COMMUTATIVE FORMAL GROUPS – EXERCISES

Notation: R is usually a commutative ring with 1; k is usually a field; p is usually a prime number; q is usually a power of p; F(X, Y) is usually a commutative 1-dim formal group law;

- (1) Let R be a reduced commutative ring (no nonzero nilpotent elements). Classify all 1-dimensional commutative formal group laws over R which are polynomials.
- (2) Give an example of a 1-dim polynomial group law over $\mathbb{Z}[\epsilon]/\epsilon^2$ which is not $\widehat{\mathbb{G}}_a$ or $\widehat{\mathbb{G}}_m$.
- (3) Show that formal group laws over R have formal inverses; i.e., there exists a unique $i(X) \in R[[X]]$ such that F(X, i(X)) = 0.
- (4) Show that over a field k of char p > 0, $\widehat{\mathbb{G}}_a$ is not isomorphic to $\widehat{\mathbb{G}}_m$.
- (5) Let F be a formal group over R. If an integer n is invertible in R, show that the multiplication by $n \max[n]: F \to F$ is an isomorphism. Therefore, F is naturally a \mathbb{Z}_S -module, where S is the multiplicative subset of \mathbb{Z} consisting of invertible numbers in R.
- (6) Prove the Q-theorem by finding an explicit isomorphism $\phi : \mathbb{G}_a \to F$ inductively degree by degree.
- (7) (Noncommutative 1-dim formal groups). Let $D = k[\epsilon]/\epsilon^2$ where k is a field of char p > 0. Show that $F(X, Y) = X + Y + \epsilon XY^p$ is a noncommutative formal group.
- (8) Let $B_n(x,y) = (x+y)^n x^n y^n$ (n is a natural number). Find the gcd d_n of the coefficients of $B_n(x,y)$.
- (9) Suppose $\phi: F \to G$ is a homomorphism with leading term $cX^n, n > 1, c \in R \{0\}$. Show that n is a power of some prime p and c is p-torsion.
- (10) Describe the rings $\operatorname{End}_R(\mathbb{G}_a)$ and $\operatorname{End}_R(\mathbb{G}_a)$.
- (11) Let F be a formal group law over \mathbb{Z}_p . Then its logarithm $\log_F(X) \in \mathbb{Q}_p[[X]]$ can be computed by $\log_F(X) = \lim_{n \to \infty} p^{-n}[p^n](X)$.
- (12) Let *E* be the elliptic curve $y^2 = x^3 + ax + b$, $a, b \in R$. The identity of *E* is at ∞ . Using the local coordinate u = x/y at ∞ , write down the first few terms of the logarithm of the formal group \hat{E} . Hint: first find an invariant differential on *E*.
- (13) Let $C_n(x,y) = \frac{1}{d_n} B_n(x,y) \in \mathbb{Z}[X,Y]_{\text{deg}=n}$. Suppose F_1 and F_2 are *n*-buds over R extending the same (n-1)-bud F, show that $F_1(x,y) F_2(x,y)$ is an R-multiple of $C_n(x,y)$.
- (14) Let $F_{\leq 2}(X,Y) = X + Y + c_2XY$ be the universal 2-bud over $\mathbb{L}_{\leq 2} = \mathbb{Z}[c_2]$, find an explicit 3-bud $f_{\leq 3}(X,Y)$ (again over $\mathbb{L}_{\leq 2}$) extending $F_{\leq 2}$. Now $F_{\leq 3}(X,Y) = f_{\leq 3}(X,Y) + c_3(X^2Y + XY^2)$ is a universal 3-bud over $\mathbb{L}_{\leq 3} = \mathbb{Z}[c_2, c_3]$, find an explicit 4-bud $f_{\leq 4}(X,Y)$ (again over $\mathbb{L}_{\leq 3}$) extending $F_{\leq 3}$. If you have trouble sleeping, do three more steps.
- (15) Write down the first few terms of the logarithm of the universal formal group over the Lazard ring \mathbb{L} .
- (16) Let S be a set of primes. Let $E_S(X) = \exp(\sum_{n \text{ only has prime divisors in } S} \frac{X^n}{n})$ be the Artin-Hasse exponential with respect to S. Show that for $p \in S$, we have $E_S(X)^p / E_S(X^p) = E_{S-\{p\}}(X)^p$.
