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Macdonald formula for curves with planar
singularities

By Davesh Maulik at Columbia and Zhiwei Yun at Stanford

Abstract. We generalize Macdonald’s formula for the cohomology of Hilbert schemes
of points on a curve from smooth curves to curves with planar singularities: we relate the co-
homology of the Hilbert schemes to the cohomology of the compactified Jacobian of the curve.
The new formula is a consequence of a stronger identity between certain perverse sheaves de-
fined by a family of curves satisfying mild conditions. The proof makes essential use of Ngô’s
support theorem for compactified Jacobians and generalizes this theorem to the relative Hilbert
scheme of such families. As a consequence, we give a cohomological interpretation of the
numerator of the Hilbert-zeta function of curves with planar singularities.

1. Introduction

Let C be a smooth projective connected curve over an algebraically closed field k. Let
Symn.C / be the n-th symmetric product of C . Macdonald’s formula [21] says there is a
canonical isomorphism between graded vector spaces,

(1.1) H�.Symn.C // Š Symn.H�.C // D
M

iCj�n;i;j�0

î

.H1.C //Œ�i � 2j �.�j /:

Here Œ‹� denotes the cohomological shift and .‹/ denotes the Tate twist. This formula respects
Hodge structures (when k � C) and Galois actions (when C comes from a non-algebraically
closed field via base change). If we define the cohomological zeta function of C to be the
formal power series in one variable t with coefficients in graded vector spaces,

Z.t; C / WD

L2g
iD0.

Vi H1.C //Œ�i �t i

.1 �Q`t /.1 �Q`Œ�2�.�1/t/
;

then we may rewrite (1.1) for all n at once as an identity between formal power series,M
n�0

H�.Symn.C //tn Š Z.t; C /:

The purpose of this note is to generalize Macdonald’s formula to projective integral
curves C with planar singularities. In this case, we will work with the Hilbert schemes
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2 Maulik and Yun, Macdonald formula for curves with planar singularities

Hilbn.C / instead of symmetric powers. We can reinterpret
Vi
.H1.C // as the i -th cohomol-

ogy of the Jacobian Jac.C / of C . In the case C is singular, Jac.C / will be replaced by the
compactified Jacobian Jac.C / classifying torsion-free, rank one coherent sheaves with a fixed
degree on C .

The main result of this note is the following theorem, which was conjectured by L. Migli-
orini. While writing this note, we learned that L. Migliorini and V. Shende have an independent
proof of the conjecture in the case k D C, see [22].

1.1. Theorem. Let C be an integral projective curve over k of arithmetic genus ga
with planar singularities. Assume either char.k/ D 0 or char.k/ > max¹multp.C /Ip 2 C º
(multp.C / is the multiplicity of C at p). Then there exists a canonical increasing filtration P�i
on H�.Jac.C //, normalized such that GrPi H�.Jac.C // D 0 unless 0 � i � 2ga, such that for
each non-negative integer n, there is an isomorphism between graded vector spaces (gradings
are given by �, and are shifted by Œ�2j � in the usual way),

(1.2) H�.Hilbn.C // Š
M

iCj�n;i;j�0

GrPi .H
�.Jac.C ///Œ�2j �.�j /:

The canonical filtration P�i on H�.Jac.C // is defined by embedding the curve C into
a suitable family of curves, and taking the perverse filtration on the direct image complex of
the compactified Jacobian of the family. For this reason, we call P�i the perverse filtration. It
turns out that this filtration is independent of the choice of such families (see Proposition 2.15
and §3.8).

If we define the cohomological zeta function of C with respect to the perverse filtration
to be

ZP .t; C / WD

L2ga

iD0 GrPi H�.Jac.C //t i

.1 �Q`t /.1 �Q`Œ�2�.�1/t/
;

then we can restate the main theorem as an identity between formal power series in graded
vector spaces, M

n�0

H�.Hilbn.C //tn Š ZP .t; C /:

Qualitatively, this theorem says that the cohomological information of all the Hilbert
schemes is already contained in the cohomology of the compactified Jacobian, equipped with
the perverse filtration P�i . Notice that, in this expression, the grading by number of points on
the left-hand side is partially converted into the perverse filtration.

When the relevant cohomology groups carry weight filtrations (when k � C) or Galois
actions (when C comes from a non-algebraically closed field via base change), the isomor-
phism (1.2) respects these extra structures. When C is smooth, we recover (1.1) from (1.2).

1.2. Hilbert-zeta function. For a curve C defined over a finite field Fq , one may con-
sider its Hilbert-zeta function:

ZHilb.t; C=Fq/ D
X
n�0

#Hilbn.C /.Fq/tn:

If C is an integral projective curve of arithmetic genus ga over Fq with planar singularities, we
have the following facts which generalize part of the Weil conjecture for smooth curves.
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Maulik and Yun, Macdonald formula for curves with planar singularities 3

� ZHilb.t; C=Fq/ has the form P.t/
.1�t/.1�qt/

for some polynomial P.t/ 2 ZŒt � of degree 2ga.
� ZHilb.t; C=Fq/ satisfies the functional equation

ZHilb.t; C=Fq/ D .qt
2/.ga�1/ZHilb.q

�1t�1; C=Fq/:

These two facts can be proved in an elementary way using the Riemann–Roch theorem
for C . However, our main theorem gives a cohomological interpretation of the numerator P.t/
in the Hilbert-zeta function: the i -th coefficient of P.t/ is the trace of the geometric Frobenius
Frobq acting on GrPi H�.Jac.C //. In §3.9, we will give a functional equation for a two variable
analog of ZHilb.t; C=Fq/.

1.3. Local version. We also have a local version of the above results, with C replaced
by the completed local ring OO of a planar curve singularity. The local version is weaker than
Theorem 1.1 in the sense that it is an identity between virtual Poincaré polynomials instead of
the cohomology groups themselves. For more details, see §3.10 and Theorem 3.11.

In the local case, there is a conjectural relation between the virtual Poincaré polynomial
of the punctual Hilbert scheme and the Khovanov–Rozansky homology of the associated link
of the singular point, proposed by Oblomkov, Rasmussen and Shende [25, 26]. It would be in-
teresting to see whether this relation can be better understood in terms of the perverse filtration
on the cohomology of the compactified Jacobian.

1.4. Idea of the proof. Theorem 1.1 is proved by embedding C into a suitable family
of curves, satisfying three conditions axiomatized as (A1)–(A3) in §2.1. For any such family
of curves C ! B, we prove a global analog of the formula (1.2) in Theorem 2.13, which is an
identity between perverse sheaves on the base of the family coming from the cohomology of
the relative Hilbert schemes and the relative compactified Jacobian. The key step in the proof of
the global formula is Proposition 2.12 saying that any simple perverse constituent of the direct
image complex of Hilbn.C=B/ ! B has full support B. We use a cohomological corre-
spondence argument for a descending induction on the number of points, reducing this support
theorem to Ngô’s support theorem for compactified Jacobians (Theorem 2.4). Therefore, our
result is an application of Ngô’s powerful technique to a more classical setting.

