REPRESENTATIONS OF FINITE GROUPS OF LIE TYPE: EXERCISES

ZHIWEI YUN

NOTATION

Fix a prime number p and a power q of p.

 $k = \mathbb{F}_q;$ $k_d = \mathbb{F}_{q^d}.$

 $\nu \vdash n$ means ν is a partition of n.

1. GL_n

Conjugacy classes

1.1. Let $A \subset \operatorname{GL}_n(k)$ be a maximal abelian subgroup whose order is prime to p. We call such A a maximal torus.

- (1) Show that A is isomorphic to $\prod_{i=1}^{r} k_{\nu_i}^{\times}$ for a partition $\nu = (\nu_1, \dots, \nu_r)$ of n. We say A is a maximal torus of type ν .
- (2) If two such A, A' correspond to the same partition of n, then they are conjugate to each other inside $\operatorname{GL}_n(k)$.

1.2. For a partition $\nu \vdash n$, let $T_{\nu} \subset \operatorname{GL}_n(k)$ be a maximal torus of type ν . Describe the normalizer $N(T_{\nu})$ of T_{ν} inside $\operatorname{GL}_n(k)$, and the Weyl group $W_{\nu} = N(T_{\nu})/T_{\nu}$. Show that two elements in T_{ν} are conjugate in $\operatorname{GL}_n(k)$ if and only if they are in the same W_{ν} -orbit (acting by conjugation on T_{ν}).

1.3. Show that there is a bijection

$$\coprod_{\nu \vdash n} T_{\nu}/W_{\nu} \leftrightarrow \{ \text{conjugacy classes in } \operatorname{GL}_n(k) \}$$

such that if the W_{ν} -orbit of $t \in T_{\nu}$ corresponds to the conjugacy class of $g \in GL_n(k)$, then t and g have the same characteristic polynomial.

1.4. Suppose $g \in \operatorname{GL}_n(k)$ has characteristic polynomial $\prod_f f^{m_f}$ (where f runs over monic irreducible polynomials in k[t]), and the sizes of the Jordan blocks for each f is given by a partition $\nu(f)$ of m_f . Let Z(g) be the centralizer of g in $GL_n(k)$. Show that

$$#Z(g) = \prod_{f} \left(q_f^{m_f + 2n(\nu(f))} \prod_{i \ge 1} \phi_{\lambda_i(f) - \lambda_{i+1}(f)}(q_f^{-1}) \right).$$

Here

- q_f = q^{deg(f)}.
 For a partition ν = (ν₁ ≥ · · · ν_s), we define

$$n(\nu) = \sum_{i=1}^{s} (i-1)\nu_i.$$

•
$$\lambda(f) = (\lambda_1(f) \ge \lambda_2(f) \cdots)$$
 is the partition conjugate to $\nu(f)$.

ZHIWEI YUN

• For $r \ge 1$ we define $\phi_r(t)$ to be the polynomial

(1.1)
$$\phi_r(t) = (1-t)(1-t^2)\cdots(1-t^r).$$

and, for r = 0, we define $\phi_0(t) = 1$.

Hall algebras

In the following exercises, let X be a smooth algebraic curve over k. Let $\mathbb{H}_{X,\text{tor}}$ be the Hall algebra of torsion coherent sheaves on X, with \mathbb{Q} -coefficients (in fact it suffices to consider $\mathbb{Z}[p^{-1}]$ -coefficients).

1.5. Show that $\mathbb{H}_{X,\text{tor}}$ is commutative and cocommutative. (Hint: use Serre duality.)

1.6. Show that the Hall algebra $\mathbb{H}_{X,\text{tor}}$ is a bialgebra, i.e., the comultiplication $\Delta : \mathbb{H}_{X,\text{tor}} \to \mathbb{H}_{X,\text{tor}} \otimes \mathbb{H}_{X,\text{tor}}$ is an algebra map.

