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1. Introduction

In this report, we give a survey on some new construction of local systems on open curves. The
construction uses the idea of rigid automorphic representations which we will try to axiomatize
here. We also give applications of these constructions to more classical problems in algebraic
geometry and number theory. The main references are [17] and [36]. More details on rigid
automorphic representations will appear in the article [38].

1.1. The goal. Let us fix an algebraic curve X over an algebraically closed field k. Let S ⊂ X
be a finite set of closed points. Let ` be a prime different from char(k). A local system F (with
Q`-coefficients, in the étale topology) over U := X − S is physically rigid if it is determined
up to isomorphism by its local monodromy around points x ∈ S. A local system F over U is
cohomologically rigid if H1(X, j∗End◦(F)) = 0, where End◦(F) is the local system of trace-free
endomorphisms of F , and j∗ means the sheaf (not derived) push-forward along j : X − S → X.
These notions were defined and studied in depth by N. Katz in [20]. The main result of [20] is
an algorithmic description of tame local systems.

We shall be interested in local systems in a broader sense. Let H be a connected reductive
algebraic group over Q`. An H-local system on U is a continuous homomorphism ρ : π1(U) →
H(Q`), where π1(U) is the étale fundamental group of U . This specializes to the notion of rank n
local systems when H = GLn. Both notions of rigidity can easily be extended to H-local systems.

We would like to construct many examples of rigid H-local systems, especially when H is of
exceptional types. The key observation is the following: using the Langlands correspondence for
function fields, it is easier to construct the automorphic counterpart of these rigid local systems
than constructing the local systems themselves.
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1.2. The method. Suppose for the moment that the complete algebraic curve X is defined over
a finite field k. Let G be a split reductive group k. Langlands philosophy predicts that there
should be a finite-to-one correspondence from automorphic representations π of G(AF ) (where

AF is the ring of adèles of F ) to Ĝ-local system ρπ over an open subset of X. Here Ĝ is a
group over Q` whose root system is dual to that of G. When G = GLn, this correspondence is
proved by L.Lafforgue [21], and it is in fact one-to-one when restricted to cuspidal automorphic
representations. For general connected reductive G, the assignment π 7→ ρπ has recently be
established by V.Lafforgue [22]. However, the construction of ρπ is not easy to carry out explicitly
in concrete examples.

We shall propose a notion of a rigid automorphic datum with respect to a given finite set of
closed points S ⊂ X. Here is the simplest version of it. For each x ∈ S one imposes a condition on
the local component πx of an automorphic representation π. This set of local conditions is called
a rigid automorphic datum if there is up to isomorphism only one automorphic representation π
which is unramified outside S and satisfies the given local conditions at each x ∈ S. In practice, it
is easy to write down a Hecke eigenform in π as a function f on the double coset G(F )\G(AF )/K
(for a suitable compact open subgroup K ⊂ G(AF )).

Once we have the Hecke eigenform f in π, via the Satake isomorphism, the Hecke eigenvalues of
f at a place x /∈ S determine the image of the Frobenius element Frobx under ρπ. Although this
much information sometimes determines the isomorphism type of ρπ, we still do not have the local
system ρπ as a concrete geometric object. To get ρπ geometrically, we appeal to the geometric
Langlands correspondence, which is a sheaf-theoretic upgrading of the Langlands correspondence
for function fields. As suggested by an observation of Weil, one should think of BunG, the moduli
space of G-bundles over X (with suitable level structure), as a geometric incarnation of the
double coset G(F )\G(AF )/K. In the setting of geometric Langlands, one should try to upgrade
the Hecke eigenform f to a sheaf (or complexes of sheaves) F on BunG. The precise meaning
of “upgrade” is encoded in the “sheaf-to-function” correspondence of Grothendieck. Once the

Hecke eigensheaf F is constructed, we can construct the corresponding Ĝ-local system ρπ in a
completely explicit manner, via geometric Hecke operators. Of course in general it is not an easy
task to construct Hecke eigensheaves F . However, when π satisfies a rigid automorphic datum,
there is essentially only one choice for F , which forces it to be a Hecke eigensheaf.

To summarize, we start from a rigid automorphic datum for G(AF ), find the unique automor-
phic representation π satisfying this rigid automorphic datum and a Hecke eigenform f in it, then
we use geometric Langlands to upgrade f into a sheaf F , and finally we apply geometric Hecke

operators to F to get a Ĝ-local system ρπ.

1.3. Applications. We shall give three applications of the rigid objects in the Langlands corre-
spondence.

1.3.1. Local systems with exceptional monodromy groups. Katz [19] has constructed an example
of a local system over P1

Fp
−{0,∞} whose geometric monodromy lies in the exceptional group G2

and is Zariski dense there. This G2-local system comes from a rank 7 rigid local system which
is an example of Katz’s hypergeometric sheaves. For other exceptional groups, there weren’t
explicitly constructed examples of local systems with Zariski dense monodromy in them.

In joint work with Heinloth and Ngô [17], for any reductive group Ĝ over Q`, we constructed a

Ĝ-local system Kl
Ĝ

over P1
Fp
−{0,∞}. The geometric monodromy of these local systems is quite

large. For example, when Ĝ is of type E7, E8, F4 or G2, the monodromy is Zariski dense in Ĝ.

When Ĝ = GLn or Spn, Kl
Ĝ

is the same as the Kloosterman sheaf constructed by Deligne [5];
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when Ĝ = G2, Kl
Ĝ

is the same as the G2 example of Katz. These generalized Kloosterman sheaves
Kl

Ĝ
give first examples of motivic local systems with Zariski dense monodromy in exceptional

groups other than G2. The associated Frobenius traces give new exponential sums generalizing
the Kloosterman sums, and they are equidistributed according to the Sato-Tate measure for
compact Lie groups of type E7, E8, F4 or G2.

Our construction in [17] was inspired by a result of B.Gross [13] and the work of Frenkel and
Gross [10] on rigid irregular connections. Gross showed in [13] that there exists a unique automor-
phic representation of G over the rational function field F = k(t) whose local component at 0 is a
Steinberg representation and at∞ is a simple supercuspidal representation. He then conjectured
that when G = GLn, the Satake parameters of this automorphic representation should give the
classical Kloosterman sums. Our work [17] confirmed this conjecture and generalized it to other
reductive groups.

1.3.2. Motives over number fields with exceptional motivic Galois groups. In early 1990s, Serre
asked the following question [32]: Is there a motive over a number field whose motivic Galois
group is of exceptional type such as G2 or E8?

A motive M over a number field K is, roughly speaking, part of the cohomology Hi(X) for
some (smooth projective) algebraic variety X over K and some integer i, which is cut out by
geometric operations (such as group actions). For each prime `, the motive M has the associated
`-adic cohomology H`(M) ⊂ Hi(XK ,Q`), which admits a Galois action:

ρM,` : Gal(K/K)→ GL(H`(M))

The `-adic motivic Galois group GM,` of M is the Zariski closure of the image of ρM,`. This is

an algebraic group over Q`. Since the motivic Galois groups that appear in the original question
of Serre are only well-defined assuming the standard conjectures in algebraic geometry, we shall
use the `-adic motivic Galois group as a working substitute for the actual motivic Galois group
(conjecturally they should be isomorphic to each other). Classical groups appear as motivic
Galois groups of abelian varieties. This is why Serre raised the question for exceptional groups
only. Until recently, the only known case of Serre’s question was G2, by the work of Dettweiler
and Reiter [8].

In [36], we construct motivic local systems on P1
Q − {0, 1,∞} with Zariski dense monodromy

in exceptional groups E7, E8 and G2 in a uniform way. As a consequence of this construction,
we give an affirmative answer to the `-adic version of Serre’s question for E7, E8 and G2: these
groups can be realized as the `-adic motivic Galois groups for motives over number fields (in fact
the number field is either Q in the case of E8 and G2, or Q(i) in the case of E7). With a bit more
work, one can also realize F4 as a motivic Galois group over Q.

We remark that naive attempts to finding motives with motivic Galois group of type E8 can be
quite painful, if not hopeless. Usually people look for motives from Shimura varieties or abelian
varieties. However, it is known that abelian varieties do not have exceptional motivic Galois
groups; nor is there a Shimura variety of type E8. To find an E8-motive, at the very least, one
needs to find an algebraic variety over a number field K whose cohomology in some degree has
dimension at least 248 (because the smallest nontrivial representation of E8 has dimension 248,
the adjoint representation). Our construction gives a 248-dimensional Galois representation in a
natural way from the geometry of the algebraic group E8 itself.

1.3.3. Inverse Galois Problem. The inverse Galois problem over Q asks whether every finite group
can be realized as the Galois group of some Galois extension K/Q. The problem is still open
for many finite simple groups, especially those of Lie type. The same rigid local systems over
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P1
Q − {0, 1,∞} constructed to answer Serre’s question can be used to solve new cases of the

inverse Galois problem. We show in [36] that for sufficiently large primes `, the finite simple
groups G2(F`) and E8(F`) can be realized as Galois groups over Q. With a bit more work, one
can show that F4(F`) is also a Galois group over Q.

In inverse Galois theory, people use the “rigidity method” to prove certain finite groups H are
Galois groups over Q. In particular, the case of G2(F`) for all primes ` ≥ 5 was known by the
work of Thompson [35] and Feit and Fong [9]. However, the case of E8(F`) was known only for
primes ` satisfying a certain congruence condition modulo 31 (see the book of Malle and Matzat
[27, II.10] for a summary of what was known before). Therefore our result for E8(F`) for all `
sufficiently large is new.

The input data of the rigid method in inverse Galois theory is a triple of conjugacy classes
in the target group H. The notion of rigidity of such a triple is quite similar to the notion of
physically rigidity for local systems over P1

C−{0, 1,∞}. However, connection between the rigidity
method and automorphic representations has not been explored before. Our result shows that
this connection can be useful in solving the inverse Galois problem, and it even sheds some light
to the rigidity method itself. In fact, our construction of the local system over P1 − {0, 1,∞}
suggests a triple in E8(F`) which should be a rigid triple (see [36, Conjecture 5.16]). This has
been confirmed by Guralnick and Malle [16], and using this triple they are able to show that
E8(F`) is a Galois group over Q for all primes ` > 7.

