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Abstract We construct motivic �-adic representations of Gal(Q/Q) into ex-
ceptional groups of type E7,E8 and G2 whose image is Zariski dense. This
answers a question of Serre. The construction is uniform for these groups and
is inspired by the Langlands correspondence for function fields. As an appli-
cation, we solve new cases of the inverse Galois problem: the finite simple
groups E8(F�) are Galois groups over Q for large enough primes �.
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1 Introduction

1.1 Serre’s question

About two decades ago, Serre raised the following question which he de-
scribed as “plus hasardeuse” (English translation: more risky):

Question 1.1 (Serre [36, Sect. 8.8]) Is there a motive M (over a number field)
such that its motivic Galois group is a simple algebraic group of exceptional
type G2 or E8?

The purpose of this paper is to give an affirmative answer to a variant of
Serre’s question for E7,E8 and G2, and to give applications to the inverse
Galois problem.

1.1.1 Motivic Galois groups

Let us briefly recall the notion of the motivic Galois group, following [36,
Sects. 1 and 2]. Let k and L be number fields. Let Motk(L) be the cat-
egory of motives over k with coefficients in L (under numerical equiva-
lences). This is an abelian category obtained by formally adjoining direct



Motives with exceptional Galois groups

summands of smooth projective varieties over k cut out by idempotent cor-
respondences with L-coefficients. Assuming the Standard Conjectures, the
category Motk(L) becomes a semisimple L-linear Tannakian category (see
Jannsen [22, Corollary 2]). Moreover, it admits a tensor structure and a fiber
functor ω into VecL, the tensor category of L-vector spaces. For example, one
may take ω to be the singular cohomology of the underlying analytic spaces
(using a fixed embedding k ↪→ C) with L-coefficients. By Tannakian formal-
ism [10], such a structure gives a group scheme GMot

k over L as the group of
tensor automorphisms of ω. This is the absolute motivic Galois group of k.

Any motive M ∈ Motk(L) generates a Tannakian subcategory Mot(M) of
Motk(L). Tannakian formalism again gives a group scheme GMot

M over L, the
group of tensor automorphisms of ω|Mot(M). This is the motivic Galois group
of M .

Of course Serre’s question could be asked for other exceptional types. Al-
though people hoped for an affirmative answer to Serre’s question, the search
within “familiar” types of varieties all failed. For example, one cannot find
an abelian variety with exceptional motivic Galois groups (see [30, Corol-
lary 1.35] for the fact that the Mumford-Tate groups of abelian varieties can-
not have exceptional factors, and by [10, Theorem 6.25], the Mumford-Tate
group of an abelian variety surjects onto its motivic Galois group), nor does
one have Shimura varieties of type E8,F4 or G2.

1.1.2 Motivic Galois representations

Let � be a prime number. Fix an embedding L ↪→ Q�. For a motive M ∈
Motk(L), we have the �-adic realization H(M,Q�) which is a continuous
Gal(k/k)-module.

Let V be a finite dimensional Q�-vector space. We call a continuous rep-
resentation ρ : Gal(k/k) → GL(V ) motivic if there exists a motive M ∈
Motk(L) (for some number field L) such that V ⊗ Q� is isomorphic to
H(M,Q�) as Gal(k/k)-modules.

Let ̂G be a reductive algebraic group over Q�. A continuous representa-
tion ρ : Gal(Q/Q) → ̂G(Q�) is called motivic if for some faithful algebraic

representation V of ̂G, the composition Gal(Q/Q)
ρ−→ ̂G(Q�) → GL(V ) is

motivic.
Fix an embedding L ↪→ Q�, we have an exact functor H(−,Q�) :

Motk(L) → Rep(Gal(k/k),Q�) by taking étale cohomology with Q�-coeffi-
cients, on which the Galois group Gal(k/k) acts continuously. We call this
the �-adic realization functor. For a motive M ∈ Motk(L), we define the �-
adic motivic Galois group of M to be the Zariski closure of the image of
the representation ρM,� : Gal(k/k) → GL(H(M,Q�)). We denote the �-adic
motivic Galois group of M by GM,�, which is an algebraic group over Q�. It
is expected that GM,�

∼= GMot
M ⊗L Q� (see [36, Sect. 3.2]).
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1.2 Main results

We will answer Serre’s question for �-adic motivic Galois groups instead of
the actual motivic Galois groups, because their existence depends on the Stan-
dard Conjectures.

Main Theorem 1.2 Let ̂G be a split simple adjoint group of type A1,E7,E8
or G2. Let � be a prime number. Then there exists an integer N ≥ 1 and a
continuous representation

ρ : π1
(

P1
Z[1/2�N] − {0,1,∞}) → ̂G(Q�)

such that

(1) For each geometric point Spec k → Spec Z[1/2�N], the restriction of ρ

to the geometric fiber P1
k − {0,1,∞}:

ρk : π1
(

P1
k − {0,1,∞}) → ̂G(Q�)

has Zariski dense image.
(2) The restriction of ρ to a rational point x : Spec Q → P1 − {0,1,∞}:

ρx : Gal(Q/Q) → ̂G(Q�)

is either motivic (if ̂G is of type E8 or G2) or becomes motivic when
restricted to Gal(Q/Q(i)) (if ̂G is of type A1 or E7).

(3) There exist infinitely many rational points {x1, x2, . . .} of P1
Q

− {0,1,∞}
such that ρxi

are mutually non-isomorphic and all have Zariski dense
image.

Corollary 1.3 For ̂G a simple adjoint group of type A1,E7,E8 or G2, there
exist infinitely many non-isomorphic motives over Q (if ̂G is of type E8 or
G2) or Q(i) (if ̂G is of type E7) whose �-adic motivic Galois groups are
isomorphic to ̂G. In particular, Serre’s question for �-adic motivic Galois
groups has an affirmative answer for A1,E7,E8 and G2.

1.2.1 A known case

In [11], Dettweiler and Reiter constructed a rank seven rigid local system on
P1

Q
− {0,1,∞} whose geometric monodromy is dense in G2. The restriction

of this local system to a general rational point gives a motivic Galois repre-
sentation whose image is dense in G2. We believe that our construction in the
G2 case gives the same local system as theirs (see Remark 5.12).

On the other hand, Gross and Savin [19] gave a candidate G2-motive in
the cohomology of a Siegel modular variety.
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1.2.2 Application to the inverse Galois problem

The inverse Galois problem for Q asks whether every finite group can be
realized as a Galois group of a finite Galois extension of Q. A lot of finite
simple groups are proved to be Galois groups over Q, see [29] and [37],
yet the problem is still open for many finite simple groups of Lie type. We
will be concerned with finite simple groups G2(F�) and E8(F�), where � is
a prime. By Thompson [40] and Feit and Fong [14], G2(F�) is known to
be a Galois group over Q for all primes � ≥ 5. However, according to [29,
Chap. II, Sect. 10], E8(F�) is known to be a Galois group over Q only for
� ≡ ±3,±7,±9,±10,±11,±12,±13,±14 (mod 31). As an application of
our main construction, we solve new instances of the inverse Galois problem.

Theorem 1.4 For sufficiently large prime �, the finite simple group E8(F�)

can be realized as Galois groups over any number field.

1.3 The case of type A1

To illustrate the construction in the Main Theorem, we give here an analog
of the Main Theorem for ̂G = PGL2, in which case the motives involved are
more familiar. Let k = Fq be a finite field of characteristic not 2. The con-
struction starts with an automorphic form of G = SL2. Let T ⊂ B ⊂ G be the
diagonal torus and the upper triangular matrices. Let F = k(t) be the func-
tion field of P1

k . For each place v of F , let Ov,Fv and kv be the correspond-
ing completed local ring, local field and residue field. For each v, we have
the Iwahori subgroup Iv ⊂ G(Ov) which is the preimage of B(kv) ⊂ G(kv)

under the reduction map G(Ov) → G(kv).
We will consider irreducible automorphic representations π = ⊗

v πv of
G(AF ). We would like π to satisfy the following conditions:

• π1 and π∞ both contain a nonzero fixed vector under the Iwahori subgroup
I1 and I∞.

• π0 contains a nonzero vector on which the Iwahori subgroup I0 acts
through the quadratic character μ : I0 → T (k) = k× � {±1}.

• For v 
= 0,1 or ∞, πv is unramified.

Using similar argument as in Theorem 3.2, one can show that such an au-
tomorphic representation π exists provided

√−1 ∈ k. Langlands philoso-
phy then predicts that there should exist a tame PGL2(Q�)-local system on
P1

k − {0,1,∞} which has unipotent monodromy around the punctures 1 and
∞, and has monodromy of order two around the puncture 0. Methods from
geometric Langlands theory allow us to write down this local system explic-
itly as follows.
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1.3.1 The local system

We continue to assume that
√−1 ∈ k. Consider the following family of genus

3 projective smooth curves f : C → P1
k − {0,1,∞}:

Cλ : y4 = λx − 1

λx(x − 1)
, λ ∈ P1

k − {0,1,∞}. (1.1)

The group μ4(k) acts on the local system R1f∗Q�. Let χ : μ4(k) → Q
×
� be a

character of order four. We may decompose R1f∗Q� according to the action
of μ4(k):

R1f∗Q� = Lsgn ⊕ Lχ ⊕ Lχ.

Here Lsgn,Lχ and Lχ are rank two local system defined on P1 −{0,1,∞}. In
fact Lsgn is the H1 of the Legendre family of elliptic curves. By Katz’s results
on the local monodromy of middle convolutions, one can show 1 that the local
geometric monodromy of both Lχ and Lχ at 0,1 and ∞ are conjugate to

μ0 ∼
(√−1 0

0 −√−1

)

; μ1 ∼
(

1 1
0 1

)

; μ∞ ∼
(

1 1
0 1

)

.

The PGL2(Q�) = SO3(Q�)-local systems Sym2(Lχ)(1) and Sym2(Lχ)(1)

are canonically isomorphic, and this is the local system predicted by the
Langlands correspondence. Moreover, it can be shown that this PGL2(Q�)

local system comes from a PGL2(Q�)-local system via extension of coeffi-
cient fields, and this construction can in fact be modified to work even when√−1 /∈ k.

The family of curves (1.1) naturally shows up when one preforms the geo-
metric Hecke operators (the analog of the operators Tp on modular forms) to
the geometric analog (called an automorphic sheaf ) of a particular automor-
phic form in the representation π considered above.

1.3.2 Switching to number fields

The construction in Sect. 1.3.1 makes perfect sense if we replace the finite
field k by any field of characteristic not equal to 2, and in particular Q. The
resulting PGL2-local system Sym2(Lχ)(1) over P1

Q
− {0,1,∞} is the output

of our Main Theorem in the case of type A1. This local system is visibly
motivic (at least when base changed to Q(i)) because it is part of the H1 of
the family of curves (1.1) cut out by the μ4-action.

1This is communicated to the author by N.Katz. It can also be deduced from our more general
results in Propositions 5.4, 5.3 and Remark 5.6.
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1.4 Description of the motives

Now we give an explicit description of the local systems that appear in the
Main Theorem as direct summands of cohomology of smooth varieties, which
explains why they are motivic. Let G be a split simply-connected group of
type A1,D2n,E7,E8 or G2, defined over Q. Let ̂G be its Langlands dual
group defined over Q�.

Let θ∨ be the coroot of G corresponding to the highest root θ . Let Vθ∨ be
the irreducible representation of ̂G with highest weight θ∨, which we call the
quasi-minuscule representation of ̂G. This is either the adjoint representation
(if G is simply-laced) or the seven dimensional representation of G2. For
x ∈ Q − {0,1}, let ρ

qm
x be the composition

ρ
qm
x : Gal(Q/Q)

ρx−→ ̂G(Q�) → GL(Vθ∨)

where ρx is as in Main Theorem (2). We will describe ρ
qm
x motivically.

Let P be the “Heisenberg parabolic” subgroup of G containing T with
roots {β ∈ ΦG|〈β, θ∨〉 ≥ 0}. The unipotent radical of P is a Heisenberg group
whose center has Lie algebra gθ , the highest root space. The contracted prod-
uct gives a line bundle over the partial flag variety G/P :

Y = G
P× g

∗
θ

which is a smooth variety over Q of dimension 2h∨ − 2. Here h∨ is the
dual Coxeter number of G, i.e., h∨ = 2,4n − 2,18,30 and 4 for G =
A1,D2n,E7,E8 and G2 respectively. So the corresponding variety Y has di-
mension 2,8n − 6,34,58 and 6 in the cases A1,D2n,E7,E8 and G2 respec-
tively. There is a divisor Dx ⊂ Y depending algebraically on x which is cut
out by a modular interpretation of Y . Unfortunately we have not yet seen a
direct way of describing the divisors Dx . There is also a finite group scheme
˜A over Q and an ˜A-torsor

˜Yx → Y − Dx. (1.2)

The group scheme ˜A is well-known to experts in real Lie groups, and will be
defined in Sect. 2.6.1. It is a central extension of T [2] ∼= μrank G

2 by μ2. Let
Q�[˜A(Q)] be group algebra of ˜A(Q), and let Q�[˜A(Q)]odd be the subspace
where the central μ2 acts via the sign representation.

Consider the middle dimensional cohomology H2h∨−2
c (˜Yx,Q�). We take

its direct summand H2h∨−2
c (˜Yx,Q�)odd on which the central μ2 of ˜A acts

via the sign representation. Then there is an ˜A(Q) � Gal(Q/Q)-equivariant
isomorphism

H2h∨−2
c (˜Yx,Q�)odd

(

h∨ − 1
) ∼= ρ

qm
x ⊗Q�

Q�

[

˜A(Q)
]

odd.
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Here (h∨ − 1) means Tate twist. This realizes ρ
qm
x as a direct summand of

the cohomology of a smooth variety (possibly after base change to Q(i)),
showing it is motivic.

1.5 The general construction

In the main body of the paper, we work with a simply-connected almost sim-
ple split group G over a field k with char(k) 
= 2. We assume G to satisfy two
conditions

(1) The longest element in the Weyl group of G acts by −1 on the Cartan
subalgebra.

(2) G is oddly-laced: i.e., the ratio between the square lengths of long roots
and short roots of G is odd.

By the Dynkin diagram classification (see [7, Planche I–IX]), the above con-
ditions are equivalent to that G is of type A1,D2n,E7,E8 or G2. Our goal is
to construct ̂G(Q�)-local systems over P1

k − {0,1,∞}, where ̂G is the Lang-
lands dual group of G. Motivated by the work of Dettweiler and Reiter [11]
on G2, we would also like the local monodromy of these local systems around
the punctures 0,1 and ∞ to lie in specific conjugacy classes in ̂G. These local
monodromy conditions can be translated into local conditions on automorphic
representations of G(AF ) via the hypothetical local Langlands correspon-
dence. So our construction again starts with an automorphic representation of
G(AF ) with prescribed local behavior.

Step I Let F = k(t) be the function field of P1
k , where k is a finite field. We

consider automorphic representations π = ⊗′
v∈|P1| πv satisfying the follow-

ing conditions

• π1 has a nonzero fixed vector under the Iwahori subgroup I1 ⊂ G(F1);
• π∞ has a nonzero fixed vector under the parahoric P∞ ⊂ G(F∞);
• π0 has an eigenvector on which P0 ⊂ G(F0) acts through a nontrivial

quadratic character μ : P0 → {±1};
• πv is unramified for v 
= 0,1 or ∞.

Gross, Reeder and Yu [33] establishes a bijection between regular elliptic
conjugacy classes in W and certain class of parahoric subgroups of a p-adic
group. Under this bijection, the parahoric subgroup P0 corresponds to the
element −1 ∈ W . Its reductive quotient admits a unique nontrivial quadratic
character μ. The parahoric P∞ has the same type as P0. For details, we refer
to Sect. 2.3.

Step II Show that such automorphic representations do exist and are very
limited in number. The argument for this relies on a detailed study of the
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structure of the double coset

G(F)\G(AF )/

(

P0 × I1 × P∞ ×
∏

v 
=0,1,∞
G(Ov)

)

. (1.3)

Up to making a finite extension of k, we have

∑

π as above

m(π)dimπ
(P0,μ)
0 dimπ

I1
1 dimπP∞∞ = #ZG. (1.4)

Here, m(π) is the multiplicity of π in the automorphic spectrum, π
(P0,μ)
0 is

the μ-eigenspace under P0, and ZG is the center of G. Note that the central
character of π has to be trivial, so the multiplicity #ZG in the above formula
is not the contribution from different central characters.

Neither Step I nor Step II actually appear in the main body of the paper.
We start directly with a geometric reinterpretation of the previous two steps,
which makes sense for any field k with char(k) 
= 2.

Step III We interpret the double coset (1.3) as the k-points of a moduli
stack BunG(P0, I1,P∞): the moduli stack of principal G-bundles over P1

with three level structures at 0,1 and ∞ as specified by the parahoric sub-
groups. In fact we will consider a variant Bun = BunG(˜P0, I1,P∞) of this
moduli stack on which the geometric analog of the quadratic character μ can
be defined. These moduli stacks are defined in Sect. 3.2. Automorphic func-
tions on the double coset are upgraded to “odd” sheaves on Bun, which are
studied in Sect. 3.3. Theorem 3.2 is crucial in understanding the structure of
such odd sheaves: they correspond to odd representations of the finite group
˜A we mentioned before.

Step IV We take an irreducible odd sheaf F on Bun, and apply geomet-
ric Hecke operators to it. A geometric Hecke operator T(K,−) is a geomet-
ric analog of an integral transformation, which depends on a “kernel sheaf”
K. The kernel K is an object in the Satake category, which is equivalent to
the category of algebraic representations of ̂G. The resulting sheaf T(K, F )

is over Bun × (P1 − {0,1,∞}). In Theorem 4.2(1), we prove that F is an
eigen object under geometric Hecke operators: every Hecke operator T(K,−)

transforms F to a sheaf of the form F � E (K) on Bun × (P1 − {0,1,∞}),
where E (K) is a local system on P1 − {0,1,∞}. The collection {E (K)}K
forms a tensor functor from the Satake category (which is equivalent to
Rep(̂G)) to the category of local systems on P1 − {0,1,∞}, and gives the
desired ̂G-local system E on P1 − {0,1,∞}.

We see that the local system E depends on the choice of an odd sheaf F . In
fact there are exactly #ZG odd central characters χ of ˜A, each giving a unique
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irreducible odd representation Vχ of ˜A. Each Vχ in turn gives an irreducible
odd sheaf Fχ on Bun, and hence a ̂G-local system Eχ by the above procedure.

Step V Rationality issue. The irreducible odd representations of ˜A are only
defined over Q(i). Therefore the automorphic sheaf Fχ has Q′

� = Q�(i)-
coefficients. Moreover, Fχ may not be defined over Bunk when the central
character χ is not fixed by Gal(k/k): it is sometimes only defined over Bunk′
where k′ = k(

√−1). The previous step gives us a ̂G(Q′
�)-local system on

P1
k′ − {0,1,∞}. We need to apply two descent arguments, first for the ground

field (from k′ to k) and then for the coefficient field (from Q′
� to Q�). These

are the contents of Theorem 4.2(2) and (3).

Step VI Finally we extend the local system Eχ from P1
Q

− {0,1,∞} to

P1
Z[1/2�N] − {0,1,∞}, such that its restriction along P1

Fp
− {0,1,∞} is the

same as Eχ,Fp
constructed using the base field Fp . This is done in Proposi-

tion 4.5.

1.5.1 Proofs of other main results

The above steps finish the constructive part of the Main Theorem. We indicate
where the other main results are proved.

• For k an algebraically closed field, the density of the image of ρk is proved
in Theorem 5.7, whose proof depends on detailed analysis of local mon-
odromy in Sect. 5.2.

• The fact that ρx is motivic is proved in Proposition 4.6.
• To see there exists a rational number x such that ρx has dense image, we

only need to use a variant of Hilbert irreducibility [39, Theorem 2]. In
Corollary 5.9, we give an effective criterion for ρx to have dense image,
and also prove that there are infinitely many non-isomorphic ρx’s.

• The application to the inverse Galois problem (Theorem 1.4) is given in
Sect. 5.6.

1.6 Conjectures and generalizations

In Sect. 5.5, we list some conjectural properties of the local and global mon-
odromy of the local systems we construct. In Sect. 5.6.3, we also suggest an
approach to proving Theorem 1.4 via the rigidity method.

In this paper we impose two conditions on the group G, namely −1 ∈ W

and odd-lacedness. We plan to remove these conditions and work with all
types of almost simple groups in future work. For groups without −1 in their
Weyl groups, we shall replace the constant group scheme G × P1 by a qua-
sisplit form of it. For doubly-laced groups, the analog of Theorem 3.2 is no
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longer true, but this can be circumvented by considering automorphic sheaves
in a certain quotient category of sheaves. We hope these extensions will solve
more instances of the inverse Galois problem.

2 Group-theoretic preliminaries

Our construction of motives with exceptional Galois groups will involve some
known group-theoretic results. We collect them in this section for future ref-
erence.

Throughout the paper, we fix k to be a field with char(k) 
= 2.

2.1 The group G

Let G be a split almost simple simply-connected group over k. Let g be its Lie
algebra. We fix a maximal torus T of G and a Borel subgroup B containing
it. These data give a based root system �G ⊂ ΦG ⊂ X∗(T ) (where ΦG stands
for roots and �G for simple roots) and a Weyl group W . Throughout this
paper, except in Sect. 2.4, we make the following assumption

The longest element in W acts as − 1 on X∗(T ). (2.1)

Examining the classification of G [7, Planche I–IX], this means that G is of
type A1,Bn,Cn,D2n,E7,E8,F4 or G2.