1.7. Define a map $S : \mathbb{H}_{X, \text{tor}} \to \mathbb{H}_{X, \text{tor}}$ by sending $\mathbf{1}_M$ (the characteristic function of a torsion \mathcal{O}_X -module M) to

(1.2)
$$S(\mathbf{1}_M) := \sum_{F_*M} (-1)^{\ell(F_*M)} \frac{\prod \# \operatorname{Aut}(\operatorname{Gr}_i^F M)}{\# \operatorname{Aut}(M)} (\prod \mathbf{1}_{\operatorname{Gr}_i^F M})$$

where the sum runs over all finite *strict* filtrations

 $F_*M: 0 = F_0M \subsetneq F_1M \subsetneq \cdots \subsetneq F_\ell M = M$

with $\ell(F_*M) = \ell$, and the last \prod in (1.2) means Hall multiplication.

Show that S is an antipode for $\mathbb{H}_{X,\text{tor}}$, so that $\mathbb{H}_{X,\text{tor}}$ is a Hopf algebra. Recall that this means

- S is an involutive automorphism of $\mathbb{H}_{X,\text{tor}}$ as a bi-algebra;
- $m \circ (1 \otimes S) \circ \Delta = i \circ \epsilon = m \circ (S \otimes 1) \circ \Delta$, where *i* and ϵ are the unit and counit maps.

1.8. The above construction of the antipode holds in greater generality. Let $H = \bigoplus_{n \ge 0} H_n$ be a graded bi-algebra over a commutative ring A and that $H_0 = A$ (with multiplication m, comultiplication Δ , unit $i : A \to H$ given by the inclusion of $A = H_0$ and the counit $\epsilon : H \to A$ given by projection to $H_0 = A$). Then

- (1) There is a unique graded map $S: H \to H$ such that $m \circ (1 \otimes S) \circ \Delta = i \circ \epsilon$. (Hint: inductively define S on each H_n .)
- (2) Suppose H is commutative and cocommutative, show that S is a bialgebra automorphism and that $S^2 = id$. Therefore in this case H has a unique structure of a Hopf algebra.
- (3) We have the following explicit formula for S. For a strict composition $c = (n_1, \dots, n_\ell)$ of n (strict means each $n_i > 0$), let $\Delta_c : H_n \to H_{n_1} \otimes \dots \otimes H_{n_\ell}$ be the projection of the iterated comultiplication to the corresponding graded pieces; similarly, let $m_c : H_{n_1} \otimes \dots \otimes H_{n_\ell} \to H_n$ be the multiplication map. Then we have for each $a_n \in H_n$,

$$S(a_n) = \sum_c (-1)^{\ell(c)} m_c(\Delta_c(a_n))$$

where the sum is over all strict compositions of n.

(One can try to use this explicit formula to prove (2).)

1.9. Let $x \in |X|$, and let $\mathbf{1}_{\operatorname{Coh}_x}$ be the constant function on $\operatorname{Coh}_x(X)$ (torsion sheaves supported at x), viewed as an element in the completion $\widehat{\mathbb{H}}_{X,\operatorname{tor}}$ of $\mathbb{H}_{X,\operatorname{tor}}$ (by degree). What is $S(\mathbf{1}_{\operatorname{Coh}_x})$?

Symmetric functions

Let $\Lambda = \mathbb{Z}[x_1, x_2, \cdots]^{S_{\infty}}$ be the graded ring of symmetric functions in the variables x_1, x_2, \cdots . We denote the elementary symmetric functions, complete symmetric functions and power sums by e_n, h_n and p_n . For example,

$$h_3 = \sum_i x_i^3 + \sum_{i < j} (x_i^2 x_j + x_i x_j^2) + \sum_{i < j < k} x_i x_j x_k.$$

 $\mathbf{2}$

1.10. Show that as a commutative ring, Λ is freely generated by the set $\{e_n\}_{n\geq 1}$ over \mathbb{Z} ; Λ is freely generated by the set $\{h_n\}_{n\geq 1}$ over \mathbb{Z} ; $\Lambda_{\mathbb{Q}}$ is freely generated by the set $\{p_n\}$ over \mathbb{Q} .