1.4. Acknowledgment. The author would like to thank the organizers of the International
Congress of Chinese Mathematicians for inviting him to speak at the conference.

2. Rigidity for automorphic representations

In this section we recall some basic concepts for automorphic representations over a function
field. We will define the notion of a geometric automorphic datum (a collection of local conditions
for automorphic representations to satisfy), and define what it means for such a datum to be
rigid.

2.1. The setting.

2.1.1. Function field. Let k be a finite field. Let X be a projective, smooth and geometrically
connected curve X over k. Let F = k(X) be the field of rational functions on X.

Let |X| be the set of closed points of X (places of F ). For each x ∈ |X|, let Fx denote the
completion of F at the place x. The valuation ring and residue field of Fx are denoted by Ox
and kx. The maximal ideal of Ox is denoted by mx. The ring of adèles is the restricted product

AF :=
∏
x∈|X|

′
Fx

where for almost all x, the x-component of an element a ∈ AF lies in Ox. There is a natural
topology on AF making it a locally compact topological ring.

2.1.2. Groups. Although most of the results in this report are valid for connected quasisplit
reductive groups over F , but for the simplicity of the presentation, we restrict ourselves to the
following situation: G is a connected, split, simply-connected and almost simple group
over k. We will fix a pinning of G, namely a split maximal torus T , a Borel subgroup B ⊃ T and
generators of simple roots spaces. It makes sense to talk about G(R) whenever R is a k-algebra.
For example, G(F ), G(Ox) and G(Fx), etc.
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Later we shall also need to view G(Fx) and G(Ox) as infinite-dimensional groups over k. More
precisely, for a kx-algebra R we let LxG(R) = G(R⊗̂kxFx) and let L+

xG(R) = G(R⊗̂kxOx). Here
R⊗̂kxFx or R⊗̂kxOx means the completion of the tensor product with respect to the mx-adic
topology on Fx or Ox. The functor LxG (resp. L+

xG) is representable by a group indscheme
(resp. group scheme of infinite type) over kx. There is a reduction map L+

xG→ G⊗k kx.
We will also need the notion of parahoric subgroups of G(Fx). Bruhat and Tits [4] constructed

certain smooth models P of G over Ox whose special fibers are connected. By a parahoric
subgroup P of LxG we shall mean the group scheme over kx whose R-point is P(R⊗̂kxOx) where
P is a Bruhat-Tits group scheme over Ox. The kx-points P(kx) of P is a parahoric subgroup of
G(Fx) in the usual sense. Viewed as a proalgebraic group, the parahoric P ⊂ LxG has a maximal
reductive quotient LP which is a connected reductive group over kx. For example, the preimage
Ix of B ⊗k kx under the reduction map L+

xG→ G⊗k kx is called the standard Iwahori subgroup
of LxG (with respect to B), and any parahoric subgroup of LxG contains a conjugate of Ix.

Finally, the Langlands dual group Ĝ to G is a reductive group over Q`, equipped with a pinning

(T̂ , B̂, · · · ) such that the corresponding based root system (X∗(T̂ ),Φ(Ĝ, T̂ ),∆
B̂

) of Ĝ is the same
as the based coroot system (X∗(T ),Φ∨(G,T ),∆∨B) of G with respect to T and B.

2.1.3. Automorphic representations. The group G(AF ) of AF -points of G can also be expressed
as the restricted product

G(AF ) =
∏
x∈|X|

′
G(Fx)

where most components lie in G(Ox). This is a locally compact topological group. With this
topology on G(AF ) we may talk about locally constant functions on G(AF ). Denote the space of
locally constant Q`-valued functions on G(AF ) by C∞(G(AF ),Q`). Define C∞(G(F )\G(AF ),Q`)
as the subspace of C∞(G(AF ),Q`) consisting of left-G(F )-invariant functions.

2.1.4. Definition (See [3, Definition 5.8]). (1) A function f ∈ C∞(G(F )\G(AF ),Q`) is called
an automorphic form if for some (equivalently any) x ∈ |X|, the G(Fx)-module spanned
by right G(Fx)-translations on f is admissible. Denote the space of automorphic forms
by AG. This is a G(AF )-module under right translation.

(2) An irreducible representation π of G(AF ) is an automorphic representation if it is a
subquotient of AG.

2.1.5. Cusp forms. A function f ∈ C∞(G(F )\G(AF ),Q`) is a cusp form if for every parabolic
subgroup P ⊂ G defined over F with unipotent radical NP , we have∫

NP (F )\NP (AF )
f(ng)dn = 0

for all g ∈ G(AF ). All cusp forms have compact support in G(F )\G(AF ). The space of cusp
forms is a sub-G(AF )-module Acusp

G of all automorphic forms AG. It is known that Acusp
G de-

composes discretely into a direct sum of irreducible G(AF )-modules, called cuspidal automorphic
representations.

2.2. Weil’s interpretation. We temporarily allow G to be a reductive group over k. When G =
GLn, Weil has given a geometric interpretation of the double coset G(F )\G(AF )/

∏
x∈|X|G(Ox)

in terms of vector bundles over X. We recall his interpretation for general reductive G.
A (right) G-torsor over X is a scheme Y → X together with a fiberwise action of G that looks

like G ×X (with G acting on itself by right translation) étale locally over X. An isomorphism
between G-torsors Y and Y ′ is a G-equivariant isomorphism Y ∼= Y ′ over X.
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Let BunG(k) be the groupoid of G-torsors over X: this is a category whose objects are G-
torsors over X and morphisms are isomorphisms between G-torsors. The groupoid BunG(k) is
in fact the groupoid of k-points of an algebraic stack BunG. For a k-algebra R the groupoid
BunG(R) is the groupoid of G-torsors over X ⊗k R.

2.2.1. Example. When G = GLn, there is a natural way to assign a vector bundle V of rank

n over X to a GLn-torsor E and vice versa: V = E
GLn

× Ank and E = IsomX(OnX ,V). Therefore
BunGLn is isomorphic to the algebraic stack Bunn classifying rank n vector bundles over X. In
particular, for n = 1, BunGL1

∼= Bun1
∼= Pic(X).

Similarly, BunSLn classifies pairs (V, ι) where V is a vector bundle of rank n over X and

ι : ∧nV ∼→ OX is a trivialization of the determinant of V.
When G = PGLn, BunPGLn is equivalent to the quotient stack Bunn/Pic(X) with Pic(X)

acting on Bunn via tensor product. More concretely, the objects in BunPGLn(k) are the same
as the objects in Bunn(k), and the morphism set between two vector bundles V and V ′ in the
groupoid BunPGLn(k) is the set of isomorphism classes of line bundles L onX such that V⊗L ∼= V ′.
Here we have used the fact that the Brauer group of X is trivial, so that all PGLn-torsors over
X lift to GLn-torsors.

Weil observed that there is a natural bijection

(2.1) e : G(F )\G(AF )/
∏
x∈|X|

G(Ox)
∼→ BunG(k).

This is not just a bijection of sets, but in fact an isomorphism of groupoids. In other words, for
any double coset [g] = G(F )g

∏
x∈|X|G(Ox), the automorphism group of e([g]) (as a G-torsor) is

isomorphic to the stabilizer of the coset g
∏
x∈|X|G(Ox) under G(F ).

We give the definition of the map e on the level of sets. For any finite S ⊂ |X|, the double
coset G(OX−S)\

∏
x∈S G(Fx)/G(Ox) is the subset of G(F )\G(AF )/

∏
x∈|X|G(Ox) consisting of

the those classes represented by g = (gx) ∈ G(AF ) with gx ∈ G(Ox), ∀x /∈ S. Clearly,

G(F )\G(AF )/
∏
x∈|X|

G(Ox) =
⋃

S⊂|X|,finite

G(OX−S)\
∏
x∈S

G(Fx)/G(Ox).

Thus it suffices to construct a compatible system of maps

eS : G(OX−S)\
∏
x∈S

G(Fx)/G(Ox)→ BunG(k).

For g = (gx) ∈
∏
x∈S G(Fx), we take the trivial G-torsor Etriv

X−S = (X − S) ×k G over X − S
and glue it with the trivial G-torsor Etriv

x = SpecOx × G over SpecOx for each x ∈ S along

SpecFx. The gluing means to give an isomorphism Etriv
x |SpecFx

∼→ Etriv
X−S |SpecFx , which is given by

gx. Changing the trivializations of Etriv
X−S and Etriv

x amounts to right multiply gx by an element in
G(Ox) and left multiply gx by an element in G(OX−S). The isomorphism type of the resulting
G-torsor Eg after gluing only depends on the double coset G(OX−S)g

∏
x∈S G(Ox), and we define

eS(g) to be Eg.

2.2.2. Level structures. One can generalize BunG to G-torsors with level structures. Fix a finite
set S ⊂ |X|, and for each x ∈ S let Kx ⊂ LxG be a proalgebraic subgroup commensurable
with L+

xG. Then we may talk about G-torsors over X with KS-level structures: these are G-
torsors E over X together with trivializations ιx : E|SpecOx

∼= G|SpecOx (for each x ∈ S) up to
left multiplication by Kx (via the intuitive action if Kx ⊂ L+

xG, but it requires some thought
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to define the action in general). We shall denote the corresponding moduli stack by BunG(KS).
Then the isomorphism (2.1) generalizes to an isomorphism of groupoids

(2.2) G(F )\G(AF )/
∏
x/∈S

G(Ox)×
∏
x∈S

Kx(kx)
∼→ BunG(KS)(k).

2.3. Sheaf-to-function correspondence.

2.3.1. The dictionary. Let X be a scheme of finite type over a finite field k and let F be a
constructible complex of Q`-sheaves for the étale topology of X. For each closed point x ∈ X,
the geometric Frobenius element Frobx at x acts on the geometric stalk Fx, which is a complex
of Q`-vector spaces. We consider the function

fF ,k : X(k) → Q`

x 7→
∑
i∈Z

(−1)iTr(Frobx,H
iFx)

Similarly we can define a function fF ,k′ : X(k′) → Q` for any finite extension k′ of k. The
correspondence

F 7→ {fF ,k′}k′/k
is called the sheaf-to-function correspondence. This construction enjoys various functorial prop-
erties. For a morphism φ : X → Y over k, the derived push forward f! transforms into integration
of functions along the fibers (this is a consequence of the Lefschetz trace formula for the Frobenius
endomorphism); the derived pullback f∗ transforms into pullback of functions. It also transforms
tensor product of sheaves into pointwise multiplication of functions.

