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Overview
Goal: To describe recent advances in large data results for
nonlinear wave equations

�u = F(u,Du),F(0) = DF(0) = 0, (u(0), u̇(0)) = (f , g)

Small data theory: F treated as perturbation. Local/Global
well-posedness, conserved quantities (energy), symmetries
(especially dilation), choice of spaces, algebraic properties of
F (nullforms)

Large data: local-in-time existence, energy subcritical
problems: time of existence depends on energy of data, so
can time-step. Problem: no information on long-term
dynamics such as scattering (solutions are asymptotically
free). Finite-time breakdown (blowup) of solutions may occur
(type I and II). Classification of possible blowup dynamics

Induction of energy to prove scattering for global solution: If
false then there exists a minimal energy E∗ where it fails.
Construct critical solution (minimal criminal) u∗ with energy E∗.
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Overview

u∗ enjoys compactness properties modulo symmetries.
Forward trajectory (u∗(t), ∂tu∗(t)), t ≥ 0 pre-compact in
energy space.
Idea: if not compact, then by the method of concentration
compactness u∗ decomposes into different solutions with
strictly smaller energies than E∗. By induction hypothesis,
each of these solutions has the desired property and by
means of suitable perturbation theory one shows that u∗ then
also possess this property.

Rigidity: Show that u∗ with this property cannot exist.
Kenig-Merle scheme

Concentration compactness much more versatile, is not tied
to induction on energy: key ingredient in the classification of
blow-up behavior.
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Calculus of Variations

Sobolev imbedding in R3: ‖f‖Lp(R3) ≤ C‖f‖H1(R3), 2 < p < 6
What are the extremizers, optimal constant?
Variational problem:

inf
{
‖f‖H1(R3)

∣∣∣ ‖f‖Lp(R3) = 1
}

= µ > 0

Minimizing sequence

{fn}∞n=1 ⊂ H1(R3), ‖fn‖p = 1, ‖fn‖H1(R3) → µ

How to pass to a limit fn → f∞ strongly in Lp(R3)?

Loss of compactness due to translation invariance!

Claim for p < 6: there exists a sequence {yn}
∞
n=1 ⊂ R

3 such that
{fn(· − yn)}∞n=1 precompact in Lp(R3) and H1(R3).
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Loss of compactness

Figure: masses separating

Simplified model: Assume that fn = gn + hn where ‖gn‖
p
p = m1 > 0

and ‖hn‖
p
p = m2 > 0, m1 + m2 = 1, supports of gn, hn disjoint.

Then ‖fn‖2H1 = ‖gn‖
2
H1 + ‖hn‖

2
H1 ≥ µ

2(m2/p
1 + m2/p

2 ), 2/p < 1

This is a contradiction since right-hand side > µ2 .
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A concentration-compactness decomposition
{fn}∞n=1 ⊂ H1(R3) a bounded sequence. Then ∀j ≥ 1 there ∃ (up to
subsequence) {x j

n}
∞
n=1 ⊂ R

3 and V j ∈ H1 such that

for all J ≥ 1 one has fn =
∑J

j=1 V j(· − x j
n) + wJ

n

∀j , k one has |x j
n − xk

n | → ∞ as n → ∞
wJ

n (·+ x j
n) ⇀ 0 for each 1 ≤ j ≤ J as n → ∞

lim supn→∞ ‖w
J
n‖Lp(R3) → 0 as J → ∞ for all 2 < p < 6

Moreover, as n → ∞,
‖fn‖22 =

∑J
j=1 ‖V

j‖22 + ‖wJ
n‖

2
2 + o(1)

‖∇fn‖22 =
∑J

j=1 ‖∇V j‖22 + ‖∇wJ
n‖

2
2 + o(1)

P. Gérard 1998, more explicit form of P. L. Lions’
concentration-compactness trichotomy for measures. Makes
failure of compactness modulo symmetries explicit.
immediately implies compactness claim for minimizing
sequences: V j = 0 for j > 1.
only noncompact symmetry groups matter (no rotations)!
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The profiles V j in the Lp sea

We fish for more profiles from the sea: w3
n (·+ yn) ⇀ V4
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Euler-Lagrange equation
Pass to limit fn(· − yn)→ f∞ in H1(R3), ‖f∞‖p = 1, ‖f∞‖H1 = µ. Can
assume f∞ ≥ 0.
Then ∃λ > 0 Lagrange multiplier

−∆f∞ + f∞ = λ|f∞|p−2f∞

Remove λ > 0 since p > 2. Then f∞ = Q > 0 solves

−∆Q + Q = |Q |p−2Q (∗)

Q ∈ H1, Q > 0 unique up to translation (Kwong 1989, McLeod 93).