1.5. An example. LetC be the curve in P2 with affine equation y3 D x4. The only sin-
gularity of C is .0; 0/, and the smooth locus of C is isomorphic to the affine line A1. The arith-
metic genus of C is 3. Let Hilbi.0;0/.C / be the Hilbert scheme of i points concentrated at .0; 0/.
There is an action of Gm on C by t 2 Gm W .x; y/ 7! .t3x; t4y/, which induces an action on
Hilbi.0;0/.C /. The Bialynicki–Birula decomposition with respect to this Gm-action shows that
Hilbi.0;0/.C / is paved by affine spaces whose dimensions are readily computable. One obtains
an affine paving of Hilbn.C / by observing that Hilbn.C / D

Sn
iD0 Hilbi.0;0/.C / �An�i . This

affine paving allows us to compute the two variable Hilbert–Poincaré series for C :
(1.3)

ZHilb.s; t; C / WD
X
n;i�0

dim Hi .Hilbn.C //si tn D
1C s2t2 C s4t3 C s4t4 C s6t6

.1 � t /.1 � s2t /
:

On the other hand, the compactified Jacobian Jac.C / is the same as the local compactified
Jacobian (or the affine Springer fiber) of the singularity at .0; 0/, which is studied by Lusztig–
Smelt [20], Piontkowski [27] and others. It turns out that Jac.C / also admits an affine paving
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4 Maulik and Yun, Macdonald formula for curves with planar singularities

as A3 [ A2 [ A2 [ A1 [ A0, see [27, Table on p. 212, row .p; q/ D .3; 4/] (note that the
Betti numbers in [27] were mistakenly listed in the reverse order). Therefore the Poincaré
polynomial of Jac.C / is

6X
iD0

dim Hi .Jac.C //si D 1C s2 C 2s4 C s6:

Comparing this with the numerator of (1.3), we see that the only difference between the per-
verse filtration on H�.Jac.C // and the natural degree filtration is that the two-dimensional
H4.Jac.C // contributes one dimension to GrP3 and one dimension to GrP4 .

Acknowledgement. The authors would like to thank A. Oblomkov for bringing this
problem to their attention and V. Shende for helpful discussions. They are also grateful to an
anonymous referee for helpful suggestions. D.M. is supported by the Clay Research Fellow-
ship. Z.Y. is partially supported by the NSF grant DMS-0969470.

2. Macdonald formula for families of curves

2.1. Assumptions on the family of curves. In this section, k is any algebraically
closed field. Let � W C ! B be a locally projective flat family of curves over an irreducible
base B. Let ga be the common arithmetic genus of the fibers of � . For each integer n � 0, let
fn W Hn D Hilbn.C=B/ ! B be the relative Hilbert scheme of n-points on the fibers of � .
We assume:

(A1) Each geometric fiber Cb (b 2 B) is integral and has only planar singularities.

(A2) For each 0 � n � 2ga � 1, the total space Hn is smooth.

(A3) For every (not necessarily closed) point b 2 B, we have the ı-invariant ı.b/ of the fiber
Cb . Then we have

codimB.¹bº/ � ı.b/:

Here ¹bº is the Zariski closure of b in B.

Note that (A2) for n D 0 implies B is smooth. We denote dim B by dB . Also, (A3)
implies that the generic fiber of � is smooth, because the locus with ı.b/ � 1 has codimension
at least one in B.

2.2. Compactified Jacobians. In the following discussion, we assume:

(A4) The family � admits a section s W B ! C sm where C sm � C is the open subscheme with
C sm
b

being the smooth locus of Cb for each b 2 B.

With this assumption, one may define compactified Picard schemes pn W Picn ! B of
the family � W C ! B. More precisely, Picn is the sheafification of the following presheaf:
it sends every commutative k-algebra R to the set Picn.R/, the set of isomorphism classes of
triples .b;F ; �/ where b 2 B.R/, F is a torsion-free, generically rank one coherent sheaf on
Cb (a curve over SpecR), flat over R, with

�.Cb0 ;OCb0
/ � �.Cb0 ;Fb0/ D n

for every geometric point b0 2 SpecR, and � is an isomorphism of R-modules Fs.b/
�
! R.
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Maulik and Yun, Macdonald formula for curves with planar singularities 5

We can use the section s to identify the various components Picn. After this identification,
we denote it by J, the relative compactified Jacobian.

2.3. Lemma. Assume (A1)–(A2) and (A4) hold.

(1) The relative compactified Jacobian J is smooth over k.

(2) Each geometric fiber Jb of J is irreducible of dimension ga.

Proof. By a result of Altman and Kleiman [2, Theorem 8.4 (v)], the morphism
Hn ! Picn sending a subscheme of C to its ideal sheaf is a projective space bundle for
n � 2ga � 1. Since H2ga�1 is smooth by (A2), so is Pic2ga�1, hence J. This proves part (1).
Part (2) is the main result of [1].

Let p W J ! B be the projection and set L D Rp�Q`;J
2 Dbc .B/. Since J is smooth

and p is locally projective (see [2]), by the decomposition theorem [7, Théorème 6.2.5], we
have (non-canonically)

(2.1) L Š
M
i

pHiLŒ�i �

as objects in Dbc .B/. Each perverse sheaf pHiL is semisimple.

2.4. Theorem (B. C. Ngô [23, Théorème 7.2.1]). Assume (A1)–(A4) hold. For every
i 2 Z and every simple constituent M of pHiL, the support of M is the whole of B.

Proof. We will apply the general result of Ngô [23, Théorème 7.2.1]. To this end, we
need to check that the action of the relative Jacobian Jac.C=B/ over B on J satisfies the as-
sumptions in [23, §7.1]. First of all, J ! B is locally projective by Altman and Kleiman [2].
The condition [23, 7.1.2] follows from Lemma 2.3 (2). The condition [23, 7.1.3] is checked
similarly as in [23, Corollaire 4.15.2], using the analog of the product formula [23, Proposi-
tion 4.15.1] in the setting of the Jac.C /-action on Jac.C /. Details will be explained in §3.13 in
preparation for the proof of the local Macdonald formula. The condition [23, 7.1.4] is checked
in [23, §4.12] using the Weil pairing. The condition [23, 7.1.5] follows from (A3). Therefore
[23, Théorème 7.2.1] is applicable.

Let Z be the support of M . The conclusion of [23, Théorème 7.2.1] is that M appears
as a direct summand of R2gapŠQ`, at least when restricted to an étale neighborhood of the
generic point of Z. But by Lemma 2.3 (2), R2gapŠQ` D Q`, which is an irreducible perverse
sheaf up to shift, because B is smooth. Hence Z D B.

2.5. What if there is no section? In this subsection, we discuss why the perverse
sheaves pHiL and Theorem 2.4 still make sense even if we drop the assumption (A4).

Let ' W QB ! B be an étale surjective morphism, and Qs W QB ! C sm be a morphism such
that � ı Qs D '. Such a pair . QB; Qs/ always exists because C sm ! B is smooth and surjective.

Let QC D QB �B C . Then Q� W QC ! QB satisfies the assumptions (A1)–(A4). The above
discussion on the relative compactified Jacobian makes sense for the family Q� . In particular,
we have the direct image complex QL 2 Dbc . QB/ of the relative compactified Jacobian for Q� , and
the perverse sheaves pHi QL satisfy the conclusion of Theorem 2.4. The perverse sheaves pHi QL
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6 Maulik and Yun, Macdonald formula for curves with planar singularities

carry obvious descent data with respect to the étale covering QB ! B (here we use the fact
that the relative compactified Jacobian, once representable, is independent of the section of the
family). By [7, 2.2.19], perverse sheaves satisfy étale descent, there exist (unique up to a unique
isomorphism) perverse sheaves Li on B such that '�Li Š pHi QL. Clearly, Theorem 2.4 holds
for Li as well. It is also easy to see that Li is independent of the choice of . QB; Qs/.