2.3.2. Definition. Let L be a connected algebraic group over k with the multiplication map
m : L × L → L and the identity point e : Speck → L. A rank one character sheaf K on L is a
local system of rank one on L equipped with two isomorphisms

µ : m∗K ∼→ K �K,
u : Q`

∼→ e∗K.
These isomorphisms should be compatible in the sense that

µ|L×{e} = idK ⊗ u : K = Q` ⊗Q`
K ∼→ e∗K ⊗K,

µ|{e}×L = u⊗ idK : K = K ⊗Q`
Q`

∼→ K⊗ e∗K.

Since L is connected, the isomorphism µ in Definition 2.3.2 automatically satisfies the usual
cocycle relation on L3. A local system K of rank one on L being a character sheaf is a property
rather than extra structure on K. Let CS1(L) be the category (groupoid) of rank one character
sheaves (K, µ, u) on L, then it carries a symmetric monoidal structure given by the tensor product
of character sheaves with the unit object given by the constant sheaf. Let CS1(L) be set of
isomorphism classes of objects in CS1(L), then it is an abelian group. The groupoid CS1(L) has
trivial automorphisms, and hence is equivalent to the set CS1(L). We can similarly define the
notion of rank one character sheaves over k and form the category CS1(L/k) and the abelian
group CS1(L/k). The base change map CS1(L)→ CS1(L/k) is injective, and the image consists
of Gal(k/k)-invariants.

2.3.3. Remark. One can make a similar definition of rank one character sheaves when L is not
necessarily connected, then the cocycle condition has to be imposed on µ as an extra requirement
and µ itself is an extra datum. For example, if L is a discrete group scheme over k and we fix an
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isomorphism K ∼= Q` (as local systems) extending u, then µ (which satisfies the cocycle relation)

gives a cocycle ξ ∈ Z2(L,Q×` ) satisfying ξ1,γ = ξγ,1 = 1 for all γ ∈ L.

For the rest of this subsection we assume k is finite. For each K ∈ CS1(L), the sheaf-to-function

correspondence gives a function fK : L(k)→ Q×` which is in fact a group homomorphism because
of the isomorphism µ. This way we obtain a homomorphism

(2.3) fL : CS1(L)→ Hom(L(k),Q×` ).

One can show that fL is always injective. The following result gives descriptions of CS1(L) in
various special cases.

2.3.4. Theorem. (1) Let L be a connected commutative algebraic group over k. Then fL is
an isomorphism of abelian groups

fL : CS1(L)
∼→ Hom(L(k),Q×` ).

(2) Let L be a connected reductive group over k and Lsc → L be the simply-connected cover
of its derived group. Then fL induces an isomorphism of abelian groups

CS1(L)
∼→ Hom(L(k)/Lsc(k),Q×` ).

Let T be a maximal torus in L and T sc ⊂ Lsc be its preimage in Lsc. Then we also have

CS1(L)
∼→ Hom(T (k)/T sc(k),Q×` ).

The construction of an inverse to fL uses the Lang torsor L→ L sending g 7→ FL(g)g−1, where
FL is the Frobenius endomorphism of L (relative to k).

2.3.5. Example. When L = T is a split torus over k = Fq, any object in CS1(L/k) is obtained

as a direct summand of [n]!Q` where [n] : T → T is the n-th power morphism and n is prime to

char(k). An object K ∈ CS1(L/k) belongs to CS1(L) if and only if K⊗(q−1) ∼= Q`, or equivalently
it is a direct summand of [q − 1]!Q`. Objects in CS1(L) are also called Kummer sheaves.

2.3.6. Example. When L = Ga is the additive group over k = Fq, let ψ : k → Q×` be an additive
character. Let λGa : Ga → Ga be the Ga(k)-torsor given by a 7→ aq − a. Objects in CS1(L) are
of the form ASψ := (λGa,!Q`)ψ, the direct summand of λGa,!Q` on which Ga(k) acts through ψ.
Such local systems are called Artin-Schreier sheaves. Now fix a nontrivial additive character ψ
of k. Let L = V be a vector space over k viewed as an additive group. Then objects in CS1(V )
are of the form ASφ := φ∗ASψ for a unique φ ∈ V ∗ viewed as a homomorphism φ : V → Ga.

2.3.7. Remark. (1) Definition 2.3.2 makes sense for any base field k. In this generality we have

an alternative way to describe rank one character sheaves. Let 1→ C → L̃
v−→ L→ 1 be a central

extension of algebraic groups with L̃ connected and C a discrete finite group scheme over k.For

any character χC : C → Q×` , the corresponding direct summand (v!Q`)χC ∈ CS1(L). Conversely,
all objects in CS1(L) arise this way.

(2) One can define the category CS1(L) for L proalgebraic and connected. In fact, write L
as the inverse limit of finite-dimensional quotients Li, and define CS1(L) as the direct 2-limit of
CS1(Li).
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2.4. Geometric automorphic data. We resume with the setting in §2.1. Let S ⊂ |X| be finite.

2.4.1. Definition. A pair (KS ,KS) is a geometric automorphic datum with respect to S if

(1) KS is a collection {Kx}x∈S , where Kx ⊂ LxG is a connected proalgebraic subgroup which
is commensurable with L+

xG (i.e., Kx∩L+
xG has finite codimension in both Kx and L+

xG).
(2) KS is a collection {Kx}x∈S where Kx ∈ CS1(Kx).

Recall from Remark 2.3.7(2) that Kx ∈ CS1(Kx) means that Kx is the pullback of a rank one
character sheaf from a finite-dimensional quotient Kx � Lx.

2.4.2. Remark. (1) Since k is a finite field, the character sheaf Kx is uniquely determined by

the associated character χx : Kx(kx)→ Q×` via the sheaf-to-function correspondence (see (2.3)).
Therefore we also call the pair (KS , χS) a geometric automorphic datum, provided χx does arise
from an object in CS1(Kx) for all x ∈ S.

(2) Definition 2.4.1 makes sense over any base field k, and we shall work in such generality in
§4.

2.4.3. Definition. Let (KS , χS) be a geometric automorphic datum. An automorphic represen-
tation π of G(AF ) is called (KS , χS)-typical if

(1) For every x ∈ S, the local component πx of π has a nonzero vector on which Kx(kx) acts
via the character χx.

(2) For every x /∈ S, πx is spherical; i.e., π
G(Ox)
x 6= 0.

Consider the space of functions

(2.4) CG(KS , χS) := C(G(F )\G(AF )/
∏
x/∈S

G(Ox)×
∏
x∈S

(Kx(kx), χx),Q`).

which are invariant under
∏
x/∈S G(Ox) and are eigenvectors under the action of Kx(kx) with

eigenvalue χx, for all x ∈ S.

2.4.4. Lemma. Let (KS , χS) be a geometric automorphic datum. Then

(1) A necessary condition for (KS , χS)-typical automorphic representations to exist is that
CG(KS , χS) 6= 0.

(2) If there is a compact subset Σ ⊂ G(F )\G(AF ) such that all functions in CG(KS , χS) van-
ish outside Σ, then any (KS , χS)-typical automorphic representation is cuspidal. In this

case, CG(KS , χS) is the direct sum of (⊗x/∈Sπ
G(Ox)
x )⊗ (⊗x∈Sπ(Kx(kx),χx)

x ) over (KS , χS)-
typical automorphic representations π.

2.4.5. Base change of geometric automorphic data. Let k′/k be a finite extension. Let S′ be the
preimage of S in X ⊗k k′ (S′ may have more elements than S). Given a geometric automorphic
datum (KS , χS), we may define a corresponding geometric automorphic datum (KS′ , χS′) for G
and the function field F ′ = F ⊗k k′. For each y ∈ S′ with image x ∈ S, let Ky = Kx ⊗kx ky.
Suppose χx corresponds to the character sheaf Kx on Kx, χy is then the character of Ky(ky)
corresponding to the pullback of Kx along Ky → Kx.

2.4.6. Definition. Let Z be the center of G (note by our assumption Z is finite over k). A central

character ω : Z(F )\Z(AF )→ Q×` is said to be compatible with the geometric automorphic datum
(KS , χS), if ω is unramified away rom S, and ωx|Z(Fx)∩Kx(kx) = χx|Z(Fx)∩Kx(kx) for each x ∈ S.

Clearly, the central character ω of a (KS , χS)-typical automorphic representation is compatible
with (KS , χS).
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2.4.7. Definition. Let (KS , χS) be a geometric automorphic datum.

(1) It is called strongly rigid, if for every finite extension k′/k, there are at most one (KS′ , χS′)-
typical automorphic representation of G(AF ′) (where F ′ = F ⊗k k′) with any given
central character, and if for some finite extension k′/k, a (KS′ , χS′)-typical automorphic
representation exists.

(2) It is called weakly rigid, if there is a constant N such that for every finite extension k′/k,
there are at most N (KS′ , χS′)-typical automorphic representations of G(AF ′).

2.5. Automorphic sheaves. Suggested by Weil’s interpretation in §2.2 and the sheaf-to-function
correspondence §2.3, we shall seek to upgrade the function space (2.4) into a category of sheaves
on the moduli stack of G-torsors over X with level structures. This idea was implemented by
Drinfeld in the case G = GL2, and for general G it has been formulated as the geometric Lang-
lands correspondence by Laumon [24] and Beilinson and Drinfeld [2].