Q is exponentially decaying, radial, smooth. For dim = 1 explicit
formula, only solutions to (∗) in H1(R) are 0,±Q .

For d > 1 have infinitely many radial solutions to (∗) that change
sign (nodal solutions). Berestycki, Lions, 1983.
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What happens for p = 6?
Decomposition from above fails at p = 6 due to dilation symmetry.
Correct setting is Ḣ1(R3) since

‖f‖L6(R3) ≤ C‖f‖Ḣ1(R3) = C‖∇f‖2 (†)

Translation and scaling invariant, noncompact group actions.

{fn}∞n=1 ⊂ Ḣ1(R3) a bounded sequence. Then ∀j ≥ 1 there ∃ (up to
subsequence) {x j

n}
∞
n=1 ⊂ R

3, {λj
n}
∞
n=1 ∈ R

+ and V j ∈ Ḣ1 such that

for all J ≥ 1 one has fn =
∑J

j=1

√
λ

j
nV j(λj

n(· − x j
n)) + wJ

n

∀j , k one has λj

λk
n

+ λk

λ
j
n

+ λ
j
n |x

j
n − xk

n | → ∞ as n → ∞

lim supn→∞ ‖w
J
n‖L6(R3) → 0 as J → ∞.

Moreover, as n → ∞,

‖∇fn‖22 =
J∑

j=1

‖∇V j‖22 + ‖∇wJ
n‖

2
2 + o(1)
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Minimizer for p = 6
Variational problem associated with (†)

inf
{
‖f‖Ḣ1(R3)

∣∣∣ ‖f‖L6(R3) = 1
}

= µ > 0

Minimizing sequence

{fn}∞n=1 ⊂ Ḣ1(R3), ‖fn‖L6(R3) = 1, ‖fn‖Ḣ1(R3) → µ

From the decomposition/minimization: Exactly one profile
∃{yn}

∞
n=1 ⊂ R

3, {λn}
∞
n=1 ∈ R

+ such that {λ1/2
n fn(λn(· − yn))}∞n=1

precompact in L6(R3) and Ḣ1(R3).
λ1/2

n fn(λn(· − yn))→ f∞, Euler-Lagrange equation for ϕ = cf∞

∆ϕ + ϕ5 = 0

Only radial solutions are ±W , 0 up to dilation symmetry, where

W(x) = (1 + |x |2/3)−
1
2
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Calculus of Variations on Minkowski background

Let
L(u, ∂tu) :=

∫
R1+d

t ,x

1
2

(
− u2

t + |∇u|2
)
(t , x) dtdx (1)

Substitute u = u0 + εv. Then

L(u, ∂tu) = L0 + ε

∫
R1+d

t ,x

(�u0)(t , x)v(t , x) dtdx + O(ε2)

where � = ∂tt −∆.
Thus u0 is a critical point of L if and only if �u0 = 0.

Significance:

Underlying symmetries⇒ invariances⇒ Conservation laws
Conservation of energy, momentum, angular momentum

Lagrangian formulation has a universal character, and is
flexible, versatile.
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Wave maps 1
Let (M, g) be a Riemannian manifold, and u : R1+d

t ,x → M smooth.
What does it mean for u to satisfy a wave equation?
Lagrangian

L(u, ∂tu) =

∫
R1+d

t ,x

1
2

(−|∂tu|2g +
d∑

j=1

|∂ju|2g
)
dtdx

Critical points L′(u, ∂tu) = 0 satisfy “manifold-valued wave
equation”.
M ⊂ RN imbedded, this equation is

�u ⊥ TuM or �u = A(u)(∂u, ∂u),

A being the second fundamental form.
For example, M = Sn−1, then

�u = u(|∂tu|2 − |∇u|2)

Note: Nonlinear wave equation, null-form! Harmonic maps are
solutions.
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Wave maps 2
Intrinsic formulation: Dα∂αu = ηαβDβ∂αu = 0, in coordinates

−ui
tt + ∆ui + Γi

jk (u)∂αuj∂αuk = 0

η = (−1, 1, 1, . . . , 1) Minkowski metric

Similarity with geodesic equation: u = γ ◦ ϕ is a wave map
provided �ϕ = 0, γ a geodesic.

