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Z/m-GRADED LIE ALGEBRAS AND PERVERSE SHEAVES, I
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ABSTRACT. We give a block decomposition of the equivariant derived category
arising from a cyclically graded Lie algebra. This generalizes certain aspects
of the generalized Springer correspondence to the graded setting.
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INTRODUCTION

0.1. Let k be an algebraically closed field of characteristic p > 0. We fix an integer
m > 0 such that m < p whenever p > 0 and we write Z/m instead of Z/mZ. For
n € Z, let n denote the image of n in Z/m.

We also fix G, a semisimple simply connected algebraic group over k and a Z/m-
grading g = ®;cz/m@: (see 0.11) for the Lie algebra g of G; we shall assume that
either p = 0 or that p is so large relative to GG, that we can operate with g as if p
was 0.

For any integer d invertible in k let g = {z € k*; 2¢ = 1}. The Z/m-grading
on g is the same as an action of p,, on G or a homomorphism 0 : f,, — Aut(G).
(0 induces a homomorphism 6 : j,,, — Aut(g) and for i € Z/m we have g; = {z €
g;0(2)z = 'z Yz € pm}.) Let Go = {g € G;99(2) = 9(2)g Vz € pm}, be a
connected reductive subgroup of G' with Lie algebra gog. For any i € Z/m, the
Ad-action of Gy on g leaves stable g; and its closed subset g := g; N g™, (Here

g™ is the variety of nilpotent elements in g.)
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We are interested in studying the equivariant derived categories (see 0.11)
De,(9i), Day,(g7). More specifically, we would like to classify Gg-equivariant
simple perverse sheaves with support in g{-”l and (in the case where p > 0) their
Fourier-Deligne transform. The simple perverse sheaves in D¢, (g;”l) are in bi-
jection with the pair (O, £), where O is a nilpotent Gy-orbit in g; and £ is (the
isomorphism class of) an irreducible Gy-equivariant local system on O. (The pair
(O, L) gives rise to the simple perverse sheaf P with support equal to the closure
of O and with P|p = L[dim O].) We denote the set of such (O, L) by Z(g;). This
is a finite set, since the Gg-action on g7 has only finitely many orbits. Alterna-
tively, if we choose e € O, then the local system L corresponds to an irreducible
representation of mo(Go(e)) (see 0.11), where Gy(e) is the stabilizer of e under Gy.

There are many Z/m-graded Lie algebras which appear in nature.

0.2. In this subsection we assume that m = 2 and k = C. Then the Z/2-grading
g=t®p (with € = gg, p = g1) has been extensively studied in connection with
the theory of symmetric spaces and the representation theory of real semisimple
groups. In particular, the nilpotent Gg-orbits on p are known to be in bijection
with the nilpotent orbits in the Lie algebra of a real form of G determined by the
Z/2-grading (Kostant and Sekiguchi).

0.3. Another class of examples comes from cyclic quivers. In this subsection we
assume that m > 2. We consider the simplest such example where V is a k-vector
space equipped with a Z/m-grading V' = @©;cz/m Vi (see 0.11) and G = SL(V') with
the Z/m-grading given by

g, ={T eg=sl(V);T(V;) CV,1; Vje€Z/m}.
In this case we have Go = S([[;cz/,, GL(V;)), the intersection of SL(V') with the
Levi subgroup [[, GL(V;) of a parabolic subgroup of GL(V). The subspace g; is
(a) @icz/m Hom(V;, Viy1).

We may consider a quiver ) with m vertices indexed by Z/m and an arrow ¢ — i+1
for each i € Z/m,

Vs Vi

Vm72 E—— mel
Then g; is the space of representations of () where we put V; at the vertex .
More generally, if G is a classical group, then the Gy-action on g; can be inter-

preted in terms of a cyclic quiver with some extra structure (see 9.5 for the case
where G is a symplectic group).

0.4. In this subsection we forget the Z/m-grading. Instead of the action of Gy on g;
il we consider the adjoint action of G on g and on g™*. Let Z(g) be the set of

and gj
pairs (O, £) where O is a G-orbit on g"" and L is an irreducible G-equivariant local
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system on O (up to isomorphism). From the results on the generalized Springer
theory in [L1] we have a canonical decomposition

(a) I(g) = U,orZ(9)(L,0)>

where (L, C) runs over the G-conjugacy classes of data L, C with L a Levi subgroup
of a parabolic subgroup of G and C' an L-equivariant cuspidal perverse sheaf on the
nilpotent cone of the Lie algebra of L. (Actually, the results of [L1] are stated for
unipotent elements in G instead of nilpotent elements in g.) We call (a) the block
decomposition of Z(g).

Let P(g™") be the subcategory of D(g"") consisting of complexes whose perverse
cohomology sheaves are G-equivariant. Using (a) and [L3l (7.3.1)], we see that we
have a direct sum decomposition

(b) P(g"") = &0 P(8"") (1.0

where (L, C) is as in (a). We call (b) the block decomposition of P(g""). In [RR] it
is shown that the following variant of (b) holds: we have a direct sum decomposition

(c) DG(Q”“) = ®(L,C)DG(gnil)(L,C)a

where (L, C) is as in (a). We call (c) the block decomposition of Dg(g"t).
In this paper we find a Z/m-graded analogue of this (ungraded) block decom-
position.

0.5. We fix ¢, a primitive m-th root of 1 in k and we set ¥ = 9(¢) : G — G,
0=0(C):g— g. Then for i € Z/m we have g; = {z € g;0(z) = 'z}
Let n € Z — {0}. We consider systems (M, m,,C), where
M ={g € G;Ad(7)dg = g}

for some semisimple element of finite order 7 € Gg, m, = {my }nez is a Z-grading
of the Lie algebra m of M (see 0.11) such that my C gy for all N, My is the closed
connected subgroup of M with Lie algebra mg and C' is an My-equivariant cuspidal
perverse sheaf on m,. We will review the notion of My-equivariant cuspidal perverse
sheaf (already defined in [L4]) on m, in 1.2. Such a system (M, m,,C) is said to
be admissible if a certain technical condition involving the group of components of
the center of M is satisfied (see 3.1).

Let &, be the set of admissible systems up to Go-conjugacy. The following result
is proved in 7.9.

nil

Theorem 0.6. There is a canonical direct sum decomposition of Dg,(g;") into

full subcategories

nil nil
DGQ(QQ ) - GB(ZV[,m*,C’)EZ",DGQ(gﬁ )(M,m*,é)
indezed by X, .

In particular, any simple perverse sheaf in D¢, (gf,”) belongs to a well-defined

block 'DGQ(ggil)(M’m*’é). This gives a map
v Z(gy) > I,

In fact, we will first establish the map ¥ in 3.5 and then prove the theorem in 7.9,
using a key calculation in Proposition 6.4.
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We also show in 3.9 and 7.8 that both the indexing set X, and the blocks

Dg, (gp")e (for € € Z,)) only depend on the image 1 € Z/m and not on the in-
teger 7.

Note that in the case where m = 1, the theorem can be deduced from 0.4(a).
On the other hand, for large m, a Z/m-grading on g is the same as a Z-grading,
so that in this case the theorem can be deduced from the results of [L4]. Thus, the

result about block decomposition in this paper generalizes results in [L1] and [L4].

0.7. As an explicit example, let us consider the case where G = SL,(k),n=1. In
the ungraded case, blocks are in bijection with pairs (d, x) where d is a divisor of n
and x : g — Q; is a primitive character. (See [L1].) To d we attach the subgroup

M=3S (GLZ/ d) (a Levi subgroup of a parabolic subgroup) and x gives a cuspidal
perverse sheaf C, with support equal to the nilpotent cone of the Lie algebra of
M. Now in the Z/m-graded case, we have G = SL(V), V = @cz/mV; as in 0.3,
and we identify g; with @; Hom(V;, Vi41). In this case, the set of blocks &, has a
similar explicit description. We have a natural bijection

(a) T < {d f,0 ~

Here the right hand side is the set of equivalence classes of triples (d, f, x) where
(d, x) is as in the ungraded case and f : {1,2,...,n/d} — Z/m is a map such that

() #(by) €ZxZ1<b<n/d0<y<d—1,f(b)+y =i} =dimV

for all ¢ € Z/m. Two triples (d, f,x) and (d', f', x’) are equivalent if and only if
d=d,x = x and f’ is obtained from f by composition with a permutation of

(1,2,...,n/d}.

