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Overview

Goal: To describe recent advances in large data results for
nonlinear wave equations

ou = F(u, Du), F(0) = DF(0) = 0, (u(0), u(0)) = (f,9)
° . F treated as perturbation. Local/Global
well-posedness, conserved quantities (energy), symmetries

(especially dilation), choice of spaces, algebraic properties of
F (nullforms)

° local-in-time existence, energy subcritical
problems: time of existence depends on energy of data, so
can time-step. Problem: no information on long-term
dynamics such as scattering (solutions are asymptotically
free). Finite-time breakdown (blowup) of solutions may occur
(type I and II). Classification of possible blowup dynamics

° If
false then there exists a minimal energy E. where it fails.
Construct critical solution (minimal criminal) u, with energy E..
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Overview

@ U, enjoys compactness properties modulo symmetries.
Forward trajectory (u.(t), d;u.(t)), t > 0 pre-compact in
energy space.

Idea: if not compact, then by the method of
u, decomposes into
than E.. By induction hypothesis,
each of these solutions has the desired property and by
means of suitable perturbation theory one shows that u. then
also possess this property.

@ Rigidity: Show that u, with this property

@ Concentration compactness , is not tied
to induction on energy: key ingredient in the classification of
blow-up behavior.
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Calculus of Variations

Sobolev imbedding in R%: [Ifll p(rsy < Cliflli(rey, 2<p <6
What are the extremizers, optimal constant?

inf {[IFl gy | Iflpqesy = 1) = 1> 0

Minimizing sequence

oy CH'(R®), lfallo =1, allnrsy = w

How to pass to a limit f, — f., strongly in LP(R3)?
Loss of compactness due to translation invariance!

Claim for p < 6: there exists a sequence {yn}, , C R3 such that
{fa(- = yn)}>_, precompact in LP(R®) and H'(R®).
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Loss of compactness

Figure: masses separating

Assume that f, = g, + h, where [|gs|l5 = my > 0
and [|h,llp = mz > 0, my + mz = 1, supports of g,, h, disjoint.

Then [[fl2, = llgnll2, + 1hali?, = p2(miP + m3/P),  2/p <1
This is a contradiction since right-hand side > 2 .
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A concentration-compactness decomposition
iy < HI(R ) '

n a bounded sequence. Then Vj > 1 there 4 (up to

subsequence) {x,}>>_, c R® and V/ € H' such that

o forall J> 1one has f, = 5/ VI(- - x}) + w;l
@ Vj # k one has |x, — xK| - 0o as n — oo
w;{(-+x,j1) —Oforeach1 <j<Jasn— o
® limsup,_, W;llpre) = 0asJ — coforall2<p <6
Moreover, as n — oo,
o lIfll3 = 2L, ||Vf||2+||wJ||2+o( )
o |[Vili5 = ZJ VIS + Vw5 + o(1)

° , more explicit form of
concentration-compactness trichotomy for measures. Makes
failure of compactness modulo symmetries explicit.

@ immediately implies compactness claim for minimizing
sequences: V/ = 0forj > 1.

@ only noncompact symmetry groups matter (no rotations)!
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The profiles V/ in the LP sea

We fish for more profiles from the sea: w3(- + y,) — V*
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Euler-Lagrange equation

Pass to limit fo(- — yn) = fw in H'(R®), llfwllo = 1, lfwllyr = x. Can
assume f,, > 0.
Then 34 > 0 Lagrange multiplier

—Afy + fro = Af|P2fs

Remove A > 0 since p > 2. Then f, = Q > 0 solves

-AQ+Q=1QP2%Q (¥

Q € H', Q > 0 unique up to translation (Kwong 1989, McLeod 93).
Qis . For dim = 1 explicit
formula, only solutions to (x) in H'(R) are 0, Q.

For d > 1 have to (x) that change
sign (nodal solutions). Berestycki, Lions, 1983.
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What happens for p = 67

Decomposition from above fails at p = 6 due to dilation symmetry.
Correct setting is H'(R®) since

Iflses) < Clifllinzay = ClIVAlz (%)

Translation and scaling invariant, noncompact group actions.