We call G oddly-laced if the ratio between the square lengths of long roots
and short roots of G is odd. The classification shows that G is oddly-laced if
and only if it is of type An,Dn,En or G2.

We denote the center of G by ZG. The adjoint form Gad := G/ZG has
maximal torus T ad := T/ZG and standard Borel subgroup Bad := B/ZG.

The highest root of G is denoted by θ . We denote by ρ (resp. ρ∨) half
the sum of positive roots (coroots) of G. Let h and h∨ denote the Coxeter
number and dual Coxeter number of G. We recall that h − 1 = 〈θ, ρ∨〉 and
h∨ − 1 = 〈ρ, θ∨〉.

The flag variety of G will be denoted by f �G.

2.2 Loop groups

We review the definition of loop groups as functors following [13, Defi-
nition 1]. The fact that these functors are (ind-)representable is proved by
Faltings in [13, Sect. 2]. The loop group LG is the functor assigning every
k-algebra R the group G(R((t))), where R((t)) is the ring of formal Lau-
rent series in one variable t with coefficients in R. It is representable by an
ind-scheme. Similarly we define the positive loops L+G to be the functor
R �→ G(R[[t]]), which is representable by a pro-algebraic group. In practice,
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we have a smooth curve and we denote its completion at a k-point x by Ox ,
which is isomorphic to k[[t]] but not canonically so. Let Fx be the field of
fractions of Ox . We define L+

x G (resp. LxG) to be the group (ind-)scheme
over the residue field k(x) representing the functor R �→ G(R̂⊗k(x)Ox) (resp.
R �→ G(R̂⊗k(x)Fx)).

By Bruhat-Tits theory, for each facet a in the Bruhat-Tits building of
G(k((t))), there is a smooth group scheme Pa over k[[t]] with connected
fibers whose generic fiber is G×Spec k Spec k((t)). We call such Pa a Bruhat-
Tits group scheme. Let Pa be the functor R �→ Pa(R[[t]]), which is repre-
sentable by a pro-algebraic group over k. We call Pa a parahoric subgroup of
LG. The conjugacy classes of parahoric subgroups of LG are classified by
proper subsets of the nodes of the extended Dynkin diagram of G.

The group L+G is a particular parahoric subgroup of LG, correspond-
ing to the Bruhat-Tits group scheme G = G × Spec k[[t]]. The Borel sub-
group B ⊂ G gives another parahoric subgroup called an Iwahori subgroup
I ⊂ L+G ⊂ LG: I represents the functor R �→ {g ∈ G(R[[t]]);g mod t ∈
B(R)}.

2.3 A class of parahoric subgroups

In [33], Gross, Reeder and Yu define a bijection between regular elliptic con-
jugacy classes of W and certain conjugacy classes of parahoric subgroups
of LG. In particular, the longest element −1 ∈ W corresponds to a conju-
gacy class of parahoric subgroups of LG. Here is an explicit description of
a particular parahoric subgroup in this conjugacy class. Recall that the max-
imal torus T gives an apartment A(T ) in the building of LG. The apartment
A(T ) is a torsor under X∗(T ) ⊗ R, and parahoric subgroups containing L+T

correspond to facets of A(T ). The parahoric subgroup L+G corresponds to
a point in A(T ). Using this point as the origin, we may identify A(T ) with
X∗(T ) ⊗ R. In particular, 1

2ρ∨, viewed as a point in A(T ), lies in a unique
facet, and hence determines a parahoric subgroup P 1

2 ρ∨ . The conjugacy class

of P 1
2 ρ∨ is the image of −1 ∈ W under Gross-Reeder-Yu’s map.

Let K be the maximal reductive quotient of P 1
2 ρ∨ . This is a connected split

reductive group over k. Since P 1
2 ρ∨ is defined using a facet in the apartment

A(T ), K contains T as a maximal torus. A root α ∈ ΦG belongs to the root
system of K if and only if there is an affine root α + nδ (n ∈ Z, δ is the
imaginary root) vanishing at 1

2ρ∨, i.e., if and only if 〈ρ∨, α〉 is an even integer.

Therefore K can be identified with the fixed point subgroup Gρ∨(−1) ⊂ G of
the inner involution ρ∨(−1) ∈ Gad (note that ρ∨ is cocharacter of T ad). We
will study the group K in more detail in Sect. 2.5.
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2.4 Results on involutions

In this subsection, we assume k is algebraically closed, and we do not distin-
guish notationwise a variety over k and its set of k-points. We shall first recall
two fundamental results on involutions on G established by Springer and E.
Cartan, which are valid for any connected reductive group G.

Proposition 2.1 (Springer) Let G be a connected reductive group over k. Let
Inv(Gad) be the set of involutions in Gad. We have

(1) Any involution τ ∈ Inv(Gad) is Bad-conjugate to an element in NGad(T ad);
(2) There are only finitely many B-conjugacy classes on Inv(Gad);
(3) For any τ ∈ Inv(Gad), there are only finitely many Gτ -orbits on f �G;
(4) Let τ ∈ Inv(Gad) ∩ NGad(T ad), then Gτ ∩ B = T τ · Nτ where Nτ is a

unipotent group.

Proof (1) Fix τ0 ∈ Inv(Gad) ∩ T ad. Let S = {x ∈ Gad|xAd(τ0)(x) = 1}. Then
Gad acts on S via g ∗ x = gxAd(τ0)(g

−1). Right multiplication by τ0 gives
an isomorphism S

∼→ Inv(Gad), which intertwines the ∗-action and the con-
jugation action of Gad. Springer [38, Lemma 4.1(i)] shows that every Bad-
orbit on S (through the ∗-action) intersects NGad(T ad). Therefore, every Bad-
conjugacy class in Inv(Gad) also intersects NGad(T ad)τ0 = NGad(T ad).

(2) follows from (1), see [38, Corollary 4.3(i)].
(3) We have an embedding Gτ\G ↪→ Inv(Gad) given by g �→ g−1τg,

which is equivariant under the right translation by G and the conjugation ac-
tion of G on Inv(Gad). By (2), there are finitely many right B-orbits on Gτ\G.
Therefore, there are only finitely many left Gτ -orbits on G/B = f �G.

(4) See [38, Proposition 4.8]. �

Proposition 2.2 (E. Cartan) Let G be a connected reductive group over k.

(1) For any involution τ ∈ Aut(G), we have

dimg
τ ≥ #ΦG/2. (2.2)

When equality holds, we call τ a split Cartan involution.
(2) All split Cartan involutions are conjugate under Gad.

Proof (1) Let g = g+ ⊕ g− be the decomposition of g into +1 and −1
eigenspaces of τ . Let s ⊂ g− be a maximal abelian subalgebra of g− consist-
ing of semisimple elements. The centralizer l = Zg(s) is a Levi subalgebra
(with center s) on which τ acts. We have a similar eigenspace decomposi-
tion lder = lder,+ ⊕ lder,− under the τ -action. If lder,− 
= 0, it must contain a
semisimple element Y , and hence Span{s, Y } ⊂ g− is a larger abelian sub-
algebra than s which also consists of semisimple elements. Contradiction.
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Therefore lder,− = 0 and l− = s. Let X ∈ s be a generic element. Then the map
ad(X) : g−/s → g+ is injective. In fact, by the genericity of X, ker(ad(X))

commutes with the whole s and hence lies in l−/s = 0. From the injectivity
of ad(X), we get the desired estimate

dimg
τ ≥ 1

2
(dimg − dim s) ≥ 1

2
(dimg − dim t) = 1

2
#ΦG. (2.3)

(2) When equality in (2.3) holds, s must be a Cartan subalgebra of g. Let τ

and τ ′ be two split Cartan involutions with corresponding Cartan subalgebras
s and s′ in the (−1)-eigenspaces. Since s = Ad(x)(s′) for some x ∈ Gad, by
changing τ ′ to Ad(x)τ ′, we may assume s = s′. Let Sad be the maximal torus
in Gad with Lie algebra s. Since τ−1τ ′ acts by identity on s, τ−1τ ′ ∈ Sad.
Write τ ′ = τs for some s ∈ Sad. Since the square map [2] : Sad → Sad is sur-
jective, we may write s = σ 2 for σ ∈ Sad. Then, in the group Ad(G), we have
τ ′ = τσ 2 = τ(σ )τσ = σ−1τσ , hence τ ′ is conjugate to τ via σ ∈ Gad. �

The following lemma gives two explicit ways of constructing split Cartan
involutions.

Lemma 2.3 Suppose −1 ∈ W . Then

(1) Any lifting of −1 ∈ W to NGad(T ad) is a split Cartan involution.
(2) The element ρ∨(−1) ∈ Gad is also a split Cartan involution.

Proof (1) Let τ0 be a lifting of −1 ∈ W to NGad(T ad) of order two. Any other
lifting has the form τ = tτ0 for some t ∈ T ad. Since (tτ0)

2 = tAd(τ0)t =
t t−1 = 1, τ is also an involution. Moreover, τ acts by −1 on the Cartan t =
LieT and interchanges root spaces gα and g−α . Therefore dimgτ = #ΦG/2.

(2) It suffice to consider the case G is simple. The root space gα belongs to
the (−1)-eigenspace of ρ∨(−1) if and only if 〈α,ρ∨〉 is odd, i.e., α has odd
height. A case-by-case analysis of simple groups G with −1 ∈ W shows that
we always have #ΦG/2+ rank G roots with odd height. Hence dimgρ∨(−1) =
dimg − (#ΦG/2 + rank G) = #ΦG/2. �

Let τ ∈ NGad(T ad) be an involution. Then τ acts on t and permutes the
roots of G. Let Φτ

G ⊂ ΦG be those roots which are fixed by τ . Let L be
the Levi subgroup of G containing T with root system Φτ

G. Let Lder be the
derived group of L, which is a semisimple group. Let l (resp. lder) be the Lie
algebra of L (resp. Lder).

Lemma 2.4 In the above situation, suppose further that τ is a split Cartan
involution. Then

(1) tτ is a Cartan subalgebra of lder, equivalently Φτ
G span t∗,τ ;
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(2) τ restricts to a split Cartan involution on Lder. In particular, it is nontriv-
ial on each simple factor Lder.

Proof We calculate the dimension of gτ . For those roots α which are not fixed
by τ , gα ⊕ gτ(α) contains a τ -fixed line. Therefore

dimg
τ = #ΦG − #Φτ

G

2
+ dim l

der,τ + dim t
τ − rank l

der

≥ #ΦG − #Φτ
G

2
+ #Φτ

G

2
= #ΦG

2
.

This calculation gives another proof of Cartan’s inequality (2.2) for τ .
When τ is a split Cartan involution, the above inequality is an equality.

In particular, we have dim tτ = rank lder and dim lder,τ = #Φτ
G/2. These two

equalities imply the two parts of the lemma respectively. �

2.5 Minimal symmetric subgroups of G

By Cartan’s inequality, a symmetric subgroup H of G (fixed point under some
involution) has dimension at least #ΦG/2. When dimH = #ΦG/2, we call H

a minimal symmetric subgroup of G. By Proposition 2.2, all minimal sym-
metric subgroups are conjugate under Gad(k).

Let K = Gρ∨(−1), keeping in mind it is also the reductive quotient K of the
parahoric P 1

2 ρ∨ defined in Sect. 2.3. This is a minimal symmetric subgroup by
Lemma 2.3. It is connected since G is assumed to be simply-connected. We
will use K as a model to study properties of minimal symmetric subgroups.

2.5.1 The root system of K

Recall that the root system ΦK is a subsystem of ΦG consisting of roots α

with even height (i.e., 〈ρ∨, α〉 is even). On the other hand, being the reductive
quotient of the parahoric subgroup P 1

2 ρ∨ of LG, the Dynkin diagram of K

is also a subset of the extended Dynkin diagram of G. A case-by-case exam-
ination shows that the Dynkin diagram of K is obtained from the extended
Dynkin diagram of G by removing either one node (if G is not of type A1 or
Cn), or two extremal nodes (if G is of type A1 or Cn), and all the adjacent
edges. We tabulate the types of K in each case:



Z. Yun

Type of G Type of K

A1 Gm

B2n Bn × Dn

B2n+1 Bn × Dn+1
Cn An−1 × Gm

D2n Dn × Dn

E7 A7
E8 D8
F4 A1 × C3
G2 A1 × A1

Next we analyze how far K is from being simply-connected.

Lemma 2.5 Let ZΦ∨
K ⊂ X∗(T ) be the coroot lattice of K . Then

X∗(T )/ZΦ∨
K

∼=
{

Z G is of type A1 or Cn

Z/2Z otherwise

Proof When G is not of type A1 or Cn, the simple roots of K are �K =
(� − {α′}) ∪ {−θ}, where θ is the highest root of G and α′ is the node we
remove from the affine Dynkin diagram of G. Hence the coroot lattice of K

is spanned by the simple coroots α∨ of G with the only exception α′∨, which
is replaced by θ∨. We write θ∨ = ∑

α∈�G
c(α)α∨, then we have a canonical

isomorphism

X∗(T )/ZΦ∨
K

∼= Z/c
(

α′)Z.

By examining all the Dynkin diagrams, we find c(α′) is always equal to 2.
If G is of type A1 or Cn, then K ∼= GLn has fundamental group Z. �

2.5.2 Canonical double covering

By Lemma 2.5, we observe that in all cases, there is a canonical double cov-
ering

1 → μ2 → ˜K → K → 1

with ˜K a connected reductive group. To emphasize the particular μ2 as
ker(˜K → K), we denote it by μker

2 . When G is not of type A1 or Cn, ˜K

is the simply-connected form of K .

2.6 A remarkable finite 2-group

This subsection collects several facts about a remarkable finite 2-group ˜A,
which will appear as the stabilizer of a base point in the moduli stack of G-
bundles we consider.
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2.6.1 Definition of ˜A(B ′,K ′)

We start with a minimal symmetric subgroup K ′ of G. The group K ′ acts on
the flag variety f �G by conjugating Borel subgroups. According to Propo-
sition 2.1(3), K ′ acts on f �G with finitely many orbits, therefore there is
a unique open K ′-orbit U ′ ⊂ f �G. A Borel subgroup B ′ ⊂ G is in gen-
eral position with K ′ if the corresponding point in f �G lies in U ′. Since
dimK ′ = dimf �G = dimU ′ = #ΦG/2, we conclude that (B ′,K ′) are in gen-
eral position if and only if B ′ ∩ K ′ is finite.

Now let (B ′,K ′) be in general position. Let ˜K ′ be the canonical double
cover of K ′ as in Sect. 2.5.2. Let ˜A(B ′,K ′) be the preimage of B ′ ∩K ′ in ˜K ′.
This is a finite group scheme over k. Because all such pairs (B ′,K ′) are si-
multaneously conjugate under G(k), the isomorphism class of the finite group
˜A(B ′,K ′)(k) is independent of the choice of (B ′,K ′). For this reason, when
talking about ˜A(B ′,K ′)(k) as an abstract group, use denote it simply by ˜A(k).

2.6.2 Structure of ˜A(k)

Below we will use a particular pair (B ′,K ′) in general position to study the
structure of ˜A(k). By Lemma 2.3(1), any lift τ ∈ NGad(T ad)(k) of −1 ∈ W

is a split Cartan involution. Let K ′ = Gτ , then K ′ is a minimal symmetric
subgroup. The intersection B ∩ K ′ = Bτ is the 2-torsion subgroup T [2] ⊂ T .
In particular, the standard Borel subgroup B is in general position with K ′.
The structure of ˜A(B,K ′)(k) is worked out in [2], as we shall now recall.
Below we denote ˜A(B,K ′) simply by ˜A.

Associated to the central extension

1 → μker
2 → ˜A → T [2] → 1 (2.4)

is a quadratic form

q : T [2] → μker
2

which assigns to a ∈ T [2] the element ã2 ∈ μker
2 , here ã ∈ ˜A(k) is any lifting

of a. Associated to this quadratic form there is a symplectic form (or, which
amounts to the same in characteristic 2, a symmetric bilinear form)

〈·, ·〉 : T [2] × T [2] → μker
2

defined by

〈a, b〉 = q(ab)q(a)q(b).

The symplectic form may be computed by the commutator pairing

〈a, b〉 = ã˜bã−1
˜b−1
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where ã,˜b ∈ ˜A(k) are liftings of a and b.
On the coroot lattice R∨ = ZΦ∨

G, we have a unique W -invariant symmetric
bilinear form

(·, ·) : R∨ × R∨ → Z

such that (α∨, α∨) = 2 if α∨ is a short coroot. Note that for types Bn,Cn and
F4, (α∨, α∨) = 4 if α∨ is a long coroot; for type G2, (α∨, α∨) = 6 if α∨ is a
long coroot.

Lemma 2.6 The following hold.

(1) Identifying T [2] with R∨/2R∨, we have

q(a) = (−1)(a,a)/2 ∈ μker
2 , for a ∈ R∨/2R∨ ∼= T [2]. (2.5)

(2) Let A0 be the kernel of the symplectic form 〈·, ·〉. If G is oddly-laced, then
A0 = ZG[2].

Proof (1) Our pairing (·, ·) on R∨ is the same one as in [2, Sect. 3]. The
symplectic form 〈·, ·〉 is determined by Matsumoto, see [2, Eq. (3.3)]:

〈

α∨(−1), β∨(−1)
〉 = (−1)(α

∨,β∨), for two coroots α∨, β∨. (2.6)

Also, [1, Theorem 1.6] says that a root α of G is metaplectic (which is equiv-
alent to saying q(α∨(−1)) = −1 ∈ μker

2 ) if and only if α∨ is not a long coroot
in type Bn,Cn and F4. Therefore, checking the coroot lengths under the pair-
ing (·, ·), we find

q
(

α∨(−1)
) = (−1)(α

∨,α∨)/2 for any coroot α∨. (2.7)

The two identities (2.6) and (2.7) together imply (2.5).
(2) follows from [2, Lemma 3.12] in which the base field was R, but

ZG(R) can be canonically identified with ZG[2]. �

2.6.3 Odd representations of ˜A(k)

A representation V of ˜A(k) is called odd, if μker
2 acts via the sign represen-

tation on V . Let Irr(˜A(k))odd be the set of irreducible odd representations of
˜A(k).

Recall that A0 ⊂ T [2] is the kernel of the pairing 〈·, ·〉. The pairing de-
scends to a nondegenerate symplectic form on T [2]/A0. Let ˜A0 ⊂ ˜A be the
preimage of A0. This is the center of ˜A. We have a central extension

1 → ˜A0(k) → ˜A(k) → T [2]/A0 → 1
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whose commutator pairing T [2]/A0 × T [2]/A0 → μker
2 is nondegenerate.

Let ˜A0(k)∗odd be the set of characters χ : ˜A0(k) → Q
×

such that χ |μker
2

is the
sign representation. By the Stone-von Neumann Theorem, for every odd cen-
tral character χ ∈ ˜A0(k)∗odd, there is up to isomorphism a unique irreducible
Q-representation Vχ of ˜A(k) with central character χ . Therefore we have a
canonical a bijection

Irr
(

˜A(k)
)

odd
∼→ ˜A0(k)∗odd.

In particular, the number of irreducible objects in Rep(˜A,Q)odd is #˜A0(k)∗odd= #A0.
We tabulate the structure of ˜A0 for oddly-laced groups with −1 ∈ W :

Type of G ˜A0 #Irr(˜A(k))odd

E8,G2 μ2 1
A1,E7 μ4 2
D4n μ3

2 4
D4n+2 μ4 × μ2 4

2.6.4 Rationality issues for ˜A

Above we only considered ˜A(k) as an abstract group. Now we would like
to consider the group scheme structure on ˜A which complicates its represen-
tation theory. We will study odd representations of the semi-direct product
Γ = ˜A(k) � Gal(k/k).

Let (B ′,K ′) be any pair in general position as in Sect. 2.6.1 and ˜A =
˜A(B ′,K ′) be the finite group scheme over k. We have an exact sequence
1 → μker

2 → ˜A → T ′[2] → 1 of group schemes over k, in which both μker
2

and T ′[2] are discrete group schemes. Therefore the only way Gal(k/k) can
act on ˜A(k) is through a homomorphism T ′[2] → μker

2 . Therefore Gal(k/k)

acts on ˜A(k) through a finite quotient Γ ↪→ Hom(T ′[2],μker
2 ). In particular,

Γ is isomorphic to a direct sum of Z/2Z.
When G is of type D4n,E8 or G2, the group scheme ˜A0 is a product of

μ2’s, hence Gal(k/k) acts trivially on ˜A0(k) and its group of characters.
When G is of type A1,D4n+2,E7, μker

2 is contained in some μ4 ⊂ ˜A0.
Therefore Gal(k/k) acts trivially on the odd central characters if and only if√−1 ∈ k. We henceforth make the assumption:

When G is of type A1,D4n+2 or E7,we assume that
√−1 ∈ k. (2.8)
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Lemma 2.7 Assume (2.8) holds. For each odd central character χ of ˜A0(k),
the irreducible ˜A(k)-module Vχ can be given a Γ -module structure extending
the ˜A(k)-action. Moreover, such a Γ -module Vχ can be defined over Q(i).

