NOTES ON D-MODULES (FOR TALBOT 2008)

ZHIWEI YUN

These are the notes prepared for an introductory lecture on \mathcal{D} -modules presented during the Talbot workshop (April 2008). The biblical reference is [4]. I would like to thank D.Gaitsgory for answering a lot of my questions and other participants of the Talbot for helpful feedbacks.

1. Definition of Algebraic \mathcal{D} -modules

For any scheme X, $D^b(\mathcal{O}_X)$ will denote the bounded derived category of quasicoherent complexes on X and qcoh (\mathcal{O}_X) the abelian category of quasi-coherent sheaves. The dualizing *complex* will be denoted by ω_X .

In this section, the ambient scheme X is *smooth* of equidimension n over an algebraically closed field k of characteristic 0. The tangent sheaf and the sheaf of *i*-forms will be denoted by Θ_X and Ω_X^i respectively. Note that $\omega_X = \Omega_X^n[n]$.

1.1. The definitions. We only need to define the sheaf of differential operators \mathcal{D}_X and \mathcal{D}_X -modules will be sheaves on the Zariski site of X with a left module structure under \mathcal{D}_X . We give several equivalent definitions

- This is a quasi-coherent \mathcal{O}_X -module defined as the quotient of the tensor algebra $\bigotimes_{\mathcal{O}_X}^* \Theta_X$ be the two-sided ideal generated by $\xi f - f\xi = \operatorname{Lie}_{\xi}(f)$ and $\xi \eta - \eta \xi = [\xi, \eta]$ for $\xi, \eta \in \Theta_X$ and $f \in \mathcal{O}_X$. (Looks like a "universal enveloping algebra")
- For any Zariski open subset $U \subset X$, $\mathcal{D}_X(U) \subset \operatorname{End}_k(\mathcal{O}_X(U))$ is the subalgebra generated by multiplication by functions $\mathcal{O}_X(U)$ and derivations $\Theta_X(U)$.
- For any Zariski open subset $U \subset X$, $\mathcal{D}_X^{\leq i}(U) \subset \operatorname{End}_k(\mathcal{O}_X(U))$ consists of those operators P such that $[[P, f_0], \cdots, f_i] = 0$ for any $f_0, \cdots, f_1 \in \mathcal{O}_X(U)$ (these are differential operators of degree $\leq i$). $\mathcal{D}_X(U) = \bigcup_i \mathcal{D}_X^{\leq i}(U)$.
- Consider the formal completion \mathfrak{X} of the diagonal $X \subset X \times X$, it has an \mathcal{O}_X -bimodule structure. We define \mathcal{D}_X as $\underline{\operatorname{Hom}}_{cont,\mathcal{O}_X}(\mathcal{O}_{\mathfrak{X}},\mathcal{O}_X)$ (using one \mathcal{O}_X to define $\underline{\operatorname{Hom}}$ but the result is still an \mathcal{O}_X -bimodule). Note that we take continuous dual.

A \mathcal{D}_X -module is quasi-coherent if its quasi-coherent as an \mathcal{O}_X -module. They form an abelian category qcoh(\mathcal{D}_X). We will let $D^b_{qcoh}(\mathcal{D}_X)$ to denote the bounded derived category of \mathcal{D}_X -modules with quasi-coherent cohomologies. We have canonically

$$D^b(\operatorname{qcoh}(\mathcal{D}_X)) \cong D^b_{\operatorname{qcoh}}(\mathcal{D}_X).$$

We suppress "qcoh" from the notation since we never need to consider larger categories.

Date: March 2008.

ZHIWEI YUN

1.1.1. **Example.** Suppose $X = \mathbb{A}^n$ and we are given an algebraic PDE: $P\underline{f} = 0$ where $\underline{f} = (f_1, \dots, f_m)^t$ and P is a $\ell \times m$ matrix of differential operators with polynomial coefficients. We can form the \mathcal{D}_X -module M associated to this PDE as the cokernel of $\mathcal{D}_X^{\ell} \xrightarrow{P^t} \mathcal{D}_X^m$. A \mathcal{D}_X -module morphism $M \to \mathcal{O}_X$ gives a solution to the PDE. This also makes sense for analytic \mathcal{D} -modules where we have more chance to get solutions (cf section 4.2)

- Let $X = \mathbb{A}^1$, the \mathcal{D}_X -module $\mathcal{O}_X e^x$ generated by e^x is the cokernel of $\mathcal{D}_X \xrightarrow{\partial_x 1} \mathcal{D}_X$.
- Let $X = \mathbb{A}^{1}$, $\lambda \in k$, the \mathcal{D}_{X} -module $\mathcal{O}_{X} x^{\lambda}$ generated by x^{λ} is the cokernel of $\mathcal{D}_{X} \xrightarrow{x\partial_{x} \lambda} \mathcal{D}_{X}$.