In the following we will use these perverse sheaves Li when pHiL is not defined.

2.6. Lemma. Under the assumptions (A1)–(A2), we have:

(1) The relative Hilbert scheme Hn is smooth and irreducible for all n � 0.

(2) The morphism fn W Hn ! B is flat, with all geometric fibers irreducible of dimension n.

Proof. The statements in the lemma are local for the étale topology, so we may assume
(A4) also holds, hence the compactified Jacobian J exists. The argument and the statement of
Lemma 2.3 (1) show that Hn is smooth over J for n � 2ga�1, hence smooth. For n � 2ga�1,
Hn is smooth by (A1). Hence Hn is smooth for all n.

The rest of the lemma will follow once we show that every geometric fiber Hilbn.Cb/ of
fn is irreducible of dimension n for all n, which in turn follows from an argument of Rego in
[28, p. 214, last paragraph].

2.7. The Hilbert–Chow map. For each b 2 B, there is a Zariski open neighborhood
B0 of b over which we can arrange an embedding C jB0 � PN

B0
. For a generic choice of linear

projection, the induced map Cb ! P1 is finite, and will remain so for Cb0 for b0 2 B00 where
B00 � B0 is another Zariski open neighborhood of b. Therefore we obtain a finite morphism
C jB00 ! P1 �B00. This allows us, whenever the problem we consider is Zariski local for B,
to make the following assumption:

(A5) There is a smooth, connected, projective curve X over k and a finite morphism
� W C ! X �B lifting � .

We now assume (A5) in the following discussion.
Consider the morphism

�n W Hn ! Symn.C=B/! Symn.X/ �B

where the first arrow is the Hilbert–Chow map relative to the base B, and the second map is
induced from the finite morphism � W C ! X �B, which is proper. We understand Sym0.X/
as Spec k.

We recall from [13, §6.2] the notion of a small map.

2.8. Definition. A proper surjective morphism f W Y ! X between irreducible
schemes over k is called small if for any d � 1, we have

codimX
®
x 2 X j dimf �1.x/ � d

¯
� 2d C 1:

2.9. Lemma. For each n 2 Z�0, the morphism �n is small.

Proof. By Lemma 2.6 (1), Hn is irreducible. The morphism �n is clearly proper and
surjective.
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Maulik and Yun, Macdonald formula for curves with planar singularities 7

Fix an integer d � 1. Let Zd � Symn.X/ �B be the closed locus where the fibers of
�n have dimension at least d . Let � D .D D m1x1 C � � � Cmrxr ; b/ be a generic point of Zd
with values in some field F . Here xi 2 X.F / are distinct points and mi > 0. Consider the
Hilbert–Chow map of �m W Hilbm.Cb/! Symm.Cb/. Let y 2 Cb be any closed point. Since
Cb is locally planar, dim��1m .my/ � m � 1 by a result of Iarrobino [17, Corollary 2]. On the
other hand, ��1m .my/ classifies length m quotients of OOCb;y , hence ��1m .my/ is a subscheme
of Pic. OOCb;y/ to be defined in §3.10. Since Pic. OOCb;y/ has dimension ı.CbIy/ (the local
ı-invariant of Cb at y), we have dim��1m .my/ � ı.CbIy/. Summarizing,

dim��1m .my/ � min¹m � 1; ı.CbIy/º; for all closed points y 2 Cb; m � 1:

This implies that

(2.2) d � dim ��1n .D; b/ �

rX
iD1

min¹mi � 1; ı.CbI xi /º:

Here ı.CbI x/ D
P
y2��1.x;b/ ı.CbIy/ for x 2 X.F /. In particular, d � ı.Cb/. Hence, by

(A3),

(2.3) codimB.¹bº/ � ı.Cb/ � d:

Let S � X ˝k F be the finite subscheme consisting of those x with ı.CbI x/ > 0. The
inequality (2.2) implies that at least d C 1 of the points in D (counted with multiplicities) are
from S . This implies that

(2.4) codimSymn.X/.¹Dº/ � d C 1:

Adding (2.3) and (2.4) together we get

codimSymn.X/�B.¹�º/ � 2d C 1:

This being true for all generic points of Zd , we conclude that

codimSymn.X/�B.Zd / � 2d C 1:

This verifies the smallness of �n.

Let En D R�n;�Q` 2 D
b
c .Symn.X/ �B/. In particular, E0 is the constant sheaf on B.

Also E1 D ��Q` is a sheaf on X �B, and E1ŒdB C 1� is a perverse sheaf since � is finite.
Let Un � Symn.X/ be the open subscheme consisting of multiplicity-free divisors. Let

QUn � Xn be the preimage of Un, which is an Sn-torsor over Un. The sheaf E�n
1 j QUn�B

on QUn � B admits an obvious Sn-equivariant structure and hence descends to a sheaf
E
.n/
1 on Un �B.

2.10. Corollary. The complex EnŒdB C n� is a perverse sheaf on Symn.X/ �B, and
we have a canonical isomorphism

EnŒdB C n� Š jn;Š�.E
.n/
1 ŒdB C n�/:

Here jn W Un �B ,! Symn.X/ �B is the open inclusion, and we are implicitly stating that
E
.n/
1 ŒdB C n� is a perverse sheaf on Un �B.
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8 Maulik and Yun, Macdonald formula for curves with planar singularities

Proof. By Lemma 2.9, the morphism �n is small. Since Hn is smooth for all n by
Lemma 2.6 (1), the complex R�n;�Q`ŒdB C n� D EnŒdB C n� is perverse, and is the middle
extension of its restriction to any open dense subset (in particular Un �B) of Symn.X/ �B.
Clearly j �nEn D E

.n/
1 , hence EnŒdB C n� is the middle extension of the perverse sheaf

E
.n/
1 ŒdB C n�.

2.11. The shift operator. Consider the following diagram:

(2.5) Tn
 �
t

ww

�!
t

&&

Hn �X

�n�idX

��

HnC1

�nC1

��

Symn.X/ �X �B
�n // SymnC1.X/ �B

For any k-algebra R, the set Tn.R/ classifies the data .b; x; I0 � I � OCb
/ where

.b; x/ 2 B.R/ � X.R/ such that I=I0 is an invertible R-module whose support is an R-point
y 2 Cb.R/ over x 2 X.R/. The morphism �t (resp. �!t ) sends .b; x; I0 � I/ to .I; x/ (resp.
I0). The morphism �n sends .D; x; b/ to .D C x; b/.