{fa}_, C H' (R3) a bounded sequence. Then Vj > 1 there 3 (up to
subsequence) {x,}*_, c R%, (¥}, e R* and V/ € H' such that
o forallJ > 1 one has f, = 5/ L, VI(h(- — X)) + il
° Vj;tkonehas%Jr%Jr/l’},lx{,—x,’ﬂ—woasn—wo
o limsup,_., W)l 6r2) — 0as J — oo.
Moreover, as n — oo,

J
IVFal3 = > IV VIIE + Vw3l + o(1)
j=1
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Minimizer for p = 6

(1)
inf{”f”[_p(Rs) | ”f”[_G(RS) = 1} =u>0

Minimizing sequence
(kg € H'(R®),  lfalls(eey = 1, fnll g (rsy = M

From the decomposition/minimization: Exactly one profile
Hynloo_, € R3, {25}, € RT such that {4 A2 (An(- — Yo,
precompact in LG(R3) and H'(R3).
/ll/zfn(/ln(- - ¥n)) — fw, Euler-Lagrange equation for ¢ = cf.
Ap+¢° =0
Only radial solutions are +W, 0 up to dilation symmetry, where

W(x) = (1 + x[2/3) "2
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Calculus of Variations on Minkowski background

Let
I 1 2 2
L(u,du) = fR1+d E( — Uf + [VuP)(t. x) dtdx (1)

tx

U= U+ ev. Then

£(u, 8,u) :1:0+sf (0o ) (£, X)v(1, x) dltdx + O(&?)

R;+d
where O = 0y — A.
Thus ug is a critical point of £ if and only if Oug = 0.
Significance:
@ Underlying symmetries = = Conservation laws
Conservation of energy, momentum, angular momentum

@ Lagrangian formulation has a universal character, and is
flexible, versatile.
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Let (M, g)

et be a ,and u: Ry ™ — M smooth.
What does it mean for u to satisfy a wave equation?
Lagrangian

d
1
£(u,0nu) = fR 1 310w + > 10,uE) drx

t.x j=1

Critical points £'(u, d;u) = 0 satisfy “manifold-valued wave
equation”.
M c RN imbedded, this equation is

ou L TyM or ou = A(u)(du,du),

A being the second fundamental form.
For example, M = S"', then

ou = u(|8;u® - |Vul?)

Note: Harmonic maps are
solutions.
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Wave maps 2
D%d,u = n"?Dgd,u = 0, in coordinates

—uf + AU+ T (U)d o™ uF =0
n=(-1,1,1,...,1) Minkowski metric

@ Similarity with geodesic equation: u =y o ¢ is a wave map
provided Ogp = 0, v a geodesic.

@ Energy conservation: E(u,diu) = f (|a,u|§ + Zf’:1 |6ju|§) dx
Rd
is conserved in time.

@ Cauchy problem:

ou = A(u)(8%u, d,u), (u(0),:u(0)) = (ug, u1)

smooth data.

Local: Yes. Global: depends on the
and the
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Criticality, dimension

If u(t, x) is a wave map, then so is u(1t, Ax) ¥4 > 0.

Data in the Sobolev space H® x HS~1(R9). s

. Answer: s = §.

Scaling of the energy: u(t, x) — A°2 u(At, Ax) same as H' x L2

@ Subcritical case: d = 1 the natural scaling is associated with
less regularity than that of the conserved energy. Expect
global existence. local time of existence only depends
on energy of data, which is preserved.

@ Critical case: d = 2. Energy keeps the balance with the
natural scaling of the equation. For S? can have finite-time
blowup, whereas for H? have global existence.

@ Supercritical case: d > 3. Poorly understood. Self-similar
blowup Q(r/t) for sphere as target, Also
negatively curved manifolds possible in high dimensions:
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Basic mathematical questions (for nonlinear problems)

@ Wellposedness: Existence, uniqueness, continuous

dependence on the data, persistence of regularity. At first,
one needs to understand this locally in time.