1.11. Define the following elements in $\Lambda[[t]]$:

$$E(t) = \sum_{n \ge 0} e_n t^n,$$

$$H(t) = \sum_{n \ge 0} h_n t^n,$$

$$PS(t) = \sum_{n \ge 1} \frac{p_n}{n} t^n.$$

Show that

$$E(-t)^{-1} = H(t) = \exp(PS(t)).$$

1.12. Recall Λ has a graded Hopf algebra structure determined by the condition that p_n be primitive. Denote the corresponding comultiplication by Δ . Show that

$$\Delta(e_n) = \sum_{i=0}^n e_i \otimes e_{n-i},$$
$$\Delta(h_n) = \sum_{i=0}^n h_i \otimes h_{n-i}.$$

1.13. Show that the antipode S of Λ maps e_n to $(-1)^n h_n$, for all n.

Symmetric groups

1.14. Let $\mathbf{R} = \bigoplus_{n \ge 0} R(S_n)$, the direct sum of Grothendieck groups of \mathbb{C} -representations of all symmetric groups S_n (where S_0 is by definition the trivial group).

(1) Equip **R** with the structure of a Hopf algebra using induction along $S_n \times S_m \hookrightarrow S_{n+m}$.

(2) Let S be the antipode on **R**. Show that, for an irreducible representation ρ of S_n , we have

(1.3)
$$S(\rho) = \pm \rho \otimes \operatorname{sgn}_n$$

and figure out the sign above. Here sgn_n is the sign character of S_n .

Let $\Phi_1: \Lambda \to \mathbf{R}$ be the graded ring homomorphism sending h_n to the trivial representation of S_n .

1.15. Show that Φ_1 is an isomorphism of Hopf algebras.

1.16. Show that

(1.4)
$$\Phi_1(e_n) = \operatorname{sgn}_n \in R(S_n), \quad n \ge 1.$$

1.17. Show that $\Phi_1(p_n) \in R(S_n)$ has nonzero character value only on the class of cyclic permutations $(12 \cdots n)$, and compute this value.

Hall algebra and symmetric functions

Let \mathbb{H}_q be the Hall algebra (with \mathbb{Q} -coefficients) of torsion coherent sheaves on the algebraic curve \mathbb{G}_m supported at the point 1. For a partition λ , let $\mathbf{1}_{\lambda} \in \mathbb{H}_q$ be the characteristic function on the torsion modules with Jordan type λ . For example, $\lambda = (1^n)$ means k^n and $\lambda = (n)$ means $k[t, t^{-1}]/(t-1)^n$.

Define a ring homomorphism

(1.5)
$$\Phi_q: \Lambda_{\mathbb{Q}} \to \mathbb{H}_q$$

$$\Phi_q(e_n) = q^{n(n-1)/2} \mathbf{1}_{(1^n)}$$

1.18. Show that Φ_q is an isomorphism of Hopf algebras over \mathbb{Q} .

1.19. Show that

$$\begin{array}{lll} \Phi_q(h_n) & = & \displaystyle \sum_{\lambda \vdash n} \mathbf{1}_{\lambda}; \\ \Phi_q(p_n) & = & \displaystyle \sum_{\lambda \vdash n} \phi_{r(\lambda)-1}(q) \mathbf{1}_{\lambda}. \end{array}$$

Here $r(\lambda)$ denotes the number of parts in the partition λ ; see (1.1) for the definition of $\phi_r(t)$.