- (17) Prove Dwork's lemma: a power series $f(X) \in 1 + X\mathbb{Q}[[X]]$ has p-integral coefficients if and only if $f(X)^p/f(X^p)$ is p-integral and $\equiv 1 \mod p$.
- (18) Let F and G be formal groups over a field k of char p > 0. If $\phi : F \to G$ is a homomorphism with vanishing linear term, then ϕ is a power series in X^p . In other words ϕ factors as $F \xrightarrow{\operatorname{Fr}_p} F^{(p)} \to G$.
- (19) Let k be a field of char p > 0. Let $F(X, Y) = X + Y + C_{p^h}(X, Y) + (higher terms)$ be a formal group law over k. Show that the height of F is h.
- (20) Let F and F' be p^i -buds over k of char p. Show that $F \equiv F' + aC_{p^i}(X,Y)$ if and only if $[p](X) \equiv [p]'(X) + aX^{p^i}$.
- (21) Let p be a prime. Let R be a $\mathbb{Z}_{(p)}$ -algebra and F a formal group over R with [p](X) = 0. Show that $F \cong \widehat{\mathbb{G}}_a$ over R.

- (22) Let $q = p^h$. Let \widetilde{F}_h be the formal group law with logarithm $\sum_{n\geq 0} \frac{X^{q^n}}{p^n}$. Show that \widetilde{F}_h is indeed a formal group over \mathbb{Z} .
- (23) Let F_h be the reduction of $\widetilde{F}_h \mod p$ (so F_h is a formal group over \mathbb{F}_p). Show that F_h satisfies $[p](X) = X^q$. Therefore it has height h.
- (24) Show that the monomials appearing in F_h all have total degrees $\equiv 1 \mod (q-1)$.
- (25) Let \widetilde{F} be a formal group over \mathbb{Z}_p and F be its reduction modulo p. Show that the reduction map $\operatorname{End}_{\mathbb{Z}_p}(\widetilde{F}) \to \operatorname{End}_{\mathbb{F}_p}(F)$ is injective provided that F has finite height.
- (26) For the elliptic curve $y^2 = x^3 + 1$ over $\mathbb{Z}[1/6]$, use the first few terms of the logarithm (see Exercise 12) of \hat{E} to find the height of the reduction modulo p = 5, 7, 11.
- (27) Let F_h be the formal group over \mathbb{F}_p in Exercise 22. Show that $X \mapsto aX$ is an endomorphism of F_h over $\overline{\mathbb{F}}_p$ if and only if $a \in \mathbb{F}_q$ $(q = p^h)$. (Hint: use Exercise 24).
- (28) Show that $E = \operatorname{End}_{\overline{\mathbb{F}}_n}(F_h)$ is *p*-adically separated and complete, i.e., $E \xrightarrow{\sim} \varprojlim_n E/p^n E$.
- (29) Show that the endomorphisms ring $\operatorname{End}_{\mathbb{F}_p}(F_h)$ (endos over the prime field $\mathbb{F}_p!$) is a \mathbb{Z}_p -algebra generated by the Frobenius element Fr_p .
- (30) Let k be a field of char p > 0 and R be a k-algebra. Let F be a formal k-module over R. Show that F is isomorphic to $\widehat{\mathbb{G}}_a$ over R as formal k-modules. (*Hint:* first show that F is isomorphic to $\widehat{\mathbb{G}}_a$ as a formal group using Exercise 21, then study how k could possibly act on $\widehat{\mathbb{G}}_a$ using the structure of $\operatorname{End}(\widehat{\mathbb{G}}_a)$ worked out in Exercise 10).
- (31) Let R be complete with respect to the *I*-adic topology ($I \subset R$ is an ideal). Let F be a formal A-module over R. Let $J \subset A$ and $I \subset R$ be ideals such that the structure map $A \to R$ sends J into I. Then the A-mod structure on F uniquely extends to an $\hat{A} = \varprojlim_n A/J^n$ -module structure on F (with respect to the tautological extension $\hat{A} \to R$).
