place of the
Laplacian.
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Semialgebraic elimination of variables

Lemma

Let S ⊂ [0, 1]d+1 be semi-algebraic of degree B and assume

∀ t ∈ [0, 1], mesd(S(t)) < η

Then
{(x1, x2) ∈ [0, 1]2d | (x1, t), (x2, t) ∈ S}

is semi-algebraic of degree BC and measure

mes2d(S) < BCη1/d

Analogous statement obtained by iteration: t ∈ Rr intersect 2r

slices.

Main ideas: For s-a property apply projection theorem to

{(x1, x2, t) ∈ [0, 1]2d+1 | (x1, t), (x2, t) ∈ S}
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Semialgebraic elimination of variables

By measure condition on slices:

dist(x , ∂(A(t))) < η1/d = η1

Suffices to show the covering number bound

N ({(x1, x2) ∈ [0, 1]2d |∃ t ∈ [0, 1] s.t. x1, x2 ∈ ∂(A(t))}, η1) < BCη1−2d
1

This follows from

{(x1, x2) ∈ [0, 1]2d | ∃ t ∈ [0, 1] with x1, x2 ∈ ∂(A(t))}

is the union of at most BC s-a sets of dimension at most 2d − 1
and degrees at most BC . Use implicit function theorem, with
singularities confined to lower dimensions.
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Illustration of lemma

Figure: The (x , t) variables in the lemma
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Lemma on steep planes

Lemma

Let A ⊂ [0, 1]rd s-a of degree B and mesrd(A) < η. Let
N1, . . . ,Nd−1 ⊂ Zr be finite s.t. with C = C (d , r)

min
1≤s≤r

|ns | > (B max
1≤s≤r

|ms |)C n ∈ Ni , m ∈ Ni−1 (7)

Assume also that
η−1 > max

n∈Nd−1

|n|C

Then with δ−1 = minn∈N1 min1≤s≤r |ns | one has

mes({ω ∈ [0, 1]r |(ω, n(1)ω, . . . , n(d−1)ω) ∈ A, n(i) ∈ Ni}) < BCδ
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Decomposition of semi-algebraic sets

Lemma

Let S ⊂ [0, 1]d1+d2=d be semi-algebraic of degree B and
mesd(S) < η where η < B−N with large N. Denote by
(x , y) ∈ Rd1+d2 and fix ε > η1/d . Then S = S1 ∪ S2 where

mesd1(ProjxS1) < BCε

mesd2(S2 ∩ L) < BCε−1η1/d

for all L, d2-dimensional planes in Rd so that

max
1≤j≤d1

|ProjL(ej)| < ε

where ej is a coordinate unit vector.

Proof immediate from Yomdin: consider a single simplex,
distinguish the two cases based on size of first order derivatives.
See following figure.
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Semi-algebraic decomposition

Figure: The sets S1 and S2
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Proof of the steep planes lemma

Main ideas: partition [0, 1]r into cubes Iα of size N−1
d−1 where

Ni = max
n∈Ni

max
1≤s≤r

|ns |

Mi = min
n∈Ni

min
1≤s≤r

|ns |
(8)

For each α consider r -dim segment

Lα = {(ω, n(1)ω, . . . , n(d−1)ω) | ω ∈ Iα}

with n(i) ∈ Ni fixed. Main estimate:

|ProjLα(ej)| <
Nd−2

Md−1
∀ j ≤ r(d − 1) (9)

Now apply decomposition for s-a sets as above with this ε, and
then sum over the n(i) one after the other.
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Measure estimate at fixed energy E

The exponential Green function measure estimate reads as follows:

Proposition

We can take λ large and ω outside of a small set such that the
following holds: ∃ ρ, c1 ∈ (0, 1) s.t. ∀ N there is a subset
X = XN ⊂ [0, 1]d

mes({θ | (x1, . . . , xi−1, θ, xi+1, . . .) ∈ X}) < e−Nc1

for all 1 ≤ i ≤ d and xi , and if x 6∈ X one has

‖GN(ω; E , x)‖ < eNρ

|GN(ω; E , x)(n, n′)| < e−σN ∀ |n − n′| > N/10

σ here is actually large, on the order of log λ. Plays the role of
“Lyapunov exponent”.
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Main ideas for the induction on scales

Fix some large initial scale N0 and take λ large so that the
proposition holds. This does not require elimination of frequencies.
Let N < M < N̄ = eNc

. The two lemmas imply the following:

there exists ΩN ⊂ Tr with mes(Ωc
N) < N−σ, σ > 0 small s.t. for

all ω ∈ ΩN 6 ∃ sequence n(j) ∈ Z ∩ [−N̄, N̄]d , 1 ≤ j ≤ C (d) = 2d+1

with

min
s
|n(1)

s | > MC

min
s
|n(j+1)

s | >
(

M max
s
|n(j)

s |
)C

and such that Green functions GΛ(ω; E , x) for arbitrary but fixed
(E , x) are all bad with Λ = [−M,M]d + n(α).
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The chains of cubes illustrated in Z2