Proof We first show that Vχ extends to a Γ -module over Q. By our assump-
tion on k, the central character χ is fixed by Γ . For any γ ∈ Γ , let γ Vχ

be the same space Vχ with a ∈ ˜A(k) acting as γ (a) in the original action.
Since the central character of γ Vχ is still χ , there is an ˜A(k)-isomorphism

φγ : Vχ
∼→ γ Vχ , unique up to a scalar in Q

×
. The obstruction for making the

collection {φγ } into an action of Γ on Vχ is a class in H2(Γ ,Q
×
). Since Γ

is a direct sum of Z/2Z, and H2(Z/2Z,Q
×
� ) = Q

×
/Q

×2 = 1, there is no ob-
struction, and Vχ extends to an ˜A(k) � Γ -module over Q, hence a Γ -module
over Q.

Next we show that every ˜A(k)�Γ -module is defined over Q(i). In fact, for
every element (a, γ ) ∈ ˜A(k) � Γ , (a, γ )2 = (a · γ (a), γ 2) = (a2c,1) ∈ μker

2
because γ (a) = ac for some c ∈ μker

2 and a2 ∈ μker
2 as well. Therefore all

elements of ˜A(k) � Γ have order divisible by four. By Brauer’s theorem [35,
12.3, Theorem 24], all irreducible representations of ˜A(k)�Γ can be defined
over Q(i). Since the Γ -module Vχ is inflated from an ˜A(k) � Γ -module, it
is also defined over Q(i). �

Remark 2.8 The Γ -module structure on Vχ constructed in Lemma 2.7 is not
unique. Different Γ -actions on Vχ extending the ˜A(k)-action differ by twist-
ing by a character of Gal(k/k).

3 The automorphic sheaves

In this section, we will analyze the geometry of a moduli stack of G-bundles
over P1 with level structures. We will exhibit some “automorphic” sheaves
on this moduli stack, which will be used to construct the local systems stated
in the Main Theorem in later sections.

3.1 Convention

We work under the setting of Sect. 2.1 and in particular under Assumption
(2.1). All stacks without subscripts are defined over k.

Let � be a prime number different from char(k). For technical reasons, let
Q′

� = Q�(
√−1) be an extension of Q� of degree at most two. All sheaves we

consider are either Q� or Q′
�-sheaves under the étale topology on algebraic

stacks defined over k. For an algebraic stack X over k, we use Db(X,Q′
�) or
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simply Db(X) to denote the derived category of constructible Q′
�-complexes

on X, as defined in [23, 24]. When X is a global quotient X = [H\Y ], Db(X)

can be identified with the equivariant derived category Db
H(Y ).

3.2 Moduli stacks of G-bundles

In this subsection, we introduce moduli stacks of G-bundles on P1 with cer-
tain level structures. This is the starting point of our geometric construction,
and automorphic sheaves will live on these moduli stacks.

3.2.1 Moduli of bundles with parahoric level structures

Fix a set of k-points S ⊂ P1(k). For each x ∈ S, fix a parahoric subgroup
Px ⊂ LxG. Generalizing the definition in [41, Sect. 4.2], we can define the an
algebraic stack BunG(Px;x ∈ S) classifying G-torsors on P1 with Px -level
structures at x (in [41, Sect. 4.2] we only considered the case S is a singleton,
but the same construction generalizes to the case of multiple points). Note
that when the parahoric Px is not contained in G(Ox) for some x ∈ S, points
in BunG(Px;x ∈ S) do not give well-defined G-bundles: they only give G-
bundles over X − S.

In Sect. 2.3 we defined a particular parahoric subgroup P 1
2 ρ∨ of the loop

group LG. Let P0 ⊂ L0G be the parahoric subgroup in the conjugacy class
of P 1

2 ρ∨ which contains the standard Iwahori subgroup I0 (defined using B).

At ∞ ∈ P1, let Iopp
∞ ⊂ L∞G be the Iwahori subgroup defined by the Borel

Bopp ⊃ T opposite to B . Let P∞ ⊂ L∞G be the parahoric subgroup in the
conjugacy class of P 1

2 ρ∨ which contains Iopp
∞ .

The maximal reductive quotients of P0 and P∞ are denoted by K0 and K∞
respectively, which are both isomorphic to the symmetric subgroup K of G

studied in Sect. 2.5. The Weyl groups of K0 and K∞ can be identified with
the subgroup of the affine Weyl group ˜W = X∗(T ) � W generated by simple
reflections which fix the alcove of P0 or P∞. We denote this Weyl group by
WK , and understand it as a subgroup of ˜W as above when needed.

The moduli stack BunG(P0,P∞) will be our main interest till Sect. 3.2.3.
Let us briefly recall its definition in a form convenient for our purposes. Let
P+

0 (resp. P+∞) be the pro-unipotent radical of P0 (resp. P∞). Since P+
0 and

P+∞ are normal subgroups of I0 and Iopp
∞ , the moduli stack BunG(P+

0 ,P+∞)

of G-bundles over P1 with P+
0 and P+∞ level structures at 0 and ∞ can be

defined: it is an (I0/P+
0 ) × (Iopp

∞ /P+∞)-torsor over the more familiar mod-
uli stack BunG(I0, Iopp

∞ ). The groups K0 and K∞ act on BunG(P+
0 ,P+∞) by

changing the level structures, and we define BunG(P0,P∞) as the quotient
stack [(K0 × K∞)\BunG(P+

0 ,P+∞)].
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3.2.2 Birkhoff decomposition

Let P triv
A1 be the trivial G-bundle over A1 together with the tautological P0-

level structure at 0. Let Γ0 be the group ind-scheme of automorphisms of
P triv

A1 : for any k-algebra R, Γ0(R) = AutA1
R
(P triv

A1
R

). Recall from [21, Proposi-

tion 1.1] (where the Iwahori version was stated; our parahoric situation fol-
lows from the Iwahori version) that we have an isomorphism of stacks

[Γ0\L∞G/P∞] ∼→ BunG(P0,P∞),

and we have the Birkhoff decomposition

L∞G(k) =
⊔

WK\ ˜W/WK

Γ0(k)w̃P∞(k). (3.1)

In (3.1), every double coset w̃ ∈ WK\ ˜W/WK represents a k-point Pw̃ of
BunG(P0,P∞), which is obtained by gluing P triv

A1 with the parahoric subgroup
Ad(w̃)P∞ of L∞G.

We sometimes will also use the stack BunG(P+
0 ,P∞) = [K0\BunG(P+

0 ,

P+∞)]. The trivial G-bundle with its tautological P+
0 and P∞ level structures

give a k-point � ∈ BunG(P+
0 ,P∞), whose automorphism group Γ0 ∩P+

0 ∩P∞
is trivial. The image of � in BunG(P0,P∞) corresponds to the unit coset 1 ∈
WK\ ˜W/WK in the decomposition (3.1), which has automorphism group Γ0 ∩
P∞

∼→ K0 (the map here is given by the projection Γ0 ↪→ P0 → K0). Thus
we get an embedding [{�}/K0] ↪→ BunG(P0,P∞). Since BunG(P+

0 ,P∞) →
BunG(P0,P∞) is a K0-torsor, the preimage of [{�}/K0] in BunG(P+

0 ,P∞) is
precisely the point {�}.

Lemma 3.1 The substack [{�}/K0] of BunG(P0,P∞) is the non-vanishing
locus of a section of a line bundle on BunG(P0,P∞). In particular, the em-
bedding j0 : BK0 = [{�}/K0] ↪→ BunG(P0,P∞) is open and affine.

Proof Let d = dimG and let Bund denote the moduli stack of rank d vector
bundles on P1. We shall define a morphism

Ad+ : BunG(P0,P∞) → Bund (3.2)

For this, first consider the morphism Ad : BunG(P+
0 ,P∞) → Bund obtained

by taking the adjoint bundle. Let us recall its construction. Let R be a locally
noetherian k-algebra. Fix an affine coordinate t on A1 and identify the formal
neighborhood of {0}R and {∞}R in P1

R with Spf R[[t]] and Spf R[[t−1]]
respectively. An object P ∈ BunG(P+

0 ,P∞)(R) defined a G-bundle PGm

over Gm,R = P1
R − {0,∞}, hence the adjoint bundle Ad(PGm

) over Gm,R

of rank d . The infinitesimal automorphisms of P|SpecR((t)) preserving the
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P+
0 -level structure give an R[[t]]-submodule Λ+

0 (P) of Ad(PGm
)|SpecR((t)).

The infinitesimal automorphisms of P|SpecR((t−1)) preserving the P0-level
structure gives an R[[t−1]]-submodule Λ∞(P) of Ad(PGm

)|SpecR((t−1)). The
adjoint bundle Ad(P) is obtained by glueing Ad(P|Gm

) with Λ+
0 (P) and

Λ∞(P).
Since P+

0 is normal in P0, changing the P+
0 -level structure of P within a

fixed P0-level structure does not change the R[[t]]-module Λ+
0 (P). Hence

the construction of Λ+
0 descends to BunG(P0,P∞), and so does the adjoint

bundle construction. This finishes the definition of the morphism (3.2).
For an object P ∈ BunG(P+

0 ,P∞)(R) as above, the cohomology

Hi (P1
R,Ad(P)) may be calculated using a Čech complex as follows. The

R[[t]]-module Λ+
0 (P) and Ad(P|Gm

) glue to give a vector bundle on
A1

R , whose global sections form an R[t]-submodule M+
0 of the R[t, t−1]-

module Γ (Gm,R,Ad(P|Gm
)). Similarly, the R[[t−1]]-module Λ∞(P) and

Ad(P|Gm,R
) glue to give a vector bundle on P1

R − {∞}, whose global sec-
tions form an R[t−1] submodule M∞ of Γ (Gm,R,Ad(P|Gm

)). The two term
complex placed at degrees zero and one:

M+
0 ⊕ M∞ → Γ

(

Gm,R,Ad(P)
)

. (3.3)

then computes the cohomology H∗(P1
R,Ad(P)). As we discussed above, this

complex only depends on the image of P in BunG(P0,P∞).
We claim that the image of P in BunG(P0,P∞) is the base point � if and

only if H∗(P1
R,Ad(P)) = 0, i.e., the map (3.3) is an isomorphism. Since the

terms in (3.3) are flat R-modules, we may reduce to the case R is an alge-
braically closed field, which we may assume to be k. Suppose the image of P
in BunG(P0,P∞)(k) corresponds to a double coset w̃ ∈ WK\ ˜W/WK under
the Birkhoff decomposition (3.1). Since P is glued from the trivial G-bundle
with the tautological P0-level structure at 0 and Ad(w̃)P∞ at ∞, we may
identify the complex (3.3) in this case with

(

g[t] ∩ Lie P+
0

) ⊕ Ad(w̃)
(

g
[

t−1] ∩ Lie P∞
) → g

[

t, t−1]. (3.4)

For w̃ not equal to the trivial double coset, the two summands of the left
side both contain the affine root space (inside g[t, t−1]) of some affine root,
hence (3.4) has a nontrivial kernel. If w̃ is the trivial double coset, every affine
root space appears either in Lie P+

0 or in Lie P∞ but not both, so (3.3) is an
isomorphism. This proves the claim.

By Grothendieck’s classification of vector bundles on P1, the only vec-
tor bundle on P1 of rank d with trivial cohomology is the bundle O(−1)⊕d ,
which is cut out by the non-vanishing of a section of the inverse of the deter-
minant line bundle Ldet on Bund . Therefore, {�}/K0 ⊂ BunG(P0,P∞) is the
non-vanishing locus of a section of the line bundle Ad+,∗L−1

det . �
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3.2.3 A μker
2 -gerbe over the moduli stack

Let ˜P0 = P0 ×K0
˜K0, where ˜K0 is the canonical double cover of K0 as in

Sect. 2.5.2. We would like to define the moduli stack BunG(˜P0,P∞), which
will be a μker

2 -gerbe over BunG(P0,P∞). Recall that BunG(P0,P∞) is de-
fined as the quotient of BunG(P+

0 ,P+∞) by the K0 × K∞-action. Now instead
we take quotient by ˜K0 × K∞, whose action on BunG(P+

0 ,P+∞) still factors
through K0 × K∞; i.e., we define

BunG(˜P0,P∞) := [

(˜K0 × K∞)\BunG

(

P+
0 ,P+∞

)]

.

This is a μker
2 = ker(˜K0 → K0)-gerbe over BunG(P0,P∞).

3.2.4 Level structure at three points

Let I1 ⊂ L1G be the Iwahori subgroup defined by B . We let

Bun := BunG(˜P0, I1,P∞).

As above, this is defined as the quotient of BunG(P+
0 , I1,P+∞) by ˜K0 × K∞;

alternatively, it may be defined as the quotient of Bun+ := BunG(P+
0 , I1,P∞)

by ˜K0.
Consider the diagram

Bun+ BunG(P+
0 ,P∞)

Bun BunG(˜P0,P∞) BunG(P0,P∞)

(3.5)

where the vertical maps are ˜K0-torsors and the square is 2-Cartesian. The
preimage of the base point � ∈ BunG(P+

0 ,P∞) in Bun+ corresponds to all
Borel reductions of the trivial G-bundle at t = 1, and hence can be iden-
tified with the flag variety f �G. Taking the preimage of the open substack
[{�}/K0] ⊂ BunG(P0,P∞) in various stacks in diagram (3.5), we get

f �G {�}

[˜K0\f �G] [{�}/˜K0] [{�}/K0]

each term being an open substack of the corresponding term in (3.5). In par-
ticular, we get an affine open embedding j1 : [˜K0\f �G] ↪→ Bun.
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We spell out the action of ˜K0 on f �G. By construction, the action is given
by the homomorphism

˜K0 → K0 ∼= Γ0 ∩ P∞ ⊂ G
[

t, t−1] t=1−−→ G (3.6)

and the natural action of G on f �G. Recall thatK0 is the reductive quotient of
the parahoric subgroup P0, hence the root system ΦK0 of K0 is identified with
a subset of the affine roots Φaff

G of G. Under the homomorphism (3.6), K0
get mapped isomorphically onto the subgroup of G containing T whose root
system is the image of the projection ΦK0 ⊂ Φaff

G → ΦG. By the discussion
in Sect. 2.5.1, the image of (3.6) is a symmetric subgroup of G corresponding
to a split Cartan involution.

By Proposition 2.1(3), K0 acts on f �G with finitely many orbits. Therefore
there is a unique open K0-orbit U ⊂ f �G. We thus get an open embedding

j : [˜K0\U ] ⊂ [˜K0\f �G] j1−→ Bun.

3.2.5 A base point of U

We would like to fix a point u0 ∈ U(k), and henceforth assume

The base field k is such that U(k) 
= ∅. (3.7)

We argue that this assumption is fulfilled whenever char(k) is zero or suf-
ficiently large. First we observe that the groups K0 and G can be extended
to split reductive group schemes K0 and G over Z[1/2N0] for some posi-
tive integer N0. Let U be the canonical model of U over Z[1/2N0] obtained
as the open K-orbit on f �G. Since UQ is a rational variety, its Q-points are
Zariski dense. Therefore U(Q) 
= ∅. We fix u0 ∈ U(Q), which then extends
to a point u0 ∈ U(Z[1/2N0N1]) for some other positive integer N1. There-
fore, whenever p = char(k) does not divide 2N0N1, the point u0 induces a
point of U(Fp), which we view as a k-point of U . We denote this k-point
also by u0, and fix this choice for the rest of the paper.

The point u0 ∈ U(k) ⊂ f �G(k) fixed above corresponds to a Borel sub-
group B0 ⊂ G (defined over k) which is in general position with K0 (see
Sect. 2.6.1). In Sect. 2.6.1 we made a definition of a finite group scheme
˜A(B0,K0) whenever B0 and K0 are in general position. We denote ˜A(B0,K0)

simply by ˜A and let A = K0 ∩ B0. Projecting A to the Cartan quotient
B0 → T0 induces an isomorphism A ∼= T0[2] (see Sect. 2.6.2), and ˜A is a
central extension of A by μker

2 . Since char(k) 
= 2, A is a discrete group over
k, and we may identify A with A(k) = A(k). However, ˜A may not be a dis-
crete group over k, so it is important to distinguish among ˜A, ˜A(k) and ˜A(k).
The structure and representation theory of the finite 2-group ˜A(k) is worked
out in Sect. 2.6.
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3.3 Sheaves on the moduli stack of G-bundles

In this subsection, we will define certain irreducible perverse sheaves on Bun
which are geometric incarnations of automorphic forms of a particular kind.
We assume (2.8) and (3.7) hold in this subsection.

3.3.1 The category of odd sheaves

Since μker
2 = ker(˜K0 → K0) acts trivially on Bun+, μker

2 is in the automor-
phism group of every point of Bun. An object F ∈ Db(Bun) = Db

˜K0
(Bun+)

thus carries an action of μker
2 . Therefore we have a decomposition

Db
˜K0

(

Bun+) = Db
˜K0

(

Bun+)

even ⊕ Db
˜K0

(

Bun+)

odd

according to whether μker
2 acts trivially (the even part) or through the sign

representation (the odd part). We then define

Db(Bun)odd := Db
˜K0

(

Bun+)

odd.

Similarly, we define Db
˜K0

(U)odd as the full subcategory of Db
˜K0

(U) on which

μker
2 acts by the sign representation.

Theorem 3.2 Assume that G is oddly-laced and −1 ∈ W (i.e., G is of type
A1,D2n,E7,E8 or G2). Then the restriction functor induced by the open
embedding j : [˜K0\U ] ↪→ Bun

j∗ : Db(Bun)odd → Db
˜K0

(U)odd

is an equivalence of categories with inverse equal to both j! and j∗.

The proof of the theorem will occupy Sect. 3.4. If G is of type Bn,Cn or F4,
the statement in the above theorem does not hold.

For the rest of the paper, we assume G is of type A1,D2n,E7,E8 or G2.
Our sought-for automorphic sheaf is an object of Db(Bun)odd, which, by

the above theorem, is determined by its restriction to U . Let Loc
˜K0

(U)odd

denote the abelian category of Q′
�-local systems on U which are equivari-

ant under ˜K0 and on which μker
2 acts by the sign representation. In order

to construct automorphic sheaves, we would like to understand the category
Loc

˜K0
(U)odd in more concrete terms.

Lemma 3.3 Consider the pro-finite group Γ = ˜A(k) � Gal(k/k) introduced
in Sect. 2.6.4. Restriction to the point u0 (which was fixed in Sect. 3.2.5) gives
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an equivalence of tensor categories

u∗
0 : Loc

˜K0
(U)odd

∼→ Repcont
(

Γ,Q′
�

)

odd

where the right side denotes continuous finite dimensional Q′
�-representations

of Γ on which μker
2 acts by the sign representation.

Proof Since ˜K0 acts on U transitively with stabilizer ˜A at u0, pullback to
{u0} gives an equivalence of tensor categories

u∗
0 : Loc

˜K0
(U)odd

∼→ Loc
˜A(Spec k)odd

where the subscript “odd” on the right side refers to the action of μker
2 ⊂ ˜A.

An ˜A-equivariant local system on Spec k is first of all a lisse Q′
�-sheaf

on Spec k, which is the same as a continuous representation V of Gal(k/k)

over E. The ˜A-equivariant structure gives an ˜A(k)-action on V . The two ac-
tions are compatible in the sense that

γ · ã · v = γ (̃a) · γ · v, for γ ∈ Gal(k/k), ã ∈ ˜A(k), v ∈ V.

Therefore these two actions together give a continuous action of Γ = ˜A(k) �

Gal(k/k) on V . The oddness condition on the local system is equivalent to
that the action of μker

2 ⊂ Γ is via the sign representation. �

3.3.2 The local system Fχ

In Lemma 2.7 we showed that the irreducible odd representation Vχ of
˜A(k) can be extended to a Γ -module. Moreover, it is defined over Q(i). By
Lemma 3.3, Vχ ⊗Q(i) Q

′
� gives rise to a geometrically irreducible local system

Fχ ∈ Loc
˜K0

(U,Q′
�)odd. By Remark 2.8, the construction of Fχ is canonical

only up to twisting by a continuous character of Gal(k/k).

3.3.3 Variant of cleanness

Let S be a scheme over k and we may similarly consider Db(Bun × S)odd.
The cleanness theorem 3.2 implies that the functor (u0 × idS)∗ also induces
an equivalence of categories

(u0 × idS)∗ : Db(Bun × S)odd
∼→ Db

˜K0
(U × S)odd

∼→ Db
˜A
(S)odd (3.8)

where ˜A acts trivially on S in the last expression. With the help of j!Fχ , we
may decompose objects in Db(Bun × S)odd in terms of the “basis” j!Fχ as χ
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ranges over odd characters of ˜A0. This decomposition will be made precise
in Lemma 3.4 below, after some preparatory remarks.

We may decompose an object in the Db
˜A
(S)odd according to the action

of ˜A0. Let ˜A∗
0,odd be the set of odd characters of ˜A0. This way we get a

decomposition for every object H ∈ Db(Bun × S)odd:

(u0 × id)∗H =
⊕

χ∈˜A∗
0,odd

(u0 × id)∗Hχ . (3.9)

3.3.4 Invariants under a finite group scheme action

Let S be a scheme on which a finite group scheme H acts (both defined
over k). We digress a bit to define what H -invariants mean for an H -
equivariant perverse sheaf F on S. Let k′ be a finite Galois extension of k

over which H becomes a discrete group scheme. Let Fk′ be the pull back of
F to Sk′ = S ⊗k k′. We first take the perverse subsheaf of H(k′)-invariants

F H(k′)
k′ ⊂ Fk′ . The descent datum for Fk′ (descending from Sk′ to S) restricts

to a descent datum of F H(k′)
k′ . Since perverse sheaves satisfy étale descent,

F H(k′)
k′ descends to a perverse sheaf F H on S. The construction of F H is

canonically independent of the choice of k′, and we call F H ∈ Perv(S) the
H -invariants of F .