- (32) Let \mathcal{O} the integer ring of a local non-archimedean field. Let F_{π} and F_{ω} be Lubin-Tate \mathcal{O} -modules (defined using uniformizers π and ω of \mathcal{O}) over \mathcal{O}^{ur} (the completion of the integers in the maximal unramified extension of \mathcal{O}). Show that there exists an isomorphism $\theta : F_{\pi} \xrightarrow{\sim} F_{\omega}$ of formal \mathcal{O} -modules over \mathcal{O}^{ur} such that $\theta^{\sigma}(X) = \theta([u]_{F_{\pi}}(X))$. Here $u \in \mathcal{O}^{\times}$ is defined by $\omega = u\pi$.
- (33) (Weierstrass preparation theorem) Let \mathcal{O} be a complete DVR, π a uniformizer of \mathcal{O} and $f(X) \in \mathcal{O}[[X]]$. Show that there is a unique way to write $f(X) = \pi^n g(X)u(X)$ such that: (1) $n \in \mathbb{Z}_{\geq 0}$; (2) $g(X) \in \mathcal{O}[X]$ is a monic polynomial whose non-leading coefficients are in $\pi\mathcal{O}$; (3) u(X) is a unit in $\mathcal{O}[[X]]$, i.e., the constant term of u(X) is in \mathcal{O}^{\times} . (*Hint*: first determine n and the degree of g(X), then solve for g(X) and $u(X) \mod \pi$, mod π^2 , etc.)
- (34) Solving π^n -torsion points of a Lubin-Tate \mathcal{O} -module $F_{\pi,f}$ for a general $f \in \mathcal{O}[[X]]$ satisfying $f(X) \equiv \pi X \pmod{\deg 2}$ and $f(X) \equiv X^q \pmod{\pi}$. Using the Weierstrass preparation theorem (see Exercise 33) to show that $[\pi^n](X) = 0$ can be solved in a separable closure of K. [Note: for different choices of f, we get different solutions for the π^n -torsion points, but the field extension of K they generate is independent of f.]
- (35) (Formal inverse function theorem.) A morphism $\Phi : \hat{\mathbb{A}}^n \to \hat{\mathbb{A}}^n$ is given by *n*-tuple of formal power series $(X_1, \dots, X_n) \mapsto (\Phi_1(X_1, \dots, X_n), \dots, \Phi_n(X_1, \dots, X_n))$ where $\Phi_i(X_1, \dots, X_n) \in R[[X_1, \dots, X_n]]$ has no constant term. The linear coefficients of Φ_1, \dots, Φ_n form a matrix $J(\Phi) \in M_n(R)$, called the Jacobian of Φ . Show that Φ is invertible if and only if $\det(J(\Phi)) \in R^{\times}$ (i.e., $J(\Phi)$ is invertible).
- (36) Prove an *n*-dimensional version of the \mathbb{Q} -theorem by finding a basis of invariant differentials.
- (37) (Curvilinear formal group laws.) An *n*-dimensional formal group law $F_i(X_1, \dots, X_n; Y_1, \dots, Y_n)$ is curvilinear if $(X_1, 0, \dots, 0) +_F (0, X_2, 0, \dots) +_F + \dots +_F (0, \dots, 0, X_n) = (X_1, \dots, X_n)$. Show that *F* is curvilinear if and only if $X^{\lambda}Y^{\mu}$ doesn't appear in any F_i , for all multi-indices λ and μ with disjoint support (nonzero positions).
- (38) Show that every formal group law is strictly isomorphic to a curvilinear one.
- (39) In the Cartier ring, write $\langle a \rangle + \langle b \rangle$ as $\langle c_1 \rangle + \mathbf{V}_2 \langle c_2 \rangle \mathbf{F}_2 + \cdots$. Express c_1, c_2, c_3, c_4 as polynomials of a and b.

- (40) Let $\mathfrak{C}(F)$ be the group of curves on a formal group F. Define a filtration on $\mathfrak{C}(F)$ by $V^{\geq k}\mathfrak{C}(F) = \{\gamma(X) \equiv 0 \mod \deg k\}$. Show that $\mathfrak{C}(F)$ is separated and complete with respect to this filtration, i.e., $\mathfrak{C}(F) \xrightarrow{\sim} \lim_{k \to \infty} \mathfrak{C}(F)/V^{\geq k}\mathfrak{C}(F)$.