Here are some alternative ways to think of \mathcal{D}_X -modules.

• As \mathcal{O}_X -modules with flat connections. For a \mathcal{D}_X -module M, the action of Θ_X gives a map (which is not \mathcal{O}_X -linear)

$$\nabla: M \to \Omega^1_X \otimes_{\mathcal{O}_X} M.$$

The defining relations of \mathcal{D}_X ensures that ∇ is a flat connection.

- As deformations of quasi-coherent sheaves on the cotangent bundle. If we consider λ -connections, $\lambda \in \mathbb{A}^1$, we get a \mathbb{G}_m -equivariant family of filtered \mathcal{O}_X -algebras over \mathbb{A}^1 whose fiber at 1 is \mathcal{D}_X and fiber at 0 is $\operatorname{Sym}^*(\Theta_X) = \mathcal{O}_{T^*X}$. Therefore the category of \mathcal{D}_X -modules can be thought of as a deformation of the category of \mathcal{O}_{T^*X} -modules. In particular, the associated graded of this family is canonically trivialized. The singular support (support of the classical limit) makes sense as a conical cycle in T^*X .
- As \mathcal{O} -modules on the crystalline site (or \mathcal{D} -crystals, cf [2]). A \mathcal{D}_X -module can be viewed as a quasi-coherent \mathcal{O}_X -module M with the following data: whenever two maps $\operatorname{Spec} R \rightrightarrows X$ coincide on $\operatorname{Spec} R^{\operatorname{red}}$, the pull-backs of M to $\operatorname{Spec} R$ are canonically identified.

More precisely, we consider the crystalline site X_{crys} . Objects in this site are pairs (U, \hat{U}) consisting of a Zariski open set $U \subset X$ with a thickening $U \hookrightarrow \hat{U}$. For $p : (U, \hat{U}) \to (V, \hat{V})$, we can define $p^!$ or $p^* : D^b(\mathcal{O}_{\hat{V}}) \to$ $D^b(\mathcal{O}_{\hat{U}})$ and form the categories $\mathfrak{D}(\mathcal{O}_{\text{crys}}^!)$ or $\mathfrak{D}(\mathcal{O}_{\text{crys}}^*)$ fibered over X_{crys} . An $\mathcal{O}_{\text{crys}}^!$ (resp. $\mathcal{O}_{\text{crys}}^*$)-complex is a Cartesian section of $\mathfrak{D}(\mathcal{O}_{\text{crys}}^!)$ (resp. $\mathfrak{D}(\mathcal{O}_{\text{crys}}^*)$). For X smooth, it is enough to consider the hyper-covering

$$\cdots \mathfrak{X}_3 \Longrightarrow \mathfrak{X}_2 \xrightarrow{p_1} X .$$

where \mathfrak{X}_n is the formal completion of X^n along the small diagonal. Therefore an \mathcal{O}_{crys} -module is a descent datum for this hyper-covering. Note that by the last definition of \mathcal{D}_X , we have $\mathcal{D}_X = p_{2,*}p_1^!\mathcal{O}_X$. We can use this to identify $\mathcal{O}_{crys}^!$ (resp. \mathcal{O}_{crys}^*)-complexes with complexes of right (resp. left) \mathcal{D}_X -modules (see section 1.3). It is this point of view that generalizes to singular and ind-schemes.

1.2. Finiteness conditions. A \mathcal{D}_X -module is *coherent* if it is finitely generated over \mathcal{D}_X . They form an abelian category $\operatorname{coh}(\mathcal{D}_X)$. As above, we have canonically

$$D^{b}(\operatorname{coh}(\mathcal{D}_{X})) \cong D^{b}_{\operatorname{coh}}(\mathcal{D}_{X}).$$

Remark. Although this seems to be a reasonable finiteness condition, it is not stable under standard functors as we will see in example 2.1.1. We need a stronger finiteness condition which is the following.