Global behavior: Finite time break down (some norm, such as
L, becomes unbounded in finite time)? Or global existence:
smooth solutions for smooth data?

Blow up dynamics: If the solution breaks down in finite time,
can one describe the mechanism by which it does so? For
example, via ?
Often, symmetries (in a wider sense) play a crucial role here.
Scattering to a free wave: If the solutions exists for all t > 0,
does it approach a free wave? ou = N(u), then v with

ov =0and (d- V)(t) —» 0 as t — oo in a suitable norm? Here
U = (u,d:u). If scattering occurs, then we have local energy
decay.
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Basic questions 2

@ Special solutions: If a global solution
, does it scatter to something else? A stationary
nonzero solution, for example? Focusing equations often
exhibit nonlinear bound states.

@ Stability theory: If special solutions exist such as stationary or
time-periodic ones, are they orbitally stable? Are they
asymptotically stable?

@ Multi-bump solutions: Is it possible to construct solutions
which asymptotically split into moving “solitons” plus
radiation? dictates the dynamics of the
single solitons.

@ Resolution into multi-bumps: Do all solutions decompose in
this fashion (as in linear asymptotic completeness)? Suppose
solutions d for all t > 0: either scatter to a free wave, or the
energy collects in “pockets” formed by such “solitons”?
Quantization of energy.
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InR”, (0) =0, 0:u(0)

ou=0,u = g has solution

u(t,x) =t . g(x +y)o(dy)

If g supported on B(0, 1), then u(t, x) supported on ’|t| - |x|| <1.
Huygens’ principle. Decay of the wave:

lu(t, Yl < Ct DGl (%)

. . . _d-1
In general dimensions the decay is t™ 2 .

(+) not suitable for nonlinear problems, since the spaces are not
invariant. Energy based variant

|| U”L{?L)C(I(Rs) S ||(U(O), U(O))||H1XL2(R3) + ||DU||L11 LE(R3)

where ;—) + % = 1. Strichartz estimates
For example, LPLE(R'13), L8 (R™3). L2L

> Tt
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Domain of influence

Figure: Huygens principle
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A nonlinear Klein-Gordon equation 1

Consider in R, ,
ou+u+ud=0, (u(0),u0))=(f,g) e H :=H"x L3R
Conserved energy
Ew.) = [ (5I0f + S0l + Sluf + Z1utt)ox
p3 \2 2 2 4
With S(t) the of O+ 1 we have

t
a(t) = (u, U)(t) = S(t)(f,g)—f0 S(t-s)(0,u’(s)) ds
whence by a simple energy estimate, | = (0, T)

Gl iy < 1CF @Mt + N6l rezy < ICF @)llae + MUls . o)
S ICF @)l + TG 1)

Contraction for small T implies local wellposedness for H data.
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A nonlinear Klein-Gordon equation 2

T depends only on H-size of data. From energy conservation we
obtain global existence by time-stepping.

Asymptotic state of the solution? Behaves like a free wave?

Scattering (as in linear theory): ||d(t) — V(t)lley — 0 as t — oo
where Ov + v = 0 energy solution.

7(0) = 1(0 f S(-5)(0,u%)(s) ds provided (L]l <

Where is finiteness of ||U||Lng coming from? Requires
Strichartz estimate uniformly in intervals /

1Tl (rey + Nullesgeey S ICF @)l + ||U||i3(,;Le)

Small data scattering! ||dll s(;.Le) < II(f, @)l < 1foralll. So /=R

as desired.
Large data scattering valid; induction on energy, concentration
compactness ( ).
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Scattering blueprint

Let U be nonlinear solution with data (uo, u1) € H.