Energy conservation: E(u, ∂tu) =

∫
Rd

(
|∂tu|2g +

∑d
j=1 |∂ju|2g

)
dx

is conserved in time.
Cauchy problem:

�u = A(u)(∂αu, ∂αu), (u(0), ∂tu(0)) = (u0, u1)

smooth data. Does there exist a smooth local or
global-in-time solution?

Local: Yes. Global: depends on the dimension of Minkowski
space and the geometry of the target.
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Criticality, dimension
If u(t , x) is a wave map, then so is u(λt , λx) ∀λ > 0.
Data in the Sobolev space Ḣs × Ḣs−1(Rd). For which s is this
space invariant under the natural scaling?. Answer: s = d

2 .

Scaling of the energy: u(t , x) 7→ λ
d−2

2 u(λt , λx) same as Ḣ1 × L2.

Subcritical case: d = 1 the natural scaling is associated with
less regularity than that of the conserved energy. Expect
global existence. Logic: local time of existence only depends
on energy of data, which is preserved.
Critical case: d = 2. Energy keeps the balance with the
natural scaling of the equation. For S2 can have finite-time
blowup, whereas for H2 have global existence.
Krieger-S.-Tataru 06, Krieger-S. 09, Rodnianski-Raphael 09,
Sterbenz-Tataru 09, T. Tao.
Supercritical case: d ≥ 3. Poorly understood. Self-similar
blowup Q(r/t) for sphere as target, Shatah 80s. Also
negatively curved manifolds possible in high dimensions:
Cazenve, Shatah, Tahvildar-Zadeh 98.
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Basic mathematical questions (for nonlinear problems)

Wellposedness: Existence, uniqueness, continuous
dependence on the data, persistence of regularity. At first,
one needs to understand this locally in time.

Global behavior: Finite time break down (some norm, such as
L∞, becomes unbounded in finite time)? Or global existence:
smooth solutions for all times for smooth data?

Blow up dynamics: If the solution breaks down in finite time,
can one describe the mechanism by which it does so? For
example, via energy concentration at the tip of a light cone?
Often, symmetries (in a wider sense) play a crucial role here.

Scattering to a free wave: If the solutions exists for all t ≥ 0,
does it approach a free wave? �u = N(u), then ∃v with
�v = 0 and (~u − ~v)(t)→ 0 as t → ∞ in a suitable norm? Here
~u = (u, ∂tu). If scattering occurs, then we have local energy
decay.
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Basic questions 2

Special solutions: If a global solution does not approach a
free wave, does it scatter to something else? A stationary
nonzero solution, for example? Focusing equations often
exhibit nonlinear bound states.

Stability theory: If special solutions exist such as stationary or
time-periodic ones, are they orbitally stable? Are they
asymptotically stable?

Multi-bump solutions: Is it possible to construct solutions
which asymptotically split into moving “solitons” plus
radiation? Lorentz invariance dictates the dynamics of the
single solitons.

Resolution into multi-bumps: Do all solutions decompose in
this fashion (as in linear asymptotic completeness)? Suppose
solutions ∃ for all t ≥ 0: either scatter to a free wave, or the
energy collects in “pockets” formed by such “solitons”?
Quantization of energy.
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Dispersion
In R3, Cauchy problem �u = 0, u(0) = 0, ∂tu(0) = g has solution

u(t , x) = t
?

tS2
g(x + y)σ(dy)

If g supported on B(0, 1), then u(t , x) supported on
∣∣∣|t | − |x |∣∣∣ ≤ 1.

Huygens’ principle. Decay of the wave:

‖u(t , ·)‖∞ ≤ Ct−1‖Dg‖1 (∗)

In general dimensions the decay is t−
d−1

2 .