The restriction of Tn to the generic point � 2 B can be identified with

(2.6) Symn.C�/ � C�
 �
t

vv

�!
t

((

Symn.C�/ �X SymnC1.C�/

where �!t sends .D; y/ toDCy. Let T 0n be the closure of the generic fiber Tn;� in Tn. We have
dim T 0n D dB C nC 1. Consider the fundamental class ŒT 0n � 2 HBM

2.dBCnC1/
.Tn/ of T 0n in the

Borel–Moore homology of Tn.
Since HnC1 is smooth of dimension dBCnC1, the fundamental class ŒHnC1� identifies

DTn
Œ�2.dBCnC1/�.�dB �n�1/ with �!t ŠQ`;HnC1

, hence we may view ŒT 0n � as an element

in H0.Tn;
�!
t ŠQ`;HnC1

/. By the formalism of cohomological correspondences ([15] or [31,
Appendix A.1]), ŒT 0n � can be viewed as a cohomological correspondence between the constant
sheaves on Hn �X and HnC1 with support on Tn:

ŒT 0n � W
 �
t �Q`;Hn�X !

�!
t ŠQ`;HnC1

:

It induces a map
QTn D ŒT

0
n �# W �n;�.En � Q`;X /! EnC1

between shifted perverse sheaves on SymnC1.X/ �B. Let

Kn D Rfn;�Q` 2 D
b
c .B/:

Taking the direct image of QTn under RfnC1;�, we get

Tn D RfnC1;�. QTn/ W Kn˝H�.X/ D RfnC1;��n;�.En� Q`;X /! RfnC1;�EnC1 D KnC1:
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Maulik and Yun, Macdonald formula for curves with planar singularities 9

2.12. Proposition. Under (A1)–(A3), for each n � 0; i 2 Z and every simple con-
stituent M of pHiKn, the support of M is the whole of B.

Proof. The property of Kn to be proved is local for the étale topology of B, hence we
may assume (A4) and (A5) hold.

For n � 2ga � 1, hn W Hn ! Picn is a projective space bundle, the proposition is an
easy consequence of Theorem 2.4. In fact, the relative ample line bundle O.1/ along the fibers
of hn gives a decomposition

Rhn;�Kn Š
n�gaM
jD0

Q`Œ�2j �.�j /:

Hence
pHiKn Š

n�gaM
jD0

pHi�2jL.�j /:

In particular, any simple constituent M of pH�Kn is also a simple constituent of pH�L. By
Theorem 2.4, the support of M is the whole of B.

Now we apply backward induction to n. Assuming the statement is true for any simple
constituent of pH�KnC1, we would like to deduce that the same is true for any simple con-
stituent M of pH�Kn. The idea is to show that M appears as a direct summand of pH�KnC1
via the map Tn.

The sheaf E1 D ��Q`;C on X �B contains the constant sheaf as a direct summand. Fix
a decomposition

E1 D Q`;X�B ˚ V

where V is a sheaf on X �B. Then we can write

E
.n/
1 D

nM
iD0

V ni

such that V ni j QUn�B
is the sum of direct summands ofE�n

1 D .Q`˚V /
�n (under the binomial

expansion) consisting of exactly i factors of V . Let

W n
i D jn;Š�V

n
i :

Then by Corollary 2.10, we have

(2.7) En D

nM
iD0

W n
i :

We would like to understand the effect of the map QTn under the “binomial expansion”
(2.7). Base changing the diagram (2.5) to the generic point .x1; : : : ; xnC1; �/ 2 QUnC1 � B,
using the diagram (2.6), we get FnC1

iD1 �.pi /
 �
t

uu

�!
t

((FnC1
iD1

Q
j¤i �

�1.xj ; �/ � ¹xiº
QnC1
jD1 �

�1.xj ; �/
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10 Maulik and Yun, Macdonald formula for curves with planar singularities

where �.pi / is the graph of the natural projection

pi W

nC1Y
jD1

��1.xj ; �/!
Y
j¤i

��1.xj ; �/ � ¹xiº:

This implies that the fiber of QTn at the point .D D x1Cx2C� � �CxnC1; �/ 2 UnC1�B takes
the form

QTnj.D;�/ D

nC1M
iD1

p�i W

nC1M
iD1

O
j¤i

E1;xj
!

nC1O
jD1

E1;xj
:

The pullback p�i is the identity on the factor E1;xj
for j ¤ i , and is the inclusion of the factor

Q` into E1;xi
at the i -th factor. Using the expansion (2.7), we can rewrite QTn at .D; �/ as

nM
jD1

'j W

nM
jD1

nC1M
iD1

V nj;D�xi
!

nM
jD1

V nC1j;D �

nC1M
jD1

V nC1j;D

where the map 'j W
LnC1
iD1 V

n
j;D�xi

! V nC1j;D can be understood in the following way. In the
following we omit the superscript of Vj;D because it will be clear from the degree of D. By
definition, we have

Vj;D D
M

D0�D;deg.D0/Dj

O
x02D0

Vx0 ;

hence
nC1M
iD1

Vj;D�xi
D

M
D0�D;deg.D0/Dj

� M
i;xi…D0

O
x02D0

Vx0
�
D V

˚nC1�j
j;D :

The map 'j can be identified with

id˚nC1�j W V ˚nC1�jj;D ! Vj;D:

Both the source and the target of QTn are middle extension perverse sheaves (up to the shift
ŒdB C nC 1�) from any open dense subset of SymnC1.X/ �B (the source being so because
�n is finite). The above calculation on the generic point implies

�n;�.W
n
j � Q`;X / Š .W

nC1
j /˚nC1�j ;

and the map QTn can be written as

nM
jD1

id˚nC1�j W
nM

jD1

.W nC1
j /˚nC1�j !

nM
jD1

W nC1
j �

nC1M
jD1

W nC1
j :

In particular, every direct summand of �n;�.En � Q`/ appears as a direct summand of EnC1.
Applying RfnC1;�, we conclude that all simple constituents of pH�.Kn˝H�.X// (which are
the same as simple constituents of pH�Kn) appear in pH�KnC1. This finishes the induction
step.
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Maulik and Yun, Macdonald formula for curves with planar singularities 11

2.13. Theorem. Let � W C ! B be a projective flat family of curves satisfying (A1)–
(A3) in §2.1. Let fn W Hn ! B be the relative Hilbert scheme of n-points on the fibers
of � . Let Li be the perverse sheaves defined in §2.5 (which are the descent of the perverse
cohomology sheaves of the family of compactified Jacobians). Then for any n � 0 and i 2 Z,
there is a canonical isomorphism

(2.8) pHiCdB Rfn;�Q` Š

M
max¹i�n;0º�j�i=2

LiCdB�2j .�j /:

Proof. By Proposition 2.12 and Theorem 2.4, both sides of (2.8) are middle extension
perverse sheaves on B. Therefore, it suffices to establish a canonical isomorphism in the form
of (2.8) on the open dense subset B0 � B consisting of smooth fibers, or even at the generic
point � of B, i.e., a Gal.k.�/=k.�//-equivariant isomorphism

(2.9) Hi .Symn.C�// Š
M

max¹i�n;0º�j�i=2

L
iCdB�2j
� Œ�i � dB �.�j /

where � is the geometric generic point above �. Since LiCdB

� Œ�i � dB � is canonically

Hi .Jac.C�// Š
Vi H1.C�/, (2.9) follows from the classical Macdonald formula (1.1) for C�

(which is Gal.k.�/=k.�//-equivariant and canonical). This proves the theorem.

2.14. The perverse filtration. Suppose a family of curves C ! B is such that B is
irreducible, and J D Jac.C=B/ is defined and smooth. For each geometric point b 2 B,
we get a perverse filtration on the total cohomology H�.Jac.Cb// D H�.Jb/. This is the
increasing filtration defined as

P�iH�.Jb/ WD .
p��iCdB

L/bŒ�dB �:

Note that p��iCdB
L! L is a direct summand by the decomposition (2.1), hence P�iH�.Jb/

defined above is indeed a subspace of H�.Jb/.
The next result shows that the perverse filtration P�i is preserved under base change.