2.5.1. The category of automorphic sheaves. Consider the situation in §2.4. Let K+
x ⊂ Kx be a

connected normal subgroup of finite codimension such that the rank one character sheaf Kx on
Kx is pulled back from the quotient Lx = Kx/K

+
x . Let BunG(KS) and BunG(K+

S ) be the moduli
stack of G-torsors over X with the respective level structures, as defined in §2.2.2. The morphism
BunG(K+

S ) → BunG(KS) is an LS :=
∏
x∈S Lx-torsor. The tensor product KS := �x∈SKx is an

object in CS1(LS). It makes sense to talk about Q`-complexes of sheaves on BunG(K+
S ) which

are (LS ,KS)-equivariant.
Without giving the detailed definition, we have the derived category

DG(KS , χS) := Db
(LS ,KS)(BunG(K+

S ),Q`)

consisting of bounded constructible Q`-complexes on BunG(K+
S ) equipped with (LS ,KS)-equivariant

structures. There is subtle in defining this category because BunG(K+
S ) is a stack that is not of

finite type. However we will only consider sheaves that are supported on finite-type substacks of
BunG(K+

S ). Objects in the category DG(KS , χS) are called automorphic sheaves with respect to
the geometric automorphic datum (KS , χS).

2.5.2. Relevant points. Consider a point E ∈ BunG(KS)(k), which represents a G-torsor over Xk

with Ky-level structures at y ∈ S(k). The automorphism group Aut(E) of the point E is an affine

algebraic group over k. For each y ∈ S(k) with image x ∈ S, restricting an automorphism of E
gives an element in Ky = Kx ⊗kx k (this depends on the choice a trivialization of E around x),
and thus a homomorphism

(2.5) evS,E : Aut(E)→
∏

y∈S(k)

Ky →
∏

y∈S(k)

Ly = LS ⊗k k

which is well-defined up to conjugacy if one changes the trivialization of E around x.

2.5.3. Definition. Let (KS , χS) be a geometric automorphic datum. A point E ∈ BunG(KS)(k)
is relevant to (KS , χS) if the restriction of ev∗S,EKS to the neutral component Aut◦(E) of Aut(E)
is isomorphic to the constant sheaf. Otherwise the point E is called irrelevant.

According to (2.2), we may identify the double coset G(F )\G(AF )/
∏
x/∈S G(Ox) ×

∏
x∈S K+

x

with BunG(K+
S )(k), and view functions in CG(KS , χS) as functions on the underlying set of

BunG(K+
S )(k) that are (LS , χS)-equivariant. The sheaf-to-function correspondence then gives an

additive map

Ob DG(KS , χS)→ CG(KS , χS).
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We shall also need to consider similar objects after a base change from k to a finite extension
k′ or to k′ = k. We shall use the notation

DG(k′; KS , χS) and CG(k′; KS , χS)

to denote the analogs of DG(KS , χS) and CG(KS , χS) defined for the function field F ′ = F ⊗k k′
and the automorphic data (KS′ , χS′) obtained by base change from (KS , χS) as in §2.4.5.

2.5.4. Lemma. (1) Let E ∈ BunG(KS)(k) be an irrelevant point. Then for any object F ∈
DG(k; KS , χS), i∗EF = 0 and i!EF = 0. Here iE denotes the inclusion map of the fiber of
E in BunG(K+

S ).
(2) Let [g] ∈ G(F )\G(AF )/

∏
x/∈S G(Ox) ×

∏
x∈S Kx(kx) = BunG(KS)(k) be an irrelevant

point (when viewed as a k-point). Then any f ∈ CG(KS , χS) vanishes on the preimage
of [g] in G(F )\G(AF )/

∏
x/∈S G(Ox)×

∏
x∈S K+

x (kx). Similar statement holds when k is
replaced by a finite extension k′.

2.5.5. Lemma. Let (KS , χS) be a geometric automorphic datum.

(1) If there is no relevant k-point on BunG(KS), then DG(k′; KS , χS) = 0 and CG(k′; KS , χS) =
0 for any finite extension k′ of k.

(2) If BunG(KS) contains only finitely many relevant k-points, then (KS , χS) is weakly rigid.
Moreover for any finite extension k′ of k, any (K′S , χ

′
S)-typical automorphic representation

of G(AF ′) is cuspidal.

2.5.6. Example. Let G = SL2 and F = k(t), the function field of X = P1
k. Let S = {0, 1,∞} ⊂

|P1
k| = |X|. For each closed point x ∈ |X|, we let Kx = Ix be the standard Iwahori subgroup of

LxG, i.e.,

Ix(k) =

{(
a b
c d

)
∈ GL2(Ox)|c ∈ mx

}
.

For each x ∈ S, we choose a character χx : k× → Q×` and view it as a character of Ix(k) by

sending

(
a b
c d

)
to χx(a), where a ∈ k× is the image of a ∈ O×x . We consider the geometric

automorphic datum (IS , χS).
A central character ω compatible with (IS , χS) exists if and only if

(2.6)
∏
x∈S

χx(−1) = 1.

If this condition is satisfied, the central character ω compatible with (IS , χS) is unique. The
condition (2.6) can always be satisfied by passing to a quadratic extension k′/k and using the
base-changed automorphic datum (IS′ , χS′).

2.5.7. Proposition. Suppose for any map ε : S → {±1},
∏
x∈S χ

ε(x)
x is not the trivial character

on k×. Then the geometric automorphic datum (IS , χS) is strictly rigid.

The moduli stack BunG(IS) in this case classifies (V, ι, {`x}x∈S) where V is a rank two vector
bundle over X, ι : ∧2(V) ∼= OX and `x is a line in the fiber Vx. There is a unique relevant point
in BunG(IS), which corresponds to the trivial bundle O2

X with three lines {`x}x∈S in generic
position (i.e., three distinct lines in k2).

3. Rigidity for local systems

In this section k is any field. We shall review the notion of a local system in étale topology,
and introduce the notion of rigidity for them.
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3.1. Local systems.

3.1.1. Local systems in étale topology. Let U be a scheme of finite type over k. We recall some
definitions from [18, §1.2, §1.4.2, §1.4.3]. A Z`-local system on U is a projective system (Fn)n≥1 of
locally constant locally free Z/`nZ-sheaves Fn of finite rank on X under the étale topology such
that the natural map Fn ⊗ Z/`n−1Z → Fn−1 is an isomorphism for all n. Denote the category
of Z`-local systems on U by Loc(U,Z`), which is a Z`-linear abelian category. The category of
Q`-local systems is by definition the abelian category Loc(U,Z`)⊗Q` obtained by inverting ` in
the Hom groups in Loc(U,Z`). Similar definition gives Loc(U,OE) and Loc(U,E) for any finite
extension E of Q`. Finally define Loc(U) := Loc(U,Q`) to be the inductive limit lim−→E

Loc(U,E)
over all finite extensions E of Q`.

In the sequel we assume U is connected. Fix a geometric point u ∈ U . Let F be an Q`-local
system on U of rank n. The stalk Fu is an Q`-vector space of dimension n which carries the action
of the étale fundamental group π1(U, u) defined in [12, V,§7]. Thus F determines a continuous
homomorphism

π1(U, u)→ AutQ`
(Fu) ∼= GLn(Q`),

where Q` is topologized as the inductive limit of finite extensions E of Q`, each with the `-adic
topology. The last isomorphism above depends upon a choice of a basis of Fu. We get a functor

(3.1) ωu : Loc(U)→ Repcont(π1(U, u),Q`)

where Repcont(π1(U, u),Q`) is the category of continuous representation of π1(U, u) on finite-
dimensional Q`-vector spaces. Both sides of (3.1) carry tensor structures and ωu is in fact an
equivalence of tensor categories ([18, Proposition 1.2.5]).

Suppose furthermore that U is normal and connected and F = k(U) is the function field of
U . When u is a geometric generic point of X, π1(U, u) is a quotient of the absolute Galois group
Gal(F s/F ) ([12, V, Proposition 8.2]). Therefore every local system of rank n over U determines
a continuous Galois representations

ρ : Gal(F s/F )→ GLn(Q`).

We shall denote by πgeom
1 (U, u) the fundamental group of π1(U⊗kk, u), and call it the geometric

fundamental group of U (with respect to the base point u). This is a normal subgroup of π1(U, u)
which fits into an exact sequence ([12, V, Proposition 6.13])

1→ πgeom
1 (U, u)→ π1(U, u)→ Gal(ks/k)→ 1.

3.1.2. H-local systems. Let H be an affine algebraic group over Q` of finite type. We may also
define the notion of H-local system on a connected U . There are two ways to do this.

First definition. Fix a geometric point u ∈ U . An H-local system on U is a continuous
homomorphism

(3.2) ρ : π1(U, u)→ H(Q`).

Such homomorphisms form a category LocH(U), in which isomorphisms are given by H(Q`)-
conjugacy of representations. For example, LocGLn(U) is the full subcategory of Loc(U) consisting
of local systems of rank n.

Second (and more canonical) definition. Let Rep(H,Q`) be the tensor category of algebraic
representations of H on finite-dimensional Q`-vector spaces. We define the category

LocH(U) := Fun⊗(Rep(H,Q`),Loc(U)).

Here Fun⊗ denotes the category of tensor functors between two tensor categories.
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The two notions of H-local systems are equivalent. Given a representation ρ as in (3.2) and
for V ∈ Rep(H,Q`), the composition

ρV : π1(U, u)
ρ−→ H(Q`)→ GL(V )

is an object in Loc(U) of rank equal to dimV . The assignment V 7→ ρV gives a tensor functor
Rep(H,Q`) → Loc(U). Conversely, given a tensor functor F : Rep(H,Q`) → Loc(U), using the
equivalence (3.1), this can be viewed as a tensor functor Rep(H,Q`) → Repcont(π1(U, u),Q`).
The Tannakian formalism [7] then implies that such a tensor functor comes from a group homo-
morphism ρ as in (3.2), well-defined up to conjugacy.

3.1.3. Definition. Let ρ : π1(U, u) → H(Q`) be an H-local system. The global geometric mon-
odromy group Hgeom

ρ of the H-local system ρ is the Zariski closure of ρ(πgeom
1 (U, u)) in H.

3.1.4. Local monodromy. Let X be a projective, smooth and geometrically connected curve over
a perfect field k. We fix a finite set of closed points S ⊂ |X| and let U = X−S. Let j : U ↪→ X be
the open inclusion. Let x ∈ S, and let ix : {x} = Speckx ↪→ X be the inclusion. Fix an algebraic
closure F x of Fx. This gives a geometric generic point ηx ∈ X. The morphism SpecFx → U then
induces an injective homomorphism of fundamental groups

(3.3) Gal(F sx/Fx) ↪→ π1(U, ηx) ∼= π1(U, u),

where the second map is well-defined up to conjugacy. Since Fx is a complete discrete valuation
field with perfect residue field kx, we have an exact sequence

1→ Ix → Gal(F sx/Fx)→ Gal(k/kx)→ 1.