Lemma 3.4 Let H ∈ Db(Bun×S)odd such that (u0 × idS)∗H is concentrated
in a single perverse degree, then we have a canonical decomposition

H ∼=
⊕

χ∈˜A∗
0,odd

(j!Fχ) �
(

V ∗
χ ⊗ (u0 × idS)∗Hχ

)
˜A
. (3.10)

Proof By applying a shift, we may assume that K = (u0 × idS)∗H is an ˜A-
equivariant perverse sheaf. By the variant of cleanness (3.8), it suffice to show
that the pullback of the two sides of (3.10) along u0 × id are canonically
isomorphic as ˜A-equivariant perverse sheaves, i.e., we have to show

K ∼=
⊕

χ∈˜A∗
0,odd

Vχ ⊗ (

V ∗
χ ⊗ Kχ

)
˜A (3.11)

Base changing to k′ where ˜A becomes discrete, we have a canonical de-
composition F ∼= ⊕

χ∈˜A∗
0,odd

Vχ ⊗ Hom
˜A(k′)(Vχ , K). Writing K = ⊕

χ Kχ

according to the ˜A0-action. Since Hom
˜A(k′)(Vχ , Kχ ′) = 0 for χ 
= χ ′, we

may rewrite the decomposition as F ∼= ⊕

χ∈˜A∗
0,odd

Vχ ⊗ Hom
˜A(k′)(Vχ , Kχ) =

⊕

χ∈˜A∗
0,odd

Vχ ⊗ (V ∗
χ ⊗ Kχ)

˜A(k′). Canonicity guarantees descent from k′ to k,

which then gives (3.11). �
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3.4 Proof of Theorem 3.2

To prove the theorem, it suffices to show that for any F ∈ Db(Bun)odd, the
stalks of F outside the open substack [˜K0\U ] are zero. This statement being
geometric, we may assume k is algebraically closed. The rest of this subsec-
tion is devoted to the proof of this vanishing statement.

3.4.1 F is zero on [˜K0\(f �G − U)]

We first restrict F to the open subset [˜K0\f �G] ⊂ Bun. Let O(x) = K0xB/B

be a K0-orbit on f �G which is not open. The goal is to show that F |O(x) = 0.
Write K0 = Gτ0 for some split Cartan involution τ0 ∈ Gad. Consider the

involution τ = x−1τx ∈ Gad. By Proposition 2.1(1), up to right-multiplying
x by an element in B , we may assume that τ ∈ NGad(T ad). Let [τ ] ∈ W be
the image of τ , which is an involution in W . Then O(x) is the open orbit if
[τ ] = −1 ∈ W , so we assume [τ ] 
= −1.

Conjugating by x−1 gives an isomorphism

O(x) = K0/
(

K0 ∩ xBx−1) ∼→ xK0x
−1/

(

xK0x
−1 ∩ B

) = Gτ/
(

Gτ ∩ B
)

(3.12)
which intertwines the K0-action on O(x) and the Gτ -action on Gτ/(Gτ ∩B).
Since Gτ is also a minimal symmetric subgroup of G, we have the canoni-
cal double cover ν′ : ˜Gτ → Gτ as in Sect. 2.5.2. Under the isomorphism
(3.12), F |O(x) can be viewed as an object in Db

˜Gτ (G
τ/Gτ ∩ B)odd, where

oddness refers to the action of ker(ν′), which we still denote by μker
2 in the

sequel. Since ˜Gτ acts on Gτ/Gτ ∩ B transitively, each cohomology sheaf of
F |O(x) is a local system on Gτ/Gτ ∩ B . Therefore it is enough to show that
Loc

˜Gτ (Gτ/Gτ ∩ B)odd = 0.
By Proposition 2.1(4), Gτ ∩ B = T τ · Nτ for a unipotent group Nτ . Let

˜T τ ⊂ ˜Gτ be the preimage of T τ in ˜Gτ , then

Loc
˜Gτ

(

Gτ/T τNτ

)

odd
∼→ Loc

˜Gτ

(

˜Gτ/˜T τ
)

odd = Loc
˜T τ (Spec k)odd.

The category Loc
˜T τ (Spec k) is equivalent to the category of Q′

�-representa-
tions of π0(˜T τ ). Therefore, for Loc

˜T τ (Spec k)odd to be nonzero, μker
2 must

not lie in the neutral component of ˜T τ . In the following lemma, we shall show
that this is not case, therefore proving that F |O(x) = 0 whenever O(x) is not
the open orbit.

Lemma 3.5 When [τ ] 
= −1 ∈ W , there exists a coroot α∨ of G, invariant
under τ , such that α∨ : Gm → T τ does not lift to Gm → ˜T τ . In particular,
μker

2 lies in the neutral component of ˜T τ .
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Proof If G = SL2, then [τ ] = 1 and the positive coroot α∨ meets the require-
ment. In the following we assume that G is not of type A1.

As in the situation of Lemma 2.4, we introduce the Levi subgroup L ⊂ G

with root system Φτ
G. Since [τ ] 
= −1 ∈ W , tτ 
= 0 and Φτ

G 
= ∅ because they
have to span tτ by Lemma 2.4(1). Let L1 be a simple factor of L which is
not a torus. Let l1 = LieL1. By Lemma 2.4(2), τ |L1 is nontrivial, hence there
exists a root α of L1 which is not a root of Lτ

1; i.e., τ acts on the root space
gα by −1.

Assume either G is simply-laced or this α is a long root if G is of type G2.
Give a grading of g according to the adjoint action of the coroot α∨, so that
Ad(α∨(s)) acts on g(d) by sd . Since α is a long root of G, we have g(d) = 0
for |d| > 2, and that g(2) = gα . Since τ acts on gα by −1, gτ ∩ g(2) = 0,
therefore the action of Ad(α∨) on gτ has weights −1,0,1. Suppose α∨ lifted
to a cocharacter of ˜T τ , it would give an element in the coroot lattice of Gτ

which is minuscule. By the table in Sect. 2.5.1, all simple factors of Gτ are
of type A or D when G is oddly-laced. An examination of root systems of
type A and D shows that no element in the coroot lattice of Gτ is minuscule.
Therefore α∨ is not liftable to ˜T τ . For simply-laced G, this finishes the proof
of the lemma.

It remains to consider the case G = G2, and L is the Levi corresponding
to a short root α of G. Using the grading given by α∨, we have gτ (3) 
= 0 and
gτ (1) 
= 0. However, ˜Gτ ∼= SL2 × SL2, and any homomorphism Gm → SL2
acts by even weights under the adjoint representation. Therefore α∨ is not
liftable to ˜T τ , and the G2 case is also settled. �

3.4.2 F is zero outside [˜K0\f �G]
Recall the Birkhoff decomposition (3.1). Each double coset w̃ ∈ WK\ ˜W/WK

gives a point Pw̃ ∈ BunG(P0,P∞), whose stabilizer is Stab(w̃) = Γ0 ∩
Ad(w̃)P∞. We have a canonical homomorphism by evaluating at t = 0

ev0 : Stab(w̃) ⊂ Γ0 → K0.

Changing the P0-level to ˜P0-level, we get a similar Birkhoff decompo-
sition for BunG(˜P0,P∞). The double coset w̃ also gives a point ˜Pw̃ ∈
BunG(˜P0,P∞) with stabilizer

˜Stab(w̃) := Stab(w̃) ×K0
˜K0.

Let Bunw̃ be the preimage of the stratum {˜Pw̃}/ ˜Stab(w̃) in Bun =
BunG(˜P0, I1,P∞). The open stratum corresponding to the unit coset in
WK\ ˜W/WK is [˜K0\f �G], which has been dealt with in Sect. 3.4.1. Our
goal here is to show that Db(Bunw̃)odd = 0 whenever w̃ is not the unit coset
in WK\ ˜W/WK . This together with Sect. 3.4.1 finishes the proof of Theo-
rem 3.2.
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Similar to the description of the preimage of the unit double coset in Bun
in Sect. 3.2.4, we have an isomorphism

Bunw̃
∼= [

˜Stab(w̃)\f �G

]

where ˜Stab(w̃) acts through

˜Stab(w̃) → Stab(w̃) = Γ0 ∩ Ad(w̃)P∞ ⊂ Γ0 ⊂ G
[

t, t−1] t=1−−→ G. (3.13)

Therefore

Db(Bunw̃)odd ∼= Db
˜Stab(w̃)

(f �G)odd

We need to show that the latter category is zero.
Let G(w̃) ⊂ G be the image of the map (3.13). This is a subgroup of G

containing T , whose root system we now describe.
Recall from Sect. 2.3 that the parahoric subgroup P 1

2 ρ∨ is defined using the

facet containing 1
2ρ∨ in the apartment A(T ). Now P∞ has the same type as

P 1
2 ρ∨ , so it is defined using the facet containing another point x ∈ A(T ) which

is in the ˜W -orbit of 1
2ρ∨ (recall ˜W acts on A(T ) by affine transformations).

Since G is simply-connected, the stabilizer of x is precisely the Weyl group
of WK . Affine roots of L∞G are affine functions on A(T ). Affine roots α

appearing in Γ0 are those such that α(x) ≥ 0; affine roots α appearing in
Ad(w̃)P∞ are those such that α(w̃x) ≤ 0. Therefore affine roots appearing in
Stab(w̃) are those such that α(x) ≥ 0 and α(w̃x) ≤ 0. Write such an affine
root as α = γ + nδ where γ ∈ ΦG ∪ {0}, δ is the imaginary root of L∞G and
n ∈ Z. Evaluating at t = 1 gives γ as a root appearing in G(w̃). In conclusion,
we see that γ ∈ ΦG appears in G(w̃) if and only if there exists n ∈ Z such
that γ (x) + n ≥ 0 and γ (w̃x) + n ≤ 0. Since x is in the ˜W -orbit of 1

2ρ∨,
γ (x), γ (w̃x) ∈ 1

2Z, therefore such an integer n exists if

• either 〈γ, x − w̃x〉 > 0;
• or 〈γ, x − w̃x〉 = 0 and γ (x) ∈ Z.

Note that λ = x − w̃x is a well defined vector in X∗(T )Q, and 〈γ, x − w̃x〉
is the pairing between X∗(T )Q and X∗(T )Q. Since γ (x) ∈ Z if and only if
γ ∈ ΦK0 ∪ {0}, the roots of G(w̃) are

{

γ ∈ ΦG|〈γ,λ〉 ≥ 0, and, when equality holds, γ ∈ ΦK0

}

.

Let Pλ ⊃ G(w̃) be the parabolic subgroup of G containing T whose roots
consist of all γ such that 〈γ,λ〉 ≥ 0. Then we have a Levi decomposition Pλ =
NλLλ where Nλ is the unipotent radical of Pλ and Lλ is the Levi subgroup of
Pλ containing T whose roots are {γ ∈ ΦG|〈γ,λ〉 = 0}. The above discussion
gives G(w̃) = Nλ(Lλ ∩ K0) (we identify K0 as a subgroup of G using (3.6)).
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Notice that Lλ ∩ K0 ⊂ G(w̃) has a canonical lifting to a subgroup of
Stab(w̃): this is the subgroup generated by T and containing real affine

roots α of the form α(x) = α(w̃x) = 0. Therefore, we can form L̃λ ∩ K0 =
(Lλ ∩K0)×K0

˜K0, which is both a subgroup and a quotient group of ˜Stab(w̃).
Next we analyze the G(w̃)-orbits on f �G. Let Wλ be the Weyl group of Lλ.

Bruhat decomposition gives

[

G(w̃)\f �G

] =
⊔

v∈Wλ\W

[

G(w̃)\PλvB/B
]

�
⊔

v∈Wλ\W

[

(Lλ ∩ K0)\LλvB/B
]

=
⊔

v∈Wλ\W

[

(Lλ ∩ K0)\f �Lλ

]

.

The arrow above is a map between stacks which is bijective on the level of
points. The last equality uses the fact that LλvB/B = Lλ/(Lλ ∩ Ad(v)B) is
the flag variety of Lλ. Therefore, in order to show that Db

˜Stab(w̃)
(f �G)odd = 0,

it suffices to show that Db

L̃λ∩K0
(f �Lλ)odd = 0. For w̃ not equal to the unit

WK -double coset, λ = x − w̃x 
= 0, therefore Lλ is a proper Levi subgroup
of G. So our goal becomes to show that Db

L̃∩K0
(f �L)odd = 0 for all proper

Levi subgroups L ⊂ G containing T .
Since K0 = Gτ0 where τ0 = exp(x) ∈ T ad, and τ0 also acts on L, we have

L ∩ K0 = Lτ0 . Fix a Borel BL ⊂ L containing T . Consider an Lτ0 -orbit
O(x) = Lτ0xBL/BL ⊂ f �L. By Proposition 2.1(1) again, up to right multi-
plying x by an element in BL, we may assume that the involution τ = xτ0x

−1

lies in NLad(T ad). By the same argument as in Sect. 3.4.1, we reduce to
show that Loc

˜T τ (pt)odd = 0, where ˜T τ = T τ ×K0
˜K0. In Sect. 3.4.1, we

have shown that Db
˜T τ (pt)odd = 0 provided [τ ] 
= −1 ∈ W . In our case, since

τ ∈ NLad(T ad) and L is proper, [τ ] can never be −1. This finishes the proof.

4 Construction of the motives

In this section, we apply geometric Hecke operators to the automorphic
sheaf j!Fχ found in the previous section to get a ̂G-local system Eχ on
P1 − {0,1,∞}. We will also show that the local system Eχ is motivic. We
recall that G is of type A1,D2n,E7,E8 or G2.

4.1 Geometric Hecke operators

4.1.1 The geometric Satake equivalence

We briefly review the main result of [31]. We have defined the loop group LG

and its parahoric subgroup L+G in Sect. 2.2. Let AutO be the group scheme
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of formal change of variables: R �→ {continuous (with respect to the t-adic
topology) R-linear automorphisms of R[[t]]}.

We usually denote the quotient LG/L+G by Gr, the affine Grassmannian.
This is an ind-scheme which is a union of projective varieties of increas-
ing dimension. For each dominant coweight λ ∈ X∗(T )dom, the L+G-orbit
containing tλ ∈ Gr is denoted by Grλ. The closure of Grλ is called an affine
Schubert variety and is denoted by Gr≤λ. The dimension of Grλ is 〈2ρ,λ〉,
which is an even number since G is assumed to be simply-connected.

The geometric Satake category Satgeom is the category of (L+G)k equiv-
ariant Q�-perverse sheaves on Grk whose supports are finite union of affine
Schubert varieties. The superscript geom is to indicate that sheaves in Satgeom

are over the geometric fiber Grk rather than Gr itself. As was shown in [31,
Appendix], Satgeom is in fact equivalent to the category of perverse sheaves on
Grk which are constant along L+Gk-orbits, and every object in Satgeom car-
ries a canonical equivariant structure under AutO,k . The category Satgeom is
equipped with a convolution product ∗ : Satgeom × Satgeom → Satgeom which
makes it a Tannakian category over Q�. The global section functor

H∗ : Satgeom → VecQ�

K �→ H∗(Grk, K)

is a fiber functor. The Tannakian group Aut⊗(H∗) is isomorphic to the Lang-
land dual group ̂G of G. Here ̂G is a split reductive group over Q�. All this is
proved in [31, Sect. 5-7].

Let ˜Sat be the full subcategory of perverse sheaves on Gr which belong to
Satgeom after pulling back to Grk . Then ˜Sat also has a convolution product.
Let ICλ ∈ ˜Sat be the (normalized) intersection cohomology sheaf of Gr≤λ:

ICλ := jλ,!∗Q�

[〈2ρ,λ〉](〈ρ,λ〉),
where jλ : Grλ ↪→ Gr is the inclusion. We remarked earlier that 〈2ρ,λ〉 is
even so 〈ρ,λ〉 is an integer; therefore no half Tate twist is needed.

Let Sat ⊂ ˜Sat be the full subcategory consisting of finite direct sums of
ICλ’s for the various λ ∈ X∗(T )dom. We claim that Sat is closed under con-
volution. In [3, Sect. 3.5], Arkhipov and Bezrukavnikov show this is the
case when k is a finite field, which implies the general case of char(k) > 0.
When char(k) = 0, we only need to consider k = Q. However, since Satgeom

is a semisimple category with simple objects ICλ,Q, we know ICλ ∗ ICμ
∼=

⊕

ν ICν ⊗ V ν
λ,μ for Q�[Gal(Q/Q)]-modules V ν

λ,μ = HomGr(ICν, ICλ ∗ ICμ).
By the standard argument of choosing an integral model, and the claim for
finite fields, we see that the Gal(Q/Q)-action on V ν

λ,μ is trivial when re-

stricted to Gal(Qp/Qp) for almost all primes p. By Chebotarev density, this
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implies that the Gal(Q/Q)-action on V ν
λ,μ is trivial, and the claim is proved.

It is then easy to see that the pullback functor gives a tensor equivalence
Sat

∼→ Satgeom, hence also a tensor equivalence

Sat
∼→ Rep(̂G,Q�). (4.1)

4.1.2 The Hecke correspondence

Consider the following correspondence

Hk←−
h

−→
h

Bun × (P1 − {0,1,∞}) Bun × (P1 − {0,1,∞})
(4.2)

We need to explain some notations. The stack Hk is the functor which sends R

to the category of tuples (x, P, P ′, ι) where x ∈ (P1 −{0,1,∞})(R), P, P ′ ∈
Bun(R) and ι is an isomorphism between the P and P ′ away from the graph
of x. In particular, ι preserves the level structures at 0,1 and ∞. The maps

←−
h

and
−→
h are defined by

←−
h

(

x, P, P ′, ι
) = (P, x); −→

h
(

x, P, P ′, ι
) = (

P ′, x
)

.

4.1.3 Geometric Hecke operators

The geometric fibers of
−→
h over Bun× (P1 −{0,1,∞}) are (non-canonically)

isomorphic to the affine Grassmannian GrG. Locally in the smooth topology
on Bun × (P1 − {0,1,∞}) this fibration is trivial (see [21, Remark 4.1]). For
K ∈ Sat, the local triviality of the fibration

−→
h allows us to define a complex

KHk ∈ Db(Hk,Q�) on Hk whose restriction to each fiber of
−→
h is isomorphic

to K.
The universal geometric Hecke operator is defined as a bifunctor

˜T : Sat × Db
(

Bun × (

P1 − {0,1,∞})) → Db
(

Bun × (

P1 − {0,1,∞}))

(K, F ) �→ −→
h !

(←−
h ∗F ⊗Q�

KHk
)

.

(4.3)

Note that KHk always has Q�-coefficients. The bifunctor ˜T is compatible with
the tensor structure ∗ on Sat in the sense that the functor

Sat → End
(

Db
(

Bun × (

P1 − {0,1,∞})))
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K �→ (

F �→ ˜T(K, F )
)

has a natural structure of a monoidal functor (the monoidal structure on the
target is given by composition of endofunctors). We more often use the fol-
lowing functor

T : Sat × Db(Bun) → Db
(

Bun × (

P1 − {0,1,∞}))

F �→ ˜T
(

K, F � Q′
�P1−{0,1,∞}

)

.

4.2 Eigen local systems

Definition 4.1 A Hecke eigensheaf is a triple (F , E , ε) where

• F ∈ Db(Bun);
• E : Sat → Loc(P1 − {0,1,∞}) is a tensor functor;
• ε is a system of isomorphisms ε(K) for each K ∈ Sat

ε(K) : T(K, F )
∼→ F � E (K) (4.4)

which is compatible with the tensor structures (see [17, discussion after
Proposition 2.8]).

The functor E in the definition defines a ̂G-local system on P1 − {0,1,∞},
which is called the eigen local system of F . When we say F ∈ Db(Bun) is
a Hecke eigensheaf, it means there exists (E , ε) as above making the triple
(F , E , ε) a Hecke eigensheaf in the sense of Definition 4.1.

The construction of the local system in the Main Theorem is given in the
following theorem.

Theorem 4.2 Suppose G is of type A1,D2n,E7,E8 or G2. Assume (3.7)
holds.

(1) Assume (2.8) also holds. Then for every odd character χ of ˜A0, the ob-
ject j!Fχ = j∗Fχ ∈ Db(Bun)odd is a Hecke eigensheaf with eigen local
system

E ′
χ : Sat ∼= Rep(̂G,Q�) → Loc

(

P1 − {0,1,∞},Q′
�

)

.

(2) Suppose G is of type A1,D4n+2 or E7 and we do not assume (2.8). Then
Eχ,Q′

�
is a priori a ̂G(Q′

�)-local system on P1
k′ − {0,1,∞} where k′ =

k(
√−1). There is a canonical way to descend E ′

χ to a ̂G(Q′
�)-local system

on P1
k − {0,1,∞}.

(3) The ̂G(Q′
�)-local system E ′

χ descends canonically to a ̂G(Q�)-local sys-
tem Eχ .
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(4) If k is a finite field, Eχ(K) is pure of weight zero for any K ∈ Sat.

The proof of this theorem occupies Sect. 4.4. In the rest of this subsection,
assuming this theorem, we work step by step towards an explicit description
of the eigen local system Eχ .