This will be used in the proof of Theorem 1.1 to show that there is a canonical perverse filtra-
tion.

2.15. Proposition. Let C 0 ! B0 be a family of curves satisfying (A1)–(A4), which is
obtained from a family C ! B via a base change ' W B0 ! B. Assume B is irreducible,
J D Jac.C=B/ is defined and is smooth. Then for every geometric fiber b0 2 B0 with image
b 2 B, the perverse filtration P�i on H�.Jb/ is the same as the perverse filtration P 0

�i 0 on
H�.Jb0/ (under the identification Jb D Jb0).

Proof. Let L 2 Dbc .B/ and L0 2 Dbc .B
0/ be the direct image complex of J and J

0
.

The (non-canonical) decomposition (2.1) applies to both L and L0. By proper base change, we
have M

i

'�pHiLŒ�i � Š '�L D L0 Š
M
i

pHiL0Œ�i �:

To prove the proposition, it suffices to argue that '�pHiCdim BL Š pHiCdim B0L0. Applying
Proposition 2.12 to the family C 0 ! B0, every simple constituent of pHiL0 has support equal
to B0, hence every simple constituent of pHj .'�pHiL/ also has support B0.
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12 Maulik and Yun, Macdonald formula for curves with planar singularities

Let B00 (resp. B0) be the locus where the fiber curves are smooth, and let '0 W B00 ! B0

be the restriction of '. Then pHiCdim BLjB0
and pHiCdim B0L0jB00

are both lisse and

'�0 .
pHiCdim BLjB0

/ Š pHiCdim B0L0jB00
:

By the support property of '�pHiCdim BL stated above, '�pHiCdim BL must also be the mid-
dle extension of its restriction to B00. In particular, we conclude that

'�pHiCdim BL Š pHiCdim B0L0:

This implies the proposition.

2.16. Perverse filtration vs. Lefschetz filtration. We first recall the definition of the
determinant line bundle on the relative compactified Jacobian J. Let F univ be the universal
object over J �B C . Let pr

J
W J �B C ! J be the projection. The determinant line bundle is

the line bundle
Ldet WD det.Rpr

J;�
F univ/

over J. The iterated cup product by c1.Ldet/ induces a map:

(2.10) [ c1.Ldet/
ga�i W

pHdBCiL! pHdBC2ga�iL.ga � i/:

Let B0 � B be the locus where Cb is smooth. It is well known that Ldet is ample when
restricted to Jb for b 2 B0. Therefore, by the relative hard Lefschetz theorem [7, Théorèmes
5.4.10, 6.2.10], the map c1.Ldet/

i is an isomorphism over B0, for 0 � i � ga. By Proposi-
tion 2.12, pHiL is the middle extension of pHiLjB0

for any i , hence (2.10) is an isomorphism
over the whole B.

For each geometric point b 2 B, we consider the Jacobson–Morozov filtration induced
by the nilpotent action

[c1.Ldet/ W H�.Jb/! H�.Jb/:

This is the unique increasing filtration M�iH�.Jb/ such that c1.Ldet/M�i �M�i�2 and that
c1.Ldet/

i induces an isomorphism GrMi
�
! GrM�i (see [8, Proposition 1.6.1]). We modify the

filtration M by setting
F�iH�.Jb/ WDM�ga�iH

�.Jb/:

Then F�i is a decreasing filtration on H�.Jb/, which we call the Lefschetz filtration.
The fact that (2.10) is an isomorphism suggests a stronger statement, which we formulate

as a conjecture.

2.17. Conjecture. Assume (A1)–(A4) hold for C ! B. Then for every geometric point
b 2 B, the perverse filtration P�i and the Lefschetz filtration F�i on H�.Jb/ are opposite to
each other.

3. Applications

3.1. Spectral curves. In this subsection, we give an example of a family � W C ! B

satisfying the conditions in (A1)–(A3) coming from the Hitchin fibration.
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Maulik and Yun, Macdonald formula for curves with planar singularities 13

Fix an integer n � 1. Let X be a smooth, projective and connected curve over k. Let n
be a positive integer and let L be a line bundle over X . Let A be the affine space

A D

nM
iD1

H0.X;L˝i /

viewed as an affine scheme over k.
Let TotX .L/ D Spec

X
.
L
i�0L˝�iyi / be the total space of the line bundle L (here y is

a formal variable). We define a closed subscheme Y � A � TotX .L/ by the equation

yn C a1y
n�1
C � � � C an D 0; .a1; : : : ; an/ 2 A:

Let � W Y ! A be the projection. This is the family of spectral curves. It appears in the
study of Hitchin moduli space for the group GLn (see Hitchin’s original paper [16, §5.1]). In
particular, A is the base of the Hitchin fibration.

Let Aint � A be the open locus where Ya is integral (integrality is an open condition by
[14, Théorème 12.2.1]). There is a stratification of Aint D

F
ı�0Aint

ı
by the ı-invariants of the

spectral curves Ya. Recall the following codimension estimate.

3.2. Lemma. The following assertions hold.

(1) (Ngô [24, p. 4]) If char.k/ D 0, then codimAintAint
ı
� ı for all ı � 0.

(2) (Ngô [23, Proposition 5.7.2], which is based on a result of Goresky, Kottwitz and
MacPherson [12]) If char.k/ > n, then for each fixed ı0 � 0, there is an integer
N D N.ı0/ such that whenever deg.L/ � N and 0 � ı � ı0, we have

(3.1) codimAint.Aint
ı / � ı:

If char.k/ D 0, we take B D Aint. If char.k/ > n, we fix ı0 � 0 and deg.L/ � N.ı0/,
and let B D

F
ı�ı0

Aint
ı
� Aint be the open locus where the estimate (3.1) holds. We denote

the restriction of � to B by the same symbol.

3.3. Proposition. The family of curves � W Y ! B satisfies (A1)–(A3) in §2.1. In
particular, Theorem 2.13 applies to � .

Proof. First of all, Y is closed in TotX .L/ � B. Since we can compactify TotX .L/
into a ruled surface over X (hence projective) by adding a divisor at infinity, � is a projective
morphism. We check the conditions one by one.

(A1) Each fiber Ya is integral because B � Aint. Since Ya � TotX .L/, it has planar
singularities.

(A2) is proved by the second-named author in [32, Claim 1 in the proof of Proposi-
tion 3.2.6].

(A3) is guaranteed by the choice of B and Lemma 3.2.

3.4. Versal deformation of curves. Let C be an integral curve with planar singular-
ities. We construct in this subsection a family of curves � W C ! B with C D ��1.b0/

satisfying (A1)–(A3) in §2.1.
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14 Maulik and Yun, Macdonald formula for curves with planar singularities

It follows from usual deformation-theoretic arguments (see [4, 30] for example) that C
can be included in a family

C
� � //

��

C

��

b0
� � // B

that is versal at b0 2 B. More concretely, one can choose an embedding of C in PN for which

H1.C; IZ ˝OPN .1// D 0

for all finite subschemes Z � C with length.Z/ � 2ga � 1 where ga is the arithmetic genus
of C . By standard calculation, the above vanishing implies

(3.2) H1.C; IZ ˝NC=PN / D 0

for any suchZ. Let HilbP .PN / be the Hilbert scheme of PN with Hilbert polynomial P equal
to that of C . Let � W C ! HilbP .PN / be the universal curve.

