# MATH 380A HOMEWORK 12

#### NO NEED TO SUBMIT

Notations:

- A denotes a commutative ring.
- k denotes a field.

### 1. Theorems

Theorem 1 (Snake lemma). Consider the following diagram of A-linear maps between A-modules

| (1.1) | $M' \xrightarrow{u} M \xrightarrow{v} M'' \longrightarrow 0$ |                                                    |                                    |  |
|-------|--------------------------------------------------------------|----------------------------------------------------|------------------------------------|--|
|       | $0 \longrightarrow N' \stackrel{s}{\longrightarrow} $        | $\downarrow^{f}$<br>$\rightarrow N \stackrel{t}{}$ | $\downarrow^{f''} \rightarrow N''$ |  |

where the top row is right exact, the bottom row is left exact, and the squares are commutative. Then there is an A-linear map  $\delta : \ker(f'') \to \operatorname{coker}(f')$  making the following a long exact sequence

$$\ker(f') \xrightarrow{u} \ker(f) \xrightarrow{v} \ker(f'') \xrightarrow{\delta} \operatorname{coker}(f') \xrightarrow{s} \operatorname{coker}(f) \xrightarrow{t} \operatorname{coker}(f'').$$

Here u, v, s and t are induced by the same-named maps in the diagram (1.1).

### 2. Exercises

**2.1.** Consider a diagram of A-modules (where dotted arrows do not exist)



The top row is a projective resolution of M; the bottom row is exact. Show that

- (1) It is possible to fill in the dotted arrows so that the diagram becomes a morphism between com-
- plexes (i.e., all squares are commutative).
- (2) Any two ways of filling in the dotted arrows are chain homotopic to each other.

**2.2.** Let  $M = [\dots \to M_i \xrightarrow{f_i} M_{i-1} \to \dots]$  be a complex of A-modules. Let  $N = [\dots \to N_i \xrightarrow{g_i} N_{i-1} \to \dots]$  be another complex of A-modules. Let  $\phi = (\phi_i)$  and  $\psi = (\psi_i)$  be morphisms of complexes  $M \to N$ . Suppose there is a chain homotopy between  $\phi$  and  $\psi$  (recall this means that there exist A-linear maps  $h_i : M_i \to N_{i+1}$  such that  $\phi_i - \psi_i = h_i f_i + g_{i+1} h_i$  for all i), show that  $\phi$  and  $\psi$  induce the same map  $H_i(M) \to H_i(N)$  for all  $i \in \mathbb{Z}$ .

**2.3.** Let  $0 \to N' \to N \to N'' \to 0$  be a short exact sequence of A-modules. Let M be another A-module. Show that we have a long exact sequence (2.1)

$$0 \to \operatorname{Hom}_{A}(M, N') \to \operatorname{Hom}_{A}(M, N) \to \operatorname{Hom}_{A}(M, N'') \to \operatorname{Ext}_{A}^{1}(M, N') \to \operatorname{Ext}_{A}^{1}(M, N) \to \operatorname{Ext}_{A}^{1}(M, N'') \to \operatorname{Ext}_{A}^{2}(M, N') \cdots$$

## NO NEED TO SUBMIT

- **2.4.** Let M be an A-module. Show that the following are equivalent:
  - (1) M is a projective A-module.
  - (2) M is a direct summand of a free A-module.
  - (3) For any A-module N and i > 0,  $\operatorname{Ext}_{A}^{i}(M, N) = 0$ . (4) For any A-module N,  $\operatorname{Ext}_{A}^{1}(M, N) = 0$ .

**2.5.** Let  $0 \to M' \to M \to M'' \to 0$  be a short exact sequence of A-modules. Show that

- (1) If M' and M'' are projective A-modules, so is M.
- (2) If M and M'' are projective A-modules, so is M'.

**2.6.** Show that  $\mathbb{Q}$  is not a projective  $\mathbb{Z}$ -module.

**2.7.** Let  $A = \mathbb{Z}[\sqrt{-5}]$ . Show that the ideal  $(2, 1 + \sqrt{-5})$  is a projective A-module.

**2.8.** Let A = B[x, y]. Compute  $\operatorname{Ext}_{A}^{i}(B, B)$ . Here B is viewed as an A-module by letting x and y act as zero.