4.2.1 The Beilinson-Drinfeld Grassmannian

Beilinson and Drinfeld defined a global analog of the affine Grassmannian,
which fits into a Cartesian diagram

GR

π

Hk

−→
h

P1 − {0,1,∞}
u0×id

Bun × (P1 − {0,1,∞})

Using the moduli interpretation of Hk, we see that GR classifies triples
(x, P, ι) where x ∈ (P1 − {0,1,∞})(R), P ∈ Bun(R) and ι is an isomor-
phism P|P1

R−Γ (x)

∼→ Pu0 |P1
R−Γ (x), where Γ (x) ⊂ P1

R is the graph of x and
Pu0 ∈ Bun(k) is the object corresponding to u0. Fixing x the fiber of GR over
x is denoted by Grx , which is an ind-scheme over R. When x is a closed
point, we have Grx

∼→ Gr ⊗k k(x).
For every K ∈ Sat, there is a corresponding object KGR ∈ Db(GR,Q�)

obtained by spreading it over P1 − {0,1,∞}: for the construction, we may
either take KGR to be the restriction of KHk, or use [16, Sect. 2.1.3]. For each
geometric point x ∈ P1 − {0,1,∞}, the restriction of KGR to the fiber Grx is
isomorphic to K (base changed to Gr ⊗k k(x)).

4.2.2 Calculation of the eigen local system Eχ

From now on till Sect. 4.2.3 we work under both assumptions (3.7) and (2.8).

Define G̃RU by the Cartesian diagram

G̃RU

π̃

Hk

(
←−
h ,

−→
h )

P1 − {0,1,∞}
u0×u0×id

Bun × Bun × (P1 − {0,1,∞})

(4.5)

The morphism u0 ×u0 × id : P1 −{0,1,∞} → Bun×Bun× (P1 −{0,1,∞})
factors through the (˜A × ˜A)-torsor P1 − {0,1,∞} → [˜K0\U ]2 × (P1 −
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{0,1,∞}), therefore G̃RU carries a natural ˜A × ˜A-action. When we need to
distinguish the two copies of ˜A, we denote the first one by ˜A(1), which acts

on G̃RU via base change through
←−
h ; similarly we denote the second copy

of ˜A by ˜A(2), which acts via base change through
−→
h . Note that the μker

2 in

either copy of ˜A acts in the same way on G̃RU .

The ind-scheme G̃RU fits into a diagram

˜GRU

ν

GRU

jGR

ωU

GR

ω

π

Hk

−→
h

Spec k

u0

[˜K0\U ] Bun P

1 − {0,1,∞}
u0×id

Bun × (P1 − {0,1,∞})

(4.6)
where all squares are Cartesian by definition. The arrows ν and u0 are both
˜A(1)-torsors. Using the moduli interpretation given in Sect. 4.2.1, ω : GR →
Hk

←−
h−→ Bun sends the triple (x, P, ι) to P ∈ Bun. Denote the projections to

P1 − {0,1,∞} by

πU : GRU → P1 − {0,1,∞}; π̃ : G̃RU → P1 − {0,1,∞}.

Since ˜A × ˜A acts on the fibers of νHk : G̃RU → Hk, the complex
π̃!ν∗KGR,Q′

�
= π̃!ν∗

HkKHk is ˜A × ˜A-equivariant. Let (π̃!ν∗KGR,Q′
�
)odd be the

direct summand on which μker
2 acts by the sign representation (via either copy

of ˜A).
On the other hand, ˜A(k)× ˜A(k) acts on the ˜A(k) via (a1, a2) ·a = a1aa−1

2 ,
hence it acts on the group algebra Q′

�[˜A(k)]. Then Q′
�[˜A(k)] is an Γ (2) :=

(˜A(k) × ˜A(k)) � Gal(k/k)-module. We may decompose it under the action
of ˜A0 via the embedding into ˜A(2):

Q′
�

[

˜A(k)
] =

⊕

χ∈˜A∗
0,odd

Q′
�

[

˜A(k)
]

χ
.

Each direct summand Q′
�[˜A(k)]χ is still a Γ (2)-module. The analog of

Lemma 3.3 allows us to view Q′
�[˜A(k)]χ as an (˜A × ˜A)-equivariant local

system on Spec k, which we denote simply by Q′
�[˜A]χ .

Lemma 4.3 There is a canonical isomorphism in Loc
˜A×˜A(P1 − {0,1,∞}):

(

π̃!ν∗KGR
)

odd ⊗Q�
Q′

�
∼=

⊕

χ∈˜A∗
0,odd

Q′
�[˜A]χ ⊗ E ′

χ(K) (4.7)
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Consequently, we have an isomorphism in Loc(P1 − {0,1,∞})

E ′
χ(K) ∼= (

Q′
�[˜A]∗χ ⊗Q�

(

π̃!ν∗KGR
)

odd

)
˜A×˜A

. (4.8)

Here the (˜A × ˜A)-invariants of a sheaf is taken in the sense of Sect. 3.3.4

Proof By the definition of the geometric Hecke operator (4.3) and proper
base change, we have

(u0 × id)∗T(K, j!Fχ) = π!
(

ω∗j!Fχ ⊗Q�
KGR

) = πU
!

(

ωU,∗Fχ ⊗Q�
KGR

)

.

(4.9)
By the definition of the Hecke eigen property (4.4), we have

(u0 × id)∗T(K, j!Fχ) ∼= (u0 × id)∗
(

Fχ �Q�
Eχ(K)

) ∼= Vχ ⊗ E ′
χ(K). (4.10)

Combining (4.9) and (4.10), we get an isomorphism

πU
!

(

ωU,∗Fχ ⊗Q�
KGR

) ∼= Vχ ⊗ E ′
χ(K). (4.11)

This isomorphism is ˜A(2)-equivariant with ˜A(2) acting on Vχ on the right
side.

Since both ν and u0 : Spec k → [˜K0\f �G] are ˜A(1)-torsors, u0,∗Q′
� and

ν∗Q′
� carry ˜A(1)-actions, so it makes sense to extract the direct summands

(u0,∗Q′
�)odd and (ν∗Q′

�)odd on which μker
2 acts by the sign representation.

We have an ˜A(1)-equivariant decomposition (u0,∗Q′
�)odd = ⊕

χ odd V ∗
χ ⊗

Fχ where ˜A(1) acts on V ∗
χ . Pulling back along ωU , we get (ν∗Q′

�)odd ∼=
⊕

χ odd V ∗
χ ⊗ ωU,∗Fχ . Therefore we get an ˜A × ˜A-equivariant isomorphism

(

π̃!ν∗KGR
)

odd ⊗Q�
Q′

�
∼= πU

!
((

ν∗Q′
�

)

odd ⊗Q�
KGR

)

∼=
⊕

χ∈˜A∗
0,odd

πU
!

(

V ∗
χ ⊗ ωU,∗Fχ ⊗Q�

KGR

)

Applying (4.11) to the right side above, we get an ˜A × ˜A-equivariant isomor-
phism

(

π̃!ν∗KGR
)

odd
∼=

⊕

χ∈˜A∗
0,odd

V ∗
χ ⊗ Vχ ⊗ E ′

χ(K). (4.12)

On the right side, ˜A(1) acts on V ∗
χ and ˜A(2) acts on Vχ . Note that

Q′
�[˜A(k)]χ = V ∗

χ ⊗ Vχ as Γ (2)-modules. Therefore the right side of (4.12)
is the same as the right side of (4.7). Since Q′

�[˜A]χ is irreducible as a repre-
sentation of ˜A(k) × ˜A(k), (4.8) follows from (4.7). This finishes the proof of
the lemma. �
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4.2.3 Quasi-minuscule Schubert variety

We specialize to the case λ = θ∨, the coroot corresponding to the highest root
θ of G. This is called a quasi-minuscule weight of ̂G because in the weight
decomposition of the irreducible representation Vθ∨ of ̂G, all nonzero weights
are in the Weyl group orbit of θ∨. When ̂G is simply-laced, Vθ∨ is the adjoint
representation of ̂G.

For basic properties of the variety Grx,≤θ∨ we refer to [21, Sect. 5.3, es-
pecially Lemma 5.22]. In particular, it has dimension 〈2ρ, θ∨〉 = 2h∨ − 2,
where h∨ is the dual Coxeter number of G. It consists of two L+

x G-orbits:
the base point Grx,0 (the only singularity) and its complement Grx,θ∨ , which
is in fact isomorphic to the variety Y introduced in Sect. 1.4. The open subset
GrU

x,θ∨ is a union Grx,0 ∪ (Y −Dx), where Dx is an ample divisor of Grx,≤θ∨
depending algebraically on x (for the ampleness of Dx see the last paragraph
of the proof of Lemma 4.8).

Let ˜Y ⊂ G̃RU be the preimage of GRθ∨ in G̃RU . Note that ˜Y still carries
the action of ˜A × ˜A. The projection η : ˜Y → P1 − {0,1,∞} is smooth with
fibers ˜Yx which are ˜A(1)-torsors over Y − Dx .

We abbreviate E ′
χ(ICθ∨) by E ′

χ,qm (a Q′
�-local system of rank dimVθ∨ ).

Proposition 4.4 There is a canonical (˜A × ˜A)-equivariant isomorphism of
local systems over P1 − {0,1,∞}

(

R2h∨−2η!Q′
�

)

odd

(

h∨ − 1
) ∼=

⊕

χ∈˜A∗
0,odd

Q′
�[˜A]χ ⊗ E ′

χ,qm. (4.13)

Consequently, we have an isomorphism of local systems over P1 − {0,1,∞}

E ′
χ,qm

∼= (

Q′
�[˜A]∗χ ⊗ (

R2h∨−2η!Q′
�

)

odd

)
˜A×˜A(

h∨ − 1
)

. (4.14)

Proof Denote the preimage of GR≤θ∨ in G̃RU by ˜Q. Let K = ICθ∨ . Then
the spread-out KGR is the intersection complex of GR≤θ∨ up to a shift. Since
ν : ˜Q → GRθ∨ is étale, we have

ν∗KGR ∼= IC
˜Q

[

2h∨ − 2
](

h∨ − 1
)

.

Here we have normalized the intersection complex IC
˜Q to lie in cohomolog-

ical degrees 0, . . . ,2 dim ˜Q and to be pure of weight 0 as a complex. We still
use π̃ to denote the projection ˜Q → P1 −{0,1,∞}. Then Lemma 4.3 applied
to KGR gives an (˜A × ˜A)-equivariant isomorphism

(π̃!IC˜Q)odd ⊗Q�
Q′

�

[

2h∨ − 2
](

h∨ − 1
) ∼=

⊕

χ∈˜A∗
0,odd

Q′
�[˜A]χ ⊗ E ′

χ,qm. (4.15)
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In particular, (π̃!IC˜Q)odd is concentrated in the middle degree 2h∨ − 2, and is
a local system.

Now we relate the intersection cohomology of ˜Q to the usual cohomology
of ˜Y . From the discussion in Sect. 4.2.3, we can write GR≤θ∨ = GR0 ∪GRθ∨ .
Let ˜Z be the preimage of GR0 in ˜Q, then ˜Q = ˜Z ∪ ˜Y . Let j : ˜Y ↪→ ˜Q and
i : ˜Z ↪→ ˜Q be natural embeddings. We have a distinguished triangle

j!Q�

[

2h∨ − 2
](

h∨ − 1
) → IC

˜Q

[

2h∨ − 2
](

h∨ − 1
) → C ⊗ i∗Q�

˜Z
→

where C is the stalk of IC
˜Q[2h∨ − 2](h∨ − 1) along ˜Z, which is the same

as the stalk of K = ICθ∨ at Gr0. By the parity vanishing of the intersection
cohomology complex on the affine Grassmannian (see [16, A.7]), C lies in de-
grees ≤ −2, therefore, taking compactly supported cohomology of the above
distinguished triangle we get an isomorphism

R2h∨−2η!Q�
∼→ R2h∨−2π̃!IC˜Q.

Combining with (4.15) we get (4.13). The other isomorphism (4.14) follows
from (4.13) for the same reason that (4.8) follows from (4.7). �

In the next proposition, we show that when k = Q, Eχ has an integral model
which interpolates the situations for k = Fp . When we need to emphasize the
base field we are working with, we write Eχ,k for the eigen local system over
P1

k − {0,1,∞}.

Proposition 4.5 There is a positive integer N such that the ̂G(Q�)-local
system Eχ,Q over P1

Q
− {0,1,∞} extends to a ̂G(Q�)-local system E χ

over P1
Z[1/2�N] − {0,1,∞}. Moreover, for any geometric point Spec k →

SpecZ[1/2�N], the restriction of E χ to P1
k − {0,1,∞} is isomorphic to Eχ,k .

Proof We define

Q′ :=
{

Q if G is of type D4n,E8 or G2

Q(i) if G is of type A1,D4n+2 or E7
(4.16)

Let Z′ be the ring of integers in Q′. We will first extend E ′
χ,qm,Q′ (a local

system over P1
Q′ − {0,1,∞} with Q′

�-coefficients of rank d = dimVθ∨) to

P1
Z′[1/2�N] − {0,1,∞} for some N .
In what follows, we use underlined symbols to denote the integral versions

of the spaces, sheaves, etc. Over Z′[1/2], the groups G,K, . . . and the spaces
Bun,U, . . . have integral models G,K, . . . ,Bun,U, . . . . All these spaces are
defined in a natural way such that their k-fibers (k is any field with char(k) 
=
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2) are the same as the corresponding spaces over the base field k we defined
before.

As discussed in Sect. 3.2.5, the rational point u0 extends to a point
u0 : Spec Z′[1/2N0] → U . The stabilizer of u0 under ˜K0 is a finite flat
group scheme ˜A over Z′[1/2N0]. We may define an integral version of ˜Y

(in Sect. 4.2.3) by forming the Cartesian diagram

˜Y GRθ∨

Spec Z′[1/2N0]
u0

Bun

Let η : ˜Y → P1
Z′[1/2�N0] − {0,1,∞} be the projection. By enlarging N0 to

some positive integer N , we may assume (R2h∨−2
c η!Q

′
�)odd is a Q′

�-local sys-

tem over P1
Z′[1/2�N] − {0,1,∞} since it is a local system over P1

Q′ − {0,1,∞}
by (4.13). Let

E ′
χ,qm := (

Q′
�

[

˜A(Q)
]∗
χ

⊗ (

R2h∨−2
c η!Q

′
�

)

odd

)
˜A×˜A

We need to make sense of the operation of taking invariants under the ac-
tion of the group scheme ˜A. Note that ˜A is finite étale over Z′[1/2N0], hence
Gal(Q/Q′) acts on ˜A(Q) via its quotient π1(Z

′[1/2N0]), therefore the con-
struction of invariants by descent in Sect. 3.3.4 still works over the base
Z′[1/2N0]. By proper base change and (4.14), the restriction of E ′

χ,qm to

P1
k − {0,1,∞} is the eigen local system E ′

χ,qm,k for any field-valued point
Spec k → Spec Z′[1/2�N0].

The monodromy representation of E ′
χ,qm takes the form

ρ′ : π1
(

P1
Z′[1/2�N] − {0,1,∞},∗) → GLd

(

Q′
�

)

,

where ∗ is a fixed geometric base point which we omit in the sequel. Since
the Q′-fiber of E ′

χ,qm is E ′
χ,qm,Q′ , we have a commutative diagram

π1(P
1
Q

′ − {0,1,∞})

s′

π1(P
1
Q

− {0,1,∞})

s

ρ
Q

̂G(Q�)

a

π1(P
1
Z

′[1/2�N ] − {0,1,∞})
ρ′

π1(P
1
Z[1/2�N ] − {0,1,∞})

ρ

GLd(Q′
�)

(4.17)
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Here ρQ is the monodromy representation of Eχ,Q and the vertical map a

is the homomorphism giving the quasi-minuscule representation of ̂G. Since
the vertical arrows s′ and s are surjections with the same kernel, there is a
unique way to fill in the dotted arrows. This dotted arrow ρ gives the desired
̂G(Q�)-local system E χ over P1

Z[1/2�N] − {0,1,∞}. �

4.3 Description of the motives

4.3.1 Motives of an open variety

In this section, we assume the base field k is a number field. For every smooth
projective variety X over k, and every i ∈ Z, there is a well-defined motive
hi(X) ∈ Motk such that under the �-adic cohomology functor, hi(X) is sent
to Hi (Xk,Q�).

More generally, suppose X is a smooth quasi-projective variety over k,
one can still define an object hi

c,pur(X) ∈ Motk(Q) as follows. Let X be a
compactification of X over Q, which is a smooth projective variety such that
D = X − X is a union of smooth divisors

⋃

s∈S Ds with normal crossings.
Such an X exists by Hironaka’s resolution of singularities. Since Motk(L) is
an abelian category by Jannsen [22, Theorem 1], we can take kernels of maps.
Let

hi
c,pur(X) = ker

(

hi(X) →
⊕

s∈S

hi(Ds)

)

.

This may depend on the choice of the compactification. However we will see
below that the �-adic realization of hi

c,pur(X) only depends on X. Consider
the following maps induced by inclusion and restriction

Hi
c(Xk,Q�) → Hi (Xk,Q�) →

⊕

s∈S

Hi (Ds,k,Q�).

Each cohomology group carries a weight filtration (we can choose an integral
model and look at the weights given by Frobv for almost all v) and the maps
are strictly compatible with the weight filtrations. Taking the weight i pieces,
we get

GrWi Hi
c(Xk,Q�) = ker

(

Hi (Xk,Q�) →
⊕

s∈S

Hi (Dk,Q�)

)

= H
(

hi
c,pur(X),Q�

)

.

Since the �-adic realization functor is exact (because Motk(Q) is semisim-
ple by Jannsen [22, Theorem 1]), it sends hi

c,pur(X) to the Gal(k/k)-module

GrWi Hi
c(Xk,Q�).

Suppose the smooth quasi-projective variety X is equipped with an action
of a finite group scheme A over k, then we may first find an A-equivariant
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projective embedding. In fact, let act : A × X → X and pr : A × X → X

be the action and projection map. If L is an ample line bundle on X, then
its average under the A-action LA = det(act∗pr∗L) is again ample and A-
equivariant. Using a high power of LA we have an A-equivariant projective
embedding X ↪→ PN , and the closure of its image gives an A-equivariant
compactification X of X. Using the equivariant version of Hironaka’s res-
olution of singularities, we may assume that X − X = ⋃

s∈S Ds is again a
union of smooth divisors with normal crossings, and the whole situation is
A-equivariant.

Every closed point a ∈ |A| gives a self-correspondence Γ (a) of (X,X,Ds)

which is the graph of the a-action. All such correspondences span an algebra
isomorphic to Q[A(k)]Gal(k/k), and its action on hi

c,pur(X) gives a homomor-
phism

Q
[

A(k)
]Gal(k/k) → EndMotk(Q)

(

hi
c,pur(X)

)

.

If L is a number field and e ∈ L[A(k)]Gal(k/k) is an idempotent, then
ehi

c,pur(X) is an object in Motk(L).

4.3.2 The idempotents

We assume the number field k satisfies the assumption (2.8). Fix χ ∈ ˜A∗
0,odd.

Let ϕχ be the characters of irreducible representations Vχ . For G = D4n,E8

or G2, ϕχ takes Q-values because Gal(Q/Q) acts trivially on the set of ir-
reducible characters; for G = A1,D4n+2,E7 the character ϕχ takes Q(i)-
values. We define Q′ by (4.16), so ϕχ takes values in Q′. We will consider the
category Motk(Q′) of motives over k with coefficients in Q′.

Under the Gal(k/k)-action on ˜A(k), ϕχ is also invariant because this action
fixes the central character χ . We can make the following idempotent element
in Q′[˜A(k) × ˜A(k)]

eχ(a1, a2) := 1

22(rank G+1)

∑

(a1,a2)∈˜A(k)

ϕχ

(

a1a
−1
2

)

.

Since ϕχ is constant on Gal(k/k)-orbits of ˜A(k), we actually have eχ ∈
Q′[˜A(k) × ˜A(k)]Gal(k/k). The action of eχ on the ˜A(k) × ˜A(k)-module
Q′

�[˜A(k)]χ is the projector onto id ∈ End(Vχ) = Q�[˜A(k)]χ . The action of
eχ on Q′

�[˜A(k)]χ ′ is zero if χ ′ 
= χ . Let

Mχ,x := eχh2h∨−2
c,pur (˜Yx)

(

h∨ − 1
) ∈ Motk

(

Q′).
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Proposition 4.6 Assume (2.8) holds for the number field k. There is an iso-
morphism of Gal(k/k)-modules

H
(

Mχ,x,Q′
�

) ∼= (

E ′
χ,qm

)

x
.

In particular, the Gal(k/k)-representation (Eχ,qm)x is motivic.

Proof Taking stalk of (4.13) at x ∈ P1(k)−{0,1,∞}, we get an isomorphism
of Gal(k/k)-modules:

H2h∨−2
c

(

˜Yx,Q′
�

)

odd

(

h∨ − 1
) ∼=

⊕

χ∈˜A∗
0,odd

Q′
�[˜A]χ ⊗ (

E ′
χ,qm

)

x
. (4.18)

By Proposition 4.5, (E ′
χ,qm)x is unramified at large enough primes p, and is

pure of weight zero under Frobp according the purity result proved in The-
orem 4.2(4). Using (4.18), we see that the same purity property holds for
H2h∨−2

c (˜Yx,Q′
�)odd(h

∨ − 1). Moreover, eχ projects H2h∨−2
c (˜Yx,Q′

�) to a sub-
space of the odd part, therefore

H
(

Mχ,x,Q′
�

) ∼= eχGrW2h∨−2H2h∨−2
c

(

˜Yx,Q′
�

)(

h∨ − 1
)

= eχH2h∨−2
c

(

˜Yx,Q′
�

)

odd

(

h∨ − 1
)

.

Making eχ act on the right side of (4.18), we get

H
(

Mχ,x,Q′
�

) ∼= eχQ′
�[˜A]χ ⊗ (

E ′
χ,qm

)

x
= (

E ′
χ,qm

)

x
.