A coherent \mathcal{D}_X -module is *holonomic* if its singular support has minimal dimension (=dim X). They form an abelian category hol(\mathcal{D}_X). As above, we have canonically (by J.Bernstein)

$$D^{b}(\operatorname{hol}(\mathcal{D}_{X})) \cong D^{b}_{\operatorname{hol}}(\mathcal{D}_{X}).$$

1.2.1. **Example.** If dim X > 0, \mathcal{D}_X is *not* holonomic. However, a coherent \mathcal{O}_X -module with a flat connection is holonomic.

1.3. The left-right issue and Verdier duality. We write " \mathcal{D}_X^{op} -modules" for right \mathcal{D}_X -modules. We have an equivalence of categories given by

$$D^b(\mathcal{D}_X) \xrightarrow{\overrightarrow{\Omega}} D^b(\mathcal{D}_X^{op})$$

where

$$\overrightarrow{\Omega} = \omega_X \otimes_{\mathcal{O}_X}; \overleftarrow{\Omega} = \otimes_{\mathcal{O}_X} \omega_X^{-1}.$$

Remark. The sheaf ω_X has a natural \mathcal{D}_X^{op} -module structure given by Lie derivative. The action of $\xi \in \Theta_X$ on $\omega \otimes_{\mathcal{O}_X} M$ is given by $-\operatorname{Lie}_{\xi} \otimes 1 - 1 \otimes \xi$.

From the crystalline point of view, the transition from $\mathcal{O}^*_{\text{crys}}$ -complexes to $\mathcal{O}^!_{\text{crys}}$ complexes (view as Cartesian sections of fibered categories over X_{crys}) are given by $\omega_{\hat{U}} \otimes (-)$ for each $(U, \hat{U}) \in X_{\text{crys}}$. As we will see in the case of singular and ind-schemes (section 3.2), it is more natural to identify left and right \mathcal{D}_X -modules and view the left-right issue as different forgetful functors $D^b(\mathcal{D}_X) \to D^b(\mathcal{O}_X)$. We usually prefer working with *right* \mathcal{D} -modules since the Riemann-Hilbert correspondence (see section 4) works better for them.

We define Verdier duality for coherent left \mathcal{D}_X -modules by

$$\mathbb{D}_X: D^b(\mathcal{D}_X) \xrightarrow{\operatorname{Hom}_{\mathcal{D}_X}(-,\mathcal{D}_X)} D^b(\mathcal{D}_X^{op}) \xrightarrow{\overleftarrow{\Omega}} D^b(\mathcal{D}_X).$$

1.3.1. **Proposition.** Verdier duality is a contravariant auto-equivalence of $D^b_{\text{coh}}(\mathcal{D}_X)$. It is t-exact under the natural t-structure.

2. The six-functor formalism for \mathcal{D} -modules

All functors are derived. For a continuous map f, push-forward and pull-back of plain sheaves are denoted by f_{\bullet} and f^{\bullet} . Suppose $f : X \to Y$ is a morphism between two smooth equidimensional schemes over k.

2.1. **†-pullback.** We define

(2.1.1)
$$f^{\dagger}: D^b(\mathcal{D}_Y) \to D^b(\mathcal{D}_X)$$

$$(2.1.2) M \mapsto f^*M.$$

(pull-back as \mathcal{O}_X -complexes) The Θ_X -action on f^*M is induced by the tangent map $\Theta_X \to f^{\bullet}\Theta_Y$.

Similarly, we define

(2.1.3)
$$f^{\dagger}: D^{b}(\mathcal{D}_{Y}^{op}) \to D^{b}(\mathcal{D}_{X}^{op})$$

$$(2.1.4) M \mapsto f^! M.$$

It is easy to check that the two definitions are compatible with the identification in section 1.3.

2.1.1. **Example.** Suppose $f : X = \{0\} \hookrightarrow \mathbb{A}^n = Y$. Then $f^{\dagger}\mathcal{D}_Y$ is $k[\partial_1, \cdots, \partial_n]$, which is not a coherent \mathcal{D}_X -module.

2.1.2. **Example.** Suppose Y is a point, then $f^{\dagger}\omega_Y = \omega_X$ as right \mathcal{D}_X -modules.

2.2. **†-pushforward.** We define

(2.2.1)
$$f_{\dagger}: D^b(\mathcal{D}_X^{op}) \to D^b(\mathcal{D}_Y^{op})$$

$$(2.2.2) M \mapsto f_{\bullet}(M \otimes_{\mathcal{D}_X} \mathcal{D}_{X \to Y}).$$

where $\mathcal{D}_{X\to Y} = f^{\dagger} \mathcal{D}_Y$ is naturally a $(\mathcal{D}_X, f^{\bullet} \mathcal{D}_Y)$ -bimodule.