0.8. In the ungraded case, the objects in the block Dg(g"”)(L’c) are obtained from
C' via parabolic induction (and decomposition) through any parabolic subgroup P
of G containing L as a Levi subgroup. In the Z/m-graded case, a first attempt to
generalize parabolic induction would be to start with a parabolic subgroup of G
compatible with the Z/m-grading on g, as defined in the appendix of [L5]. How-
ever, such a parabolic induction does not produce all simple perverse sheaves in

Dg, (gzil). Instead, we introduce a certain induction procedure which we call spiral

induction; see Section 4. We introduce the notion of a spiral p, which is a sequence
of subspaces py C gn, one for each IV € Z, satisfying certain conditions; see Section
2. Tt turns out that spirals are the correct analogues of parabolic subalgebras in
the Z/m-graded case. Moreover, spiral induction includes the parabolic induction
defined in the appendix of [L5] as special cases. In fact there are two kinds of

spiral inductions, one giving objects in Dg, (g’,;”) and the other giving (assuming

that p > 0) Fourier-Deligne transforms of objects in Dg, (g’j’f]). The latter may be
viewed as an analogue of character sheaves in the Z/ m-graded setting.

0.9. We now discuss the contents of the various sections. Many arguments in this
paper rely on results from [L4] concerning Z-graded Lie algebras; in Section 1 we
review some results from [L4] that we need. In Section 2 we introduce the e-spirals
attached to a Z/m-graded Lie algebra and their splittings; the analogous concepts in
the Z-graded cases are the parabolic subalgebras compatible with the Z-grading and
their Levi subalgebras compatible with the Z-grading. We also attach a canonical

spiral to any element of g;;” which plays a crucial role in the arguments of this
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paper. In Section 3 we introduce the admissible systems, which eventually will be
used to index the blocks in Dg, (g;“l). In Section 4 we introduce the operation of

spiral induction which is our main tool in the study of D, (g7™"). In Sections 5 and 6

we calculate explicitly the Hom space between two spiral inductions, generalizing to
the Z/m-graded case a result from [L4]. This is used in Section 7 to prove Theorem
0.6. In Section 8 we introduce monomial and quasi-monomial complexes on g:]”l;
we show that the monomial complexes (resp. quasi-monomial) complexes generz_xte
the appropriate Grothendieck group over Q(v) (resp. over Z[v,v~!]) where v is an
indeterminate; this again generalizes to the Z/m-graded case a result from [L4].
This result is of the same type as that which says that the plus part of a quantized
enveloping algebra defined in terms of perverse sheaves is generated over Q(v) by
monomials in the E; and over Z[v,v~!] by the products of divided powers of the
E; (which could be called quasi-monomials). In Section 9 we discuss the examples
where G = SL(V) or G = Sp(V); in these cases we describe the spirals and in the
case of G = SL(V) we describe the blocks.

0.10. Tt is known that, in the ungraded case, each block of Dg(g"") can be related
to the category of representations of a certain Weyl group; if m is large, so that
the Z/m grading of g is a Z-grading and ggil = gy, then each block of Dgg(gg”) is
related to the category of representations of a certain graded affine Hecke algebra
with possibly unequal parameters. In fact, without assumptions on m, each block of

Dg, (g’,;”) is related to a certain graded double affine Hecke algebra (corresponding

to an affine Weyl group attached to the block) with possibly unequal parameters;
this will be considered in a sequel to this paper. We also plan to describe explicitly
the blocks in the case where G is a classical group and relate them to cyclic quivers
with extra structure. The case of the symplectic group is partially carried out in
9.5-9.7.

0.11. Notation. All algebraic varieties are assumed to be over k; all algebraic
groups are assumed to be affine. Let [ be a prime number invertible in k. For
any algebraic variety X we denote by D(X) the bounded derived category of Q-
complexes on X. Let D : D(X) — D(X) be Verdier duality.

For K € D(X) we denote by H" K the n-th cohomology sheaf of K and by HI' K
the stalk of H"K at x € X.

If X' is a locally closed smooth irreducible subvariety of X with closure X’ and
L is an irreducible local system on X’ we denote by £! € D(X) the intersection
cohomolgy complex of X’ with coefficients in £, extended by 0 on X — X'.

If X has a given action of an algebraic group H we denote by Dy (X) the
corresponding equivariant derived category.

If H is an algebraic group we denote by H® the identity component of H, by
Zp the center of H. We set mo(H) = H/H°. Now assume that H is connected.
We denote by £H the Lie algebra of H and by Uy the unipotent radical of H. Let
h = LH. If i’ is a Lie subalgebra of b we write e c H for the closed connected
subgroup of H such that £(e?’) = b/, assuming that such a subgroup exists.

We shall often denote a collection {Vy; N € Z} of vector spaces indexed by
N € Z by the symbol V..

If V is a k-vector space, a Z-grading on V is a collection of subspaces V, =
{Vi; k € Z} such that V = ®yczVi; a Z/m-grading on V is a collection of subspaces
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{Vi;i € Z/m} such that V = @cz/,Vi; a Q-grading on V is a collection of
subspaces {,V;k € Q} such that V = @.cq (V).

A Z-grading for the Lie algebra h is a Z-grading b, = {bp;k € Z} of h as a
vector space satisfying [hg, hr] C bryp for all k k' € Z; a Z/m-grading for b is a
Z /m-grading {h;;i € Z/m} of b as a vector space satisfying [b;, b;/] C b4 for all
i,i € Z/m; a Q-grading for h is a Q-grading {.h;x € Q} of h as a vector space
satisfying [, wb] C wiwb for all K, k" € Q.

Let Yy be the set of homomorphisms of algebraic groups k* — H. For A € Yy
and ¢ € Z, we define cA € Yy by (cA)(t) = A(t°) for ¢ € k*. We define an
equivalence relation on Yy X Zsqg by (A7) ~ (X, r") whenever there exist ¢, ¢ in
Z~ such that cA = '), cr = ¢/r’; the set of equivalence classes for this relation is
denoted by Y q. Let A/r = (1/r)\ be the equivalence class of (A, 7). Now A — A/1
identifies Yy with a subset of Yy q. For k € Q, 1 € Yu g we define kpu € Y, by
ki = (kX)/(K'r), where k € Z, k' € Z~o,r € Zxo,\ € Yy are such that k = k/K/,
@ = A/r; this is independent of the choices. In particular, we have ru € Yg for
some 1 € Zy.

Let A € Yy. For k € Z we set

2h={z €h; Ad(\(t))z = the Vtek'}.

Note that {}h,k € Z} is a Z-grading of b.
Now let ;1 € Yy q. For k € Q we set “h = [/h where r € Z, is chosen so that
ru € Yy, rk € Z. This is well defined (independent of the choice of 7). Note that

{I'h, k € Q} is a Q-grading of .

0.12. Let H be a connected algebraic group acting on an algebraic variety X and
let A, B be two H-equivariant semisimple complexes on X; let j € Z. We define a
finite dimensional Q;-vector space D;(X, H; A, B) as in [L4} 1.7]. For the purpose
of this paper, we can take the following formula as the definition of D;(X, H; A, B):

(a) D, (X, H; A, B) = Homp,, x)(A, D(B)[-j])". |

Let d;(X;A,B)=dimD,(X,H;A,B), {A,B} = Zjez d;(X;A,B)v7 € N((v))
where v is an indeterminate.

If A, B are H-equivariant simple perverse sheaves on X, then

{A,B} € 1 +vNJ[[v]] if B2 D(A),
{A, B} € uN[[v]] if B % D(A).

(See [L4, 1.8(d)].)

For an algebraic variety X we denote by px the map X — (point).

Let v be an indeterminate and let A = Z[v,v~!]. Let : Q(v) — Q(v) be the
field involution such that ¥ = v~!. This restricts to a ring involution : A — A.

For any n € Z — {0} we define n = n/|n| € {1, —1} where || is the absolute value
of n.

1. RECOLLECTIONS ON Z-GRADED LIE ALGEBRAS

In this section we recall notation and results from [L4] that will be used in this
paper.
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1.1. In this section we fix a connected reductive group H; let h = £H.

Let J be the variety consisting of all triples (e, h, f) € b3 such that [h,e] =
2¢, [h, f] = —2f,[e, f] = h (then e, f are necessarily in h"!). If ¢ = (e, h, f) € JH,
there is a unique homomorphism of algebraic groups q~5 : SLa(k) — H such that the
differential of ¢ carries (J3), (5 9),(99) to e, h, f respectively; we then define

Lo €Yg by t(t) = ({,%).