The normal subgroup Ix of Gal(F sx/Fx) is the inertia group at x. Under (3.3), Ix is contained in
the normal subgroup πgeom

1 (U, u)C π1(U, u). By the local monodromy of ρ at x ∈ S we mean the
restriction ρ|Ix .

When char(k) = p > 0, We have a normal subgroup Iwx C Ix called the wild inertia group such
that the quotient Itx := Ix/Iwx is the maximal prime-to-p quotient of Ix, called the tame inertia
group. We have a canonical isomorphism of Gal(k/kx)-modules

Itx
∼→ lim←−

(n,p)=1

µn(k).

The local system ρ is said to be tame at x ∈ S if ρ|Ix factors through the tame inertia group Itx.

3.2. Two notions of rigidity for local systems. Rigidity of a local system is a geometric
property, therefore we assume the base field k to be algebraically closed in this subsection. Let
X be a complete smooth connected algebraic curve over k. Fix an open subset U ⊂ X with finite
complement S.

3.2.1. Definition (extending Katz [20, §1.0.3]). Let H be an algebraic group over Q`. Let ρ be
an H-local system on U . Then ρ is called physically rigid if, for any other H-local system ρ′ such
that ρ′|Ix ∼= ρ|Ix (meaning conjugate in H(Q`)) for each x ∈ S, we have ρ ∼= ρ′ as objects in
LocH(U).

Although the definition uses U as an input, the notion of physical rigidity is in fact independent
of the open subset U : for any nonempty open subset V ⊂ U , ρ is rigid over U if and only
if ρ|V is rigid over V . Therefore, physical rigidity is a property of the Galois representation
ρη : Gal(F s/F )→ H(Q`) obtained by restricting ρ to a geometric generic point η of the X.

Next we introduce cohomological rigidity. For this we assume H is a connected semisimple

group over Q`. Let h be the Lie algebra of H, and let Ad(ρ) be the composition π1(U)
ρ−→
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H(Q`) → GL(h), viewed as a local system on U of rank dim h. Let j : U ↪→ X be the open
embedding and j!∗Ad(ρ) be the non-derived direct image of Ad(ρ) along j. Concretely, the stalk
of j!∗Ad(ρ) at x ∈ S is the Ix-invariants on h.

3.2.2. Definition (extending Katz [20, §5.0.1]). Let H be a connected semisimple group over Q`.
An object ρ ∈ LocH(U) is called cohomogically rigid, if

Rig(ρ) := H1(X, j!∗Ad(ρ)) = 0.

The vector space Rig(ρ) does not change if we shrink U to a smaller open subset. Therefore
cohomological rigidity is also a property of the Galois representation ρη : Gal(F s/F )→ H(Q`).

3.2.3. Remark. When we work over the base field C and view U as a topological surface, one can
define a moduli stackM of H-local systems over U with prescribed local monodromy around the
punctures S. The same formula Rig(ρ) then calculates the dimension of the tangent space TρM
at ρ. The condition Rig(ρ) = 0 in this topological setting says that ρ does not admit infinitesimal
deformations with prescribed local monodromy around S, i.e., F is rigid. This interpretation is
the motivation for Definition 3.2.2. However, defining a moduli stack of `-adic local systems is
much subtler, and this topological interpretation only serves as a heuristic.

Using the Grothendieck-Ogg-Shafarevich formula, it is easy to give the following numerical
criterion for cohomological rigidity.

3.2.4. Proposition. Let ρ be an H-local system on U = X −S. Let gX be the genus of X. Then
ρ is cohomologically rigid if and only if

(3.4)
1

2

∑
x∈S

ax(Ad(ρ)) = dim h/(h)π1(U,u) − gX dim h.

Here ax(Ad(ρ)) is the Artin conductor of the action of Ix on h.

From (3.4) we see that cohomologically rigid H-local systems exist only when gX ≤ 1. When
gX = 1, rigid examples are very limited (see [20, §1.4]). Most examples of rigid local systems are
over open subsets of P1.

When H = SLn, the two notions of rigidity are related by the following theorem.

3.2.5. Theorem (Katz [20, Theorem 5.0.2]). For X = P1 and H = SLn, cohomological rigidity
of an SLn-local system implies its physical rigidity.

3.2.6. Remark. An alternative approach to define the notion of rigidity for a local system ρ
over U over a finite field k is by requiring that the adjoint L-function of ρ to be trivial (constant
function 1). This is the approach taken by Gross in [14]. When H0(Uk,Ad(ρ)) = 0, triviality of
the adjoint L-function of ρ is equivalent to cohomological rigidity of ρ.

3.3. Rigidity in the inverse Galois theory. It is instructive to compare the notion of rigidity
for local systems with the notion of a rigid tuple in inverse Galois theory. We give a quick review
following [33, Chapter 8]. Let H be a finite group with trivial center.

3.3.1. Definition. A tuple of conjugacy classes (C1, C2, · · · , Cn) in H is called (strictly) rigid, if

• The equation

(3.5) g1g2 · · · gn = 1

has a solution with gi ∈ Ci, and the solution is unique up to simultaneous H-conjugacy;
• For any solutions (g1, · · · , gn) of (3.5), {gi}i=1,··· ,n generate H.
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The connection between rigid tuples and local systems is given by the following theorem. Let
S = {P1, · · · , Pn} ⊂ P1(Q), and let U = P1

Q − S.

3.3.2. Theorem (Belyi, Fried, Matzat, Shih, and Thompson). Let (C1, · · · , Cn) be a rigid tuple
in H. Then up to isomorphism there is a unique connected unramified Galois H-cover π : Y →
U⊗QQ such that a topological generator of the (tame) inertia group at Pi acts on Y as an element
in Ci.

Furthermore, if each Ci is rational (i.e., Ci takes rational values for all irreducible characters
of H), then the H-cover Y → U ⊗Q Q is defined over Q.

From the above theorem we see that the notion of a rigid tuple is an analog of physical rigidity
for H-local systems when the algebraic group H is a finite group.

Rigid tuples combined with the Hilbert irreducibility theorem solves the inverse Galois problem
for H.

3.3.3. Corollary. Suppose there exists a rational rigid tuple in H, then H can be realized as
Gal(K/Q) for some Galois number field K/Q.

For a comprehensive survey of finite simple groups that are realized as Galois groups over Q
using rigidity tuples, we refer the readers to the book [27] by Malle and Matzat. Recent work of
Guralnick and Malle [16] establishes a rational rigid triple in E8(F`) following the suggestion of
[36].

4. Calculus of geometric Hecke operators

This is the most technical part of this report. We will review the basic setting of the geometric
Langlands program. The main result is Theorem 4.4.3, which roughly says that for rigid auto-
morphic representations, their Galois representations under the Langlands correspondence can
be explicitly constructed.

4.1. Working with a more general base field k. In this section, we work with geometric
objects such as BunG and sheaves on them instead of talking about functions on G(F )\G(AF ).
Therefore k can be a more general field. In fact we assume k is a finite extension of a prime
field, i.e., it is either a finite field or a number field. This assumption is not essential, and is to
get the Satake equivalence (see §4.2) to work in the simplest way.

We continue with the situation in §2.1, with all geometric objects, e.g., the curve X and the
group G, defined over the more general field k.

By Remark 2.3.7(1), the notion of rank one character sheaves makes sense over k, so is the
notion of a geometric automorphic datum in Definition 2.4.1. For general k, we shall write
(KS ,KS) for a geometric automorphic datum instead of (KS , χS) since the correspondence Kx ↔
χx only works for finite fields. As a result, we shall also change a few notations. For example,
DG(KS ,KS) shall replace DG(KS , χS).

We will also be working with derived categories of Q`-sheaves and perverse sheaves on algebraic
stacks. For foundational material we refer to the articles of Laszlo and Olsson [23] and Y.Liu and
W.Zheng [25]. Note: All sheaf-theoretic functors are derived.

4.2. The Satake category. The Satake category is an upgraded version of the spherical Hecke
algebra Cc(G(Ox)\G(Fx)/G(Ox)) under the sheaf-to-function correspondence.

Let LG and L+G be the group objects over k defined similarly as LxG and L+
xG, using the

“standard” local field k((t)) in place of Fx. The fppf quotient Gr = LG/L+G is called the affine
Grassmannian of G. Then L+G acts on Gr via left translation. The L+G-orbits on Gr are indexed
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by dominant coweights λ ∈ X∗(T )+. The orbit containing the element tλ ∈ T (k((t))) is denoted
by Grλ and its closure is denoted by Gr≤λ. We have dim Grλ = 〈2ρ, λ〉, where 2ρ is the sum of
positive roots in G. Each Gr≤λ is a projective but usually singular variety over k. We denote
the intersection complex of Gr≤λ by ICλ: this is the middle extension of the shifted and twisted

constant sheaf Q`[〈2ρ, λ〉](〈ρ, λ〉) on Grλ (note that 〈ρ, λ〉 ∈ Z since G is simply-connected).

Let S̃at = PervL+G(Gr) be the category of L+G-equivariant perverse sheaves on Gr (with

Q`-coefficients) with finite type supports. The Satake category Sat ⊂ S̃at is the full subcategory
consisting of direct sums of ICλ’s (λ ∈ X∗(T )+). In [26], [11] and [28], it was shown that when
k is algebraically closed, Sat carries a natural tensor structure, such that the global cohomology
functor h = H∗(Gr,−) : Sat→ Vec is a fiber functor. It is also shown that the Tannakian group

of the tensor category Sat is the Langlands dual group Ĝ. When k is a finite field or a number
field, these results still hold, see the discussion in [36, §4.1.1, towards the end]. The Tannakian
formalism gives the geometric Satake equivalence of tensor categories

Sat ∼= Rep(Ĝ,Q`).

For V ∈ Rep(Ĝ,Q`), we denote the corresponding object in Sat by ICV .