(∗) not suitable for nonlinear problems, since the spaces are not
invariant. Energy based variant

‖ u‖Lp
t Lq

x (R3) . ‖(u(0), u̇(0))‖Ḣ1×L2(R3) + ‖�u‖L1
t L2

x (R3)

where 1
p + 3

q = 1
2 . Strichartz estimates

For example, L∞t L6
x (R1+3), L8

t ,x(R1+3). L2
t L∞x
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Domain of influence

Figure: Huygens principle
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A nonlinear Klein-Gordon equation 1
Consider in R1+3

t ,x

�u + u + u3 = 0, (u(0), u̇(0)) = (f , g) ∈ H := H1 × L2(R3)

Conserved energy

E(u, u̇) =

∫
R3

(1
2
|u̇|2 +

1
2
|∇u|2 +

1
2
|u|2 +

1
4
|u|4

)
dx

With S(t) the linear propagator of �+ 1 we have

~u(t) = (u, u̇)(t) = S(t)(f , g) −

∫ t

0
S(t − s)(0, u3(s)) ds

whence by a simple energy estimate, I = (0,T)

‖~u‖L∞(I;H) . ‖(f , g)‖H + ‖u3‖L1(I;L2) . ‖(f , g)‖H + ‖u‖3L3(I;L6)

. ‖(f , g)‖H + T‖~u‖3L∞(I;H)

Contraction for small T implies local wellposedness for H data.
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A nonlinear Klein-Gordon equation 2
T depends only on H-size of data. From energy conservation we
obtain global existence by time-stepping.

Asymptotic state of the solution? Behaves like a free wave?

Scattering (as in linear theory): ‖~u(t) − ~v(t)‖H → 0 as t → ∞
where �v + v = 0 energy solution.

~v(0) := ~u(0) −

∫ ∞

0
S(−s)(0, u3)(s) ds provided ‖u3‖L1

t L2
x
< ∞

Where is finiteness of ‖u‖L3
t L6

x
coming from? Requires dispersion!

Strichartz estimate uniformly in intervals I

‖~u‖L∞(I;H) + ‖u‖L3(I;L6) . ‖(f , g)‖H + ‖u‖3L3(I;L6)

Small data scattering! ‖~u‖L3(I;L6) . ‖(f , g)‖H � 1 for all I. So I = R
as desired.
Large data scattering valid; induction on energy, concentration
compactness (Bourgain, Bahouri-Gerard, Kenig-Merle).
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Scattering blueprint
Let ~u be nonlinear solution with data (u0, u1) ∈ H . Forward
scattering set

S+ = {(u0, u1) ∈ H |~u(t)∃ globally, scatters as t → +∞}

We claim that S+ = H . This is proved via the following outline:

(Small data result): ‖(u0, u1)‖H < ε implies (u0, u1) ∈ S+

(Concentration Compactness): If scattering fails, i.e., if
S+ , H , then construct ~u∗ of minimal energy E∗ > 0 for which
‖u∗‖L3

t L6
x

= ∞. There exists x(t) so that the trajectory

K+ = {~u∗(· − x(t), t) | t ≥ 0}

is pre-compact in H .
(Rigidity Argument): If a forward global evolution ~u has the
property that K+ pre-compact in H , then u ≡ 0.

This scheme was introduced by Kenig-Merle 2006, based on
Bahouri-Gérard decomposition 1998; Merle-Vega.
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Bahouri-Gérard: symmetries vs. dispersion
Let {un}

∞
n=1 free Klein-Gordon solutions in R3 s.t.

sup
n
‖~un‖L∞t H

< ∞

∃ free solutions v j bounded in H , and (t j
n, x

j
n) ∈ R × R3 s.t.

un(t , x) =
∑

1≤j<J

v j(t + t j
n, x + x j

n) + wJ
n (t , x)

satisfies ∀ j < J, ~wJ
n (−t j

n,−x j
n) ⇀ 0 in H as n → ∞, and

limn→∞(|t j
n − tk

n |+ |x
j
n − xk

n |) = ∞ ∀ j , k
dispersive errors wk

n vanish asymptotically:

lim
J→∞

lim sup
n→∞

‖wJ
n‖(L∞t Lp

x ∩L3
t L6

x )(R×R3) = 0 ∀ 2 < p < 6

orthogonality of the energy:

‖~un‖
2
H

=
∑

1≤j<J

‖~v j‖2
H

+ ‖~wJ
n‖

2
H

+ o(1)

W. Schlag, http://www.math.uchicago.edu/˜schlag Concentration Compactness

http://www.math.uchicago.edu/~schlag


Profiles and Strichartz sea

We can extract further profiles from the Strichartz sea if w4
n does

not vanish as n → ∞ in a suitable sense. In the radial case this
means limn→∞ ‖w4

n‖L∞t Lp
x (R3) > 0.
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Lorentz transformations
t ′

x′1
x′2
x′3

 =


coshα sinhα 0 0
sinhα coshα 0 0

0 0 1 0
0 0 0 1




t
x1

x2

x3
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Remarks on Bahouri-Gérard

Noncompact symmetry groups: space-time translations and
Lorentz transforms.
Compact symmetry groups: Rotations

Why do Lorentz transforms not appear in the profiles?