2.2.1. **Example.** Suppose $f : X = \{0\} \hookrightarrow \mathbb{A}^n = Y$. Then $f_{\dagger}\mathcal{O}_X$ is $k[\partial_1, \cdots, \partial_n]$ (the Dirac distribution supported at the origin), which is a holonomic \mathcal{D}_Y -module.

2.2.2. Example. Suppose f is an open immersion. Then $f_{\dagger}M = f_*M$ as \mathcal{O}_{Y^-} complexes.

Remark. We see from definition that f_{\dagger} is a composite of a left exact functor and right exact functor, hence it is neither left nor right exact. When f is an affine morphism, f_{\bullet} is exact, hence f_{\dagger} is right exact; when f is a closed embedding, f_{\dagger} is *t*-exact (see theorem 3.1).

2.2.3. **Example.** Suppose X is affine and Y is a point. Then f_{\dagger} is the left derived functor of $M \mapsto M/M\Theta_X$ (de-Rham cohomology). Therefore $f_{\dagger}\mathcal{D}_X = \Gamma(X, \mathcal{O}_X)$, which is not coherent in general. However, coherence is preserved by f_{\dagger} if f is proper.

2.3. Other functors. For right \mathcal{D} -modules, we define $f^! = f^{\dagger}$ and $f_* = f_{\dagger}$. As in the topological situation, we define $f^* := \mathbb{D}_X \circ f^{\dagger} \circ \mathbb{D}_Y$ and $f_! := \mathbb{D}_Y \circ f_{\dagger} \circ \mathbb{D}_X$. We have

2.3.1. **Proposition.** D_{hol}^b is preserved by these functors, and the usual adjunctions hold.

2.4. Tensor and inner Hom. Exterior tensor product \boxtimes is easy to define. We can define tensor product for right \mathcal{D} -modules to be:

$$\otimes^{!}: D^{b}(\mathcal{D}_{X}^{op}) \times D^{b}(\mathcal{D}_{X}^{op}) \to D^{b}(\mathcal{D}_{X}^{op})$$
$$(M, N) \to \Delta^{!}(M \boxtimes N)$$

This endows $D^b(\mathcal{D}_X^{op})$ with a monoidal structure with unit object ω_X .

We can define \otimes^* for left \mathcal{D} -modules by using * restriction of $M \boxtimes N$ to the diagonal. The underlying \mathcal{O}_X -complex is the same as the usual tensor product over \mathcal{O}_X . The unit object is \mathcal{O}_X .

Inner <u>Hom</u> is defined as a right adjoint of \otimes ! or \otimes^* . For left \mathcal{D} -modules, the underlying \mathcal{O}_X -complex is the same as the usual <u>Hom</u> $_{\mathcal{O}_X}$.

3. Kashiwara's theorem and applications

Suppose $i: Z \hookrightarrow X$ is a closed embedding and $j: U \hookrightarrow X$ is the complement. Let $D^b_Z(\mathcal{D}^{op}_X) \subset D^b(\mathcal{D}^{op}_X)$ be the full triangulated subcategory consisting of complexes

4

with set-theoretical support in Z (or only require this cohomologically). In other words, we have an exact sequence of triangulated categories

$$D_Z^b(\mathcal{D}_X^{op}) \xrightarrow[\Gamma_{|Z|}]{\overset{j}{\leftarrow}} D^b(\mathcal{D}_X^{op}) \xrightarrow[j_{\dagger}]{\overset{j}{\leftarrow}} D^b(\mathcal{D}_U^{op})$$

3.1. **Theorem** (Kashiwara). We have an equivalence of categories given by

$$D^b(\mathcal{D}_Z^{op}) \xrightarrow[i^\dagger]{i_\dagger} D^b_Z(\mathcal{D}_X^{op}) .$$

which is also t-exact with respect to the natural t-structures.

$3.2. \mathcal{D}$ -modules on singular and ind-schemes.

3.2.1. **Example.** For X singular, \mathcal{D}_X is bad behaved. Take $X \subset \mathbb{A}^2$ to be the cusp curve $y^2 = x^3$. Then the global sections of \mathcal{D}_X is not a Noetherian ring.