4.3. Geometric Hecke operators. We consider the situation of §2.5.1. In particular, we have
a geometric automorphic datum (KS ,KS), and moduli stacks BunG(KS) and BunG(K+

S ).

4.3.1. Hecke correspondence. Consider the following diagram

(4.1) Hk(K+
S )

←−
h

xxqqq
qqq

qqq
q −→

h

&&MM
MMM

MMM
MM

π // U := X − S

BunG(K+
S ) BunG(K+

S )

Here, the stack Hk(K+
S ) classifies the data (x, E , E ′, τ) where x ∈ U := X −S, E , E ′ ∈ BunG(K+

S )

and τ : E|X−{x}
∼→ E ′|X−{x} is an isomorphism of G-torsors over X−{x} preserving the K+

x -level

structures at each x ∈ S. The morphisms
←−
h ,
−→
h and π send (x, E , E ′, τ) to E , E ′ and x respectively.

For x ∈ U , we denote its preimage under π by Hkx(K+
S ). We have an evaluation morphism

(4.2) evx : Hkx(K+
S )→ L+

xG\LxG/L+
xG.

In fact, for a point (x, E , E ′, τ) ∈ Hkx(K+
S ), if we fix trivializations of E and E ′ over SpecOx, the

isomorphism τ restricted to SpecFx is an isomorphism between the trivial G-torsors over SpecFx,
hence given by a point gτ ∈ LxG. Changing the trivializations of E|SpecOx and E ′|SpecOx will
result in left and right multiplication of gτ by elements in L+

xG. Therefore we have a well-defined
morphism evx as above between stacks.

As x moves along U , we may identify the target of (4.2) as L+G\LG/L+G by choosing a local
coordinate t at x. Modulo the ambiguity caused by the choice of the local coordinates, we obtain
a well defined morphism

(4.3) ev : Hk(K+
S )→

[
L+G\LG/L+G

Aut+

]
,

where Aut+ is the group scheme over k of continuous ring automorphisms of k[[t]], and it acts
on LG and L+G via its action on k[[t]].



RIGIDITY IN THE LANGLANDS CORRESPONDENCE AND APPLICATIONS 17

4.3.2. Geometric Hecke operators. For each object V ∈ Rep(Ĝ,Q`), the corresponding object
ICV ∈ Sat under the geometric Satake equivalence defines a complex on the quotient stack[
L+G\LG/L+G

Aut+

]
. The geometric Hecke operator associated with V is the functor

TV : D(LS ,KS)(BunG(K+
S )× U) → D(LS ,KS)(BunG(K+

S )× U)

F 7→ (
−→
h × π)!

(
(
←−
h × π)∗F ⊗ ev∗ICV )

)
.

The composition of these functors are compatible with the tensor structure of Sat: there is a
natural isomorphism of functors

TV ◦ TW ∼= TV⊗W ,∀V,W ∈ Rep(Ĝ,Q`)

which is compatible with the associativity of the tensor product in Rep(Ĝ,Q`) and the associa-
tivity of composition of functors TV1 ◦ TV2 ◦ TV3 in the obvious sense.

4.3.3. Definition. A Hecke eigensheaf in DG(KS ,KS) consists of F ∈ DG(KS ,KS), ρ ∈ Loc
Ĝ

(U)

and for every V ∈ Rep(Ĝ,Q`), an isomorphism

ϕV : TV (F �Q`) ∼= F � ρV

such that the following conditions are satisfied.

(1) As V varies in Rep(Ĝ,Q`), ϕV gives a natural isomorphism between the functors T(−)(F�
Q`) and F � ρ(−).

(2) For V = Q`, we require that ϕV be the identity map for F �Q`.

(3) For V,W ∈ Rep(Ĝ,Q`), ϕV⊗W is equal to the composition

TV⊗W (F �Q`) ∼= TV ◦ TW (F �Q`)
ϕW−−→ TV (F � ρW )

∼= TV (F ⊗Q`)⊗ ρW
ϕV−−→ F � (ρV ⊗ ρW ) ∼= F � ρV⊗W

We sometime abuse the language and say that F ∈ DG(KS ,KS) is a Hecke eigensheaf, if there

exists a Ĝ-local system ρ and isomorphisms ϕV as in the above definition. In this case, we call ρ

the Hecke eigen Ĝ-local system associated with F .

4.4. Rigid Hecke eigensheaves. The main purpose of this subsection is to establish the ex-
istence of Hecke eigensheaves in a special situation. We fix a geometric automorphic datum
(KS ,KS).

4.4.1. Twisted representations. Let Γ be a group and ξ ∈ Z2(Γ,Q×` ) a cocycle such that ξ1,γ =

ξγ,1 = 1 for all γ ∈ Γ. A ξ-twisted representation of Γ is a finite-dimensional Q`-vector space V
with automorphisms Tγ : V → V , one for each γ ∈ Γ, such that T1 = idV and

Tγδ = ξγ,δTγTδ,∀γ, δ ∈ Γ.

Let Repξ(Γ,Q`) be the category of ξ-twisted representations of Γ. This is a Q`-linear abelian

category which, up to equivalence, only depends on the cohomology class [ξ] ∈ H2(Γ,Q×` ).
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4.4.2. Let E ∈ BunG(KS)(k) be a relevant point. Let A = π0(Aut(E)). Since ev∗S, EKS is trivial

on Aut◦(E), it descends to A and gives a cocycle ξ ∈ Z2(A(k),Q`) satisfying ξ1,a = ξa,1 = 1 for

all a ∈ A(k) whose cohomology class is well-defined (see Remark 2.3.3).
Let Z0 denote the inverse image of

∏
x∈S LxZ ∩ Kx under the diagonal embedding of Z.

Then Z0(k) ∩ KS ⊂ Aut(E). Let Z0(k)∗ξ be the set of ξ-twisted 1-dimensional representations

of Z0(k) (after restricting the cocycle ξ to Z0(k)). For η ∈ Z0(k)∗ξ , let Repξ(A(k),Q`)η be the

full subcategory of Repξ(A(k),Q`) consisting of those ξ-twisted representations of A(k) whose

restriction to Z0(k) is the scalar multiplication via η. Then one can decompose DG(KS ,KS) into
a product of categories DG(KS ,KS)η, one for each η ∈ Z0(k)∗ξ .

4.4.3. Theorem. We assume BunG(KS) contains a unique relevant k-point E, and let A, ξ, Z0, Z0(k)∗ξ
etc. be as in §4.4.2.

(1) For each η ∈ Z0(k)∗ξ , the category of perverse sheaves in DG(k; KS ,KS)η is equivalent to

Repξ(A(k),Q`)η.
(2) Suppose Aut(E) is finite (hence equal to A), and the point E is open in BunG(KS). Sup-

pose further that for some η ∈ Z0(k)∗ξ , Repξ(A(k),Q`)η contains only one irreducible

object. Then DG(k; KS ,KS)η contains a unique irreducible perverse sheaf Fη up to iso-
morphism, and Fη is a Hecke eigensheaf.

The simplest case of the theorem is when Aut(E) is trivial. Then DG(k; KS ,KS) contains
a unique irreducible perverse sheaf, which is a Hecke eigensheaf. In this case, the geometric
automorphic datum (KS ,KS) is strongly rigid if k is a finite field.

4.4.4. Description of the Hecke eigen local system. Suppose we are in the situation of Theorem
4.4.3(2), i.e., E is the unique relevant k-point in BunG(KS) , and it is an open point with

A = Aut(E) finite. Let ρη be the Hecke eigen Ĝ-local system associated with the Hecke eigensheaf

Fη. We shall give a description of ρη,V for V ∈ Rep(Ĝ,Q`).
For each point x ∈ U define Gx to be the group of G-automorphisms E|X−{x} preserving the

KS-level structures. This is representable by a group ind-scheme. As x varies over U , we get
a group ind-schemes GU over U . The KS-analog of the diagram (4.1) restricted to the open
relevant point becomes the diagram

A\GU/A
←−
h

zzttt
tt
tt
tt −→

h

$$JJ
JJ

JJ
JJ

J
π // U

BA BA
Since A ⊂ Gx for each x, A acts on each fiber Gx by left and right translations.

By Remark 2.3.7(1), the character sheaf KS on LS can be obtained from a central extension

1→ C → L̃S
v−→ LS → 1

where L̃S is connected and C is a finite discrete (necessarily abelian) group scheme over k, and

χC : C → Q×` is a character. Concretely KS ∼= (v!Q`)χC . Let Ã and G̃U be the base change of

the cover L̃S → LS along evS,E : A→ LS (see (2.5)). Then Ã× Ã acts on G̃U via left and right
translations

Ã× Ã× G̃U → G̃U(4.4)

(a1, a2, g) 7→ a1ga
−1
2 .(4.5)
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Let Z̃0 ⊂ Ã be the preimage of Z0 ⊂ A. Via the central extension Ã of A, we can interpret

Repξ(A(k),Q`) as (ordinary) representations of Ã(k) on which C acts via χC . Similarly, a twisted

central character η ∈ Z0(k)∗ξ can be viewed as a character of Z̃0(k) whose restriction to C is χC .

The next result gives a concrete description of the Hecke eigen Ĝ-local systems ρη using the

geometry of G̃U and the Ã× Ã action on it. We only need the following maps to state the result

U G̃U
π̃oo ẽv //

[
L+G\LG/L+G

Aut+

]
4.4.5. Proposition. In the situation of Theorem 4.4.3(2), let Fη be the Hecke eigensheaf corre-

sponding to the irreducible object Wη ∈ Repξ(A(k),Q`)η, viewed as an irreducible representation

of Ã(k) as above. Let ρη be the corresponding Hecke eigen Ĝ-local system over U ⊗k k. For any

V ∈ Rep(Ĝ,Q`), we have an isomorphism of sheaves over U ⊗k k:

(4.6) ρη,V ∼= Hom
Ã(k)×Ã(k)

(Wη �W
∨
η , π̃!ẽv∗ICV ).

Here we are using the left action of Ã(k)× Ã(k) on π̃!ẽv∗ICV induced from the left action defined
in (4.4).