�

4.4 Proof of Theorem 4.2

Proposition 4.7 Let K ∈ Sat and F ∈ Loc
˜K0

(U)odd.

(1) (u0 × id)∗T(K, j!F )[1] ∈ Db(P1 − {0,1,∞}) is a perverse sheaf.
(2) If k is a finite field, (u0 × id)∗T(K, j!F ) is pure of weight zero.

Proof The proof is a variant of [21, Sect. 4.1]. Let λ be a large enough
coweight of G such that K is supported in Gr≤λ. The spread-out complex
KGR is in perverse degree one on GR (since its restriction to each geometric
fiber Grx is perverse) and it is pure of weight zero. We restrict the diagram
(4.6) to GR≤λ without changing notations of the morphisms. By (4.9) we
have

(u0 × id)∗T(K, j!F ) ∼= πU
!

(

ωU,∗F ⊗ KGR,Q′
�

)

.
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From this we see that ωU,∗F ⊗ KGR,Q′
�

is also in perverse degree one and

pure of weight zero. In Lemma 4.8 below we will show that πU : GRU≤λ →
P1 −{0,1,∞} is affine, therefore (u0 × id)∗T(K, j!F ) ∈ pD≥1(Bun × (P1 −
{0,1,∞})) by [4, Thérème 4.1.1]. By [9, Variant 6.2.3 of Théorème 3.3.1], it
has weight ≤ 0.

On the other hand, consider the Cartesian diagram

GRU

ωU

vU

jGR

HkU

jHk

←−
h U

[˜K0\U ]
j

GR
ω

v

Hk

←−
h

Bun

Since
←−
h is a locally trivial fibration in smooth topology by [21, Remark 4.1],

the natural transformation
←−
h ∗j∗ → jHk,∗

←−
h U,∗ is an isomorphism. Therefore

ω∗j∗ = v∗←−h ∗j∗
∼→ v∗jHk,∗

←−
h U,∗ ∼→ jGR,∗vU,∗←−h U,∗ = jGR,∗ωU,∗,

where the second isomorphism uses the fact that v is étale. Hence

(u0 × id)∗T(K, j∗F )

∼= π!
(

ω∗j∗F ⊗ KGR,Q′
�

) ∼= π∗
((

jGR,∗ωU,∗F
) ⊗ KGR,Q′

�

)

∼= π∗jGR,∗
(

ωU,∗F ⊗ KGR,Q′
�

) = πU∗
(

ωU,∗F ⊗ KGR,Q′
�

)

. (4.19)

Here π! = π∗ because π : GR≤λ → P1 − {0,1,∞} is proper. Since πU

is affine and ωU,∗F ⊗ KGR,Q′
�

is in perverse degree 1, we have (u0 ×
id)∗T(K, j∗F ) ∈ pD≤1(P1 − {0,1,∞}) by [4, Corollaire 4.1.2]. Since
ωU,∗F ⊗ KGR,Q′

�
is pure of weight 0, by the dual statement of [9, 6.2.3],

(u0 × id)∗T(K, j∗F ) has weight ≥ 0.
Since j!F = j∗F by Theorem 3.2, the above argument shows that (u0 ×

id)∗T(K, j∗F ) is concentrated in perverse degree 1 and is pure of weight 0. �

Lemma 4.8 The morphism πU : GRU≤λ → P1 − {0,1,∞} is affine.

Proof Fix a point x ∈ (P1 − {0,1,∞})(R) for some finitely generated k-
algebra R. We will argue that the fiber GrUx,≤λ of GRU≤λ over x is an affine
scheme.

The embedding j factors as [˜K0\U ] ↪→ [˜K0\f �G] j1−→ Bun, therefore we
have GrUx,≤λ ↪→ GR�

x,≤λ ↪→ Grx,≤λ, where Gr�x,≤λ = ω−1([˜K0\f �G]). Since
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U is itself affine, so are the open embedding [˜K0\U ] ↪→ [˜K0\f �G] and its
base change GrUx,≤λ ↪→ Gr�x,≤λ. Therefore it suffices to show that Gr�x,≤λ is
affine.

Consider the morphism

β : Grx,≤λ
ω−→ Bun → BunG(˜P0,P∞) → BunG(P0,P∞).

By definition, Gr�x,≤λ is the preimage of [˜K0\f �G] ⊂ Bun under
←−
h , hence

the preimage of [{�}/K0] ⊂ BunG(P0,P∞). By Lemma 3.1, the open sub-
stack [{�}/K0] of BunG(P0,P∞) is the non-vanishing locus of a section of
a line bundle L. Therefore, Gr�x,≤λ is the non-vanishing locus of a section of
β∗L. In order to show that Gr�x,≤λ is affine, it suffices to show that β∗L is am-
ple on Grx,≤λ relative to the base SpecR. By [13, Corollary 12], the relative
Picard group of Grx over Spec R is isomorphic to Z, hence any line bundle
on Grx with a nonzero section must be relatively ample. In particular, β∗L is
ample on Grx , hence on its closed subscheme Grx,≤λ. This finishes the proof
of the lemma. �

4.4.1 Preservation of the character χ

We first show a general result which works for all G satisfying (2.1). Let ˜ZG

be the preimage of the center of G (which is contained in K0) in ˜K0. The
automorphism group of every object P ∈ BunG(P0, I1,P∞) contains ZG;
similarly, the automorphism group of every object P ∈ Bun contains ˜ZG. In
other words, the classifying stack B(˜ZG) acts on the stack Bun. Moreover, the
whole Hecke correspondence diagram (4.2) is B(˜ZG)-equivariant. For every
character ψ : ˜ZG → Q

×
� , we have the subcategory Db(Bun)ψ ⊂ Db(Bun)

consisting of complexes on which ˜ZG acts through ψ . By the B(˜ZG)-
equivariance of the diagram (the action is trivial on K ∈ Sat), the geometric
Hecke operators T(K,−) necessarily send Db(Bun)ψ to Db(Bun × (P1 −
{0,1,∞}))ψ .

Now back to the situation of Theorem 4.2, where we have ˜ZG = ˜A0.
For any χ ∈ ˜A0(k)∗odd and any K ∈ Sat, the above discussion shows that
T(K, j!Fχ) ∈ Db(Bun × (P1 − {0,1,∞}))χ .

4.4.2 Hecke eigen property with assumption (2.8)

By Proposition 4.7(1), T(K, j!Fχ) is concentrated in perverse degree 1 so
Lemma 3.4 is applicable. Therefore we can write canonically

T(K, j!Fχ) = T(K, j!Fχ)χ ∼= j!Fχ �
(

V ∗
χ ⊗ (u0 × id)∗T(K, j!Fχ)

)
˜A
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Here the first equality follows from the discussion in Sect. 4.4.1. We define

E ′
χ(K) := (

V ∗
χ ⊗ (u0 × id)∗T(K, j!Fχ)

)
˜A (4.20)

which is a Q′
�-complex on P1 − {0,1,∞} concentrated in perverse degree 1.

Recall from Remark 2.8 that the construction of Fχ (or the Γ -module
Vχ ) is not canonical: we are free to twist it by a continuous character ψ of
Gal(k/k). However, we have a canonical isomorphism

(

Vχ(ψ)∗ ⊗ (u0 × id)∗T
(

K, j!Fχ(ψ)
))

˜A ∼= (

V ∗
χ ⊗ (u0 × id)∗T(K, j!Fχ)

)
˜A
.

Therefore E ′
χ(K) is canonical (i.e., independent of the choice involved in

defining Fχ ).
Using the monoidal structure of T(−, j!Fχ) as spelled out in Sect. 4.1, we

get canonical isomorphisms

ϕK1,K2 : E ′
χ(K1) ⊗ E ′

χ(K2)
∼→ E ′

χ(K1 ∗ K2) (4.21)

for any two objects K1, K2 ∈ Sat. These isomorphisms are compatible with
the associativity and commutativity constraints (for the commutativity con-
straint, we use Mirković and Vilonen’s construction of the fusion product for
the Satake category). Once we have the tensor property (4.21), we can use the
argument of [21, Sect. 4.2] to show that each E ′

χ(K) must be a local system on
P1 − {0,1,∞}. Therefore the assignment K �→ E ′

χ(K) gives a tensor functor

E ′
χ : Sat → Loc

(

P1 − {0,1,∞},Q′
�

)

which serves as the eigen local system of the Hecke eigensheaf j!Fχ . This
proves statement (1) of Theorem 4.2. The purity statement (4) of Theorem 4.2
follows from Proposition 4.7(2).

Lemma 4.9 Assume (2.8) holds for k. Then there is a canonical isomorphism
of ̂G(Q′

�)-local systems E ′
χ

∼= E ′
χ .

Proof For a stack S over P1 − {0,1,∞} with structure morphism s : S →
P1 − {0,1,∞}, we denote by Drel : Db(S)opp → Db(S) the relative Verdier
duality functor with respect to the morphism s: Drel(F ) = RHomS(F ,Ds),
where Ds = s!Q� is the relative dualizing complex of s.

We use (−)∨ to denote the duality functor on a rigid tensor category, such
as Sat or the tensor category of local systems over a certain base.

Applying duality to (4.20), we get an isomorphism

E ′
χ(K)∨ = (

V ∗
χ ⊗ (u0 × id)∗T(K, j!Fχ)

)
˜A,∨
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∼= (

Vχ ⊗ Drel(u0 × id)∗T(K, j!Fχ)
)
˜A
. (4.22)

By (4.9), we have

Drel(u0 × id)∗T(K, j!Fχ) ∼= DrelπU
!

(

ωU,∗F ⊗ KGR,Q′
�

)

∼= πU∗
(

ωU,∗F ∨
χ ⊗ DrelKGR,Q′

�

)

∼= πU∗
(

ωU,∗F ∨
χ ⊗ (DK)Q′

�

)

∼= (u0 × id)∗T
(

DK, j!F ∨
χ

)

.

The last equality follows from (4.19). Plugging this into (4.22), we get a
canonical isomorphism

E ′
χ(K)∨ ∼= (

Vχ ⊗ (u0 × id)∗T
(

DK, j!F ∨
χ

))
˜A
. (4.23)

Fix a Γ ′-isomorphism β : V ∗
χ

∼= Vχ(ψ) for some character ψ of Gal(k/k′).
Note that β is unique up to a scalar, and it also induces an isomorphism F ∨

χ
∼=

Fχ(ψ). Using β we may rewrite (4.23) as

E ′
χ(K)∨ ∼→ (

Vχ(ψ)∗ ⊗ (u0 × id)∗T
(

DK, j!Fχ(ψ)
))

˜A ∼= E ′
χ(DK), (4.24)

which is independent of the choice of β because we used β twice. One checks
that (4.24) is compatible with the convolution structure of Sat, hence giving
an isomorphism of tensor functors

E ′
χ

∼→ (

E ′
χ ◦ D

)∨ : Sat → Loc
(

P1 − {0,1,∞},Q′
�

)

. (4.25)

The Verdier duality functor D is a contravariant tensor functor. Composed
with the duality (−)∨ on Sat (as a rigid tensor category), D(−)∨ : Sat → Sat
is a tensor functor which naturally commutes with the fiber functor of taking
cohomology H∗ : Sat → Vec. Therefore, identifying Sat with Rep(̂G), the
functor D(−)∨ is induced from an automorphism τ of ̂G. Since D acts as
identity on objects; the duality (−)∨ on Sat ∼= Rep(̂G) also acts as identity on
objects since−1 ∈ W , we conclude that the tensor functor D(−)∨ also acts as
identity on objects. This means the automorphism τ of ̂G is inner, and hence
there is an isomorphism of tensor functors

D(−)∨ ∼→ idSat : Sat → Sat. (4.26)

Moreover, such a tensor isomorphism δ is unique because the automorphism
group of idSat is ẐG which is trivial.
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Using (4.25), (4.26), and the fact that E ′
χ intertwines the duality on Sat and

Loc(P1 − {0,1,∞}), we get a canonical isomorphism of tensor functors

E ′
χ

∼→ (

E ′
χ ◦ D

)∨ ∼→ E ′
χ ◦ (

D(−)∨
) ∼= E ′

χ . �

4.4.3 Descent of the base field

We now prove statement (2) in Theorem 4.2. We only need to consider the
case

√−1 /∈ k and G is of type A1,D4n+2 or E7. Let k′ = k(
√−1). In the

previous section we constructed a ̂G(Q′
�)-local system Eχ,k′,Q′

�
over P1

k′ −
{0,1,∞}. For a stack X over k, we denote its base change to k′ by Xk′ and
let σ : Xk′ → Xk′ be the k-involution induced from the nontrivial element in
Gal(k′/k).

Let Γ ′ = ˜A(k) � Gal(k/k′), which is a subgroup of Γ of index 2. The
construction in Sect. 2.6.4 only gives a Γ ′-module Vχ since we assumed
(2.8) there. Since ˜A0 contains a copy of μ4, the action of the involution
σ ∈ Gal(k′/k) changes the central character χ to χ . Therefore we have an
isomorphism of Γ ′-modules α : σ ∗Vχ

∼→ Vχ(ψ) for some character ψ of
Gal(k/k′). Note that α is unique up to a scalar, and it induces an isomorphism
σ ∗Fχ

∼= Fχ(ψ). Using α we get an isomorphism

σ ∗(V ∗
χ ⊗ (u0 × id)∗T(K, j!Fχ)

)
˜A

∼→ (

Vχ(ψ)∗ ⊗ (u0 × id)∗T
(

K, j!Fχ(ψ)
))

˜A

∼→ (

V ∗
χ ⊗ (u0 × id)∗T(K, j!Fχ)

)
˜A

which is independent of the choice of α because we used α twice. Using
(4.20), we get a canonical isomorphism

σ ∗E ′
χ,k′(K)

∼→ E ′
χ,k′(K)

which is compatible with the convolution on K ∈ Sat. Therefore we get
an isomorphism of ̂G(Q′

�)-local systems σ ∗E ′
χ,k′

∼→ E ′
χ,k′ . Combining this

with Lemma 4.9, we get a canonical isomorphism of ̂G(Q′
�)-local systems

σ ∗E ′
χ,k′

∼→ E ′
χ,k′ . Canonicity guarantees that this isomorphism is involutive

and hence gives a descent datum for each E ′
χ,k′ from P1

k′ − {0,1,∞} to

P1
k −{0,1,∞}, giving the desired ̂G(Q′

�)-local system E ′
χ over P1

k −{0,1,∞}.
This finishes the proof of Theorem 4.2(2).



Z. Yun

4.4.4 Rationality of the coefficients

Finally we prove the statement (3) in Theorem 4.2. We only need to work
in the case Q′

� 
= Q�. Let τ ∈ Gal(Q′
�/Q�) be the nontrivial element. For any

Q′
�-linear object H such as a vector space or complex of sheaves, we use τ H

to denote Q′
� ⊗Q′

�,τ
H.

First suppose G is of type D4n,E8 or G2, then all χ ∈ ˜A∗
0,odd take values

in ±1. The Γ -module τVχ is again an irreducible ˜A(k)-module with cen-
tral character χ , therefore there exists some character ψ of Gal(k/k) and an
isomorphism α : τVχ

∼= Vχ(ψ), well defined up to a scalar in E×. This α

also induces an isomorphism τ Fχ
∼→ Fχ(ψ). Since K is defined with Q�-

coefficients, we have an isomorphism

τ (
V ∗

χ ⊗ (u0 × id)∗T(K, j!Fχ)
)
˜A ∼→ (

Vχ(ψ)∗ ⊗ (u0 × id)∗T
(

K, j!Fχ(ψ)
))

˜A

(4.27)
which is independent of the choice of α because we used α twice. This gives
a canonical isomorphism

ϕτ (K) : τ E ′
χ(K) ∼= E ′

χ(K).

Canonicity guarantees that ϕτ (K) is compatible with the tensor structure as
K varies and that ϕ2

τ = id. Therefore E ′
χ descends to a ̂G(Q�)-local system

Eχ on P1 − {0,1,∞}.
Now suppose G is of type A1,D4n+2 or E7. The involution τ changes the

central character χ to χ . The same argument as in the previous case shows
that there is a canonical isomorphism between ̂G(Q′

�)-local systems on P1
k′ −

{0,1,∞} (k′ = k(
√−1)) τ E ′

χ,k′
∼→ E ′

χ,k′ . Combined with Lemma 4.9, we

get a canonical isomorphism τ E ′
χ,k′

∼→ E ′
χ,k′ . Canonicity guarantees this is

involutive, so it gives a descent datum of E ′
χ,k′ to a ̂G(Q�)-local system Eχ,k′

on P1
k′ − {0,1,∞}. We then use the same argument of Sect. 4.4.3 to show that

this ̂G(Q�)-local system descends to P1
k − {0,1,∞}. This finishes the proof

of Theorem 4.2.

5 Local and global monodromy

We recall that G is of type A1,D2n,E7,E8 or G2. The goal of this section is
to show that the geometric monodromy of the eigen local system Eχ is Zariski
dense in ̂G when ̂G is of type A1,E7,E8 or G2. From this, we deduce the
existence of motives with �-adic motivic Galois group of type ̂G and solve
the inverse Galois problem for ̂G(F�) when ̂G = G2 or E8.
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For most part of this section, we fix an odd character χ of ˜A0(k), and
denote Eχ simply by E . The results in this section will be insensitive to χ .

To emphasize the dependence on the base field, we use Ek to denote the
local system E over P1

k − {0,1,∞}. The monodromy representation of Ek is
(again we often omit the base point from π1)

ρk : π1
(

P1
k − {0,1,∞}) → ̂G(Q�).

To show that the image of ρk is “big”, we first exhibit nontrivial elements in
the image by studying the local monodromy of ρk around the punctures.

5.1 Remarks on Gaitsgory’s nearby cycles

To study the local monodromy of E , we need a parahoric variant of Gaits-
gory’s nearby cycle construction [16]. In this subsection, k is algebraically
closed.

5.1.1 Hecke operators at ramified points

Let X be a complete smooth connected curve over k and S be a finite set of
closed points on X. Let {Px} be a set of level structures, one for each x ∈ S.
For each x ∈ S, we have a Hecke correspondence

Hkx←−
h x

−→
h x

BunG(Px;x ∈ S) BunG(Px;x ∈ S)

(5.1)

which classifies triples (P, P ′, ι) where P, P ′ ∈ BunG(Px;x ∈ S) and ι :
P|X−S

∼→ P ′|X−S preserving the level structures at S − {x}.
Let FlPx

= LxG/Px be the affine partial flag variety associated to Px .
Analogous to the convolution product in the Satake category, we may de-
fine a monoidal structure on the category Db

Px
(FlPx

) (see [16, Appendix A.4]
for how to make sense of this equivariant derived category). Similar to the
situation in Sect. 4.1.3,

−→
h x is a locally trivial fibration with fibers isomor-

phic to FlPx
, and for K ∈ Db

Px
(FlPx

) one can define a spread-out of K to

KHkx ∈ Db(Hkx). For K ∈ Db
Px

(FlPx
) and F ∈ Db(BunG(Px;x ∈ S)), we de-

fine

Tx(K, F ) := −→
h x,!

(←−
h ∗

x F ⊗ KHkx

)

.

This defines a monoidal action of Db
Px

(FlPx
) on Db(BunG(Px;x ∈ S)).
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We also need the Hecke modifications at two points, one moving point not
in S and the other is x ∈ S. Let Sx = S − {x}, we have a diagram

HkX−Sx

←−
h

−→
h

BunG(Px;x ∈ S) BunG(Px;x ∈ S) × (X − Sx)

The stack HkX−Sx classifies (y, P, P ′, ι) where y ∈ X − Sx, P, P ′ ∈
BunG(Px;x ∈ S) and ι : P|X−S−{y}

∼→ P ′|X−S−{y} preserving the level struc-
tures at S − {x}. In particular, Hkx defined in (5.1) is the fiber of HkX−Sx

over x.

5.1.2 Parahoric version of Gaitsgory’s construction

We recall the setting of [16]. Fixing a base point u0 ∈ BunG(Px;x ∈ S)(k).
Let GRX−Sx = −→

h −1({u0} × (X − Sx)). The family GRX−Sx → X − Sx in-
terpolates Gry × FlPx

(for y /∈ S) and FlPx
at x:

FlPx GRX−Sx GRX−S × FlPx

{x} X − Sx X − S

The nearby cycles functor defines a functor

ΨPx
: Sat × Db(FlPx

) → Db(FlPx
)

sending (K, F ) to the nearby cycles of KGR � F , where KGR ∈ Db(GRX−S)

is the spread-out of K ∈ Sat as in Sect. 4.2.1. Setting F to be the skyscraper
sheaf δPx

at the base point of FlPx
, we get a t-exact functor (by the exactness

of nearby cycles functor)

ZPx
: Sat → Perv(FlPx

)

K �→ ΨPx
(K, δPx

).

When Px = Ix , the FlPx
becomes the affine flag variety Flx , and we recover

Gaitsgory’s original nearby cycles functor

Zx := ZIx : Sat → Perv(Flx)
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In [16, Theorem 1], Gaitsgory proves that Zx(K) is left-Ix-equivariant, con-
volution exact and central: for any F ∈ PervIx (Flx), Zx(K) ∗ F is perverse
and there is a canonical isomorphism Zx(K) ∗ F ∼= F ∗ Zx(K). Here ∗ de-
notes the convolution product on Db

Ix
(Flx).