To remedy, we define right \mathcal{D}_X -modules instead using Kashiwara's theorem: taking (local) embedding of X into a smooth X', and let

$$D^b(\mathcal{D}_X^{op}) := D^b_X(\mathcal{D}_{X'}^{op}).$$

where now the LHS is merely a symbol, but it coincides with the old notion for Xsmooth. One checks that $D^b(\mathcal{D}_X^{op})$ is canonically independent of the choice of X' and Verdier duality and six functors still make sense and work well.

For a strict ind-scheme X of ind-finite type $X = \bigcup X_n$, we can define

$$D^b(\mathcal{D}_X^{op}) := \varinjlim D^b(\mathcal{D}_{X_n}^{op}).$$

A more intrinsic way to define right \mathcal{D} -modules on singular or ind-schemes is to define them as Cartesian sections of $\mathfrak{D}(\mathcal{O}_{crvs}^!)$ -modules on the crystalline site (see the last paragraph of section 1.1). To work with ind-schemes, we have to modify the crystalline site by considering $(X \stackrel{j}{\leftarrow} U \hookrightarrow \hat{U})$ where j can be any locally closed embedding into some X_n . In particular, by forgetting all the sections except the section over X, we get

Forget^{op} :
$$D^b(\mathcal{D}_X^{op}) \to D^b(\mathcal{O}_X)$$

If X is a singular scheme with an embedding $i: X \hookrightarrow X'$ into a smooth one, it is easy to see that $Forget(M) = i^! M$ where $i^!$ is taken in the \mathcal{O} -module sense (right derived functor of sections *scheme-theoretically* supported on X).

If X is an ind-scheme, we have to make sense of \mathcal{O}_X -modules first. This is defined as a Cartesian section of the category $\mathfrak{D}(\mathcal{O}_{\mathrm{Zar}}^!)$ fibered over the Zariski site X_{Zar} . Concretely, an \mathcal{O}_X -module M is a collection of M_n on X_n with isomorphisms $i_{n-1}^! M_n \cong M_{n-1}$. The global section can be defined as $\Gamma(X, M) := \lim_{n \to \infty} \Gamma(X_n, M_n)$. Similarly, we can define *left* \mathcal{D}_X -modules as Cartesian sections of $\mathfrak{D}(\mathcal{O}^*_{crve})$.

3.2.2. Example. For the affine Grassmannian $X = \mathcal{G}r_G = G(F)/G(\mathcal{O}_F)$ (where F = k((z)) and $\mathcal{O}_F = k[[z]])$, let δ be the Dirac distribution at the base point. Then the global sections of δ as a quasi-coherent \mathcal{O}_X -module is $\Gamma(\mathcal{G}r_G, \delta) = U(\mathfrak{g} \otimes F)/(\text{the}$ right ideal generated by $\mathfrak{g} \otimes \mathcal{O}_F$).

4. The Riemann-Hilbert correspondence

In this section, X is a *smooth* equidimensional scheme over \mathbb{C} .

ZHIWEI YUN

4.1. **Regularity.** A holonomic \mathcal{D}_X -module is regular (or has regular singularity) if its !-pullback to any smooth curve is. For X a smooth curve, let \overline{X} be a compactification and $Z = \overline{X} - X$. A \mathcal{D}_X -module M (viewed as a quasi-coherent \mathcal{O}_X -module with connection ∇) is regular if there exists an extension $(\tilde{M}, \tilde{\nabla})$ of (M, ∇) to \overline{X} such that $\tilde{\nabla}(\tilde{M}) \subset \Omega^1_{\overline{X}}(\log Z) \otimes_{\mathcal{O}_{\overline{X}}} \tilde{M}$.

Remark. Unlike holonomicity, regularity is an algebraic notion, which does not pass to analytic $\mathcal{D}_{X^{an}}$ -modules. Consider the case $X = \mathbb{A}^1$ and the left \mathcal{D}_X -modules Mgenerated by e^x . Then M is not regular at ∞ . We have $M^{an} \cong \mathcal{O}_{X^{an}}$ but $M \ncong \mathcal{O}_X$.

As in section 1.2, we define $\operatorname{rh}(\mathcal{D}_X)$ and $D^b_{\operatorname{rh}}(\mathcal{D}_X)$.

