MATH 380A Final Exam

Due on Dec. 20, 2017

There are 7 problems.

You may NOT consult books, Internet or other people regarding the exam. All rings are assumed to be unital. The letter A always denotes a commutative ring.

- 1. Classify commutative rings A with cardinality 4.
- 2. Let k be a field with char(k) = p > 0. Let R be the set of polynomials of the form

 $f(x) = a_0 x + a_1 x^p + a_2 x^{p^2} + \dots + a_n x^{p^n}$

for some integer $n \ge 0$ and $a_0, \dots, a_n \in k$. For $f, g \in k[x]$, define $f \circ g \in k[x]$ to be the composition of polynomials f(g(x)).

- a. Show that R is closed under addition and composition, and forms a unital associative ring under these operations.
- b. What are the invertible elements in R?
- c. Exhibit a maximal (two-sided) ideal in R.
- 3. Let \mathbb{Z}_p be the *p*-adic integers and let $A = \mathbb{Z}_p[x]$.
 - a. Show that A is a UFD, but is not a PID.
 - b. Let \mathfrak{q} be a prime ideal of $\mathbb{Z}_p[x]$ such that $\mathbb{Z}_p \cap \mathfrak{q} = 0$. Show that \mathfrak{q} is generated by an irreducible polynomial over \mathbb{Z}_p of positive degree.

Hint: consider the ideal in $\mathbb{Q}_p[x]$ generated by \mathfrak{q} .

- c. Classify all prime ideals in A in terms of irreducible polynomials in $\mathbb{Q}_p[x]$ and in $\mathbb{F}_p[x]$.
- 4. Let $A = \mathbb{R}[x]$.
 - a. Give a complete list of all prime ideals of A (with proof).
 - b. Let V be a finite-dimensional vector space over \mathbb{R} and let $T: V \to V$ be an \mathbb{R} -linear transformation. State and prove the theorem of rational canonical form for T. (You may use the structure theorem for modules over a PID.)
- 5. Let $S \subset A$ be a multiplicative subset. Let M be an A-module.
 - a. Show that if M is a projective A-module, $S^{-1}M$ is a projective $S^{-1}A$ -module.
 - b. Assume A is a domain. If $S^{-1}M$ is a projective $S^{-1}A$ -module, is M necessarily a projective A-module? Prove it or give a counterexample.
- 6. Let B be a commutative A-algebra and M be an A-module. Prove the following isomorphism of B-algebras

$$S_B(B \otimes_A M) \cong B \otimes_A S_A(M).$$

Here $S_A(-)$ and $S_B(-)$ denote the symmetric algebras over A and B respectively.

- 7. Let A be a commutative ring. A sequence of elements (a_1, a_2, \dots, a_r) in A is called a *regular sequence* if for every $i = 1, \dots, r$, a_i is not a zero-divisor in $A/(a_1, \dots, a_{i-1})$ (when i = 1 we understand this as saying that a_1 is not a zero-divisor in A).
 - a. Suppose A = k[x, y] (where k is a field) and $f(x, y), g(x, y) \in A$ are coprime nonzero polynomials. Show that (f(x, y), g(x, y)) is a regular sequence in A.
 - b. Let A be any commutative ring and (a_1, \dots, a_r) be a regular sequence in A. Let N be any A-module. Show that $\operatorname{Ext}^i(A/(a_1, \dots, a_r), N) = 0$ for i > r and that

$$\operatorname{Ext}_{A}^{r}(A/(a_{1},\cdots,a_{r}),N)\cong N/(a_{1},a_{2},\cdots,a_{r})N.$$

Hint: induction on r.