4.4.6. Rationality issue. Suppose that the unique relevant point E is defined over k and that the

representation Wη can be extended to Ã(k) o Gal(k/k), then the Hecke eigensheaf Fη is also
defined over k (i.e., it descends to an object in DG(KS , χS)), and the Hecke eigen local system

ρη is a Ĝ-local system over U . The identity (4.6) now holds over U .

5. Kloosterman sheaves as rigid objects over P1 − {0,∞}

In this section we review the work [17], in which we used rigid automorphic representations
ramified at two places to construct generalizations of Kloosterman sheaves.

5.1. Kloosterman automorphic data. Let k = Fq be a finite field. The curve is X = P1 with
function field F = k(t). Let S = {0,∞}. We shall define a geometric automorphic datum for G
with respect to S, to be called the Kloosterman automorphic datum.

Recall as part of the pinning we have fixed a pair of opposite Borels B,Bopp ⊂ G with
T = B ∩ Bopp. They determine Iwahori subgroups I∞ ⊂ L∞G (preimage of B ⊂ G under the
evaluation map L+

∞G → G) and Iopp
0 ⊂ L0G (preimage of Bopp ⊂ G under the evaluation map

L+
0 G→ G). Let K0 = Iopp

0 and K∞ = I+
∞, the pro-unipotent radical of I∞.

Fix a character χ : T (k) → Q×` , and view it as a character of K0(k) via K0(k) → T (k). The
Kloosterman automorphic datum at x = 0 is given by (Iopp

0 , χ).
The pro-unipotent group I+

∞ is generated by the root groups (L∞G)(α̃) of all positive affine
roots of the loop group L∞G. There is a projection

(5.1) K∞ = I+
∞ �

r∏
i=0

(L∞G)(αi)

onto the product of root groups corresponding to simple affine roots. Each (L∞G)(αi) is isomor-
phic to Ga over k. A linear function φ :

∏r
i=0(L∞G)(αi)→ k is said to be generic if it does not

vanish on any of the factors (L∞G)(αi). Fix such a generic linear function φ and fix a nontrivial
additive character ψ of k. The composition ψ◦φ gives a character of I+

∞(k) which factors through
the quotient (5.1). The Kloosterman automorphic datum at x =∞ is given by (I+

∞, ψ ◦ φ).
A central character compatible with the Kloosterman automorphic datum exists and is unique:

its local component at 0 is given by χ|Z(k) and at 0 is given by χ−1|Z(k).
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5.1.1. Remark. The automorphic datum (I+
∞, ψ ◦ φ) picks up those representations of G(F∞)

that contain nonzero eigenvectors of K∞ on which K∞ acts through the character ψ ◦ φ. These
representations are first discovered by Gross and Reeder [15, §9.3], and they call them simple
supercuspidal representations. When G is simply-connected, any such representation is given by

compact induction ind
G(F∞)

Z(k)I+∞(k)
(ω∞ � ψ ◦ φ) for some central character ω∞ : Z(k)→ Q×` .

5.1.2. Theorem (Gross [13], simple proof by Heinloth-Ngô-Yun [17]). (1) The Kloosterman
automorphic datum is strongly rigid.

(2) When χ = 1, the local component at 0 of any ((Iopp
0 , 1), (I+

∞, ψ ◦ φ))-typical automorphic
representation is isomorphic to the Steinberg representation of G(F0).

Part (1) above is a special case of Theorem 4.4.3, and the automorphism group of the unique

relevant point is trivial. By Theorem 4.4.3, we have a Hecke eigen Ĝ-local system Kl
Ĝ

(χ, φ) over

P1 − {0,∞} associated with the unique irreducible perverse sheaf in DG(KS , χS).

5.2. Kloosterman sheaves.

5.2.1. The classical Kloosterman sheaf. We first recall the definition of Kloosterman sums. Let

p be a prime number. Fix a nontrivial additive character ψ : Fp → Q×` . Let n ≥ 2 be an integer.
Then the n-variable Kloosterman sum over Fp is a function on F×p whose value at a ∈ F×p is

Kln(p; a) =
∑

x1,··· ,xn∈F×p ;x1x2···xn=a

ψ(x1 + · · ·+ xn).

These exponential sums arise naturally in the study of automorphic forms for GLn.
Deligne [5] gave a geometric interpretation of the Kloosterman sum. He considered the follow-

ing diagram of schemes over Fp
Gn
m

π

}}{{
{{
{{
{{ σ

  B
BB

BB
BB

B

Gm A1

Here π is the morphism of taking the product and σ is the morphism of taking the sum.

5.2.2. Definition (Deligne [5]). The Kloosterman sheaf is

Kln := Rn−1π!σ
∗ASψ,

over P1
Fp
− {0,∞}. Here ASψ is the Artin-Schreier sheaf as in Example 2.3.6.

The relationship between the local system Kln and the Kloosterman sum Kln(p; a) is explained
by the following identity

Kln(p; a) = (−1)n−1Tr(Froba, (Kln)a).

Here Froba is the geometric Frobenius operator acting on the geometric stalk (Kln)a of Kln at
a ∈ Gm(Fp) = F×p .

In [5, Théorème 7.4, 7.8], Deligne proved:

(1) Kln is a local system of rank n.
(2) Kln is tamely ramified at 0, and the monodromy is unipotent with a single Jordan block.
(3) Kln is totally wild at ∞ (i.e., the wild inertia at ∞ has no nonzero fixed vector on the

stalk of Kln), and the Swan conductor Sw∞(Kln) = 1.

The main results of [17] can be summarized as follows.
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5.2.3. Theorem (Heinloth-Ngô-Yun [17]). The Ĝ-local system Kl
Ĝ

(χ, φ) constructed as the Hecke

eigen Ĝ-local system associated with the Kloosterman automorphic datum satisfies the following
properties.

(1) Kl
Ĝ

(χ, φ) is tame at 0. A generator of It0 maps to an element in Ĝ with semisimple part

given by χ, viewed as an element in T̂ . When χ = 1, a generator of It0 maps to a regular

unipotent element in Ĝ.
(2) The local monodromy of Kl

Ĝ
(χ, φ) at ∞ is a simple wild parameter in the sense of Gross

and Reeder [15, §5]. For more details see §5.2.5.
(3) Assume χ = 1. Then the global geometric monodromy group of Kl

Ĝ
(1, φ) is a connected

almost simple subgroup of Ĝ of types given by the following table

Ĝ Ĝgeom
Kl

Ĝ
(1,φ) condition on char(k)

A2n A2n p > 2
A2n−1, Cn Cn p > 2
Bn, Dn+1 (n ≥ 4) Bn p > 2
E7 E7 p > 2
E8 E8 p > 2
E6, F4 F4 p > 2
B3, D4, G2 G2 p > 3

5.2.4. Remark. For Ĝ of type An−1 (resp. Cn), the Kloosterman sheaf Kl
Ĝ

(1, φ) is essentially

the same as Kln (resp. Kl2n) of Deligne. When Ĝ is of type B or G2, Kl
Ĝ

(1, φ) were constructed
by Katz in [19] by different methods (as special cases of hypergeometric sheaves). The above

theorem treats all Ĝ uniformly, and in particular gives the first construction of motivic local
systems with geometric monodromy group F4, E7 and E8.

5.2.5. Local monodromy at ∞. Let us explain in more detail what a simple wild parameter looks
like, following Gross and Reeder [15, Proposition 5.6]. Assume p = char(k) does not divide #W

(W is the Weyl group of G). Let ρ|I∞ : I∞ → Ĝ(Q`) be the local monodromy of Kl
Ĝ

(χ, φ) at∞.

Then up to conjugacy in Ĝ, the wild inertia Iw∞ has image in T̂ [p], the p-torsion part of the dual

maximal torus T̂ . The image of I∞ must normalize the image of Iw∞, and in this case it must

normalize the whole torus T̂ . Therefore we have a commutative diagram

1 // Iw∞ //

ρ|Iw∞
��

I∞ //

ρ|I∞
��

It∞ //

��

1

1 // T̂ // N
Ĝ

(T̂ ) // W // 1

The image of It∞ in W is the cyclic group generated by a Coxeter element Cox ∈W , whose order
is the Coxeter number h of G. The image ρ(Iw∞) is a Fp-vector space equipped with the action of

Cox. In fact ρ(Iw∞) ∼= Fp[ζh], the extension of Fp by adjoining hth roots of unity, and the Coxeter

element acts by multiplication by a primitive hth root of unity.

When p | #W , a simple wild parameter can be more complicated. For example, when Ĝ =
PGL2 and p = 2, the image ρ(I∞) is isomorphic to the alternating group A4 embedded in
PGL2(Q`) = SO3(Q`) as the symmetry of a regular tetrahedron.

5.2.6. More general Kloosterman sheaves. In [37] we give further generalizations of Kloosterman
sheaves. We replace Iopp

0 by a more general parahoric level structure Popp
0 , and accordingly I+

∞
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is replaced by a P+
∞, the pro-unipotent radical of a parahoric of the same type. The geometric

automorphic datum at 0 is again given by a multiplicative character χ of the reductive quotient
of Iopp

0 . The geometric automorphic datum at∞ is given by a generic linear function φ from P+
∞

(with a suitable notion of genericity). The representations of G(F∞) picked up by (P+
∞, ψ ◦ φ)

are the epipelagic representations discovered by Gross, Reeder and Yu [31]. One new feature of
this generalization is that when φ varies in V ∗,◦ (the parameter space of generic linear functions

on P+
∞), the corresponding generalized Kloosterman sheaves “glue” together to give a Ĝ-local

system over V ∗,◦ × (P1 − {0,∞}).

6. Rigid objects over P1 − {0, 1,∞}

In this section, we review the work [36], in which we use rigid automorphic representations to
construct local systems on P1

Q − {0, 1,∞}. These local systems are the key objects that lead to
the answer to Serre’s question and the solution of the inverse Galois problem for certain finite
simple groups of exceptional Lie type.

6.1. The automorphic data. Let k be a field with char(k) 6= 2. Let X = P1
k and S =

{0, 1,∞}. Assume that the longest element w0 in the Weyl group W of G acts by inversion on
T . Equivalently, this means that the Chevalley involution of G is inner. Recall that a Chevalley
involution of G is an involution τ such that dimGτ has the minimal possible dimension, namely
#Φ+ (the number of positive roots of G). All Chevalley involutions are conjugate to each other
under Gad(k).