4.2. De-Rham functor. We define the *de-Rham* functor

$$d\mathbf{R}: D^{b}(\mathcal{D}_{X}) \to D^{b}(X^{an}; \mathbb{C})$$

$$M \mapsto (\omega_{X} \otimes_{\mathcal{D}_{X}} M)^{an}$$

$$d\mathbf{R}: D^{b}(\mathcal{D}_{X}^{op}) \to D^{b}(X^{an}; \mathbb{C})$$

$$M \mapsto (M \otimes_{\mathcal{D}_{X}} \mathcal{O}_{X})^{an}$$

Using the Koszul resolution of ω_X by locally free \mathcal{D}_X -modules, we recover the usual de-Rham complex for left \mathcal{D}_X -modules:

$$\mathrm{dR}(M) \xrightarrow{\mathrm{qus}} ((\Omega^*_X \otimes_{\mathcal{O}_X} M[\dim X])^{an}, \delta).$$

where the differential on $\Omega^i_X \otimes M$ is $\delta^i = d \otimes 1 + (-1)^i 1 \wedge \nabla$. Another useful functor is the solution functor

(4.2.1) Sol:
$$D^b(\mathcal{D}_X) \to D^b(X^{an}; \mathbb{C})$$

$$(4.2.2) M \mapsto \underline{\operatorname{Hom}}_{\mathcal{D}_{X^{an}}}(M^{an}, \mathcal{O}_{X^{an}}).$$

It is easy to show that when restricted to coherent left \mathcal{D}_X -modules

$$\operatorname{Sol}[\dim X] = \mathrm{dR} \circ \mathbb{D}_X.$$

Remark. In the definition of Sol, it is important to first analytify and then take Hom, otherwise there will not be enough "solutions".

4.3. Theorem (R-H correspondence).

(1) The functor dR_{rh} induces an exact functor

$$\mathrm{dR}_{\mathrm{hol}}: D^b_{\mathrm{hol}}(\mathcal{D}^{op}_X) \to D^b_{\mathrm{con}}(X^{an};\mathbb{C})$$

which is t-exact with respect to the natural t-structure on the LHS and the perverse t-structure on the RHS;

(2) The functor dR induces an equivalence

$$\mathrm{dR}_{\mathrm{rh}}: D^b_{\mathrm{rh}}(\mathcal{D}^{op}_X) \cong D^b_{\mathrm{con}}(X^{an};\mathbb{C}).$$

which is compatible with Verdier dualities and six functors.

Remark. By the first definition of section 3.2, the above theorem also holds for singular schemes.

4.3.1. Corollary.

(1) The functor dR induces an equivalence of abelian categories:

$$\mathrm{dR}_{ab}: \mathrm{rh}(\mathcal{D}_X) \cong \mathrm{Perv}(X^{an}; \mathbb{C})$$

which further specializes to the well known equivalence:

{Vector bundles with flat regular connection on X} \leftrightarrow {Local systems on X^{an} }

(2) (A.Beilinson [1]) The functor $dR_{rh} \circ D^b(dR_{ab}^{-1})$ gives a realization functor which is an equivalence

$$D^{b}(\operatorname{Perv}(X^{an},\mathbb{C})) \cong D^{b}(\operatorname{rh}(\mathcal{D}_{X})) \stackrel{\operatorname{Beilinson}}{\cong} D^{b}_{\operatorname{rh}}(\mathcal{D}_{X}) \cong D^{b}_{\operatorname{con}}(X^{an},\mathbb{C}).$$

Remark. The de-Rham functor behaves well for holonomic \mathcal{D}_X -modules, but it is not an equivalence. The reason is when we pass to analytic $\mathcal{D}_{X^{an}}$ -modules, we already lose information. Consider the case $X = \mathbb{A}^1$ and the right \mathcal{D}_X -modules Mgenerated by e^x . We have $M^{an} \cong \mathcal{O}_{X^{an}}$ but $M \ncong \mathcal{O}_X$.

The same example shows that dR_{hol} does not commute with f_* .

References

- Beilinson, A. On the derived category of perverse sheaves. K-theory, arithmetic and geometry (Moscow, 1984–1986), 27–41, Lecture Notes in Math., 1289, Springer, Berlin, 1987.
- [2] Beilinson, A.; Drinfeld, V. Quantization of Hitchin's integrable system and Hecke eigensheaves, preprint available online.
- [3] Bernstein, J. Course on D-modules, available online.
- [4] Borel, A. et al. Algebraic D-modules. Perspectives in Mathematics, 2. Academic Press, Inc., Boston, MA, 1987.

PRINCETON UNIVERSITY

E-mail address: zyun@math.princeton.edu