Now we relate ZPx
to Zx . Define GR′

X−Sx in a similar way as GRX−Sx ,
except that we replace Px by Ix . We have a commutative diagram

Flx

px

GR′
X−Sx

pX−Sx

GRX−S × Flx

id×px

FlPx GRX−Sx GRX−S × FlPx

{x} X − Sx X − S

where all squares are Cartesian and px and pX−Sx are proper. Since
nearby cycles commute with proper base change, we have an Gal(F s

x /Fx)-
equivariant isomorphism

ZPx
(K) = Ψ (K � δPx

) = Ψ (K � px,∗δIx )
∼= px,∗Ψ (K � δIx ) = px,∗Zx(K).

(5.2)
Let CPx

∈ Db
Ix

(Flx) be the constant sheaf supported on Px/Ix , which is per-
verse up to a shift. Therefore we have a canonical isomorphism

p∗
xZPx

(K) = p∗
xpx,∗Zx(K) = Zx(K) ∗ CPx

∼= CPx
∗ Zx(K) (5.3)

The last equality above uses the centrality of Zx(K). Any object of the form
CPx

∗ (−) is equivariant under the left action of Px on Flx because CPx
is,

therefore p∗
xZPx

(K) is also left Px-equivariant, hence descends to an object
in PervPx

(FlPx
).

Let F ∈ Db(BunG(Px;x ∈ S)) be a Hecke eigensheaf with eigen local
system E : Sat → Loc(X − S).

Lemma 5.1 Let x ∈ S and let Ix = Gal(F s
x /Fx) be the inertia group at x

(recall the residue field k is algebraically closed). For each K ∈ Sat, there is
a canonical isomorphism of Ix-modules

Fu0 ⊗ E (K)|SpecFs
x

∼= (

Tx

(

ZPx
(K), F

))

u0

where on the right side Ix acts on the nearby cycles ZPx
(K).

Proof The argument is the same as in [21, Sect. 4.3]. �
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Corollary 5.2 For any K ∈ Sat, E (K) ∈ Loc(X − S) is tamely ramified and
the monodromy at every x ∈ S is unipotent.

Proof Pick a point u0 ∈ BunG(Px;x ∈ S) such that Fu0 
= 0. By Gaitsgory’s
result [16, Proposition 7], Ix acts on Zx(K) tamely and unipotently, hence the
same is true on ZPx

(K) by (5.2), and on E (K)|SpecFs
x

by Lemma 5.1. �

In our case, S = {0,1,∞} and we will consider the moduli stack Bun
instead of BunG(P0, I1,P∞). The category Db(Bun)odd is preserved by the
Hecke operators at 1 or ∞ because the oddness condition only involves the
level structure at 0. Corollary 5.2 shows that E is tame at 1 and ∞.

5.2 Local monodromy

In this subsection we give descriptions of the local geometric monodromy
of ρk around the punctures. We assume k is algebraically closed. Recall that
Ix denotes the inertia group at a closed point x of P1. Let I tame

x be the tame
quotient of Ix .

Proposition 5.3 Under the homomorphism ρk , a topological generator of
I tame

1 gets mapped to a regular unipotent element in ̂G(Q�).

Proof We would like to use the argument of [21, Sect. 4.3]. The only thing
we need to show is that, for each irreducible object ICw̃ ∈ Db

I1
(Fl1) (in-

dexed by an element w̃ in the affine Weyl group ˜W ), where w̃ 
= 1, we have
T1(ICw̃, F ) = 0 for any object F ∈ Db(Bun)odd. Since w̃ 
= 1, there exists a
simple reflection si such that w̃ = w̃′si and �(w̃) = �(w̃′) + 1. Let P1,i be the
parahoric subgroup of L1G generated by I1 and the root subgroup of −αi (αi

is the simple root corresponding to si). Then ICw̃ is the pullback of a shifted
perverse sheaf on FlP1,i

. This implies that T1(ICw̃, F ) ∈ Db(Bun)odd is the
pullback of an odd complex on Bun(˜P0,P1,i ,P∞). We now claim that the cat-
egory Db(Bun(˜P0,P1,i ,P∞))odd is zero, which then implies T1(ICw̃, F ) = 0
and completes the proof.

Let H ∈ Db(BunG(˜P0,P1,i ,P∞))odd be a nonzero object. We view H
as a ˜K0-equivariant complex on BunG(P+

0 ,P1,i ,P∞). Let v : Spec k →
BunG(P+

0 ,P1,i ,P∞) be a point where the stalk of H is nonzero. Let qi :
Bun+ → BunG(P+

0 ,P1,i ,P∞) be the projection, whose fibers are isomor-
phic to P1,i/I1 ∼= P1. Then q−1

i (v) ⊂ U because H has to vanish outside
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U ⊂ Bun+ be Theorem 3.2. We have the following Cartesian diagram

P1 [P1/Aut(v)]
i′v

U Bun+

qi

{v} [{v}/Aut(v)] iv
BunG(P+

0 ,P1,i ,P∞)

Since iv is representable, so is its base change i ′v , which implies that the
action of Aut(v) on P1 is free. On the other hand, the morphism P1 →
[P1/Aut(v)] ↪→ U has to be constant because P1 is proper while U is affine.
Therefore Aut(v) acts on P1 both freely and transitively. This implies P1 is a
torsor under the algebraic group Aut(v), which is not possible. Hence H has
to be zero everywhere. �

5.2.1 An involution in ̂G

By the construction of the canonical double cover in Sect. 2.5.2, we have
X∗(T )/X∗(˜T ) ∼= Z/2Z, where ˜T is the preimage of T in ˜K0. This defines an
order two character

X∗(T ) � X∗(T )/X∗(˜T ) ∼= Z/2Z
∼→ {±1}

and hence an element κ ∈ ̂T [2]. One can check case by case that when G is
of type A1,D2n,E7,E8 or G2, κ is always a split Cartan involution in ̂G (cf.
Proposition 2.2).

Proposition 5.4 The local system Ek is tame at 0. Under the homomorphism
ρk , a topological generator of I tame

0 gets mapped to an element with Jordan
decomposition gsgu ∈ ̂G(Q�), where the semisimple part gs is conjugate to
the split Cartan involution κ ∈ ̂T [2].
Proof Pulling back the double covering ˜P0 → P0 to I0 ⊂ P0, we get a double
covering ˜I0 → I0. The reductive quotient of ˜I0 is ˜T . We will consider the
moduli stack BunG(˜I0, I1,P∞), defined similarly as Bun. As we discussed in
Sect. 3.3.1, we can define the category such as Db(BunG(˜I0, I1,P∞))odd and
Db(L0G/˜I0)odd etc. The inclusion ˜I0 ↪→ ˜P0 gives a projection

p : BunG(˜I0, I1,P∞) → BunG(˜P0, I1,P∞) = Bun.

Let j!F be the Hecke eigensheaf with eigen local system E . The complex
p∗j!F is clearly also a Hecke eigensheaf on BunG(˜I0, I1,P∞) for the Hecke
operators on P1 − {0,1,∞} with the same eigen local system E . Therefore
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it suffices to prove a stronger statement: for any nonzero Hecke eigensheaf
F on BunG(˜I0, I1,P∞) with eigen local system E , the ̂G-local system E is
tamely ramified and the semisimple part of the local monodromy is conjugate
to κ .

We need another variant of Gaitsgory’s nearby cycles construction allow-
ing sheaves which are monodromic with respect to the torus action. This vari-
ant is sketched in [6, Sects. 2.1 and 2.2]. Let us be more specific about the
version we need. There is a family GR′

P1−{1,∞} interpolating Grx × L0G/˜I0

and L0G/˜I0

L0G/˜I0 GR′
P1−{1,∞} GRP1−{0,1,∞} × L0G/˜I0

{0} P1 − {1,∞} P1 − {0,1,∞}

Let δodd ∈ Perv(L0G/˜I0) be the rank one local system supported on I0/˜I0 ∼=
Bμker

2 corresponding to the sign representation of μker
2 . Using the nearby cy-

cles of the above family, we define

Z′
0 : Sat → Perv

˜I0
(L0G/˜I0)odd

K �→ Ψ (KGR � δodd).

Here the subscript “odd” in Perv
˜I0
(L0G/˜I0)odd means taking those objects

on which both actions of μker
2 (from left and right) are through the sign rep-

resentation. Using the same construction as in Sect. 5.1, the derived category
Db

˜I0
(L0G/˜I0)odd still acts on Db(BunG(˜I0, I1,P∞))odd. We denote this action

by

T′
0 : Db

˜I0
(L0G/˜I0)odd × Db

(

BunG(˜I0, I1,P∞)
)

odd

→ Db
(

BunG(˜I0, I1,P∞)
)

odd.

We also have a variant of Lemma 5.1: there is an I0-equivariant isomorphism

Fu0 ⊗Q�
E (K)|SpecFs

0
∼= (

T′
0

(

Z′
0(K), F

))

u0
(5.4)

for any K ∈ Sat. By [3, Sect. 5.2, Claim 2], the monodromy action on Z′
0(K)

factors through the tame quotient (the Claim in loc.cit. requires the family
to live over A1 and carry a Gm-action compatible with the rotation action
on A1. In our situation, we can extend GR′

P1−{1,∞} to GR′
A1 by ignoring the
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level structure at 1, and the rotation action on P1 induces the desired action
on GR′

A1 ). Therefore the local system E (K) is tame at 0 for any K.
Next we compute the semisimple part of the tame monodromy. The fol-

lowing argument is borrowed from [6, Sects. 2.4 and 2.5], to which we re-
fer more details. There is a filtration Fλ on Z′

0(K)indexed by λ ∈ X∗(T )

(partially ordered using the positive coroot lattice) with associated graded
GrFλ Z′

0(K) isomorphic to a direct sum of the Wakimoto sheaf Jλ. More-
over, the monodromy operator m(K) on Z′

0(K) preserves this filtration, and
acts on GrFλ Z′

0(K) by κ(λ) (recall any element in ̂T (Q�) is a homomor-
phism X∗(T ) → Q×

� ). Therefore, we can write m(K) into Jordan normal form
m(K)sm(K)u = m(K)um(K)s . Here both m(K)u and m(K)s preserve the fil-
tration Fλ, m(K)s acts on GrFλ Z′

0(K) by the scalar κ(λ) and m(K)u acts on
GrFλ Z′

0(K) as the identity. On the other hand, let ζ0 ∈ I tame
0 be a topologi-

cal generator, and let ρk(ζ0) = gsgu = gugs be the Jordan decomposition of
ρk(ζ0) in ̂G(Q�). Since the isomorphism (5.4) intertwines the action of ρk(ζ0)

on E (K)|SpecFs
0

and the action of m(K) on Z′
0(K), it must also intertwine the

gs -action and the m(K)s -action by the uniqueness of Jordan decomposition.
Let A be the full subcategory of Perv(˜I0\L0G/˜I0)odd consisting of those

objects admitting filtrations with graded pieces isomorphic to Wakimoto
sheaves. Let GrA be the full subcategory of A consisting of direct sums of
Wakimoto sheaves. Then GrA ∼= Rep(̂T ) as tensor categories, and the functor

Rep(̂G,Q�) ∼= Sat
Z′

0−→ A
⊕GrFλ−−−→ GrA ∼= Rep(̂T ,Q�)

is isomorphic to the restriction functor ReŝG
̂T

: Rep(̂G) → Rep(̂T ) induced

by the inclusion ̂T ↪→ ̂G. The semisimple part of the monodromy operator
{m(K)s}K∈Sat acts as an automorphism of ReŝG

̂T
, hence determines an ele-

ment τ ∈ ̂T (Q�) = Aut⊗(ReŝG
̂T
). The above discussion has identified the ac-

tion of τ on Wakimoto sheaves (which correspond to irreducible algebraic
representations of ̂T under the equivalence GrA ∼= Rep(̂T )), hence τ = κ . To
summarize, {m(K)s}K∈Sat gives a tensor automorphism of the fiber functor

ω : Sat ∼= Rep(̂G)
Res−−→ Rep(̂T ) → VecQ�

which is the same as κ .
On the other hand, gs gives an automorphism of another fiber functor ω′ :

Sat → VecQ�
given by taking the fiber of E at SpecF s

0 . The isomorphism
(5.4) gives an isomorphism of the two fiber functors ω and ω′ under which gs

corresponds to m(K)s , therefore gs is conjugate to τ = κ . �

Proposition 5.5 Suppose G is not of type A1. Under the homomorphism ρk ,
a topological generator of I tame∞ gets mapped to a unipotent element in ̂G(Q�)

which is neither regular nor trivial.
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Proof Let ζ∞ ∈ I tame∞ be a topological generator. By Corollary 5.2, ρk(ζ∞) is
unipotent. Let N = log(ρk(ζ∞)), which is a nilpotent element in ĝ.

We first argue that N 
= 0. Suppose N = 0, then the local system E is un-
ramified on P1 −{0,1} and tame at 0 (by Proposition 5.4) and at 1 (by Corol-
lary 5.2). The tame fundamental group π tame

1 (P1 − {0,1}) is topologically
generated by one element, which is both the generator of I tame

0 and I tame
1 .

Since the local monodromy at 1 is unipotent element while the local mon-
odromy at 0 is not according to Proposition 5.4, this is impossible. Therefore
N 
= 0.

The rest of the proof is devoted to showing that N is not regular. Suppose
it is, then it acts on ĝ with a Jordan block of size 2h − 1: the lowest root
space is sent isomorphically to the highest root space by Ad(N)2h−2 (h is
the Coxeter number of ̂G). Let γ be the coroot of G corresponding to the
highest root of ̂G. Then ICγ ∈ Sat corresponds to the adjoint representation
of ̂G under the Satake equivalence (4.1). In Sect. 5.1 we recalled the parahoric
variant of Gaitsgory’s nearby cycles functor ZP∞ . By Lemma 5.1, we have
an I∞-equivariant isomorphism

Vχ ⊗ E (ICγ )|SpecFs∞
∼= (

T∞
(

ZP∞(ICγ ), j!Fχ

))

u0
, (5.5)

where I∞ acts trivially on Vχ . In particular, the action of N on the left side
is reflected from the logarithm of the monodromy action on ZP∞(ICγ ). By
(5.3), we have an isomorphism which respects the monodromy operators

p∗∞ZP∞(ICγ ) ∼= Z∞(ICγ ) ∗ CP∞ .

Let M be the logarithm of the monodromy operator on Z∞(ICγ ), and M ′
be the induced endomorphism of Z∞(ICγ ) ∗ CP∞ , which intertwines with
the logarithm monodromy on ZPx

(ICγ ), hence with N via (5.5). Since
Ad(N)2h−2 
= 0, we must have M ′2h−2 
= 0 on Z∞(ICγ )∗CP∞ , and M2h−2 
=
0 on Z∞(ICγ ).

The following argument uses the theory of weights. For char(k) > 0, every
object in concern comes via base change from a finite base field Fq , hence
we may assume k = Fq and use the weight theory of Weil sheaves as devel-
oped by Deligne in [9]. For char(k) = 0, every object in concern comes via
base change from a number field L, and we may still talk about weights by
choosing a place v of L at which all objects have good reduction.

The object Z∞(ICγ ) has a Jordan-Holder series whose associated graded
are Tate twists of irreducible objects ICw̃ for w̃ ∈ ˜W . In [18, Theorem 1.1],
Görtz and Haines give an estimate of the weights of the twists of ICw̃ appear-
ing in Z∞(ICγ ): ICw̃ appears with weight in the range [�(w̃) − �(γ ), �(γ ) −
�(w̃)] (note the different normalization we take here and in [18]: we normal-
ize ICw̃ and ICγ to have weight zero while in [18] they have weight �(w̃) and
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�(γ ) respectively). Here �(γ ) is the length of the translation element γ in ˜W ,
and in fact �(γ ) = 〈2ρ,γ 〉 = 2h − 2. Since the logarithmic monodromy op-
erator decreases weight by 2, the subquotients isomorphic to (a twist of) ICw̃

are killed after applying M for �(γ ) − �(w̃) = 2h − 2 − �(w̃) times (if this is
negative, this means ICw̃ does not appear in Z∞(ICγ ) at all). Therefore, only
the skyscraper sheaf δ = ICe survives after applying M for 2h − 2 times, i.e.,
M2h−2 factors as

M2h−2 : Z∞(ICγ ) � δ(1 − h) ↪→ Z∞(ICγ )(2 − 2h)

Here the first arrow is the passage to GrW2h−2Z∞(ICγ ), the maximal weight
quotient, and the second arrow is induced from δ(h − 1) ∼= GrW2−2hZ∞(ICγ )

↪→ Z∞(ICγ ), the inclusion of the lowest weight piece. Consequently, M ′2h−2

factors as

M ′2h−2 : Z∞(ICγ )∗CP∞ → CP∞(1−h) → Z∞(ICγ )∗CP∞(2−2h). (5.6)

Let wK be the longest element of WK < ˜W . Then CP∞ is equal to ICwK
up

to a shift and a Tate twist. Therefore we may replace CP∞ by ICwK
in (5.6),

and get a sequence of maps in the category P := PervI∞(Fl∞).
To proceed, we need Lusztig’s theory of two-sided cells and Bezrukavni-

kov’s geometric result on cells. Lusztig defined a pre-order ≤LR on the affine
Weyl group ˜W by declaring that w1 ≤LR w2 if ICw1 appears as a simple
constituent in the convolution ICw2 ∗ K for some K ∈ P . This pre-order can
be completed into a partial order, which then partitions ˜W into finitely many
equivalence classes called two-sided cells (cells for short). For details see
Lusztig’s paper [25].

Let c be the cell containing wK . Let P≤c (resp. P<c) be the full subcate-
gory of P generated (under extensions) by {ICw̃} where w̃ belongs to some
two-sided cell ≤ c (resp. < c). Let Pc = P≤c/P<c be the Serre quotient. Since
ICwK

∈ P≤c, we have Z∞(K) ∗ ICwK
⊂ P≤c. The element wK ∈ c is a dis-

tinguished (or Duflo) involution (see [26, Sect. 1.3] for definition, which uses
the a-function on two sided-cells [25, Sect. 2.1]). In our case, we may ap-
ply [25, Proposition 2.4] to show a(wK) = �(wK), which forces wK to be
a Duflo involution by definition. In [5, Sect. 4.3], Bezrukavnikov introduces
a full subcategory AwK

⊂ Pc generated by the image of all subquotients of
Z∞(K) ∗ ICwK

in the category Pc, as K runs over Sat. It is proved there that
AwK

has a natural structure of a monoidal abelian category with unit object
the image of ICwK

, such that the functor

ReswK
: Sat → AwK

K �→ [

Z∞(K) ∗ ICwK

]
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is monoidal. Here we use [−] to denote the passage from P≤c to Pc. By
[5, Theorem 1], there is a subgroup ̂H ⊂ ̂G and a unipotent element uwK

∈
̂G(Q�) commuting with ̂H , and an equivalence of tensor categories ΦwK

:
AwK

∼= Rep( ̂H) such that the following diagram is commutative (by a natural
isomorphism)

Sat

Satake�

ReswK

AwK

ΦwK�

Rep(̂G)

ReŝG
̂H

Rep( ̂H)

where ReŝG
̂H

is the restriction functor. Moreover, the monodromy operator
on Z∞(−) induces a natural automorphism of ReswK

, which corresponds to

the natural automorphism of uwK
on ReŝG

̂H
. There is a bijection defined by

Lusztig [27, Theorem 4.8(b)]

{two sided cells of ˜W } ∼→ {unipotent classes in ̂G}

By [5, Theorem 2], the unipotent element uwK
is in the unipotent class

corresponding to c under Lusztig’s bijection. Since G is not of type A1,
�(wK) > 0, hence uwK

is not the regular unipotent class (this is because
a(wK) = �(wK) > 0, while the two-sided cell corresponding to the regu-
lar class has a-value equal to 0). Therefore log(uwK

)2h−2 is zero on ĝ, be-
cause only regular nilpotent elements have a Jordan block of size 2h − 1
under the adjoint representation. Because log(uwK

) intertwines with the
logarithmic monodromy on ReswK

(−), the logarithmic monodromy M ′ on
[Z∞(ICγ ) ∗ ICwK

] = ReswK
(ICγ ) must satisfy M ′2h−2 = 0, as a morphism

in the Serre quotient Pc. Hence M ′2h−2 as a morphism in the category P≤c

factors as

M ′2h−2 : Z∞(ICγ ) ∗ ICwK
� Q ↪→ Z∞(ICγ ) ∗ ICwK

(2 − 2h)

for some Q ∈ P<c. However, we have another factorization (5.6), hence there
must be an arrow q : Q → CP∞(1 − h) through which the inclusion Q ↪→
Z∞(ICγ ) ∗ CP∞(2 − 2h) factors. However, CP∞ is an irreducible object of
P≤c which does not lie in P<c while Q ∈ P<c, such an arrow q must be zero.
This means M ′2h−2 = 0 as a morphism in P≤c and in P , which contradicts
our assumption. This proves that N is not regular and finishes the proof of the
proposition. �
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Remark 5.6 When G is of type A1, P∞ is also an Iwahori subgroup. The
same argument as in Proposition 5.3 shows that the local monodromy at ∞ is
also regular unipotent.

5.3 Global geometric monodromy

In this section, we continue to assume that k is algebraically closed. We study
the Zariski closure of the image of ρk , also known as the geometric mon-
odromy group of the local system E .

Theorem 5.7 Let ̂Gρ be the Zariski closure of the image of ρk . Then the
neutral component of ̂Gρ is a semisimple group, and

̂Gρ

⎧

⎪

⎨

⎪

⎩

= ̂G if ̂G is of type A1,E7,E8 or G2

⊃ SO4n−1 if ̂G = PSO4n, n ≥ 3

⊃ G2 if ̂G = PSO8.