Energy bound compactifies them!

Dispersive error wJ
n is not an energy error!

In the radial case only need time translations
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Critical element u∗
Key observation in the Kenig-Merle scheme: Can have only one
profile due to minimality of the energy E∗.

Critical sequence ~un(0) ∈ H , s.t. E(~un(0))→ E∗ and
‖un‖L3

t (R;L6
x (R3)) → ∞ as n → ∞.

Apply B-G decomposition to {~un(0)}n.
Suppose v1 , 0, v2 , 0. Then E(~v j(·+ t j

n)) < E∗ for all j. Pass
to nonlinear profiles V j

‖~v j(t j
n) − ~V j(t j

n)‖H → 0 as n → ∞

E(V j) < E∗ and V j global solution, scatters.
Pick J so large that ‖wJ

n‖L3
t L6

x
< ε. Perturbation theory implies

that we can glue all V j together with wJ
n so as to imply

‖un‖L3
t L6

x
≤ M < ∞ ∀ n

Contradiction! So have at most one profile. This gives
compactness as in the elliptic case up to the symmetries.
Gives compactness of forward/backward trajectory. Again
proved by contradiction.W. Schlag, http://www.math.uchicago.edu/˜schlag Concentration Compactness
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Rigidity argument, radial case

Radial case, u∗(t) has precompact forward trajectory in
H1 × L2(R3).
Virial identity, A = 1

2 (x∇+ ∇x)

∂t〈χu̇∗ | Au∗〉 = −

∫
R3

(|∇u∗|2 +
3
4
|u∗|4) dx + error

χ(t , x) cutoff to |x | ≤ R, error is uniformly small due to
compactness.

Integrate in time:

〈χu̇∗ | Au∗〉
∣∣∣∣T
0

= −

∫ T

0

[ ∫
R3

(|∇u∗|2 +
3
4
|u∗|4) dx + error

]
(t) dt

LHS = O(R × Energy(~u∗)), RHS ≥ T × Energy(~u∗).

Contradiction for large T if u∗ , 0.
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Rigidity argument, nonradial case

There exists a path x(t) s.t. ~u∗(t , · − x(t)) is relatively compact for
t ≥ 0 in H1 × L2.

We know |x(t)| ≤ Ct by finite propagation speed. If optimal, would
destroy virial argument.

Key observation: u∗ has vanishing momentum

P(~u∗) = 〈u̇∗ | ∇u∗〉 = 0

Idea: If not, then by means of a Lorentz transform could lower the

energy while retaining the property that the solution does not
scatter. Contradiction to minimality of the energy!

So conclude that x(t) = o(t). Virial argument applies as before.

Grand conclusion: solutions of �u + u + u3 = 0, arbitrary data in
H1 × L2(R3), scatter to a free energy solution as t → ±∞.
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The focusing NLKG equation

The focusing NLKG

�u + u = ∂ttu −∆u + u = u3

has indefinite conserved energy

E(u, u̇) =

∫
R3

(1
2
|u̇|2 +

1
2
|∇u|2 +

1
2
|u|2 −

1
4
|u|4

)
dx

Local wellposendness for H1 × L2(R3) data

Small data global existence and scattering

Finite time blowup u(t) =
√

2(T − t)−1(1 + o(1)) as t → T−
Cutoff to a cone using finite propagation speed to obtain finite
energy solution.

stationary solutions −∆ϕ + ϕ = ϕ3, ground state Q(r) > 0
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Cutoff for the blowup construction

Dashed line is a smooth cutoff which = 1 on |x | ≤ T .
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Payne-Sattinger theory 1
Criterion: finite-time blowup/global existence?
Yes, provided the energy is less than the ground state energy

Figure: The saddle structure of the energy near the ground state

J(ϕ) =

∫
R3

(1
2
|∇ϕ|2 +

1
2
|ϕ|2 −

1
4
|ϕ|4

)
dx

K(ϕ) =

∫
R3

(
|∇ϕ|2 + |ϕ|2 − |ϕ|4

)
dx

Uniqueness of Q is the foundation!
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Payne-Sattinger theory 2
jϕ(λ) := J(eλϕ), ϕ , 0 fixed.