- (41) Show that $\mathfrak{C}(F)/V^{\geq 2}\mathfrak{C}(F) \cong F(R\epsilon)$. Here $R\epsilon$ is the nilpotent *R*-algebra freely generated by ϵ with $\epsilon^2 = 0$.
- (42) Define a filtration by right ideals $V^{\geq k} \operatorname{End}(\mathfrak{C}) = \{\phi | \phi(F)(\mathfrak{C}(F)) \subset V^{\geq k}\mathfrak{C}(F)\}$. Show that $\operatorname{End}(\mathfrak{C})$ is separated and complete with respect to this filtration, i.e., $\operatorname{End}(\mathfrak{C}) \xrightarrow{\sim} \varprojlim_k \operatorname{End}(\mathfrak{C})/V^{\geq k} \operatorname{End}(\mathfrak{C})$.
- (43) Check using definition and relations in Cart(R) that W(R) is a commutative ring.
- (44) Check the right actions of \mathbf{V}_m , $\langle c \rangle$ and \mathbf{F}_m on \underline{W} indeed give a right action of $\operatorname{Cart}(R)$ on \underline{W} . From this, deduce a formula for the \underline{W} action on \underline{W} .
- (45) Show that every element in $\underline{W}(R\epsilon)$ can be written uniquely as a finite sum $\sum_n (1-\epsilon t) \cdot \langle a_n \rangle \mathbf{F}_n$ (for $a_n \in R$) using the right action of $\operatorname{Cart}(R)$ on \underline{W} . Show that $\underline{W}(R\epsilon)$ is isomorphic to the quotient right- $\operatorname{Cart}(R)$ -module $V^{\geq 2}\operatorname{Cart}(R)$.
- (46) Let $1 + \sum_{i \ge 1} a_i t^i, 1 + \sum_{i \ge 1} b_i t^i \in \underline{W}(R)$ be two elements, compute the first few coefficients of their product (in the ring structure of $\underline{W}(R)$) expressed in power series.
- (47) Check that the $\mathbf{V}_n, \langle c \rangle$ and \mathbf{F}_n actions on the ghosts (Φ_1, Φ_2, \cdots) are as described in the class.
- (48) Show that $\exp(-t) = \prod_{n \ge 1} (1 t^n)^{\mu(n)/n}$ where μ is the Möbius function.
- (49) Show that the Artin-Hasse $E_p(-t) = \exp(-t \frac{t^p}{p} \cdots) = \prod_{(m,p)=1} (1 t^m)^{\mu(m)/m}$.
- (50) Suppose F is a formal group over R, R is a ring of char p. Then $\mathbf{V}_p \mathbf{F}_p = p \in \text{Cart}(R)$.
- (51) Show that a curve $\gamma \in \mathfrak{C}(F)$ is *p*-typical if and only if $\mathbb{F}_{\ell}\gamma = 0$ for all primes $\ell \neq p$.
- (52) Suppose R is torsion free and a formal group F over R is defined using a logarithm $\ell_F(X) \in \operatorname{Frac}(R)[[X]]$. Show that a curve $\gamma(X)$ into F is p-typical if and only if all monomials appearing in $\ell_F(\gamma(X))$ have p-power degrees.
- (53) Figure out how **F** and $\langle c \rangle$ and **V** act on the *p*-adic phantom components.
- (54) Check that the right V-action on $W_p(R)$ (which we also denote by σ) is the same as conjugation by **F** in $\operatorname{Cart}_p(R)$: $\sigma(x)$ **F** = **F**x for all $x \in W_p(R)$. Deduce from this that it is a ring endomorphism of $W_p(R)$.
- (55) Show that for $x, y \in W_p(R)$ where R is a $\mathbb{Z}_{(p)}$ -algebra, we have $x \cdot \tau(y) = \tau(\sigma(x) \cdot y)$. Here $x \cdot y$ denotes the ring multiplication in $W_p(R)$.