1.2. In the remainder of this section we assume that a Z-grading b, for § is given.
Then there exists A € Yy and r € Z~ with b = ;\kh for all k € Z. (It follows that
My=0foral k € Q—rZ.)

(In this paper we will often refer to results in [L4], even though, strictly speaking,
in [L4] a stronger assumption on the Z-grading of  is made, namely that r above
can be taken to be 1. Note that the results of [L4] hold with the same proof when
the stronger assumption is replaced by the present assumption.)

We have b, C ™ for any k € Z — {0}. Note that by is a Lie subalgebra of b
and that Hy := " C H is well defined and it acts by the Ad-action on each by. If

k # 0, this action has only finitely many orbits (see [L4, 3.5]); we denote by b, the
unique open Hy-orbit in by.

Let n € Z — {0}.

(a) We say that the Z-grading Y. of b is n-rigid if there exists « € Yy such that
(i), (ii) below hold.

(i) &b = byr2 for any k € Z such that nk/2 € Z and }h =0 for any k € Z such
that nk/2 ¢ Z;

(ii) ¢ = 1y for some ¢ = (e, h, f) € JH such that e € b, h €ho, fEbh_, It
follows that 2k’ € nZ whenever by # 0. Note that ¢ is unique if it exists, since, by
(i), ¢(k*) is contained in the derived group of H.

We show: )

(b) In the setup of (a), let ¢/ = (¢/, 1, f') € JH be such that ' € h,, I € bo,
fleb_,. Let/ =1y. Then ! =.

Let ¢ be as in (ii). Using [L4] 3.3], we can find gy € Hp such that Ad(go) carries
¢ to ¢'. Tt follows that Ad(go)c(t) = ¢/(t) for any ¢t € k*. For k € Z such that
nk/2 € Z we have

i = Ad(90)(b) = Ad(go)hx = b
for k € Z such that nk/2 ¢ Z we have

t'h = Ad(go)(4h) = 0,
Senh = Ad(90) (44,) = Ad(go)b = by

Thus ¢/ satisfies the defining properties of ¢ in (a). By uniqueness we have ' = ¢ as
required.

Let Z(by,) be the set of all pairs (O, £) where O is an Hg-orbit in b, and £ is an
Hy-equivariant irreducible local system on b, (up to isomorphism).

Let Q(b,) be the category of Q;-complexes on b, which are direct sums of shifts
of simple Hy-equivariant perverse sheaves on b,. There are up to isomorphism only
finitely many such simple perverse sheaves; they form a set in bijection with Z(h,).

An Hy-equivariant perverse sheaf A on b, is said to be cuspidal if there exists a
nilpotent H-orbit C in h and an irreducible H-equivariant cuspidal local system F

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



284 GEORGE LUSZTIG AND ZHIWEI YUN

on C such that b, C C and A|§ = }'\G [dim b,,]. If such (C, F) exists, it is unique;
n

see [L4, 4.2(c)]. Note that if Ayis cuspidal, then it is necessarily a simple perverse
sheaf.

(c) If there exists a cuspidal Ho-equivariant perverse sheaf A on b,, the grading
b. of b is necessarily n-rigid; moreover, we have A| o =0.
(See [L4}, 4.4(a), 4.4(b)].)

In the setup of (c), the element ¢ € Yy provided by (a) is known to satisfy

(d) 1.b =0 unless k € 2Z;

we deduce that:
(e) If k' € Z and by # 0, then k'/n € Z.

n n

1.3. Parabolic induction. In the setup of 1.2 assume that P is a parabolic sub-
group of H with p := £P satisfying p = @©rezpr where pp, = p N hr. We set
U=Up,L=P/U,u= LU, =L£L =p/u. We have u = ®yczu where 1y = unby.
Setting [ = pg/uk, we have [ = @pezly; this gives a Z-grading of the Lie algebra [.

Now pg is a parabolic subalgebra of the reductive Lie algebra hg; we have pg =
£Py where Py is a parabolic subgroup of the connected reductive group Hy. Let Lg
be the image of Py under the obvious homomorphism P — L. Then Ly = e" C L.
Now Py acts by the Ad-action on each pj. Let 7 : p,, — [, be the obvious projection.
We have a diagram

[, <~ Hy x p, > E S b,
where
E ={(hPy,z) € Hy/Py x b,; Ad(h™ ")z € p,},
a(h, z) = m(Ad(h™1)2),b(h, 2) = (hPy, 2),c(gPy, 2) = z.
Now a is smooth with connected fibers, b is a principal Py-bundle and ¢ is proper.
If Ae Q(l,), then a*A is a Py-equivariant semisimple complex on Hy x p, hence
there is a well-defined semisimple complex A; on E such that b*A; = a*A. Since ¢
is proper, the complex
indg: (4) :=a4,
belongs to Q(b,). For B € D(h,) we can form

resy’ (B) := m(Blp,) € D(I,).

Thus we have functors res,” : D(h,) — D(1,), indgz 1 9Q(1,) — Q(hy).

When [ is a Levi subalgebra of p such that [= @kesz with ~[k =1n br, we will
sometime consider indEZ(A) with A € Q(1,) by identifying [, = [, in an obvious
way and A with an object in Q([,).

1.4. In the setup of 1.3 let S% be the set of Levi subgroups of P and let Sp be the
set of all M € S% such that, setting £M = m, my, = mN by, we have m = Grezmy,
or equivalently such that Ad(A(t))m = m for all ¢ € k*. We have Sp # (); indeed,
we can find M € S% such that A(k*) C M; then M € Sp. Since U acts simply
transitively by conjugation on S%, it follows that:

(a) The unipotent group {u € U; uA(t) = A(t)u Vit € k*} acts simply transitively
by conjugation on Sp.
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1.5. Blocks for Q(h,). Let M, (H) be the set of all systems

(M7 M07m7m*>c)7

where M is a Levi subgroup of some parabolic subgroup of H, m = £M, m, is a
Z-grading of m such that my = mnNhy for all k, My =e™ C M and C is a cuspidal
My-equivariant perverse sheaf on m,, (up to isomorphism). Note that Hy acts by
conjugation on M, (H). Let M, (H) be the set of orbits for this action.

In the setup of 1.2 assume that A is a simple Hy-equivariant perverse sheaf on
hy,. By [L4l 7.5]:

(a) There exists P,L,Lg,p,l as in 1.3 and a cuspidal Lg-equivariant perverse
sheaf C on I, such that some shift of A is a direct summand of indg;’ (C).

Assume now that P’, L', Ly, p’, I is another quintuple like P, L, Lo, p, [ and that
(' is a cuspidal Lj-equivariant perverse sheaf on [;7 such that some shift of A is a
direct summand of ind;’;’ an.

Let M € Sp,M’' € Sp/, let £M = m = ®pmy, be as in 1.4 and let LM’ =m' =
@rm), where mj, = m’ N hy. Let My =e™ C M, My = e™o C M'. We can identify
M, My, m,my, with L, Lo, [, [, via P — L and we can identify M’, Mg, m', m}, with
L' Ly, U1 via P — L. Then C (resp. C”) becomes a cuspidal My-equivariant
(resp. M{j-equivariant) perverse sheaf C' (resp. C') on m,, (resp. my).

Using the last sentence of [L4, 15.3], we see that there exists h € Hy such that
Ad(h) carries M, Mo, m,my, to M', M{, m', m) and C to C’. Thus, we have:

(b) A — (M, My, m,my,C) is a well-defined map from the set of (isomorphism
classes) of simple Hy-equivariant perverse sheaves on by, to the set @n(H).

1.6. Let (M, My, m,my,C) € M, (H). We show:

(a) There exists a parabolic subgroup P of H such that M is a Levi subgroup of
P and such that, setting p = £LP, pi = p N b, we have p = Brezhk-

Let Z = Z9,. Then 3 = £Z is the center of m. Since m is a Levi subalgebra of
a parabolic subalgebra of m, we have 3 C my hence Z C My. We can find \; € Yz
such that the centralizer of A\;(k*) in H is equal to the centralizer of Z in H which
equals M. Let A € Yy, r be as in 1.2. Then A(k*) C Zp,. Now A1 (k*) C Z hence
A1 (k*) € Hp. It follows that Ap(t)A(t) = A(#')A1(¢) for any ¢,¢' in k*. Thus we
have h = @rez rez(3,hN 2}[)). Since the centralizer of A;(k*) in b equals m, we
have m = @rez(},.h N o'h). We set

p= @kez,k’ezzo (grb n 2’16)

Clearly, p is a parabolic subalgebra of h with Levi subalgebra m and such that,
setting pr = p N b, we have p = Prezpr. This proves (a).