Groupoids and inertia

Let X be a groupoid and let $\mathcal{F} \in Sh(X)$, the category of sheaves on X in abelian groups (i.e., such a sheaf is the same as a functor from X to the category of abelian groups). Define the global sections and global sections with compact support of \mathcal{F} to be

$$\Gamma(X,\mathcal{F}) := \prod_{x \in \operatorname{Ob}(X)/\cong} (\mathcal{F}_x)^{\operatorname{Aut}(x)};$$

$$\Gamma_c(X,\mathcal{F}) := \bigoplus_{x \in \operatorname{Ob}(X)/\cong} (\mathcal{F}_x)_{\operatorname{Aut}(x)}.$$

Let $f: X \to Y$ be a map between groupoids, define $f_*: \operatorname{Sh}(X) \to \operatorname{Sh}(Y)$ by the formula

$$(f_*\mathcal{F})_y = \Gamma(X_y, \mathcal{F}|_{X_y})$$

where $X_y = f^{-1}(y)$ is the fiber of f over y (a groupoid), and $\mathcal{F}|_{X_y}$ is the restriction of \mathcal{F} to X_y . Similarly define $f_! : \operatorname{Sh}(X) \to \operatorname{Sh}(Y)$ by the formula

$$(f_!\mathcal{F})_y = \Gamma_c(X_y, \mathcal{F}|_{X_y}).$$

We also have the obvious pullback functor

$$f^* : \operatorname{Sh}(Y) \to \operatorname{Sh}(X).$$

1.20. Let $\varphi : G \to H$ be a group homomorphism, and let $f : \text{pt}/G \to \text{pt}/H$ be the induced map of groupoids. Identify Sh(pt/G) with Rep(G), and Sh(pt/H) with Rep(H).

- (1) Show that f^* is the restriction functor $\operatorname{Rep}(H) \to \operatorname{Rep}(G)$.
- (2) Show that f_* is the composition

$$\operatorname{Rep}(G) \xrightarrow{(-)^K} \operatorname{Rep}(\varphi(G)) \xrightarrow{\operatorname{Ind}_{\varphi(G)}^H} \operatorname{Rep}(H)$$

where $K = \ker(\varphi)$.

(3) Show that $f_!$ is the composition

$$\operatorname{Rep}(G) \xrightarrow{(-)_K} \operatorname{Rep}(\varphi(G)) \xrightarrow{\operatorname{ind}_{\varphi(G)}^H} \operatorname{Rep}(H)$$

Here $\operatorname{ind}_{\varphi(G)}^{H} = \mathbb{Z}[H] \otimes_{\mathbb{Z}[\varphi(G)]} (-).$

1.21. If $f: X \to Y$ and $g: Y \to Z$ are maps between groupoids, then there are canonical isomorphisms of functors

$$(g \circ f)_* = g_* \circ f_* : \operatorname{Sh}(X) \to \operatorname{Sh}(Z),$$
$$(g \circ f)_! = g_! \circ f_! : \operatorname{Sh}(X) \to \operatorname{Sh}(Z)$$

1.22. Let $f: X \to Y$ be a map between groupoids. Show that $f_!$ is left adjoint to f^* , and f_* is right adjoint to f^* .

1.23. Let X be a groupoid and let I_X be its inertia groupoid. Let $\operatorname{Sh}_f(X, \mathbb{Q})$ be the category of \mathbb{Q} -sheaves on X with finite-dimensional stalks. Define a natural additive map

$$\chi_X : \operatorname{Sh}_{fd}(X, \mathbb{Q}) \to \operatorname{Fun}(I_X, \mathbb{Q})$$

where $\operatorname{Fun}(I_X, \mathbb{Q})$ denotes vector space of \mathbb{Q} -valued functions on the set of isomorphism classes of I_X .

1.24. Let $f: X \to Y$ is a finite map of groupoids.

(1) Show that the induced map $I_f: I_X \to I_Y$ is also finite, so that the "integration along the fibers" is defined

$$f_{!}: \operatorname{Fun}(I_X, \mathbb{Q}) \to \operatorname{Fun}(I_Y, \mathbb{Q}).$$

(2) Show that the following diagram is commutative

$$\begin{aligned} \operatorname{Sh}_{fd}(X,\mathbb{Q}) & \xrightarrow{\chi_X} \operatorname{Fun}(I_X,\mathbb{Q}) \\ & \downarrow^{f_1} & \downarrow^{f_2} \\ \operatorname{Sh}_{fd}(Y,\mathbb{Q}) & \xrightarrow{\chi_Y} \operatorname{Fun}(I_Y,\mathbb{Q}) \end{aligned}$$

Hecke algebras

1.25. Let Ind_n be the induction of the trivial rep from $B_n(k)$ (upper triangular matrices) to $\operatorname{GL}_n(k)$. Define the Hecke algebra to be

$$H_q(S_n) := \operatorname{End}_{\operatorname{GL}_n(k)}(\operatorname{Ind}_n)$$

The notation suggests that $H_q(S_n)$ is a q-deformation of the group algebra of S_n .