Figure: The type of chain arising in the elimination of (E , x) and ω

Note that mins |ns | of one cube needs to by far exceed the
maxs |ns | of the previous cube.
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Main ideas for the induction on scales

This of course requires elimination of the variables (E , x). Use
the semi-algebraic elimination lemma from above based on
intersection of slices applied to the following set:

{(E , ω, x , y) ∈ [−C ,C ]× ΩM × [0, 1]2d |GM(ω; E , x + y) is bad}

This is exactly what is needed to obtain the translation structure
relative to the y -variable, which then becomes nω via the lemma
on steep planes.
What have we accomplished? The resonant sites are now in the
forbidden zones, which are still super-linear in the large scale - and
thus far too numerous.
Ergo: Need to repeat the construction inside of the forbidden
zones, which means we only translate parallel to it:
I ⊂ {1, 2, . . . , d} and now condition on partially translated Green
function GM(ω; E , {xi + yi}i∈I , {xj}j 6∈I ) being resonant.
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How to use the long chains

We need to go from the nonexistence of long resonant chains to a
statement involving manageable regions in Zd which are free of
any resonant cubes.
After all: We wish to confine the resonant cubes within a limited
volume (sub-linear bound).

Main claim: For any x ∈ Td ,E ∈ R, ω ∈ ΩN the following holds.
Given m ∈ Zd there exists N < M < NC so that for the region

Σ :=
d∏

i=1

[mi −M,mi + M] \
d∏

i=1

[mi −Mε,mi + Mε]

the Green function GΣ(ω; E , x) is good.

We can take ε = 1
2d so that the total volume that we remove is

sub linear in the diameter of the large box.
Note: We cannot expect to make such a statement for a FIXED
box. The choice of the scale M depends on x ,E ,m, ω,N.
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How to use the long chains
We begin with a simpler version of the claim, in which we squeeze
only a single coordinate. If this were false, then we could get a
nested family of the following basic building block, so that in the
cubes outside the forbidden zones there is always a resonant site.

But then we have a chain which we excluded. Forbidden zones
dictated by the min-max condition in lemma on steep planes.
Now squeeze each coordinate one after the other.
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Boxing in the resonant sites

Figure: The stepwise confinement of resonant sites

This is achieved by applying lemma on steep planes with different
configurations of coordinates: first all of them, then reduce by one
etc., until down to a single coordinate. Now apply matrix Cartan
to obtain the exponential measure estimate at the large scale.
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Localization

This is now fairly straightforward. Requires further elimination in ω
to remove double resonance.
Begin with solution Hω(0)ξ = Eξ where ξ grows polynomially.
Step 1: Given N large find box of size in [N,NC ] for which the
annulus Σ from above centered at the origin is good. This gives a
scale N̄ such that

|ξn| ≤ exp(−σN̄) ∀ |n| = N̄

which implies with QN̄ = [−N̄, N̄]d and with R the restriction
operator to this box

dist(E , spec(RHω(0)R)) < exp(−σN̄) (10)

This means that we can replace E with one of the eigenvalues of
the finite volume operator.
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Localization

Step 2: With E as in (10) above, we need to throw out those ω for
which we do not have the following for x = 0: for all
NC < |k | < NC ′

‖GN(E ; kω)‖ < eNρ

|GN(E ; kω)(n, n′)| < e−N ∀|n − n′| > N/10
(11)

This is precisely the double resonance condition. Consider set

S =
{

(ω,E , x) ∈ ΩN × R× Td | det(Hω(0),E ) = 0, and∑
n,n′

|GN(ω,E , x)(n, n′)|2 > e2Nρ

or
∑

|n−n′|>N/10

|GN(ω,E , x)(n, n′)|2 > e−2N
}

This satisfies two main conditions on complexity and measure.
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Localization

Semi-algebraic of degree NC . Can project away energy E and
this stays the same.

Measure along each one-dimensional slice is small, on the
order of e−Nε . In particular, entire measure is small, as well as
that of any other higher-dimensional slices.

Now use the semi-algebraic decomposition from above, as well as
the steep lines to eliminate the problematic frequencies:

(ω, kω) ∈ Projω,x(S)

No new ideas involved at this stage.
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Summary of Lecture 4

On lattices Zd rely on (i) resolvent identity (ii) matrix-valued
Cartan to get exponential estimate on the probability of
having a bad Green function at fixed energy. Induction on
scales, method is perturbative.

Challenge: control the Riesz mass in Cartan estimate, i.e.,
number of resonant sites at the lower scale. Need sub-linear
bound in diameter at large scale.

In Z2 this was done by an arithmetic elimination process -
higher dimensions? Does not depend on the potential.

In higher dimensions we can use (i) semi-algebraic elimination
of variables (ii) method of steep lines or planes to insure that
no long chains (but of fixed length depending only on the
dimension) of bad sites can form.

Ultimately this gives the sub-linear bound on the number of
bad sites.

Elimination of energy then fairly standard, leading to
Anderson Localization.
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