- (56) If k is a perfect field of char p, is $\operatorname{Cart}_p(k)$ a noetherian ring? If R is a noetherian $\mathbb{Z}_{(p)}$ -algebra, is $\operatorname{Cart}_p(R)$ noetherian?
- (57) Show that any finite free *R*-group of order 2 is of the form $G_{a,b} = \operatorname{Spec} R[X]/(X^2 + aX)$ with comultiplication $\Delta(X) = X \otimes 1 + 1 \otimes X bX \otimes X$, and $a, b \in R, ab = 2$. Moreover, $G_{a,b} \cong G_{a',b'}$ if and only if there is a unit $u \in R^{\times}$ such that $a' = au, b' = bu^{-1}$.
- (58) Show that the Cartier dual of $G_{a,b}$ is $G_{b,a}$.
- (59) Let $A \subset B$ be an inclusion of finite dimensional commutative and cocommutative Hopf algebras over a field k. Show that B is a free A-module.
- (60) Let k be a field of char p > 0. Let k'/k be a degree p inseparable extension by adjoining p-th root of $u \in k$. Let $G_i = \operatorname{Speck}[x]/(x^p - u^i)$ for $i = 0, \dots, p-1$. Construct a group scheme structure on $G = \bigsqcup_{i=0}^{p-1} G_i$ such that G such that $G^0 = G_0 = \mu_p$ and that the connected-étale exact sequence $1 \to G_0 \to G \to \mathbb{Z}/p\mathbb{Z} \to 1$ does not split.
- (61) Let V be a vector space over k (char p). Let $C^p(V)$ (resp. $C_p(V)$) be the invariants (resp. coinvariants) of $V^{\otimes p}$ under the action of cyclic permutation of length p. Show that the natural map $C^p(V) \to C_p(V)$ factors as $C^p(V) \twoheadrightarrow V^{(p)} \hookrightarrow C_p(V)$.
- (62) Let G be a finite group scheme over k and G^{\vee} its Cartier dual. Show that F_G is the adjoint of $V_{G^{\vee}}$ and V_G is the adjoint of $F_{G^{\vee}}$.
- (63) Consider the composition $G^{(p)} \xrightarrow{V_G} G \xrightarrow{F_G} G^{(p)}$. Show that this composition is also multiplication by p on $G^{(p)}$. Can you see this explicitly from the Hopf algebra?

- (64) Show that the contravariant Dieudonné functor intertwines F_G (resp. V_G) with the operator F (resp. V) on M(G).
- (65) Let M be the contravariant Dieudonné module of a p-divisible group G over a perfect field k of char p. Show that there canonical k-linear isomorphisms $(\text{Lie}G)^* \cong M/\mathbf{F}M^{(p)}$ (which respects V) and $\operatorname{Lie} G^* \cong M^{(p)} / \mathbf{V} M$ (which respects **F**).
- (66) Using Dieudonné theory, show that there exists one-dimensional height two p-divisible groups over \mathbb{F}_q which are not isogenous to the *p*-divisible groups of any (supersingular) elliptic curve over \mathbb{F}_q .
- (67) Let (M,ϕ) be an isocrystal over $W(\mathbb{F}_q)$ where $q = p^r$. Let $\{x_1, \dots, x_n\}$ be the multi-set of eigenvalues of ϕ^r (which is a linear operator on M). Show that the slopes of (M, ϕ) are given by the multi-set $\{\lambda_1, \dots, \lambda_n\}$ where $\lambda_i = \frac{1}{r} \operatorname{val}_p(x_i)$. (68) Show that the isocrystal $M_{\lambda} \in \operatorname{Isocry}(k)$ is simple (k algebraically closed, $\lambda \in \mathbb{Q}$).
- (69) Consider isocrystals over k algebraically closed. How is the tensor product $M_{\lambda} \otimes M_{\mu}$ decomposed into simple objects?
- (70) Let M a finitely generated W(k)-module and $\phi: M \to M$ be a σ -linear map. Show that M is a direct sum of W(k)-submodules $M_1 \oplus M_2$, both stable under ϕ and ϕ acts bijectively on M_1 and topologically nilpotently on M_2 . Such a decomposition is unique.
- (71) Let k be a perfect field of char p. Classify p-divisible groups over k with height two and dimension one.