- (1) Show that $H_q(S_n)$ is a semisimple algebra (over \mathbb{C}).
- (2) Show that the irreducible $H_q(S_n)$ -modules are in natural bijection with irreducible $GL_n(k)$ representations that appear in Ind_n .
- (3) There is a natural embedding of algebras

$$H_q(S_n) \otimes H_q(S_m) \hookrightarrow H_q(S_{n+m})$$

deforming the standard embedding $S_n \times S_m \hookrightarrow S_{n+m}$.

1.26. Let $R_{\text{uni},n} \subset R(\text{GL}_n(k))$ be the \mathbb{Z} -span of irreducible summands of Ind_n for various n. Then by the previous exercise, we may identify $R_{\text{uni},n}$ with $R(H_q(S_n))$, the Grothendieck group of finite-dimensional $H_q(S_n)$ -modules. The Hopf algebra structure on $R_{\text{uni}} = \bigoplus_{n \geq 0} R_{\text{uni},n}$ induces a Hopf algebra structure on $\bigoplus_{n \geq 0} R(H_q(S_n))$. Can you describe this latter Hopf algebra structure directly in terms of $H_q(S_n)$ -modules?

Semisimple functions

We are in the setting of Hall algebra $\mathbb{H}_{X,\text{tor}}$ for torsion coherent sheaves on a curve X. Let $\text{Div}^+(X)$ be the set of effective divisors on X. Then we have the support map (with finite fibers)

$$\pi : \operatorname{Coh}_{\operatorname{tor}}(X) \to \operatorname{Div}^+(X).$$

Hence a pullback map on functions

$$\pi^* : C_c(\operatorname{Div}^+(X)) \to \mathbb{H}_{X, \operatorname{tor}}.$$

The elements in the image of π^* are called *semisimple functions*.

We sometimes also consider pullback of functions without support conditions

 $\pi^*: C(\mathrm{Div}^+(X)) \to \widehat{\mathbb{H}}_{X,\mathrm{tor}} = C(\mathrm{Coh}_{\mathrm{tor}}(X)).$

and we also call its image semisimple functions.

1.27. Let add : $\operatorname{Div}^+(X) \times \operatorname{Div}^+(X) \to \operatorname{Div}^+(X)$ be the addition map on effective divisors. Show that for $f \in C_c(\operatorname{Div}^+(X))$, we have

$$\Delta(\pi^* f) = (\pi \times \pi)^* \text{add}^*(f) \in C_c(\text{Coh}_{\text{tor}}(X) \times \text{Coh}_{\text{tor}}(X)) = \mathbb{H}_{X,\text{tor}} \otimes \mathbb{H}_{X,\text{tor}}.$$

In particular, semisimple functions form a sub-coalgebra of $\mathbb{H}_{X,\text{tor}}$.

1.28. Show, on the other hand, that semisimple functions do not form a subalgebra of $\mathbb{H}_{X,\text{tor}}$.

5

EXERCISES

ZHIWEI YUN

1.29. Suppose $f \in \widehat{\mathbb{H}}_{X,\text{tor}}$ is an *additive function*, namely, for any short exact sequence $0 \to M' \to M \to M'' \to 0$ in $\operatorname{Coh}_{\operatorname{tor}}(X)$, we have f(M) = f(M') + f(M'').