1.7. To any (M, My, m,m,,C) € M, (H) we associate a simple perverse sheaf A in

Q(h,) as follows. Let O be the Hp-orbit in b, which contains noln. Let L' be the

irreducible My-equivariant local system on 1%77 such that C o = L'[dimm,]. By
n

[L4, 11.2], there is a well-defined irreducible Hy-equivariant local system £ on O
such that E\& = L'. By definition, A is the simple perverse sheaf on b, such that
n

supp A is contained in the closure of O and A|p = L[dim O].
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1.8. Assume that the Z-grading b, of h is n-rigid. A perverse sheaf A in Q(h,) is
said to be n-semicuspidal if supp A = b,, and A is attached to some

(Ma M07m7 my, C) € m”](H)a

as in 1.7 (in particular, A is a simple perverse sheaf). In this case we have 1101,, Chy;
moreover,

(a) Hy acts transitively on the set of systems (M, My, p, p., m, m*,é) such that
(M, My, m,m,,C) € M, (H), A is attached to (M, My, m,m,,C) as in 1.7, p is a
parabolic subalgebra of b with Levi subalgebra m and p = Grezpr where pr, = pNhy.
(See [L4, 11.9].)

If (M, My, p, p.,m, m*,é) is as in (a), then

(b) ind}” (C) = ©;A[~2s;][dimm, — dimh,)],

where s; € N are defined as follows. Choose ¢ = (e, h, f) € JH as in 1.2(ii);
let Hy, = {9 € H;Ad(g)(e) = e,Ad(g)(h) = h,Ad(g9)(f) = f}, let B be the
variety of Borel subgroups of HJ; then s; are defined by ppQ; = &,;Q[—2s;].
(See [L4, 11.13].)

1.9. Let X be the set of all systems (M, My, p, p., m, m,, A) where p is a parabolic
subalgebra of h with Levi subalgebra m, p = ®rezpr, m = Brezmy where p, =
pNbe, mp =mnNh, M =e™ My =e™ and A is a simple perverse sheaf in Q(m,)
(up to isomorphism) which is n-semicuspidal. We have the following result; see
[L4, 13.3].

(a) Let Ay € Q(by). There exists C1,Cy,...,Ct,Cryq,...,Crpyp in Q(by) such
that

A1®Cl®C’QEB@Ct :C’t+1®...EBC't+t/

and each C; is of the form inng(fl)[aj] for some (M, My, p,p.,m, m*,/i) e X
(depending on j) and some a; € Z.

Erratum to [L4]. In the definition of a good object in the second paragraph of
[L4, 13.2], one should insert the words “shifts of” after “direct sum of” (twice).

1.10. Let s € Z — {0}. We show:

(a) the subspace h'V) := ©pcszbi of b is the Lie algebra of a well-defined con-
nected reductive subgroup H) of H.

We can assume that s > 0. We shall define e € Z>( as follows: if p = 0 we
have e = 0; if p > 0 we define e by s = s'p®, where s’ € Z~( is not divisible by p.
We shall argue by induction on e. (When p = 0 we only have to consider the case
e =0.) Assume first that e = 0.

Let H be the adjoint group of H and let h be its Lie algebra. Then § inherits a
Z-grading h = @by from h. If we assume known that V) := @pc.zby is the Lie
algebra of a well-defined connected reductive subgroup H") of H, then we can take
H® to be the identity component of the inverse image of H") under the obvious
map H — H. Thus we can assume that H is adjoint. Let A € Y be such that
Mh = by, for all k. Let ¢’ be a primitive s-th root of 1 in k. (Note that if p > 0,
s = &' is not divisible by p.) We define w : H — H by w(g) = Ad(A(¢’))(g); this is
an automorphism of H. The automorphism ' : h — b induced by w sends x € b
(where k € Z) to ¢'*z. Hence w® = 1 and hV) is equal to {z € bh;w(z) = z}. Let
H® be the identity component of {g € H;w(g) = g}. This is a connected reductive
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group with Lie algebra h¥). Thus (a) is proved in the case e = 0. We now assume
that e > 1 hence p > 0. We can find an element zy € § such that [zg,z] = kx
for any k € Z and any x € gi. (We can take xo in the image of the tangent map
of \: k* — H.) Let h = { € b;[z0,2] = 0}. We have h = ®repzhr. Let H be
the identity component of {g € H;Ad(g)zo = o}. Since z¢ € b is semisimple, it
follows that H is reductive with Lie algebra h. We define a Z- grading h = @k'ezh K’
by f)k/ = bpir. By the induction hypothesis apphed to H, f) we see that there
is a well-defined connected reductive subgroup H) of H whose Lie algebra is
Drre(s/p) 2Dk = Orrc(s/p)zbpk = Breszbr = hM. We can take H) = HM). This
completes the inductive proof.

2. Z —-GRADINGS AND €¢-SPIRALS

In this section we introduce the key notion of this paper, namely a spiral. Spirals
are analogues in the Z/m-graded setting of parabolic subalgebras in the ungraded
or Z-graded setting. We also attach a canonical spiral to each nilpotent element in

gs-

2.1. In the rest of this paper, m > 1, G, g = Dicz/m@: are as in 0.1 and ¢, 9,0
are as in 0.5. Recall that for i € Z/m we have g; = {z € g;0(z) = ('z} and that
¥ : G — G is the (semisimple) automorphism of G which induces 6 : g — g; note
that (Ad(g)x) = Ad(9¥(g))0(z) for all z € g, g € G.

We shall fix 6 € Z/m.

For any semisimple automorphism ~ : G — G, we set G = {g € G;~v(g) = g}.
By a theorem of Steinberg [St],

(a) G7 is a connected reductive subgroup of G.

Now g is a Lie subalgebra of g. Recall that Gy = G? and that the Ad-action of
Go on g leaves stable g; and its closed subset g := g, N g for any i € Z/m.

Let & be the set of subgroups of G of the form G247 for some semisimple
element of finite order 7 € Gy; by (a), any group in & is a connected reductive
subgroup of G. For example, we have Gy € &; hence we have Gy = e?.

2.2. Let (,) : g x g — k be a Killing form; it is nondegenerate and it satisfies
(9i,9;) = 0 whenever i + j # 0 in Z/m. Hence for any i € Z/m, (,) : g; x g—; = k
is nondegenerate.

2.3. The Morozov-Jacobson theorem in the Z/m-graded setting. We set
J = J% see 1.1. For z € g™ let J(z) = {(e,h,f) € J;e =z}, G(z) = {g €
G;Ad(g)r = z} and let U = Ugzpo. Recall the following result of Morozov-
Jacobson and Kostant; see [Ko.

(a) We have J(z) # 0. The U-action on J(x) given by

u: (e h, f) = ule, h, f) = (e, Ad(u)h, Ad(u) f)
is simply transitive.
Assume now that z € g7*'. We set
Js(z) ={(e,h, f) € J(x);e =2,h € go, f € g5}

We show:
(b) We have Js(x) # 0. The (UNGy)-action on Js(x) (restriction of the U-action
in (a)) is simply transitive.
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If (e, h, f) € J(x), then ((~%e, h,(°f) € Js(¢°x) and

(C7°0(e), 6(), C°0(f)) € T((*0(x)) = J ()

(we use that 6(e) = (%¢). Hence (e, h, f) — ((%0(e),0(h),%0(f)) is a morphism
0" : J(xz) — J(x). Next we note that g — ¥(g) defines a homomorphism G(z) —
G(z). (If Ad(g)x = =, then §(x) = 0(Ad(g)x) = Ad(Y¥(g))é(x). Since () = (°x,
we see that (°z = Ad(9(g))¢’z hence + = Ad(9(g))z and ¥(g) € G(z).) This
restricts to a homomorphism 6” : U — U with fixed point set U?". For u € U,
(e, h, f) € J(x) we have &' (u(e, h, f)) = 6"(uw)0'(e, h, f). By (a), J(z) is an affine
space. Since '™ = 1 and m is invertible in k, the fixed point set .J (3:)9/ is nonempty.
Since the U-action on J(x) is simply transitive, it follows that this restricts to a
simply transitive action of U?" on J(z)?. We have J(z)? = Js(x) and U?" =
U N Gy. We see that (b) holds.