Figure: Payne-Sattinger well

Normalize so that λ∗ = 0. Then ∂λjϕ(λ)
∣∣∣
λ=λ∗

= K0(ϕ) = 0.
“Trap” the solution in the well on the left-hand side: need
E < inf{jϕ(0) | K0(ϕ) = 0, ϕ , 0} = J(Q) (lowest mountain pass).
Expect global existence in that case.
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Above the ground state energy, Nakanishi-S. 2010
Theorem

Let E(u0, u1) < E(Q , 0) + ε2, (u0, u1) ∈ Hrad. In t ≥ 0 for NLKG:
1 finite time blowup
2 global existence and scattering to 0
3 global existence and scattering to Q:

u(t) = Q + v(t) + oH1(1) as t → ∞, and u̇(t) = v̇(t) + oL2(1)
as t → ∞, �v + v = 0, (v , v̇) ∈ H .

All 9 combinations of this trichotomy allowed as t → ±∞.

Applies to dim = 3, |u|p−1u, 7/3 < p < 5, or dim = 1, p > 5.
Third alternative forms the center stable manifold
associated with (±Q , 0). Linearized operator
L+ = −∆ + 1 − 3Q2 has spectrum {−k 2} ∪ [1,∞) on L2

rad(R3).
Gap [0, 1) difficult to verify, Costin-Huang-S., 2011.
∃ 1-dim. stable, unstable mflds at (±Q , 0). Stable mfld:
Duyckaerts-Merle, Duyckaerts-Holmer-Roudenko 2009
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The invariant manifolds

Ball in H1 × L2 (radial), centered at (Q , 0). Center-stable manifold
separates blowup in finite positive time from existence for all times
and scattering to a free wave.
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Numerical 2-dim section through ∂S+ (with R. Donninger)

Figure: (Q + Ae−r2
,Be−r2

)

soliton at (A ,B) = (0, 0), (A ,B) vary in [−9, 2] × [−9, 9]

RED: global existence, WHITE: finite time blowup, GREEN:
PS−, BLUE: PS+

Our results apply to a neighborhood of (Q , 0), boundary of the
red region looks smooth (caution!)
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Hyperbolic dynamics near ±Q
Linearized operator L+ = −∆ + 1 − 3Q2

〈L+Q |Q〉 = −2‖Q‖44 < 0

L+ρ = −k 2ρ unique negative eigenvalue, no kernel over radial
functions

Gap property: L+ has no eigenvalues in (0, 1], no threshold
resonance (delicate!) Use Kenji Yajima’s Lp-boundedness for
wave operators.

Plug u = Q + v into cubic NLKG:

v̈ + L+v = N(Q , v) = 3Qv2 + v3

Rewrite as a Hamiltonian system:

∂t

(
v
v̇

)
=

[
0 1
−L+ 0

] (
v
v̇

)
+

(
0

N(Q , v)

)
Then spec(A) = {k ,−k } ∪ i[1,∞)∪ i(−∞,−1] with ±k simple evals.
Formally: Xs = P1L2, Xu = P−1L2, Xc is the rest.
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Spectrum of matrix Hamiltonian

Figure: Spectrum of nonselfadjoint linear operator in phase space
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Variational structure above E(Q , 0)

Solution can pass through the balls. Energy is no obstruction
anymore as in the Payne-Sattinger case.
Key to description of the dynamics: One-pass (no return)
theorem. The trajectory can make only one pass through the
balls.
Point: Stabilization of the sign of K(u(t)).
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One-pass theorem

Figure: Possible returning trajectories

Such trajectories are excluded by means of an indirect argument
using a variant of the virial argument that was essential to the
rigidity step of Kenig-Merle.