Proof Let ̂H be the neutral component of ̂Gρ . We first show that ̂H is a
semisimple group.

For char(k) > 0, the local system comes via base change from the base
field Fq . Then by Theorem 4.2(4), E (K) is pure of weight zero, hence geo-
metrically semisimple by [4, Corollaire 5.4.6]. Our claim then follows from
[9, Corollaire 1.3.9] (in [9], Deligne remarked that the proof only uses the
fact that the local system is geometrically semisimple).

For char(k) = 0, we may reduce to the case k = C. Consider the de-
scription of E ′(K) = (u0 × id)∗T(K, j∗Fχ) given in the first equality of
(4.19). The complex ω∗j∗F ⊗ KGR,Q′

�
is a semisimple perverse sheaf be-

cause π is a locally trivial fibration with fibers Gr and that both j∗Fχ and
K are semisimple perverse sheaves. Therefore, E ′(K) is the direct image
of a semisimple perverse sheaf of geometric origin along the proper map
GR≤λ → P1 − {0,1,∞}, it is semisimple by the Decomposition Theorem
[4, Théorème 6.2.5]. This implies that ̂H is a reductive group. Now suppose
S0 = ̂Hab is nontrivial. Then π1(P

1 − {0,1,∞}) maps densely into an al-
gebraic group S(Q�) with neutral component S0 being a torus. The group
π1(P

1 − {0,1,∞}) is topologically generated by the loops ζ0, ζ1 and ζ∞
around the punctures. We have already seen from Proposition 5.3 and 5.5
that ρk(ζ1) and ρk(ζ∞) are unipotent, hence have trivial image in S(Q�). By
Proposition 5.4, ρk(ζ0) has semisimple part of order 2, therefore the image of
π1(P

1 − {0,1,∞}) in S(Q�) is generated by an element of order at most 2,
and cannot be Zariski dense. This contradiction implies that S0 is trivial, i.e.,
̂H is semisimple.

By Proposition 5.3, ̂H contains a regular unipotent element. Hence ̂H

is a semisimple subgroup of ̂G containing a principal PGL2. According to
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Dynkin’s classification (see [15, p. 1500]), either ̂H is the principal PGL2, or
̂H = ̂G, or ̂H = SO4n−1 if ̂G = PSO4n, or ̂H = G2 if ̂G = PSO8.

If G is not of type A1, the unipotent monodromy at ∞ cannot lie in the
principal PGL2 because it is neither trivial nor regular by Proposition 5.5.
Hence ̂H cannot be equal to the principal PGL2 in this case. This finishes the
proof. �

5.4 Image of Galois representations

In this subsection, we work with the base field k = Q. For any rational num-
ber x ∈ Q − {0,1}, we get a closed point ix : Spec Q ↪→ P1

Q
− {0,1,∞} and

hence an embedding ix,# : Gal(Q/Q) → π1(P
1
Q

−{0,1,∞}), well-defined up

to conjugacy. Restricting the representation ρQ (attached to the ̂G-local sys-
tem EQ) using ix,#, we get a continuous Galois representation

ρx : Gal(Q/Q) → ̂G(Q�).

A variant of Hilbert irreducibility [39, Theorem 2] shows that for x away from
a thin set of Q, the image of ρx is the same as the image of ρQ, and therefore
Zariski dense if G is of type A1,E7,E8 or G2 by Theorem 5.7. We would
like to give an effective criterion for ρx to have large image.

Proposition 5.8 Let ρ : Gal(Q/Q) → ̂G(Q�) be a continuous �-adic repre-
sentation. For each prime p, let ρp := ρ|Gal(Qp/Qp) be the restriction of ρ to

the decomposition group at p. Suppose

(1) For almost all primes p, ρp is unramified and pure of weight 0;
(2) For some prime p′ 
= �, ρp′ is tamely ramified, and a topological gener-

ator of the tame inertia group at p′ maps to a regular unipotent element
in ̂G(Q�);

(3) The representation ρ� is Hodge-Tate (i.e., for any algebraic representa-
tion V of ̂G, the induced action of Gal(Q�/Q�) on V is Hodge-Tate).

Let ̂Gρ ⊂ ̂G be the Zariski closure of the image of ρ. Then the neutral com-
ponent ̂G◦

ρ is a reductive subgroup of ̂G containing a principal PGL2.

Proof The proof is partially inspired by Scholl’s argument in [34, Proposi-
tion 3].

Let R ⊂ ̂G◦
ρ be the unipotent radical and let ̂H be the connected reductive

quotient ̂G◦
ρ/R. All these groups are over Q�.

Let V be an algebraic representation of ̂G, viewed as a Gal(Q/Q)-module
via ρ. We first claim that for any subquotient V ′ of V as a Gal(Q/Q)-module,
det(V ′) is a finite order character of Gal(Q/Q). In fact, since ρ is Hodge-Tate,
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so is V ′. Hence we can write det(V ′) = χm
� ε for some finite order character

ε of Gal(Q/Q) and some integer m, where χ� is the �-adic cyclotomic char-
acter. By (1), det(V ′) is pure of weight zero at almost all p, hence Frobp acts
on det(V ′) by a number with archimedean norm 1. However, χ�(Frobp) = p,
hence m = 0. This implies det(V ′) is a finite order character of Gal(Q/Q).

By assumption ̂G◦
ρ(Q�) contains a regular unipotent element u, which is

the image of a topological generator of the tame inertia group at p′. Let N =
log(u) ∈ ĝ. Let s be the image of a (lifting of the) Frobenius at p′. Then
Ad(s)N = p′N . Since N is regular nilpotent, the element s is semisimple
and well-defined up to conjugacy. The action of s on ĝ determines a grading

ĝ =
⊕

n∈Z

ĝ(n) (5.7)

such that s acts on ĝ(n) by (p′)n, and N : ĝ(n) → ĝ(n + 1). In fact, taking N

to be the sum of simple root generators, this grading is the same as the grading
by the height of the roots. In particular, ĝ(n) 
= 0 only for 1 − h ≤ n ≤ h − 1,
where h is the Coxeter number of ̂G, and dim ĝ(1 − h) = dim ĝ(h − 1) = 1.
Moreover, the map

N2n : ĝ(−n) → ĝ(n) (5.8)

is an isomorphism for any n ≥ 0.
For any subquotient ̂Gρ -module V of ĝ, we can similarly define a grading

V = ⊕

n V (n) under the action of s. We say V is symmetric under the s-
action if dimV (−n) = dimV (n) for any n.

The action of the unipotent group R on ĝ gives a canonical increasing
filtration of ĝ: F0ĝ = 0, Fi ĝ/Fi−1ĝ = (̂g/Fi−1ĝ)R . Therefore ̂Gρ acts on each
GrFi ĝ via the reductive quotient ̂Gρ/R.

We claim that for each i, the associated graded ̂Gρ -modules GrFi ĝ are sym-
metric under the s-action. In fact, it suffices to show that each Fi ĝ is sym-
metric under the s-action. Since (5.8) is an isomorphism, N2n : Fi ĝ(−n) →
Fi ĝ(n) is injective. Hence dimFi ĝ(−n) ≤ dimFi ĝ(n) for any n ≥ 0. On the
other hand, we argued that det(Fi ĝ) is a finite order character of Gal(Q/Q),
so s can only act on det(Fi ĝ) as identity. This implies that dimFi ĝ(−n) =
dimFi ĝ(n) for all n.

Let N ∈ ̂h = Lie ̂H be the image of N . There is a unique i such that
GrFi ĝ(−h + 1) 
= 0, hence GrFi ĝ(m) 
= 0 by the Claim. The iteration

N
2h−2 : GrFi ĝ(−h + 1) → GrFi ĝ(h − 1)

is necessarily an isomorphism: for otherwise N2h−2̂g(−h + 1) = ĝ(h − 1)

would fall inside Fi−1ĝ, contradiction. Therefore N acts on GrFi ĝ with a Jor-
dan block of size 2h − 1.
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Let ι : ̂H → ̂G◦
ρ be any section (a group homomorphism). Now ι(N) acts

on GrFi ĝ with a Jordan block of length 2h − 1, therefore the action on ĝ has a
Jordan block of size ≥ 2h − 1. However, the only nilpotent class in ĝ with a
Jordan block of size ≥ 2h − 1 under the adjoint representation is the regular
nilpotent class. Hence ι(N) is a regular nilpotent class in ĝ. Since ι( ̂H) is a
reductive group, it contains a principal PGL2 ⊂ ̂G.

Now fix such a principal PGL2 ⊂ ι( ̂H). Consider the adjoint action of
PGL2 on ĝ. The action of the maximal torus of PGL2 induces a similar grad-
ing as in (5.7), with ĝ(0) a Cartan subalgebra of ĝ. The Lie algebra r of R is a
PGL2-submodule of ĝ consisting entirely of nilpotent elements. However, any
nonzero PGL2-submodule of ĝ has a nonzero intersection with ĝ(0), hence
containing nonzero semisimple elements. This forces R to be trivial. There-
fore ̂G◦

ρ = ̂H is a reductive subgroup of ̂G containing a principal PGL2. �

In Proposition 4.5 we have extended the local system EQ to P1
Z[1/2�N] −

{0,1,∞} for some integer N .

Proposition 5.9 Let G be of type A1,E7,E8 or G2.

1. Let (a, b) be nonzero coprime integers such that both a − b and b have
prime divisors not dividing 2�N . Let x = a

b
. Then the image of ρx is Zariski

dense in ̂G(Q�).
2. There are infinitely many rational numbers x ∈ Q−{0,1} such that ρx are

mutually non-isomorphic and all have Zariski dense image in ̂G(Q�).

Proof (1) For each prime p, let Ip ⊂ Gal(Qp/Qp) be the inertia group. Let
Z ⊂ P1

Z[1/2�N] be the closure of the Q-point x, then the projection π : Z →
SpecZ[1/2�N] is an isomorphism. For any prime p � 2�N , the reduction of Z

at p is a point xp ∈ P1
Fp

−{0,1,∞}. Let ρFp
: π1(P

1
Fp

−{0,1,∞}) → ̂G(Q�)

be the monodromy representation of the restriction of integral model E to
P1

Fp
−{0,1,∞}. Then the proof of [11, Proposition A.4] shows the following

fact: ρx(Ip) is contained in the image of ρFp
|Ixp

(Ixp ⊂ Gal(Fp(t)s/Fp(t))

being the inertia of the point xp ∈ P1(Fp)); moreover, if ρFp
|Ixp

is tame and
unipotent, ρx |Ip is also tame and maps to the same unipotent class. Using the
calculation of the local monodromy in Sect. 5.2, we have for any p � 2�N ,

• If p | a − b (hence xp = 1), then ρx(Ip) contains a regular unipotent ele-
ment;

• If p | b (hence xp = ∞) and G is not of type A1, then ρx(Ip) contains a
unipotent element which is neither trivial nor regular.

• If p does not divide ab(a − b), then ρx is unramified at p.

We check that ρx satisfies the assumptions of Proposition 5.8: the unrami-
fiedness of condition (1) is checked above and the purity is proved in The-



Motives with exceptional Galois groups

orem 4.2(4); condition (2) is also checked above since we do have a prime
p | a − b and p � 2�N ; the Hodge-Tate condition (3) follows from the motivic
interpretation (Proposition 4.6) and the theorem of Faltings [12]. Applying
Proposition 5.8 to ρx , we conclude that the Zariski closure ̂Gρx of the image
of ρx is a reductive subgroup of ̂G containing a principal PGL2. Moreover,
if G is not of type A1, it contains another unipotent element which is neither
regular nor trivial. The argument of Theorem 5.7 then shows that the derived
group of ̂Gρx (which is semisimple and contains a principal PGL2) is already
the whole ̂G.

(2) Choose an increasing sequence of prime numbers 2�N < p1 < p2 <

· · · . Define xi = pi+pi+1
pi+1

, i = 1,2, . . . . Then xi satisfies the conditions in (1).
Moreover, by the previous discussion, the places where ρxi

has regular unipo-
tent monodromy are pi together with possibly certain places dividing 2�N .
Therefore these ρxi

are mutually non-isomorphic and all have Zariski dense
image in ̂G(Q�). �

5.5 Conjectural properties of the local system

The base field k is algebraically closed in this subsection. When G is of type
A1, our description of the local monodromy of E at 0,1 and ∞ give complete
information (note that at 0, the monodromy has to be κ because it is regular
semisimple). When G is of type D2n,E7,E8 or G2, our description of the
local monodromy at 0 and ∞ in Propositions 5.4 and 5.5 is not complete.
In this subsection, we give a conjectural complete description of the local
monodromy at 0 and ∞. Assuming this conjectural description, we deduce
that the local system E is cohomologically rigid.

5.5.1 Local monodromy

Lusztig defined a map in [28]

{conjugacy classes in W } → {unipotent classes in ̂G}

In particular, if −1 ∈ W , it gets mapped to a unipotent class v in ̂G, which
has the property that

dimZ
̂G(v) = #ΦG/2.

We tabulate these unipotent classes using the Bala-Carter classification
(see [8])
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Type of G the unipotent class v

D2n Jordan blocks (1,2, . . . ,2,3)

E7 4A1
E8 4A1

G2 ˜A1

Conjecture 5.10 Under ρk , a topological generator of the tame inertia group
I tame∞ gets mapped to a unipotent element in the unipotent class v.

We also make the following conjecture on the local monodromy at 0.

Conjecture 5.11 Under ρk , a topological generator of the tame inertia group
I tame

0 gets mapped to an element conjugate to κ ∈ ̂T [2] in Sect. 5.2.1. In other
words, the unipotent part of the local monodromy at 0 is trivial.

Remark 5.12 Conjecture 5.10 and Conjecture 5.11 would imply that in the
case of G2, our local system is isomorphic to the one constructed by Det-
tweiler and Reiter in [11], because they checked that there is up to isomor-
phism only one such local system with the same local monodromy as theirs.

5.5.2 Rigidity

Assume G is of type E7,E8 or G2. Consider the adjoint local system Ad(E )

associated to the adjoint representation of ̂G. Let j!∗Ad(E ) be the middle
extension of Ad(E ) to P1. Then we have an exact sequence (cf. [21, proof of
Proposition 5.3])

0 → ĝ
I0 ⊕ ĝ

I1 ⊕ ĝ
I∞ → H1

c

(

P1 − {0,1,∞},Ad(E )
)

→ H1(P1, j!∗Ad(E )
) → 0. (5.9)

Conjecture 5.13 The local system E is cohomologically rigid, i.e.,
H1(P1, j!∗Ad(E )) = 0.

We make the following simple observation.

Lemma 5.14 Any two of the three Conjectures 5.10, 5.11 and 5.13 imply the
other.

Proof Since Ad(E ) is tame and has no global sections (by the Zariski den-
sity proved in Theorem 5.7), dim H1

c(P
1 − {0,1,∞},Ad(E )) = −χ(P1 −

{0,1,∞})dim ̂G = dim ̂G by the Grothendieck-Ogg-Shafarevich formula.
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Also note that ĝI1 = rank ̂G because a generator of I tame
1 maps to a regu-

lar unipotent element by Proposition 5.3. Therefore the exact sequence (5.9)
implies

dim ĝ
I0 + dim ĝ

I∞ + dim H1(P1, j!∗Ad(E )
) = dim ̂G − rank ̂G = #ΦG.

Conjectures 5.10 and 5.11 imply Conjecture 5.13 because then ĝI∞ = ĝv

has dimension #ΦG/2 and ĝI0 = ĝκ also has dimension #ΦG/2 because κ is
a split Cartan involution (see Sect. 5.2.1).

Conjectures 5.11 and 5.13 imply Conjecture 5.10 because then dim ĝI0 =
#ΦG − dim ĝv = #ΦG/2 while ĝI0 ⊂ ĝκ (which has dimension #ΦG/2) by
Proposition 5.4. These then force ĝI0 = ĝκ and the unipotent part of the local
monodromy at 0 must be trivial.

Conjectures 5.10 and 5.13 imply Conjecture 5.11 because then dim ĝI∞ =
#ΦG − dim ĝκ = #ΦG/2 and v is the only unipotent class with this property
by checking tables in [8]. �

5.5.3 Global monodromy

Theorem 5.7 does not completely determine the geometric monodromy group
of E in type D2n. When n > 2,the nontrivial pinned automorphism σ of G

permutes the odd central characters ˜A∗
0,odd nontrivially. For those χ which are

fixed by σ , we expect the geometric monodromy of Eχ to be ̂Gσ = SO4n−1

(when n > 2), for the same reason as [21, Sect. 6.1]. How about those χ which
are not fixed by σ ? In the case G is of type D4, is the geometric monodromy
G2 or SO7 or PSO8?

5.6 Application to the inverse Galois problem

In this subsection, we use the local system E to give affirmative answers to
new cases of the inverse Galois problem as stated in Theorem 1.4. We also
hint on the possibility of using rigidity method to give an alternative proof
our results on the inverse Galois problem.

5.6.1 The Betti realization of the local system

The proof of Theorem 1.4 requires a counterpart of the local system E in ana-
lytic topology. To this end, we work with k = C and use the analytic topology
instead of the étale topology. We change �-adic cohomology to singular co-
homology. Theorem 4.2 still holds in this situation. In particular, for each odd
character χ of ˜A0, we get a representation of the topological fundamental
group

ρ
top
χ : π top

1

(

P1
C − {0,1,∞}) → ̂G(Q).
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5.6.2 Proof of Theorem 1.4

Let G be of type E8 or G2. We write ρ
top
χ simply as ρtop.

Let Z′ = Z[i] and Z′
� = Z�[i]. In the motivic interpretation of E qm given

in Proposition 4.4, we may work with Z′-coefficients in the analytic topol-
ogy (resp. Z′

�-coefficients in the étale topology). For sufficiently large prime
�, (R2h∨−2η!Z′

�)odd is a free Z′
�-module of rank d = dimV qm. Also, there

exists an integer N1 such that the direct image in the analytic topology
(R2h∨−2ηan

! Z[ 1
N1

])odd a free Z′[1/N1]-module of rank d . Upon enlarging N1,
̂G(Q)∩ GLd(Z′[ 1

N1
]) is equal to ̂G(Z[ 1

N1
]) coming from the Chevalley group

scheme structure of ̂G. Similarly, for large primes �, GLn(Z
′
�) ∩ ̂G(Q�) =

̂G(Z�). For large primes � � N1, the comparison isomorphism between singu-
lar cohomology and �-adic cohomology gives a commutative diagram

π top(P1
C

− {0,1,∞})
ρtop

GLn(Z
′[ 1

N1
]) ∩ ̂G(Q) = ̂G(Z[ 1

N1
]) mod �

̂G(F�)

π1(P
1
Q

− {0,1,∞})
ρ

Q

GLn(Z
′
�) ∩ ̂G(Q�) = ̂G(Z�)

r�

(5.10)
We claim that the first row in the above diagram is surjective for large �.

Let Π ⊂ ̂G(Q) be the image of ρtop, which is finitely generated because
π

top
1 (P1

C
− {0,1,∞}) is a free group of rank 2. Since ρQ has Zariski dense

image in ̂G(Q�) (by Theorem 5.7) and π
top
1 (P1

C
− {0,1,∞}) is dense in

π1(P
1
Q

− {0,1,∞}), ρtop also has Zariski dense image in ̂G(Q). Therefore

Π ⊂ ̂G(Q) is both finitely generated and Zariski dense. By [32, Theorem in
the Introduction], for sufficiently large prime �, the reduction modulo � of Π

surjects onto ̂G(F�).
Consequently, in the diagram (5.10), the composition r� ◦ ρQ is also

surjective for large �. Finally we apply Hilbert irreducibility theorem (see
[37, Theorem 3.4.1]) to conclude that for any number field L, there exists
x ∈ L − {0,1} such that r� ◦ ρx : Gal(Q/L) → ̂G(Z�) → ̂G(F�) is surjective.
This solves the inverse Galois problem over number fields for the finite simple
group ̂G(F�).

Remark 5.15 When ̂G = Ead
7 , the same argument as above shows that for

sufficiently large �, there exists x ∈ L − {0,1} (L is any given number field)
such that r� ◦ ρx : Gal(Q/L) → Ead

7 (F�) is either surjective or has image
equal to the finite simple group Esc

7 (F�)/μ2.
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5.6.3 Rigid triples

In inverse Galois theory, people use “rigid triples” in a finite group Γ to
construct étale Γ -coverings of P1

Q
− {0,1,∞}, and hence get Γ as a Galois

group over Q using Hilbert irreducibility. For details see Serre’s book [37].
Let C1 be the regular unipotent class in ̂G(F�). Let C∞ be the unipotent

class of v in ̂G(F�) defined in Sect. 5.5.1. Let C0 be the conjugacy class of
the reduction of κ in ̂G(F�).

Conjecture 5.16 Let ̂G be of type E8. Then for sufficiently large prime �,
(C0,C1,C∞) form a strictly rigid triple in ̂G(F�). In other words, the equa-
tion

g0g1g∞ = 1, gi ∈ Ci for i = 0,1,∞
has a unique solution up to conjugacy in ̂G(F�), and any such solution
{g0, g1, g∞} generate ̂G(F�).

Note added in proof : Guralnick and Malle [20] recently proved this conjec-
ture for primes � ≥ 7. The G2-analog of the conjecture was proved much ear-
lier by Thompson [40] for � = 5 and by Feit and Fong [14] for � > 5. There-
fore, according to these works, we know that G2(F�) (� ≥ 5) and E8(F�)

(� ≥ 7) are Galois groups over Q.
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