2.4. Let A € Yg, (resp. p1 € Yg,,q)- Since A (resp. p) can be viewed as an element
of Y (resp. Yg.q), the decomposition g = @rez(29) (resp. g = Bueq(tg)) is
defined as in 1.1. For i € Z/m and for k € Z (resp. k € Q) we set 2g; = 79 N g
(resp. kg; = tgNg,); we then have g; = ®rez(39i) (resp. gi = Breq(tg:)) for any
i € Z/m (we now use that A € Yg, (resp. p € Yg,,q))-

Let s € Z — {0}. We show: B

(a) The subspace gt = ®Oresz(p0k/s) of g is the Lie algebra of a well-defined
connected reductive subgroup GV of G.

We apply 1.10(a) to H = G, h = g with the Z-grading g = &5 (3g). We see that
there is a well-defined reductive connected subgroup H) of G whose Lie algebra
is B = ®resz(29). Note that H® contains A\(k*) and is ¥-stable. We choose
¢’ € k* such that ¢’* = (. We define w: H® — H® by w(h) = Ad(A(¢)) " 9(h);
this is an automorphism of H(). The automorphism «’ : h — h) induced by
w sends x € 3g; (where k € sZ, i € Z/m) to ¢! *(iz = ¢'k/32. Hence w'™ =1
and g(M is equal to {z € h;w'(z) = 2}. Let G be the identity component of
{h € HY;w(h) = h}. Then GM is a connected reductive subgroup of H) with
Lie algebra g, This proves (a).

Now égg is a Levi subalgebra of a parabolic subalgebra of go. Hence 0% is a
well-defined subgroup of Gy (a Levi subgroup of a parabolic subgroup of Gy). We
have - -

(b) ed®o ¢ GO,

2.5. The definition of e-spirals. In the rest of this section we fix ¢ € {1, —1}.
For any p € Yg,,q and any N € Z we set

(a) P = Orequezne(kon)-
If r € Z+ is such that A :=ru € Yg, then we have
Py = rezipzrne(0N)-

A collection {pn; N € Z} (or p.) of subspaces of g is said to be an e-spiral if there
exists 1 € Yg,,q such that py = p/y for any N € Z. We then set (for N € Z)

uny = {x € ON; <x, 6pi]\r> = 0} = @HGQ;K>Ne(ggﬂ)'

We say that u, = {uy; N € Z} is the nilradical of p..
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The following properties of p,, i, are immediate:

o CPN CPN—em CPN—2em C ... for any N;

pn C gy for any N; py =0 if Ne > 0; py = gy if Ne < 0;
[P, pN] C pyyne for any N, N’ in Z;

. CUuy CUN—em CUN—2¢m C ... for any N;

uy C py for any N; uy = gy if Ne < 0;

[un,pn/] Cuyyns for any N, N’ in Z.

For N € Z we set [y =pn/uny and [ = Bnezly. We have [y =0if N > 0 or if
N < 0 hence dim [ < oo; moreover, [,] : py X pyr — pnin induces an operation
[y X Iy — Iy N which defines a Lie algebra structure on .

Note that po is a parabolic subagebra of the reductive Lie algebra go and up =
{z € go; (z,po) = 0} is the nilradical of py. We set Py = eP° C Gy, Uy = e*° C Goy.
Then P, is a parabolic subgroup of Gy and Uy = Up,, so that Ly := Py/Up is a
connected reductive group. We note that:

(b) The Ad-action of Py on g leaves stable py and uy for any N.

From (b) we see that for any N there is an induced action of Py on [y = px/un-.
We show:

(¢) The restriction of this action to Uy is trivial.

It is enough to show that the ad-action of up on py/uy is zero. This follows
from the inclusion [ug, px] C uy which has been noted earlier.

From (b),(c) we see that for any N there is an induced action of Ly = Py/Uj on
[y = pn/un. We show:

(d) if z € py, Ne > 0, then z € gl

It is enough to show that for any 2/ € g we have ad(z)™(z’) = 0 for n > 0. We can
assume that 2’ € g; for some i € Z/m. If N’ € Z satisfies N’ = i and N'e < 0, then
pne = g; thus we have 2’ € py/ for some N’. We have ad(z)z’ = [z,2] € pyynv,
ad(z)%(2') € panin+ and, more generally, ad(z)"(z') € ppnins forn > 1. If n>> 0
we have nNe + N’e > 0 hence p,n4n = 0; thus, ad(z)™(z") = 0. This proves (d).

An element p € Yg, q is said to be p-regular if ru € Yg, for some r € Z~( such
that r ¢ pZ. (This condition holds automatically if p = 0.) An e-spiral p, is said
to be p-reqular if p, = p’ for some p-regular u € Yeo.q-

2.6. Splittings of e-spirals. For u € Yg, @ and N € Z we set

W = Grequeene(fon) = o
If r € Z~ is such that A\ :=rp € Yg,, then we have
g[l](f = ?Negﬂ

A splitting of an e-spiral p, is a collection {EN;N € Z} (or f*) of subspaces of g
such that for some p € Yg,,q we have p, = “p¥ and [y = “ly for any N € Z.
Let u, be the nilradical of p,. From the definitions we see that py = uy @ Iy for
any N, [Iy,In/] C Inyyne for any N, N" and the sum [:= 7y, [y (in g) is direct.
Now [ is a Lie subalgebra of g which is Z-graded by the subspaces [y. Note that
the isomorphisms [y — [y (restrictions of the obvious maps py — [y) give rise
after taking @y to an isomorphism [ = [ which is compatible with the Lie algebra
structures and the Z-gradings.
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For p as above we can find A € Y, and r € Z+( such that rp = A. Applying
2.4(a) with s = re we see that: R

(a) There is a well-defined connected reductive subgroup L of G whose Lie algebra
is I. In particular, [ and { are reductive Lie algebras.

Let Lo = €. From 2.4(b) we have:

(b) .Z/() C i

We show:

(c) Assume that we have I, =<, P = °pk where p is p-reqular, that is, = r\
with X € Yg, and r € Z~q such that v ¢ pZ. Then there exists (', a root of 1 in
k* such that [ = {z € g; Ad(\(¢")")0(x)) =z}, L = GAANC™Y = el  G; note
that L € &.

Let ¢’ be a primitive root of 1 of order rm in k* such that /"¢ = (. We have
0 = Brez,icz/m(30i); Iy = Nrcn for all N € Z. For k, N’ € Z and x € gy’ we
have

AN ) () = RNz = N ey,

The condition that ¢'™V'<% = 1 is that rN’e — k € rmZ or that k € rZ and
N’ =k/(re). We see that

{z € g; Ad(N(C) 1) (0(2)) = 2} = Orerzicz/mb/(ro)=i(78:) = Enez(Pyeon) =1,

and (c) follows.

We return to the general case.

We have A(k*) C Lo; moreover, Ad(A(t)) acts as identity on Iy = jgo = £Lo;
thus, A(k*) C Z;_. Since k* is connected, we deduce:

(d) A(k*) € 20 .

Note that:

(e) Fort € k*, N € Z, Ad(\(t)) acts on Iy as t"™N¢ times identity.

We show:

() If \, is a splitting of an e-spiral p, then I, is a splitting of an (—¢)-spiral.

Let p € Yg,.q be such that [, = I, p, = p. Let o/ = (—1)u € Yg,.q- Then
I, =~ is a splitting of the (—e)-spiral —ept.

2.7. Let & be the set of splittings of an e-spiral p,. Clearly, & # (. Let Uy be as in
2.5. Now Up acts on & by u : [, — {Ad(u)ly; N € Z}. (We use that Ad(u)py = px
for any N.) We show:

(a) This Up-action on & is simply transitive.