W. Schlag, http://www.math.uchicago.edu/˜schlag Concentration Compactness

http://www.math.uchicago.edu/~schlag


Equivariant wave maps
u : R1+2

t ,x → S2 satisfies WM equation

�u ⊥ TuS2 ⇔ �u = u(|∂tu|2 − |∇u|2)

as well as equivariance assumption u ◦ R = R ◦ u ∀ R ∈ SO(2)

Figure: Equivariance and Riemann sphere
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Equivariant wave maps 2

u(t , r , φ) = (ψ(t , r), φ), spherical coordinates, ψ angle from north
pole satisfies

ψtt − ψrr −
1
r
ψr +

sin(2ψ)

2r2 = 0, (ψ, ψ̇)(0) = (ψ0, ψ1)

Conserved energy

E(ψ, ψ̇) =

∫ ∞

0

(
ψ2

t + ψ2
r +

sin2(ψ)

r2

)
r dr

ψ(t ,∞) = nπ, n ∈ Z, homotopy class = degree = n

stationary solutions = harmonic maps = 0,±Q(r/λ), where
Q(r) = 2 arctan r . This is the identity S2 → S2 with
stereographic projection onto R2 as domain (conformal map!).
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Large data results for equivariant wave maps 1

Theorem (Côte, Kenig, Lawrie, S. 2012)

Let (ψ0, ψ1) be smooth data.
1 Let E(ψ0, ψ1) < 2E(Q , 0), degree 0. Then the solution exists

globally, and scatters (energy on compact sets vanishes as
t → ∞). For any δ > 0 there exist data of energy
< 2E(Q , 0) + δ which blow up in finite time.

2 Let E(ψ0, ψ1) < 3E(Q , 0), degree 1. If the solution ψ(t) blows
up at time t = 1, then there exists a continuous function,
λ : [0, 1)→ (0,∞) with λ(t) = o(1 − t), a map
~ϕ = (ϕ0, ϕ1) ∈ H0 with E(~ϕ) = E(~ψ) − E(Q , 0), and a
decomposition

~ψ(t) = ~ϕ + (Q (·/λ(t)) , 0) + ~ε(t) (?)

s.t. ~ε(t) ∈ H0, ~ε(t)→ 0 in H0 as t → 1.

W. Schlag, http://www.math.uchicago.edu/˜schlag Concentration Compactness

http://www.math.uchicago.edu/~schlag


Large data results for equivariant wave maps 2

For degree 1 have an analogous classification to (?) for
global solutions.

Côte, Kenig, Merle 2006 proved the degree 0 result for
E < E(Q , 0) + δ. Proof proceeds via the small data
scattering/concentration-compactness/rigidity scheme.

Duyckaerts, Kenig, Merle established classification results for
�u = u5 in Ḣ1 × L2(R3) with W(x) = (1 + |x |2/3)−

1
2 instead

of Q .

Construction of (?) by Krieger-S.-Tataru, Donninger-Krieger
λ(t) = t−1−ν

Crucial role is played by Michael Struwe’s bubbling off
theorem (equivariant): if blowup happens, then there exists a
sequence of times approaching blowup time, such that a
rescaled version of the wave map approaches locally in
energy space a harmonic map of positive energy.
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Cuspidal energy concentration

Rescalings converge in L2
t ,r -sense to a stationary wave map of

positive energy, i.e., a harmonic map.
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Exterior energy

�u = 0, u(0) = f ∈ Ḣ1(Rd), ut (0) = g ∈ L2(Rd) radial
Duyckaerts-Kenig-Merle: for all t ≥ 0 or t ≤ 0 have
Eext (~u(t)) ≥ cE(f , g) provided dimension odd. c > 0, c = 1

2
Heuristics: incoming vs. outgoing data.
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Exterior energy: even dimensions
Côte-Kenig-S.: This fails in even dimensions.

d = 2, 6, 10, . . . holds for data (0, g) but fails in general for (f , 0).
d = 4, 8, 12, . . . holds for data (f , 0) but fails in general for (0, g).

Fourier representation, Bessel transform, dimension d reflected in
the phase of the Bessel asymptotics, computation of the
asymptotic exterior energy as t → ±∞.

For our 3E(Q , 0) theorem we need d = 4 result; rather than d = 2
due to repulsive ψ

r2 -potential coming from sin(2ψ)

2r2 .

Why does (f , 0) result suffice? Because of Christodoulou,
Tahvildar-Zadeh, Shatah results from mid 1990s. Showed that at
blowup t = T = 1 have vanishing kinetic energy

lim
t→1

1
1 − t

∫ 1

t

∫ t

0
|ψ̇(t , r)|2 rdr dt = 0

No result for Yang-Mills since it corresponds to d = 6
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EMS book with Krieger
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EMS book with Nakanishi
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