S = {(ug, ur) € H | u(t) A globally, scatters as t — +oo}

We claim that S, = H. This is proved via the following outline:

@ (Small data result): ||(uo, u1)llg < & implies (up, u1) € S+

@ (Concentration Compactness): If scattering fails, i.e., if
S, # H, then construct U, of minimal energy E, > 0 for which
||u>:<||LgL§ = oo. There exists x(t) so that the trajectory

Ky = (T(- = x(t). 1) |t > 0}

is pre-compact in H.
@ (Rigidity Argument): If a forward global evolution d has the
property that K pre-compact in H, then u = 0.

This scheme was introduced by
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Bahouri-Gérard: symmetries vs. dispersion
Let {un},_, free Klein-Gordon solutions in R s.t.

SUp [|dnll g < 00
n

7 free solutions v/ bounded in H, and (t,’;,x{;,) eRxR3st.
Un(t,X) = D VIt th X+ xp) + Wa(t, )
1<j<d

satisfies ¥ j < J, w)(~t., —x)) = 0in H as n > o, and
@ limp o(lth —th| + X, = xK) = 0V j £ k
° wk vanish asymptotically:

lim 1im sup Il 215, 0)mxps) =0 ¥ 2<p <6
J—00  nooe t bbb
@ orthogonality of the energy:

2 in2 J2
a3, = > 1715, + Iwal3, + o(1)
1<j<d
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Profiles and Strichartz sea

We can extract further profiles from the Strichartz sea if w? does
not vanish as n — oo in a suitable sense. In the radial case this
means liMn_.c Wyl p(zs) > O.
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Lorentz transformations

t cosha sinhae 0 O]t
X{| _|sinha cosha 0 O}|x
X3 0 0 1 0f[x
Xé 0 0 0 1]ix3

Minkowski spacetinLe
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Remarks on Bahouri-Gérard

@ Noncompact symmetry groups: and

Compact symmetry groups:
Why do Lorentz transforms not appear in the profiles?

Energy bound compactifies them!
° w? is not an energy error!
@ In the radial case only need

W. Schlag, http://www.math.uchicago.edu/~schlag Concentration Compactness


http://www.math.uchicago.edu/~schlag

Critical element u,

Key observation in the Kenig-Merle scheme: Can have only one
profile due to E..

° Un(0) € H, s.t. E(Un(0)) — E. and
llUnll L2 (L8 (rsy) = 0 @s N — co.

@ Apply B-G decomposition to {up(0)}. .

@ Suppose v' # 0, v2 £ 0. Then E(V/(- + t})) < E. for all j. Pass
to nonlinear profiles VI

IV(th) = VI(th)llz — 0 as n — oo

E(V)) < E. and V/ global solution, scatters.

@ Pick J so large that ||W#||Lt3Ls < &. Perturbation theory implies
that we can glue all V/ together with w so as to imply

“Uﬂ”Lfo <M<oo V¥n

Contradiction! So have at most one profile. This gives
compactness as in the elliptic case
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Rigidity argument, radial case

Radial case, u.(t) has in
H' x L2(R3).
Virial identity, A = 3(xV + Vx)

: 3
Ay, | Au,y = _f (IVu.? + Zlu*|4) dx + error
R3

x(t, x) cutoff to x| < R, is uniformly small due to
compactness.

Integrate in time:

) T
(vus | Aus)

.
= _f [f (IVu.? + zlu*|4)dx+error (t) dt
0o LJrs

0

LHS = O(R x Energy(u.)), RHS > T x Energy(d,).
Contradiction for large T if u,. # 0.
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Rigidity argument, nonradial case

There exists a path x(t) s.t. U.(t,- — x(t)) is relatively compact for
t>0in H' x L2,

We know |x(t)| < Ct by finite propagation speed. If optimal, would
destroy virial argument.

u, has vanishing momentum
P(4.) = (0. | Vu,y =0

If not, then by means of a could lower the

energy while retaining the property that the solution does not
scatter.

So conclude that x(t) = o(t). Virial argument applies as before.