Let u, be the nilradical of p,.. Let [, € &, [, € &. Since Iy, [} are Levi subalgebras
of po, there is a unique u € Uy such that Ad(u)ly = 1. It remains to show that

this u satisfies Ad(u)~[N = ~[§V for any N. Let [ = Byly, [ = @NI’N (these are Lie

subalgebras of g) and let L=¢' C G, L' = e C G. Let p, ¢ in Yg, q be such that
p. = ph = Epi”/, =<1 = " We can find r € Z- such that X\ :=ru € Yg,,
N o=y’ € Yg,. Let Lo be as in 2.6 and let L), be the analogous subgroup of
L. We now fix N € Z. The Ad-action of Lo (resp. L}) on g leaves stable Iy, uy
(resp. Uy,un). Let L§ = uLou™?, I}, = Ad(u)ly; then the Ad-action of L on g
leaves stable I, uy. Since Ad(u)ly = [, we have uLou~! = L}, hence L) = L.
Let T be a maximal torus of Ly = L{j. Now the Ad-action of T' on g leaves stable
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Uy, U un, py. Let X = Hom(T,k*). For any o € X let
PN ={z€pn;Ad(T)z =a(T)r YT €T}, une=UnNPNa;

i

i U
Nao=INNPNa-

N,a — i/N n pN,ou

We have [y = 690aGXI/N,w 0 = @acaxli 0 UN = Bacxlina. Let RN = {a €

X;TQ\,A #0}, R ={a € Xﬂlz(aa #0}, R ={ac L)(;ELN’Q # 0}. Since Uy, %,

are T-stable complements of uy in py, the T-modules Iy, [} are isomorphic, hence

R’ = R”. Since N (k*) C Zg, (see 2.6(d)), we have X (k*) C T; hence for any
0

o € X we can define a o X € Z by a(N(t)) = t*** for all t € k*.

Assume that o € R. Then for any ¢ € k*, Ad(\(t)) acts on uy o as multipli-
cation by t** hence Uy o C g;/\,gﬂ; thus g;/\,gﬂ has a nonzero intersection with
Uy, so that a e X' > rNe. We see that R C {a € X;a e X > rNe}. Assume
now that o € R'. Then for any ¢ € k*, Ad(X'(¢)) acts on [}y , as multiplication by
t**A hence [3\/,04 - Z\Y:)\/gﬂ; thus, Z\Y:)\/gﬂ has a nonzero intersection with T’N, so that
ae )N =rNe. We see that R’ C {o € X;ve N = rNe}. It follows that R’ NR =0
so that py o = I'NO[ for « € R'. Since R’ = R”, we have also R” N'R = {), so that
PN = ~[’](,a for a € R” = R'. Thus, for « € R' = R" we have ~[§V7a = ~[3(,7(1 hence
Iy =% and Iy = Ad(u)ly. This proves (a).

For any splitting [, of p, we denote by i(f*) the connected reductive subgroup
L of G associated to [, in 2.6. The family of groups (L([,)) indexed by the various
splittings [, of p, has the property that any two groups in the family are canonically
isomorphic to each other; the isomorphism is provided by conjugation by a well-
defined u € Uy (this follows from (a)). It follows that the groups in the family
can be identified with a single connected reductive group L which is canonically
isomorphic to each group in the family. Note that L is canonically attached to the
e-spiral p, and that £L = [ canonically. Note also that Ly in 2.5 is naturally a
closed subgroup of L.

2.8. Subspirals coming from parabolics of [,.. Let p, be an e-spiral. We define
iy, L, [in terms of p, as in 2.5. Let q be a parabolic subalgebra of | compatible
with the Z-grading of [ that is, such that ¢ = ®yeczqy where qy = qNIy. For any
N € Z let pn be the inverse image of qx under the obvious map py — [y. We
show:

(a) Py is an e-spiral. Moreover, if p, is p-reqular then p, is p-reqular.

We can find p € Yg,.q such that p, = “p¥; let [, = %, Let L be as in 2.6. Let §
be the Lie subalgebra of I corresponding to ¢ under the obvious isomorphism (el
and let gy = NIy so that § = ®yezdn. We then have py = uy @ gy for all N.
Let r € Z+( be such that A := ru € Yg,; if p, is p-regular we assume in addition
that r ¢ pZ. -

From 2.6(e) we see that for ¢t € k*, Ad(A(t)) leaves stable each gy hence it
leaves stable g. It follows that k* acts via ¢t — Ad(A(¢)) on the variety of Levi
subalgebras of q; since this variety is isomorphic to an affine space, there exists a
Levi subalgebra m of g such that Ad(A(¢))m = m for all ¢ € k*. Let R be the closed
connected subgroup of L (a torus) such that £R is the center of m. Since § is a
parabolic subalgebra of [ with Levi subalgebra m, we can find N € Yg such that,
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setting for any N’ € Z:
A= {z e LAAWN )z =tz Vtek'},

we have § = ®nez., (j\\;,i), m = 2"1. We have m = ®ymy where my = mN [y and
my is a Levi subalgebra of a parabolic subalgebra of m. Hence a Cartan subalgebra
of m Ny is also a Cartan subalgebra of m, so that it contains the center of m.
Thus the center of m is contained in [y, so that R C Ly. Since for any ¢,¢ € k*,
A(t) is contained in Z; and N'(¥') € Lo, we have A(t)N (') = N (t')A(t). We can
view A" as an element of Y, hence zlgi is defined for k € Z,i € Z/m and we have

g = @kez(glgi) for any ¢ € Z/m. We can find a € Z~( such that glgi = 0 for any
i € Z/m and any k € Z — [—a,a]. Let b be an integer such that b > 2a, b ¢ pZ. We
define \” € Yg, by \'(t) = M) (t) = N (t)A(t®) for all t € k*. By definition, for
k€ Z,i € Z/m we have:

N = {z € gi; AdA(E)N ()z = the Vit € K}
= ®k:’,k2;k:’€bZ,k:2€Z,k:’+k2:k(2//1)91' N 2291‘)-
When gugi # 0 then k = bky + ko for some k1 € Z N [—a,a], ko € Z; in this case,
k1, ko are uniquely determined by k since b > 2a. Thus, we have

N =0 a0 Ny g if k= bk + ko with ki, ke in Z,

% 8; = 0, otherwise.
Let i/ = 2N € Yg,.q and let p), = epﬁf/. For N € Z we have

r A N
PN = Bky ko €Zibks +ka> Nbre, ks | <a (i, N N 5, ON)-

The only integer multiple of b in [—a, a] is 0; hence the condition that ks > b(rNe—
k1) (with ko € [—a,a]) is equivalent to the condition that either 0 > b(rNe — k1),
ko € [—a,a] or that 0 = b(rNe — k1), k2 € [0,a]. Thus, ply = X ® X', where

X = ®ky kyeziky>rNe (08 N0y 0N8) = @iy eziky>rNe(, 85) = U,

X' = @k, hyeziki=rNeka >0 (2, 08 N 1,88) = Iv N (Broezoy (h0n)) = v NG = dn.
Thus, we have py = uy @ gy = pn. This proves (a).

From the computation in the previous proof we can extract the following:

(b) the splitting cm of the e-spiral p, = pk is equal to m,.
2.9. The spiral attached to an element z € gi*'. In the remainder of this paper
we fix n € Z — {0} such that n = 9.

In this subsection we assume that ¢ = 7); see 0.12. Let 2 € g?!. We associate
to = an e-spiral as follows. By 2.3(b), we can find ¢ = (e, h, f) € Js(x) such that

e==x. Let t =14 € Yg be as in 1.1. Since the differential of ¢ is the linear map
k — g, z — zh € go, we have ¢(k*) C Gy so that ¢ can be viewed as an element of

Y, Then p? = epl"/D ig an espiral with splitting 12 := <I{""/?*. Note that for
N € Z we have
PR = @hezmzone (i on), & = bn/mon if2N/n € Z, 13 =0if 2N/n ¢ Z.

We show that:
(a) The e-spiral pf 18 p-reqular; it depends only on x, not on @.
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The p-regularity follows from the fact that 2 ¢ pZ. We now prove the second
statement of (a). By 2.3(b), another choice for ¢ must be of the form u¢ where
u € Ugypo N Go. Let / = 144 For t € k* we have J/(t) = we(t)u™" hence
vg; = Ad(u)(4g;) for any k € Z,i € Z/m. Tt follows that for N € Z we have
p}{,‘b = Ad(u)p}f,. To show that p}(;b = pﬁ,, it is enough to show that Ad(u)p}f, = pﬁ,.
It is enough to show:

Ad(u) (0) C Spsk(lug) for any u € Gz),k € Z.

Let P be the parabolic subgroup of G such that £P = @ez.x>0(}.9). Clearly,
Ad(g)(k9) C @rr>k(}g) for any g € P,k € Z. Hence it is enough to note the
known inclusion G(x) C P. This proves (a).

In view of (a) we will write p® instead of p?, where ¢ is any element in J5(x);
let u? be the nilradical of p¥. Now the splitting [4 depends in general on ¢. We set
¢ = @Nezf}@; this is a Z-graded Lie subalgebra of g. Let L? = e ¢ G; we have
L? € ®. Let L = €% C L. We show:

o

(b) We have x € if;, more precisely, x belongs to ~[,7 (the open I:Jg—orbit on i?;)

The first statement is the same as « € 4gs; this follows from the equality [h, z] =
2z. The second statement can be deduced from [L4], 4.2(a)].