When the Chevalley involution of G is not inner, i.e., G is of type An (n ≥ 2), D2n+1 or E6,
one should consider a quasi-split form of G over the function field F = k(t) ramified at 0 and ∞.
We do not discuss it here.

6.1.1. A parahoric subgroup. Up to conjugacy, there is a unique parahoric subgroup P ⊂ L0G
such that its reductive quotient LP is isomorphic to the fixed point subgroup Gτ of a Chevalley
involution. For example, we can take P to be the parahoric subgroup corresponding to the facet
containing the element ρ∨/2 in the T -apartment of the building of L0G (ρ∨ is half the sum of
positive coroots of G).

The Dynkin diagram of the reductive quotient LP
∼= Gτ of P is obtained by removing one or

two nodes from the extended Dynkin diagram of G. We tabulate the type of LP and the nodes
to be removed in each case.

G LP nodes to be removed
B2n Bn ×Dn the (n+ 1)-th counting from the short node
B2n+1 Bn ×Dn+1 the (n+ 1)-th counting from the short node
Cn An−1 ×Gm the two ends
D2n Dn ×Dn the middle node
E7 A7 the end of the leg of length 1
E8 D8 the end of the leg of length 2
F4 A1 × C3 second from the long node end
G2 A1 ×A1 middle node

6.1.2. Lemma. If G is not of type C, then Lsc
P → LP is a double cover (i.e., kernel is µ2).

Even if G is of type Cn, LP
∼= GLn still admits a unique nontrivial double cover. Therefore,

in all cases, there is a canonical nontrivial double cover v : L̃P → LP. In particular,

K0 := (v!Q`)sgn
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is a rank one character sheaf on LP (here sgn denotes the nontrivial character of ker(v)(k) =
µ2(k){±1}, since char(k) 6= 2). When k is a finite field, we have an exact sequence

1→ µ2(k)→ L̃P(k)→ LP(k)→ H1(k, µ2) = {±1}.
The character χ corresponding to K0 is given by the last arrow above.

6.1.3. The automorphic datum. Let P0 ⊂ L0G be the standard parahoric subgroup of the type
defined in §6.1.1. Let Popp

∞ ⊂ L∞G be the parahoric subgroup of the same type but contains the
Iwahori subgroup Iopp

∞ (preimage of Bopp under the evaluation map L+
∞G → G). Let I1 ⊂ L1G

be the standard Iwahori subgroup. We consider the geometric automorphic datum given by

(K0,K0) = (P0,K0);

(K1,K1) = (I1,Q`);

(K∞,K∞) = (Popp
∞ ,Q`).

The central character compatible with (KS , χS) above is unique, and it exists if and only if
χ|Z(k) = 1, which can always be achieved by passing to a quadratic extension k′/k.

The main technical result of [36] is the following.

6.1.4. Theorem ([36]). Let k be a field with char(k) 6= 2. Assume G is either simply-laced or of
type G2. Also assume that k contains

√
−1 when G is of type A1, D4n+2 or E7. Then there are

exactly #Z(k) isomorphism classes of irreducible perverse sheaves in the category DG(k; KS ,KS),
all of which can be defined over k. Each of these irreducible perverse sheaves is a Hecke eigensheaf,

and all of them give the same Hecke eigen Ĝ-local system ρ ∈ Loc
Ĝ

(U).

Note that the condition put on G in the above theorem limits G to be simply-connected of
type A1, D2n, E7, E8 and G2. There is a version of the above theorem for groups of all types;
however, the automorphic datum (6.1) will no longer be weakly rigid in general.

6.1.5. We briefly explain how Theorem 6.1.4 follows from Theorem 4.4.3(2). We first exhibit an
open point in BunG(KS) which is relevant. The moduli stack BunG(P0,P

opp
∞ ) contains an open

substack isomorphic to BLP, the classifying stack of LP. The preimage of BLP in BunG(KS)
is isomorphic to LP\G/B. Now a general result of Springer [34, Corollary 4.3(i)] says that any
symmetric subgroup of G acts on the flag variety of G with an open orbit. Let O ⊂ G/B denote
the unique open LP-orbit. We thus get an open point

j : LP\O ↪→ BunG(KS).

When G is either simply-laced or of type G2, this turns out to be the unique relevant point.
The stabilizer Au of LP on any point u ∈ O is canonically isomorphic to T [2]. Taking the

preimage of Au in the double cover L̃P we get a central extension

1→ µ2 → Ãu → T [2]→ 1.

The center of Ãu(k) is exactly the preimage Z̃(k) in Ãu(k) of Z(k) ⊂ T [2](k). By Stone-von

Neumann theorem, for any central character η : Z̃(k) → Q×` which is nontrivial on µ2(k) =

ker(Ãu(k) → T [2](k)), there is a unique irreducible representation Wη of Ãu(k) with central
character η. This Wη then gives an irreducible local system on the preimage of the open point

LP\O in BunG(K+
S ), whose extension to BunG(K+

S ) by zero gives an object Fη ∈ DG(k; KS ,KS).

The Fη are exactly the irreducible perverse sheaves in DG(k; KS ,KS), and they turn out to be
Hecke eigensheaves.

The following theorem summarizes the local and global monodromy of the Ĝ-local system ρ.
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6.1.6. Theorem ([36]). Let G and ρ be as in Theorem 6.1.4.

(1) The local system ρ is tame.

(2) A topological generator of It1 maps to a regular unipotent element in Ĝ.

(3) A topological generator of It∞ maps to a unipotent element in Ĝ that is neither trivial
nor regular if G is not of type A1; in case G is of type A1, a topological generator of It∞
maps also to a regular unipotent element in Ĝ.

(4) A topological generator of It0 maps to an element in Ĝ whose semisimple part is a Cheval-

ley involution in Ĝ.
(5) When G is of type A1, E7, E8 and G2, the global geometric monodromy of ρ is Zariski dense

in Ĝ. When G is of type D2n, the Zariski closure of the global geometric monodromy of

E contains SO4n−1 ⊂ PSO4n = Ĝ of n ≥ 3, and contains G2 ⊂ PSO8 if n = 2.

6.2. Applications. By a descent argument (using rigidity), we have the following strengthening
of Theorem 6.1.4.

6.2.1. Theorem ([36]). Let k be a prime field with char(k) 6= 2 (i.e., Fp for p an odd prime or Q).
Then the eigen local system ρ can be defined over k. Moreover, the image of ρ can be conjugated

to Ĝ(Q`) inside Ĝ(Q`).

6.2.2. Application to the construction of motives. Assume G is of type A1, E7, E8 or G2. Applying

the above theorem to k = Q, we get a Ĝ-local systems ρ : π1(UQ) → Ĝ(Q`) whose geometric
monodromy is Zariski dense. For each Q-point a ∈ U(Q) = Q− {0, 1}, restricting ρ to the point
a = Spec Q gives a continuous Galois representation

(6.1) ρa : Gal(Q/Q)→ Ĝ(Q`).

By Proposition 4.4.5, one sees that for each V ∈ Rep(Ĝ,Q`), ρV is obtained as part of the
middle dimensional cohomology of some family of varieties over U . Using this fact, it can be
shown that each ρa is obtained from motives over Q (if G is type E8 or G2) or Q(i) (if G is of
type A1 or E7).

6.2.3. Theorem ([36]). Assume G is of type A1, E7, E8 or G2. There are infinitely many a ∈
Q − {0, 1} such that the ρa’s are mutually non-isomorphic and all have Zariski dense image in

Ĝ. Consequently, there are infinitely many motives over Q (if G is type E8 or G2) or Q(i) (if G

is of type A1 or E7) whose `-adic motivic Galois group is isomorphic to Ĝ for any prime `.

This result then gives an affirmative answer to the `-adic analog of Serre question (see §1.3.2)
for motivic Galois groups of type E7, E8 and G2. The case of G2 was settled earlier by Dettweiler
and Reiter [8], using Katz’s algorithmic construction of rigid local systems. Our local system ρ
in the case G = G2 is the same as Dettweiler and Reiter’s.

6.2.4. Application to the inverse Galois problem. Let ` be a prime number. To emphasize on the
dependence on `, we denote the Galois representation ρa in (6.1) by ρa,`. To solve the inverse

Galois problem for the groups Ĝ(F`), we would like to choose a ∈ Q − {0, 1} such that ρa,` has

image in Ĝ(Z`) (which is always true up to conjugation), and its reduction modulo ` is surjective.
This latter condition is hard to satisfy even if we know that the image of ρa,` is Zariski dense in

Ĝ(Q`).
To proceed, let us consider the Betti version of Theorem 6.1.4 and Theorem 6.2.1. Namely

we consider the base field k = C and talk about sheaves in Q-vector spaces on the various
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complex algebraic moduli stacks. The same argument gives topological local system ρtop over
UC = P1

C − {0, 1,∞}
ρtop : πtop

1 (UC)→ Ĝ(Q)

whose image is Zariski dense. Since πtop
1 (UC) is finitely generated (in fact generated by two

elements), the image of ρtop lies in Ĝ(Z`) for almost all primes `. Therefore it makes sense to
reduce modulo ` for large primes ` and we get

ρtop
` : πtop

1 (UC)→ Ĝ(F`).

A deep theorem of Matthews, Vaserstein and Weisfeiler [29, Theorem in the Introduction] (see

also Nori [30, Theorem 5.1]) says that ρtop
` is surjective for sufficiently large `, when Ĝ is simply-

connected. This is the case when G is of type E8 and G2. Using the comparison between Betti
cohomology and `-adic cohomology, we conclude that for general a ∈ Q − {0, 1} (general in the

sense of Hilbert irreducibility), the reduction ρa,` of ρa,` is also onto Ĝ(F`). This solves the inverse
Galois problem for E8(F`) and G2(F`) for sufficiently large primes ` (without an effective bound).

When G is of type A1 or E7, Ĝ is the adjoint form. In this case, the result in [29] says that for

sufficiently large prime `, the image of ρtop
` contains the image of Ĝsc(F`) → Ĝ(F`). We deduce

that the same is true for ρa,` for general a ∈ Q− {0, 1}.
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