Grand conclusion: solutions of ou + u + u® = 0, arbitrary data in
H' x L2(R3), scatter to a free energy solution as t — +co.
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The focusing NLKG equation

The focusing NLKG
Ou+Uu=dgu—Au+u=u’

has indefinite conserved energy

1 1 1 1
E(u, i) = (—02 —|Vul? —u2——u4)dx
(u, u) fR32||+2| [F+ Sl =

@ Local wellposendness for H' x L?(R3) data

@ Small data

@ Finite time blowup u(t) = V2(T —1)""(1 + o(1))ast — T—
Cutoff to a cone using finite propagation speed to obtain finite
energy solution.

@ stationary solutions —Ag + ¢ = ¢°, ground state Q(r) > 0
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Cutoff for the blowup construction

t=T

Dashed line is a smooth cutoff which =1on |x| < T.
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Payne-Sattinger theory 1

Criterion: finite-time blowup/global existence?
the energy is less than the ground state energy

T=Iu)>J(Q)=1],

Figure: The saddle structure of the energy near the ground state
1 1 1
J(p) = —|Vel? + =l — —|¢l*) dx
(¢) fRs(2| ol + Sl — 7lel?)

K(y) = fR (1968 + Il ~ ll*) lx

Uniqueness of Q is the foundation!
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Payne-Sattinger theory 2

Jo(1) = J(e'e), ¢ # O fixed.

Figure: Payne-Sattinger well

Normalize so that A, = 0. Then d,j,(2)|,_, = Ko(¢) = 0.
“Trap” the solution in the need

E <inf{j,(0) | Ko(¢) = 0,¢ # 0} = J(Q) (lowest mountain pass).
Expect global existence in that case.
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Above the ground state energy, Nakanishi-S. 2010

Let E(ug, u1) < E(Q,0) + &2, (Ug, U1) € Hrag. Int = 0 for NLKG:
@ finite time blowup
© global existence and scattering to 0

© global existence and scattering to Q:
u(t)y=Q+ v(t)+ oy (1) ast — oo, and u(t) = v(t) + o,2(1)
ast—-oo,0v+v=0,(v,v)eH.
All' 9 combinations of this trichotomy allowed as t — +oo.

@ Applies to dim = 3, luP~'u, 7/3 < p<5ordm=1,p>5.

@ Third alternative forms the center stable manifold
associated with (+Q, 0). Linearized operator
Ly = -A +1-3Q? has spectrum {-k?} U [1,c0) on L2 |
Gap [0, 1) difficult to verify,

@ 1 1-dim. stable, unstable mflds at (+Q, 0).

(R%).
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The invariant manifolds

Ball in H' x L2 (radial), centered at (Q, 0). Center-stable manifold
separates blowup in finite positive time from existence for all times
and scattering to a free wave.
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Numerical 2-dim section through dS. (with R. Donninger)

Figure: (Q + Ae™, Be™")

@ soliton at (A, B) = (0,0), (A, B) vary in [-9,2] x [-9, 9]
@ RED: global existence, WHITE: finite time blowup, GREEN:
PS_, BLUE: PS.

@ Our results apply to a neighborhood of (Q, 0), boundary of the
red region looks smooth (caution!)
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Hyperbolic dynamics near +Q
Linearized operator L1 = -A +1-3Q

e (L, QlQ) = -2lQllt <0
e L,p = —k®p unique negative eigenvalue,

@ Gap property: Ly has no eigenvalues in (0, 1], no threshold
resonance (delicate!) Use LP-boundedness for
wave operators.

Plug u = Q + v into cubic NLKG:

V4 Liv = N(Q,v) =3Qv% + V3
Rewrite as a Hamiltonian system:

)= ol el

Then spec(A) = {k, —k} U i[1, 00) U i(—co, —1] with £k simple evals.
Formally: Xs = PyL?, X, = P_4L?, X, is the rest.

0 1
~L, ©
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Spectrum of matrix Hamiltonian

€8S spec

€8S spec

Figure: Spectrum of nonselfadjoint linear operator in phase space
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Variational structure above E(Q, 0)

E:=E(u,u )>J(Q)+e2=]

(-Q.0) E>J

@ Solution can pass through the balls. Energy is no obstruction
anymore as in the Payne-Sattinger case.
@ Key to description of the dynamics:
The trajectory can make only one pass through the
balls.