We set Li(z) = LY N G(x), Go(x) = Go N G(z). We show:

(c) The inclusion L3(z) — Go(x) induces an isomorphism on the groups of
components.

Let Py be the parabolic subgroup of Gy such that £Py = p§ = Srezk>0(,00)
and let Uy = Up,. We set Py(z) = PyNG(x), Up(x) = UpNG(x). Then L{ is a Levi
subgroup of Py so that Py = LEU, (semidirect product) and Py(z) = LS (2)Us(z)
(semidirect product). Since Up(z) is a connected unipotent group we see that the
inclusion f/g(x) — Pp(x) induces an isomorphism on the groups of components. It
remains to show that Py(x) = Go(z). As we have noted in the proof of (a), we have
G(z) C P hence Gy(z) C PN Gy; since PN Gy and Py have the same Lie algebra,
namely p{, they must have the same identity component; since Py is parabolic in
Gy, we must have P NGy = Py, so that Go(z) C Py and therefore Gy(x) C Py(z).
Since the reverse inclusion is obvious, we see that Py(z) = Go(z) and (c) is proved.

We show:

(d) If g € Gy is such that Ad(g~")(x) € p, then g € Py.

The assumption of (d) implies that g € P. (We use [L4, 5.7] applied to the
trivial Z-grading of g that is, the Z-grading such that in [L4} 3.1] we have gy =0
for N #0.) Thus, we have g € PN Gy. As in the proof of (c¢) we have PNGy = Py
and (d) follows.

We show:

(e) The Py-orbit of x in py is open dense in py.

We argue as in [L4], 5.9]. Tt is enough to show that dim(FPy) — dim(Py N G(x)) =
dim py or equivalently that

dim pg — dim ker(ad(z) : p5 — g5) = dimpj.

Since x € p; (see (b)) and [p§, py] C py;, we have ad(x)(pg) C p;) so that it is enough
to show that

dimker(ad(z) : py — py) = dimpg — dimpy,
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or equivalently, that ad(z) : p§ — p;, is surjective. By the representation theory of
slp, the linear map

ad(7) : Orezk>0(10) = Prezr>2(30)

is surjective. This restricts for any ¢ € Z/m to a (necessarily surjective) map

ad(2) : Drezk>0(:8i) = Drezih>2(i8itos)-
Taking i = 0 we see that ad(z) : pj — pj, is surjective. This proves (e).

The assignment z — p¥ is a Z/m-analogue of an assignment in the case of Z-
graded Lie algebras given in [L4 §5] which is in turn modelled on a construction
in [KLL 7.1].

3. ADMISSIBLE SYSTEMS

In this section we introduce the set T, of Gy-conjugacy classes of admissible
systems, which will be used to index the blocks in D¢, (ggl“). We also define a map
that assigns a pair (O, L) (where O is a Go-orbit in g7 and L is an irreducible
Go-equivariant local system on it) an element in %,

3.1. Definition of admissible systems. We preserve the setup of 2.1.

Let T} be the set consisting of all systems (M, Mo, m, m,, C), where M € &,
m = £M, m, is a Z-grading of m, My = e™ C M, Cis a simple cuspidal M-
equivariant perverse sheaf on m,, (up to isomorphism).

Until the end of 3.4 we ﬁxé = (M, My, m, m,, C’) € 327. Let ¢ € Y be associated
to C as in 1.2(c),(a) (with M, C instead of H, A), so that {m = m,; /o for any k € Z
such that nk/2 € Z and {m = 0 for any k € Z such that nk/2 ¢ Z. Then we have
my = ;k,/nm for k' € Z such that 2k'/n € Z and my, = 0 for ¥’ € Z such that
2k'/n ¢ Z. Note that +(k*) is contained in Z§; .

The system £ is said to be admissible if conditions (a),(b) below are satisfied:

(a) we have my C gy for any N € Z;

(b) there exists an element 7 of finite order in the torus «(k*)Z%, of My such
that M = GA4(T)Y,

We now consider the following condition on { which may or may not hold.

(c) my is a splitting of some p-regular 1-spiral or, equivalently (see 2.6(f)), of
some p-regular (—1)-spiral.

The following result will be proved in 3.2-3.4.

(d) ¢ is admissible if and only if € satisfies (c).

We now make some comments on the significance of condition (b). Assume that
condition (a) is satisfied and that 7 is any semisimple element of finite order of Gg
such that M = GA4)Y We show that we have automatically

(e) T € uk")Zpy.

Note that 9(7) = 7 since 7 € G hence 7 € GA4(")Y = ).
Let N € Z be such that 2N/n € Z. Since my C gy, 0 acts on my as ¢V since
Ad(7)0 acts as 1 on m we see that Ad(7) acts on my as (~VV. On the other hand,

for t € k*, Ad(u(t)) acts on my as £2V/7. Hence if ty € k* satisfies t2/" = (1,
then we have Ad(c(tg)) Ad(77!) = t%N/"CN = (" N¢N =1 onmy. It follows that
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Ad(u(to)) Ad(t71) = 1 on m. Since t(tg)7~! € M, we deduce that i(tg)7~ 1 € Zp
hence 7 € 1(k*)Z), as asserted.

We see that condition (b) is a strengthening of (e) in which 7 is required to lie
not only in ¢(k*)Z,; but in its identity component.

3.2. We show:

(a) For any element 7y of finite order in a torus T there exists \g € Y such that
To € )\Q(k*)

We can find ¢ € Z+ such that ¢ ¢ pZ and 7§ = 1. Let p. = {z € k*;2° = 1}.
For some a € N we can identify 7' = (k*)* and 79 with (21,...,24) € (tc)®* C T
Now p. is cyclic with generator zy. Thus we have z; = zgl, ceyZq = zg“, where
ki,...,kq are integers. We define \g € Y7 by t + (t¥1, ... t*ke). Then 79 = Ao(20),
as desired.

We remark that in the proof of (a) we can assume that:

(b) k1 € Zo, k1 ¢ PZ.

Indeed, if p = 0, then k; ¢ pZ is automatic. Assume now that p > 0. We write
ki1 = kip®, where ki € Z — pZ, e € Z>(. Define z, € u. by z{, = zf . This is again
a generator of p.. (Recall that ¢ ¢ pZ.) We have z; = (2)*1, z; = ()%, where
k; € Zo for j = 2,3,...,a. Thus we can replace 2o, k1,...,ks by 2, k1, ..., ki,
where k] € Z-o, k] ¢ pZ. This proves (b).

We now assume that 7 as in 3.1(b) is given. We show:

(c) There exist f € Zso and N € Yzo such that f ¢ pZ and such that, if
A €Y )z, s defined by A(t) = LN (t) for all t, then T € A(k*).

If ¢ is identically 1, then (c) follows from (a) applied to T' = Z9, (we can take
f =1). Assume now that ¢ is not identically 1. Then ¢ : k* — M has finite kernel.
Let T = k* x Z%,; we define d : T — 1(k*)ZY, by d(t,g) = 1(t)g. By definition,
t(k*) is contained in the derived subgroup of M hence it has finite intersection with
Z%,. Tt follows that d has finite kernel. It is also surjective, hence we can find
7 € T of finite order such that d(7) = 7. Using (a), we can find Ao € Y7 such that
7 € Ao(k*); moreover, by (b), we can assume that, setting Ao(t) = (A1(¢), N (¢))
with A\ € Y-, M € Yzo , we have A1 (t) = tf for all t where f € Zg, f ¢ pZ. Let
A =d)\ : k* — o(k*)ZY,. We have A\(t) = t(\(t)N(t) = o(t))N(t) for t € k*.
Since d(7) = 7 and 7 € A\g(k*), we have 7 € A(k*). This proves (c).

3.3. We now assume that 7 as in 3.1(b) is given; let A, N, f be as in 3.2(c). We
assume also that 3.1(a) holds. We can find ¢ € k* of finite order such that A\(c) = 7.
(If 7 # 1, then X is not identically 1 so it has finite kernel and any ¢ € A=1(7) has
finite order; if 7 =1 we can take ¢ = 1.)