3.5. Proposition. Assume either char.k/ D 0 or char.k/ > max¹multp.C /Ip 2 C º.
Under the above choice of the embedding C ,! PN , there exists a Zariski neighborhood
B � HilbP .PN / of b0 D ŒC � over which the universal family � W C ! B satisfies the
conditions (A1)–(A3) in §2.1.

Proof. (A1) The property of being locally planar is open: consider the relative cotangent
sheaf�C=HilbP .PN / and letZ � C be the locus where its stalk has dimension at least 3. Clearly
Z is closed, hence �.Z/ � HilbP .PN / is also closed. Then HilbP .PN / � �.Z/ is precisely
the locus where Cb is locally planar. Also being integral is an open condition [14, Théorème
12.2.1]. Therefore we can take a Zariski neighborhood of ŒC � in HilbP .PN / over which the
fibers are integral and locally planar.

(A2) When k D C, this is proved by V. Shende in [29, Proposition 13]. In general,
we proceed as follows. By (3.2), H1.C;NC=PN / D 0, hence ŒC � is in the smooth locus of
HilbP .PN /. Shrinking B if necessary, we may assume B is contained in the smooth locus of
HilbP .PN /.

We first need the following lemma:

3.6. Lemma. Any finite subscheme Z0 of length n of a locally planar curve C 0 � PN

lies in the smooth locus of Hilbn.PN /.

Proof. SinceZ0 is planar, it lies in the closure of the locus of n distinct points on PN , so
the local dimension at ŒZ0� is at least n �N , and it suffices to bound the dimension of the tangent
space. For this, we can assume that Z0 is supported at a point and choose local coordinates so
thatZ � S D Spec.kŒŒx; y��/ � P D Spec.kŒŒx; y; z1; : : : ; zN�2��/. Since IZ=P is generated
by the ideal IZ=S and ¹zkº, we have a surjection

IZ=S=I
2
Z=S ˚O

˚.N�2/
Z ! IZ=P =I

2
Z=P ! 0

which leads to the inclusion

0! Hom.IZ=P =I
2
Z=P ;OZ/! Hom.IZ=S=I

2
Z=S ;OZ/˚ON�2Z :

Brought to you by | University of Southern California
Authenticated | 128.125.76.3

Download Date | 8/11/13 5:20 AM



Maulik and Yun, Macdonald formula for curves with planar singularities 15

The first term on the right side above is the tangent space of Hilbn.A2/ atZ, which has dimen-
sion 2n; the second has length n � .N � 2/. Therefore the length of

TZHilbn.PN / D Hom.IZ=P =I
2
Z=P ;OZ/

is bounded above by n �N .

Now fix 0 � n � 2ga�1. Let IC be the ideal sheaf of the universal curve C � B�PN .
Let OZ be the structure sheaf of the universal subscheme Z � Hilbn.PN / � PN . Let E be
the complex Rpr�RHom.IC ;OZ/ where pr W Hilbn.PN / � B � PN ! Hilbn.PN / � B is
the projection. Over .Z0 � C 0/ 2 Hilbn.C=B/, we have Ext>0

PN .IC 0 ;OZ0/ D 0 for dimension
reasons, hence E is concentrated in degree zero in a neighborhood of Hilbn.C=B/ by semi-
continuity, and is a vector bundle of rank .N � 1/n there. This vector bundle E has a canonical
section s given by IC ,! OPN ! OZ. Now Hilbn.C=B/ is cut off by the vanishing of s on
the smooth locus of Hilbn.PN / �B, therefore the local dimension of Hilbn.C=B/ is at least

dim Hilbn.PN /sm
C dim B � rankE D nC dim B:

On the other hand, the tangent space of Hilbn.C=B/ at .Z � C/ is the kernel of the map

Hom.IZ=I2Z ;OZ/˚ H0.C;NC=PN /! H0.Z;NC=PN jZ/:

By (3.2), this map is surjective. We argue in the proof of Lemma 3.6 that

dim Hom.IZ=I2Z ;OZ/ D Nn:

Clearly h0.C;NC=PN / D dim B and h0.Z;NC=PN jZ/ D n � rank.NC=PN / D n.N � 1/,
therefore the dimension of the tangent space at .Z � C/ is n C dim B. This together with
the lower bound above gives the smoothness of Hilbn.C=B/ along the fiber Hilbn.C /. By
openness of the smooth locus and properness of Hilbn.C=B/! B, we may shrink B further
to ensure that Hilbn.C=B/ is smooth.

Above we fixed an integer n and found a non-empty Zariski open subset of B.n/ � B

over which Hilbn.C=B/ is smooth. Now
T2ga�1
nD0 B.n/ guarantees the smoothness condition

(A2).
(A3) For every singularity p 2 C , the deformation functor Def. OOC;p/ has an algebraic

miniversal hull Vp by M. Artin’s theorem [4, Theorem 3.3] and Elkik’s theorem on isolated
singularities [10]. More precisely, Vp D SpecRp is of finite type over k equipped with a point
0p 2 Vp.k/ and an Rp-flat family of algebras OORp

with an isomorphism

OORp
˝Rp

k.0p/ Š OOC;p:

Let ORp be the completion of Rp at 0p. The canonical morphism vp W Spf ORp ! Def. OOC;p/ is
formally smooth and induces a bijection on the tangent spaces.

By the versality of Vp, there exists an étale neighborhood B0 of ŒC � 2 B and a pointed
morphism

(3.3) .B0; ŒC �/!
Y

p2C sing

.Vp; 0p/:
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16 Maulik and Yun, Macdonald formula for curves with planar singularities

Since B is also versal, this morphism is smooth (see, for instance, [11, Section A] or [19,
Appendix A]). Therefore the codimension estimate holds for B around ŒC � with respect to the
global ı-invariant if and only if the codimension estimate holds for each Vp around 0p with
respect to the local ı-invariant (here we use the fact that the locus V sm

p � Vp parametrizing
smooth deformations is not empty).

In characteristic zero, the codimension estimate for Vp is proven by Diaz and Harris
[9, Theorem 4.15]. In arbitrary characteristic, we do not know a reference but it can be deduced
from the family of spectral curves, see Lemma 3.7 below.

3.7. Lemma. Let OO be the completed local ring of a planar curve singularity over k.
Assume char.k/ is either 0 or greater than the multiplicity of the singularity defined by OO. Let
V be an algebraic miniversal deformation of OO, with the base point 0 2 V.k/ corresponding
to OO. Then there is a Zariski open neighborhood V 0 of 0 such that

codimV 0.V 0ı / � ı

for any ı-constant stratum V 0
ı
� V 0.

Proof. By the Weierstrass preparation theorem, we may choose a non-unit 0 ¤ t 2 OO

such that OO Š kŒŒt ��Œy�=.yn C a�1.t/y
n�1 C � � � C a�n.t// for some a�i .t/ 2 kŒŒt �� where n is

the multiplicity of OO. We may even assume a�i .t/ 2 kŒt � without changing the isomorphism
type of OO, by a result of Artin and Hironaka [3, Lemma 3.12].