@ Point: Stabilization of the sign of K(u(t)).
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One-pass theorem

Figure: Possible returning trajectories

Such trajectories are excluded by means of an indirect argument
using a variant of the virial argument that was essential to the
rigidity step of Kenig-Merle.
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Equivariant wave maps

— S< satisfies

ou 1 T,S% & ou = u(|6;ul® - |Vul?)

as well as equivariance assumptionuo R =Rou V¥ R € SO(2)

O Q:

Figure: Equivariance and Riemann sphere
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Equivariant wave maps 2

u(t,r,¢) = (¢(t, r), ¢), spherical coordinates, ¢ angle from north
pole satisfies

sin(2y)
2r2

1 .
it =Y — Flﬂr'i‘ =0, (¥, ¥)(0) = (¥o,v¥1)

@ Conserved energy

(o) 1 2
E(v.) = fo (w2 +v2+ S'”rz(‘”)) rr

@ y(t,o0) = nm, n € Z, homotopy class = degree = n

° =0,+Q(r/1), where
Q(r) = 2arctanr. This is the identity $2 — 2 with
stereographic projection onto R? as domain ( )-
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Large data results for equivariant wave maps 1

Theorem (Céte, Kenig, Lawrie, S. 2012)
Let (¥0,¥+1) be smooth data.

Q Let E(vo,¥1) < 2E(Q,0), degree 0. Then the solution exists
globally, and scatters (energy on compact sets vanishes as
t — ). For any 6 > 0 there exist data of energy
< 2E(Q,0) + 6 which blow up in finite time.

Q Let E(yo,¥1) < 3E(Q,0), degree 1. If the solution y/(t) blows
up attime t = 1, then there exists a continuous function,
A:[0,1) — (0, c0) with A(t) = o(1 - t), a map
@ = (w0, 1) € Ho with E(@) = E(¥) — E(Q,0), and a
decomposition

>

y(t) = ¢+ (Q(/A(1)),0) + &) (x)

s.t. &(t) € Ho, &(t) > 0inHy ast — 1.
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Large data results for equivariant wave maps 2

@ For degree 1 have an analogous classification to (x) for
global solutions.

° proved the degree 0 result for
E < E(Q,0) + 6. Proof proceeds via the small data
scattering/concentration-compactness/rigidity scheme.

° _ established classification results for
ou = 08 in H' x L2(R3) with W(x) = (1 + |x[2/3) 2 instead
of Q.

@ Construction of (x) by
A(t) = 717

@ Crucial role is played by bubbling off

theorem (equivariant): if blowup happens, then there exists a
sequence of times approaching blowup time, such that a
rescaled version of the wave map approaches locally in
energy space a harmonic map of positive energy.
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Cuspidal energy concentration

L(H)

Rescalings converge in Lfr-sense to a stationary wave map of
positive energy, i.e., a harmonic map.
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Exterior energy

ou =0, u(0) = fe H'(RY), u(0) = g € L3(RY) radial

forallt >0ort <0 have
Eext(d(t)) > cE(f, g) provided dimension odd. ¢ > 0, ¢ = 3
Heuristics: incoming vs. outgoing data.
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Exterior energy: even dimensions

This fails in even dimensions.

d =2,6,10,... holds for data (0, g) but fails in general for (f, 0).
d =4,8,12,... holds for data (f, 0) but fails in general for (0, g).
Fourier representation, Bessel transform, dimension d reflected in
the phase of the Bessel asymptotics, computation of the

ast — +oo.

For our 3E(Q, 0) theorem we need d = 4 result; rather than d = 2

due to repulsive %-potential coming from sm(2¢).

(f,0) Because of
results from mid 1990s. Showed that at
blowup t = T = 1 have vanishing kinetic energy

| 2 _
tm—1_tff|¢tr|rdrdt 0

No result for Yang-Mills since it corresponds to d = 6
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