- (1) Show that f is a semisimple function.
- (2) Show that

$$\Delta(f) = f \otimes \mathbf{1}_{\mathrm{Coh}} + \mathbf{1}_{\mathrm{Coh}} \otimes f.$$

Here $\mathbf{1}_{\text{Coh}}$ is the constant function 1 on $\text{Coh}_{\text{tor}}(X)$ (Warning: $\mathbf{1}_{\text{Coh}}$ is not the unit of $\mathbb{H}_{X,\text{tor}}$).

- (3) Show that $fS(\mathbf{1}_{Coh})$ is a primitive element in $\widehat{\mathbb{H}}_{X,tor}$. Here S is the antipode of $\mathbb{H}_{X,tor}$.
- (4) Let $x \in |X|$ (with residue field k(x)) and let $\ell_x \in \mathbb{H}_x = C(\operatorname{Coh}_x(X))$ be the additive function given by $\ell_x(M) = \dim_{k(x)} M$. Let $\mathbf{1}_{\operatorname{Coh}_x}$ be the constant function on $\operatorname{Coh}_x(X)$. Recall the isomorphism (see (1.5))

$$\Phi_x:\Lambda_\mathbb{Q}\cong\mathbb{H}_x$$

sending e_n to $q_x^{n(n-1)/2} \mathbf{1}_{k(x)^n}$.

Show that $\Phi_x(p_n)$ is the degree nd(x) piece of $\ell_x S(\mathbf{1}_{Coh_x}) \in \widehat{\mathbb{H}}_x$.

2. Deligne-Lusztig theory

2.1. Let $G = SL_2(k)$ for $k = \mathbb{F}_q$ with odd q. Let T be a non-split maximal torus in G (so that $T(k) = (\mathbb{F}_{q^2}^{\times})^{Nm=1}$). Let $\epsilon : T(k) \to \{\pm 1\}$ be the quadratic character of T(k). Consider Deligne-Lusztig curve $C \subset \mathbb{A}^2$ defined by

$$C: xy^q - x^q y = 1.$$

(1) Describe the action of T(k) on C.

The Delgine-Lusztig representation R_T^{ϵ} attached to T and ϵ is

$$V = \mathrm{H}^{1}_{c}(C, \overline{\mathbb{Q}}_{\ell})[\epsilon]$$

(the ϵ -isotypic part of the T(k)-action.) We will decompose V into the direct sum of two irreducible representations of G(k) by studying how the Frobenius F acts on it.

(2) Let \overline{C} be the closure of C in \mathbb{P}^2 . Show that T(k) acts trivially on the boundary $\overline{C} - C$, and conclude that

$$V \cong \mathrm{H}^1(\overline{C}, \overline{\mathbb{Q}}_\ell)[\epsilon]$$

as G(k)-modules.

(3) Let $\overline{C'}$ be the base change of C to \mathbb{F}_{q^2} and let $\overline{C'}$ be the corresponding projective curve. Show that $\overline{C'}$ is isomorphic to the Fermat curve of degree q + 1 in \mathbb{P}^2 (over \mathbb{F}_{q^2}):

$$\overline{C'}: u^{q+1} + v^{q+1} + w^{q+1} = 0.$$

- (4) Prove, by counting the number of points in $\overline{C'}$, that the eigenvalues of F^2 on V are all equal to -q.
- (5) Let α and β be two square roots of -q in $\overline{\mathbb{Q}}_{\ell}$, and let V_{α} and V_{β} be the corresponding generalized eigenspaces. Show that under the cup product pairing on $\mathrm{H}^1(\overline{C}, \overline{\mathbb{Q}}_{\ell})[\epsilon]$, V_{α} and V_{β} are isotropic and are paired perfectly with each other.
- (6) Show that dim $V_{\alpha} = \dim V_{\beta} = \frac{1}{2} \dim V = \frac{1}{2}(q-1).$
- (7) By computing the inner product $\langle V, V \rangle_{G(k)}^2$, show that V_{α} and V_{β} are irreducible and non-isomorphic to each other.

References

E-mail address: zhiwei.yun@yale.edu