Let Y � D Spec kŒt; y�=.f / where f .t; y/ D yn C a�1.t/y
n�1 C � � � C a�n.t/. This is an

affine plane curve with isolated singularities at ¹p1; : : : ; prº, and we may assume OOY �;p1
Š OO.

We have the miniversal deformations .Vi ; 0i / of the singularities pi as in the proof of Propo-
sition 3.5. Each Vi is smooth at 0i because Def. OOY �;pi

/ is formally smooth [19, Théorème
A.1.2 (3)].

Let AN be the Hitchin base associated with the curve P1 and line bundle O.N /. We
trivialize O.N / over A1t D P1 � ¹1º, and identify AN with an affine space with coordinates
a D .ai .t//1�i�n where ai .t/ 2 kŒt � with deg.ai / � Ni . Then AN parametrizes a family of
affine spectral curves Y ! AN with

Ya D Spec kŒt; y�=.yn C a1.t/yn�1 C a2.t/yn�2 C � � � C an.t//;

for a D .ai .t// 2 AN . We choose N large enough so that the original data .a�i .t// gives a
point a� 2 AN .k/. By the versality of Vi , there is an étale neighborhood A0N of a� 2 AN

and a pointed morphism

� W .A0N ; a
�/!

rY
iD1

.Vi ; 0i /

such that the family of affine spectral curves Y ! AN is, étale locally around the singularities
of Y � D Ya� , isomorphic to the pull-back of the disjoint union of the miniversal families over
Vi .

We claim that � is smooth at a� for large N . Since both A0N and the Vi are smooth
around the base points, we only need to show that the tangent map of � at a� is surjective. We
have a canonical isomorphism (see [5, Part 1, §4])

rM
iD1

T0i
Vi Š kŒt; y�=.f; @yf; @tf /:
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Maulik and Yun, Macdonald formula for curves with planar singularities 17

Identifying Ta�A0N with AN in the usual way, the tangent map d� W Ta�A0N !
L
i T0i

Vi
takes the form

(3.4) .ai .t//1�i�n 7!

nX
iD1

ai .t/y
n�i
2 kŒt; y�=.f; @yf; @tf /:

Since f has only isolated singularities, f does not have multiple factors. Since char.k/ D 0 or
char.k/ > n, f and @yf are coprime as elements in k.t/Œy�, hence the ideal .f; @yf / � kŒt; y�
contains some nonzero polynomial g.t/ 2 kŒt �. Let S D kŒt �=.g.t//, which is a finite-
dimensional k-algebra. Then

Lr
iD1 T0i

Vi is a quotient of
Pn�1
iD0 Sy

i . For large N , the map
kŒt �deg�N ! S is surjective, so is the tangent map (3.4). This proves � is smooth at a� for
large N .

By the remark made after (3.3) in the proof of Proposition 3.5, to prove the codimension
estimate for V1 around 01, we only need to show that the same codimension estimate holds
for AN around a�, for large enough N . To be precise, we would like to stratify AN by the
ı-invariants of the affine curves Ya (instead of the projective ones as considered in §3.1). We
call these strata AN;ı . For fixed ı0, we would like to show that once N is large (depending on
ı0), we have

codimAN
.AN;ı0

/ � ı0:

The proof for this is completely analogous to Ngô’s argument in [23, Proposition 5.7.2], which
works for spectral curves over any given curve, not necessarily complete. Our condition
char.k/ > n or char.k/ D 0 is also needed here because the argument in [23, Proposition 5.7.2]
relies on the codimension calculation of Goresky, Kottwitz and MacPherson in [12], which
was done under the assumption char.k/ > n or char.k/ D 0. This completes the proof of the
lemma.

3.8. Proof of Theorem 1.1. Let C be an integral curve over k with planar singularities.
Above we constructed a family � W C ! B containing C D ��1.b0/ as a fiber, which
satisfies (A1)–(A3) in §2.1. Making an étale base change of B, we may further assume (A4)
holds. Applying Theorem 2.13 to this family and taking the stalk of the relevant complexes at
b0, we obtain

H�.Hilbn.C // Š
M

iCj�n;i;j�0

.pHiCdBL/b0
Œ�dB � i � 2j �.�j /:

As discussed earlier in §2.14, the perverse filtration on L induces a filtration P�i on
H�.Jac.C // D Lb0

, and

.pHiCdBL/b0
Œ�i � dB � D GrPi .H

�.Jac.C ///:

Now Theorem 1.1 is almost proved, except we need to show that the perverse filtration P�i on
H�.Jac.C // is independent of the choice of the deformation C ! B satisfying (A1)–(A4). Let
CV ! V be a versal deformation of C , which satisfies (A1)–(A3) as proved in Proposition 3.5.
Making an étale base change of V (which preserves versality), we may assume CV ! V

satisfies (A1)–(A4). By versality, there exists an étale neighborhood B0 of b0 2 B and a
morphism ' W B0 ! V such that C 0 D C jB0 is obtained from CV via base change by '. We
thus have a diagram

B  B0
'
�! V :
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18 Maulik and Yun, Macdonald formula for curves with planar singularities

Applying Proposition 2.15 to both arrows above, we conclude that P�i on H�.Jac.C // defined
using the perverse filtration of the family B is the same as the one defined using V . Since
V is fixed, P�i is independent of the choice of B. This shows the canonicity of the perverse
filtration P�i , and finishes the proof of Theorem 1.1.

3.9. Functional equation. Let

ZHilb.s; t; C / WD
X
i;n�0

dim Hi .Hilbn.C //si tn:

By Theorem 1.1, ZHilb.s; t; C / is a rational function of the form

ZHilb.s; t; C / D
P.s; t/

.1 � t /.1 � s2t /

where
P.s; t/ D

X
i;j

dim GrPi Hj .Jac.C //sj t i 2 ZŒs; t �

is a polynomial of bidegree .2ga; 2ga/. Moreover, by the isomorphism (2.10), the cup product
by c1.Ldet/ gives an isomorphism

[c1.Ldet/
i
W GrPga�i

Hj .Jac.C //
�
! GrPgaCi

HjC2i .Jac.C //.i/

for any i; j � 0. This implies a symmetry on the polynomial P.s; t/, and hence the following
functional equation for ZHilb.s; t; C /:

ZHilb.s; t; C / D .st/
2ga�2ZHilb.s; s

�2t�1; C /:

3.10. A local Macdonald formula. Let OO be a complete local reduced k-algebra of
dimension 1 with maximal ideal m and residue field k. We say OO is planar if furthermore
dimk m=m2 � 2, i.e., OO Š kŒŒx; y��=.f / for some 0 ¤ f 2 kŒŒx; y�� without multiple
factors. We would like to understand the cohomology of the Hilbert scheme Hilbn. OO/ of
length n quotient algebras of OO.

One can define a “compactified Picard scheme” for OO as follows. Let OK be the ring
of fractions of OO, which is a finite product of k..t//. Let Pic. OO/ be the functor which as-
sociates to every noetherian k-algebra R the set of R Ő k OO-submodules M � R Ő k OK such
that for some (equivalently, any) non-zero-divisor t 2 m, there exists an integer i � 0 so
that R Ő kt i OO � M � R Ő kt

�i OO and .R Ő kt�i OO/=M (hence M=.R Ő kt i OO/) is a projec-
tive R-module. The functor Pic. OO/ is a disjoint union Pic. OO/ D

F
n2Z Pic

n
. OO/ according to

the volume of M , defined as rkRM=.R Ő kt i OO/ � dimk OO=.t i OO/ for i large. Each Pic
n
. OO/

is represented by an ind-scheme which is not of finite type. The reduced structure Pic
red
. OO/

is an infinite union of projective varieties, all of dimension ı. OO/ (the local ı-invariant of OO).
The above results are consequences of the theory of affine Springer fibers (see [18], and also
[23, §3]), because OO can be realized as the germ of a spectral curve.

Let Pic. OO/ D OK�= OO�, viewed as a group ind-scheme over k. Then Pic. OO/ acts on
Pic. OO/: an element g 2 OK�= OO� sends M � R Ő k OK to Mg.
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Maulik and Yun, Macdonald formula for curves with planar singularities 19

Let O OK be the ring of integers of OK. Let Jac. OO/ D O�
OK
=O�, which is a connected affine

algebraic group over k. We have an exact sequence of groups over k:

1! Jac. OO/! Picred. OO/
val
�! ƒ! 1

where ƒ D OK�=O�
OK

is a free abelian group of rank r (r is the number of analytic branches
of OO). Choosing a section of val W Picred. OO/ ! ƒ, we may identify ƒ as a subgroup of
Picred. OO/, hence ƒ also acts on Pic

red
. OO/. It is proved by Kazhdan and Lusztig [18] that

Pic
red
. OO/=ƒ is a projective variety. Two different sections of val can be transformed to each

other by an element of Jac. OO/, which is a connected group scheme over k acting also on
Pic. OO/, therefore the cohomology H�.Pic

red
. OO/=ƒ/ is independent of the choice of the section

of val.
To state the local Macdonald formula, let us recall the notion of the virtual Poincaré

polynomial. Let k be either Fp or a subfield of C. Let X be a scheme of finite type over
k. In both cases, we have a weight filtration W�iH�.X/ on the `-adic cohomology of X :
when k D Fp, we may assume X D X0 �Fq

Fp for some X0 over Fq , then the weight
filtration comes from the absolute values of the Frobq-action on H�.X/ (we need to fix an
embedding � W Q` ,! C); when k � C, this comes from the weight filtration on the singular
cohomology H�.X an;Q/ (X an is the underlying analytic space of X.C/) and the comparison
theorem between `-adic and singular cohomology. Then we define

P vir.X; s/ D
X
i;j

.�1/j dim GrWi Hj .X/si :

Similarly, when H�.X/ carries a filtration P�i which is strictly compatible with the weight
filtration, we can define the virtual Poincaré polynomial P vir.GrPi H�.X/; s/.

3.11. Theorem. Let OO be a planar complete local reduced k-algebra of dimension 1,
with r analytic branches. Assume either char.k/ D 0 or char.k/ is greater than the multiplicity
of the singularity defined by OO. Then there is a filtration P�i on H�.Pic

red
. OO/=ƒ/, normalized

such that GrPi D 0 unless 0 � i � 2ı. OO/, strictly compatible with the weight filtration, such
that we have an identity in ZŒŒs; t ��,

X
n

P vir.Hilbn. OO/; s/tn D
P
i P

vir.GrPi H�.Pic
red
. OO/=ƒ/; s/t i

.1 � t /r
:

Before giving the proof, we record two product formulas.

3.12. Product formula for Hilbert schemes. Let C be an irreducible curve over k and
U D C � ¹p1; : : : ; pmº be a Zariski open subset. Then we have the following identity in
VarkŒŒt �� where Vark is the Grothendieck group of varieties over k:

(3.5)
�X
n�0

ŒHilbn.U /�tn
� mY
iD1

�X
n�0

ŒHilbn. OOC;pi
/�tn

�
D

X
n�0

ŒHilbn.C /�tn:
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20 Maulik and Yun, Macdonald formula for curves with planar singularities

3.13. Product formula for the compactified Jacobian. The setup is the same as above.
We have natural morphisms

Q
i Pic. OOpi

/! Pic.C / and
Q
i Pic. OOpi

/! Pic.C / given by glu-
ing the local objects with the trivial line bundle on U . Therefore we get a canonical morphism

(3.6)
�Y

i

Pic
red
. OOpi

/
� Q

i Pic. OOpi
/

� Pic.C /! Pic.C /:

The product formula says that this is a homeomorphism. In the case pi are unibranched singu-
larities and C is rational, this is proved by Beauville [6, Proposition 3.7]. In general, the proof
is analogous to Ngô’s product formula [23, §4.15]. From (3.6), we see that the stabilizers of the
Pic.C /-action on Pic.C / are affine, because these stabilizers are subgroups of the affine groupQ
i Pic. OOpi

/. This affineness is needed in the proof of Theorem 2.4.

Proof of Theorem 3.11. Given OO, there exists a rational projective curve C over k, to-
gether with a point p 2 C.k/ such that

� C is nonsingular away from p;

� OOC;p Š OO.

Let � W P1 ! C be the normalization and let ��1.p/ D ¹p1; : : : ; prº,

U D C � ¹pº D P1 � ¹p1; : : : ; prº:

Applying the product formula to C we get�X
n�0

ŒHilbn.U /�tn
��X

n�0

ŒHilbn. OO/�tn
�
D

X
n�0

ŒHilbn.C /�tn:

Applying the product formula (3.5) to P1 we getP
n�0ŒHilbn.U /�tn

.1 � t /r
D

�X
n�0

ŒHilbn.U /�tn
� rY
iD1

�X
n�0

ŒHilbn. OOP1;pi
/�tn

�
D

X
n�0

ŒHilbn.P1/�tn D
X
n�0

ŒPn�tn D
1

.1 � t /.1 � Lt /

where L is the class of A1. Taking the quotient of the two identities, we getX
n�0

ŒHilbn. OO/�tn D
1 � Lt

.1 � t /r�1

X
n�0

ŒHilbn.C /�tn:

Taking the virtual Poincaré polynomials of both sides, and applying Theorem 1.1 to C (which
is applicable by the assumption on char.k/), we get

(3.7)
X
n�0

P vir.Hilbn. OO/; s/tn D
P
i P

vir.GrPi H�.Jac.C //; s/t i

.1 � t /r
:
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The local and global Picard fit into a commutative diagram of exact sequences:

1 // O�
OK
= OO� // Pic. OO/ val //

��

ƒ

sum

��

// 1

1 // O�
OK
= OO� // Pic.C / �� // Pic.P1/ // 1

Since Pic.P1/ D Z, the map “sum” just means the sum map ƒ Š Zr ! Z. Therefore, the
product formula (3.6) gives homeomorphisms (after choosing a section of val)

Pic.C / Š Pic
red
. OO/= ker.sum/ and Jac.C / Š Pic

red
. OO/=ƒ:

Finally we define the filtration P�i on H�.Pic
red
. OO/=ƒ/ to be the transport of the perverse

filtration on H�.Jac.C //. It is easy to see that this filtration satisfies the requirements in the
theorem. Therefore we get an isomorphism of bi-filtered graded vector spaces

.H�.Jac.C //; P�; W�/ Š .H�.Pic
red
. OO/=ƒ/; P�; W�/:

This, together with (3.7), implies the desired formula.
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