Since A(k*) C My and My C Gy (as a consequence of our assumption 3.1(a)),
we can view A as an element of Y, hence }g; is defined for any k € Z,i € Z/m.
Since A(k*) C M, we can view ) as an element of Yy, hence ym is defined for any
kel

For t € k*, k € Z such that 2k/n € Z and = € my we have Ad(A(¢))x =
Ad((tH)) Ad(N ()x = Ad(u(tF))x = t2F//72 (we use that N'(t) € 29,). Thus
my C ékf/nm. Recall also that m; # 0 implies k/n € Z; see 1.2(e). Since the

subspaces my, form a direct sum decomposition of m and the subspaces ;‘m form a
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direct sum decomposition of m, it follows that:
my = Qkf/nm for any k € n”Z and

(a)

;‘m = 0 unless j = 2kf/n for some k € nZ.
For k € Z,i € Z/m and x € }g; we have
Ad(7)0(z) = Ad(A\(e))8(x) = P Ad(M\(¢))z = CicPa.

Since m = {z € g; Ad(7)(0(x)) = =}, we see that:
(b) m= @jez,iGZ/m;gicj:1@gi)-
If ;‘gi is nonzero and contained in m then ?m is nonzero hence by (a) we have
j =2fk/n for some k € Z and my, is a nonzero subspace of g;; thus, by 3.1(a), we
have i = k and 2k/n € Z. Thus we can rewrite (b) as follows:

m= @kEnZ;Ckc2fk/":1(%fk/ngﬁ)’
that is,
(C) m= GBkEnZ;(C”ch)k/":l(%\fk/ngk)'
Assume now that m, # 0. Using (a) we have m, = é\fm # 0. By 3.1(a) we have
m, C gs5. It follows that m has nonzero intersection with g‘fg(;. Now Ad(7)6 acts
on %‘fgg as multiplication by ¢”c2/ and it acts on m as the identity. It follows that
¢"c*f = 1. Thus (c) can be rewritten as:

(d) m = Brenz (5pkn08)-

Next we assume that m, = 0. By the definition of ¢ (see 3.1) this implies that
¢ is identically 1 hence m = mg. From (a) we see that m = }m, hence in (c) all
summands corresponding to k # 0 are zero. Thus (d) remains true in this case. We
see also that

my =

E = 25ke9k

for all k € Z. Setting p = |n|A/(2f) we see that m, is a splitting of the p-regular
5= n| A .

e-spiral “p;’ "X We see that if ¢ is admissible then it satisfies 3.1(c).

3.4. Assume now that & satisfies 3.1(c). Thus m, is a splitting of an e-spiral p, = p¥
where p is p-regular. Applying the conjugacy result 2.7(a) to the two splittings
m,, I we see that there exists a p-regular z’ such that p, = Ep’;f,, m, = 1", Thus
we can find A € Yg,, r € Zs¢ such that r ¢ pZ and

my = ?ngﬂ
for any N € Z. In particular, 3.1(a) holds. We now show that 3.1(b) holds.
From 2.6(c) we see that M = GAdAC) ™Y for some root of unity ¢’ € k*. Let
7= X(¢')7!. It remains to show that A\(¢")~! € «(k*)Z%,. More generally, we show
that A(t) € «(k*)Z%, for any ¢t € k*. Now X can be viewed as an element of Yy
hence 7m is well-defined for any k € Z and we have }y.m = my for any N € Z.
Recall that for N' € Z we have my = 4, mif N/n € Z and my = 0if N/n ¢ Z.
We see that for any N € nZ and any t € k*, Ad(\(t)) acts on my as t"V¢ while
Ad(c(t)) acts on my as t2Ve. Hence Ad(A(t)%4(t)~"1") acts on my as 1. Since
m is the sum of the subspaces my, we see that Ad(A(t)2e(t)~"I"!) acts on m as 1.
It follows that A(t)%.(t)~"1"l € Zys. Since t — A(t)2¢(t) """ is a homomorphism of
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the connected group k* into Zy, its image must be contained in Z9,. Thus, for
any ¢ € k* we have \(¢)2:(t)~"I" € 29, hence A\(t?) € 1(k*)ZY,. Since any ' € k* is
a square, it follows that A(t') € «(k*)ZY, for any ¢’ € k*. We see that, if £ satisfies
3.1(c), then £ is admissible. This completes the proof of 3.1(d).

3.5. The map V : Z(g;) — ,. Let Z(gs) be the set of pairs (O, £) where O is a
Go-orbit on g7 and £ is an irreducible Gp-equivariant local system on O defined
up to isomorphism. Since Gy acts on g§® with finitely many orbits, see [Vil, the
set Z(gs) is finite.

Let T, be the set of all (M, My, m, m,, é’) € T, which are admissible (see 3.1) or
equivalently (see 3.1(d)) are such that m, is a splitting of some p-regular e-spiral.
The group Gy acts in an obvious way by conjugation on ¥,; we denote by T, the

set of orbits, which is a finite set. We will define a map ¥ : Z(gs) — Z,. Let
(0,L) € Z(gs). Choose z € O and ¢ € Js(z); define u®, 17, I¢,E¢,E§ as in 2.9.
o®

Recall that L¢ € &. We have = € in (see 2.9(b)). By 2.9(c), L1 := L]s is an

["7

o®
irreducible I:g—equivariant local system on ~[n. Let A be the simple ﬂg—equivariant
o
perverse sheaf on N[?; whose restriction to En is £1[dim f?;] The map 1.5(b) associates
to A an element (M, My, m, m,, C) of M, (L?) well defined up to conjugation by L?.
Using 1.6(a) we can find a parabolic subalgebra q of [ compatible with the Z-
grading of [ and such that m is a Levi subalgebra of g. Setting ply = uﬁ, + qn for
any N € Z, we see from 2.8(a) that p’, is a p-regular e-spiral and from 2.8(b) that
m, is a splitting of p/,. We see that (M, My, m, m,,C) € T,

We now show that the Gg-orbit of (M, My, m, m,, C’) is independent of the choices
made. First, if x, ¢ are already chosen, then the ig—orbit of (M, My, m,m,,C) is
well defined hence the Gg-orbit of (M, My, m, m,, C) is well defined (since L¢ Gy).
The independence of the choice of ¢ (when z is given) follows from the homogeneity
of Js(z) under the group U N Gy in 2.3(b). Finally, the independence of the choice
of x follows from the homogeneity of O under the group Go. Thus,

(O,L) — (Gy — orbit of (M, My, m,m,, C))
is a well-defined map V¥ : Z(gs) — %,

3.6. Let 5 = (M, My, m, m*,é) € %, Let (’)é be the unique Gy-orbit in gg’” that
contains 1%77. Let & = (M', M}, w’,m,,C") € T We show:

(a) If Oz = O, then there exists g € Go such that Ad(g) carries (M, Mo, m, m,)
to (M', M}, m',m’).

By [L4, 3.3], we can find ¢ = (e, h, f) € JM, ¢/ = (¢, I/, f') € JM' such that:

o ol
(b)eem,, hemg, feEm_,, e em,, M emy, f'em.,.
We set v =14 € Yar, t/ = 1y € Yarr. By 1.2(a),(c),(e), we have

(c) my, = 5 ,m, My = Lz,,c/nm’ iftkenZm,=m,=0if k € Z—nZ.

By assumption, we have ¢/ = Ad(gi)e for some g; € Gy. Replacing the system
(M, My, m,m,,C,¢) by its image under Ad(g;1), we see that we can assume that
e = ¢/. Using 3.1(a) for £ and ¢’, we can view ¢, ¢’ as elements of J& with the
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same first component. By 2.3(b), we can find g» € Gy such that Ad(ge) carries ¢

to ¢’. Replacing (M, My, m,m,, C, ) by its image under Ad(g;), we see that we

can assume that ¢ = ¢’ as elements of J. It follows that . = ¢/ as elements of Yg.
Let

Gy = {g € G5 Ad(g)(e) = e, Ad(g)(h) = h, Ad(g)(f) = f}.

Since e, h, f are contained in m we have Zj); C Gg4. Similarly, since e, h, f are
contained in m’, we have Zp;r C Gg. We have also 29, C Gy (since the center of
m is contained in my C go); similarly we have Z9;, C Go. Thus, 29, and ZY,, are
tori in (G N Gp)°. We show that ZY; is a maximal torus of (G4 N Gp)°. Indeed,
assume that S is a torus of (G4 N Gp)° that contains Z9,. Since S C Gy, for any
s € S we have Ad(s)h = h hence si(t) = ¢(t)s, that is, Ad(c(t))s = s for t € k*.
Since S contains ZY,, for any s € S,z € Z9; we have Ad(z)s = s. Since S C G we
have 9(s) = s for any s € S. We see that Ad(¢(t)) Ad(2)9(s) = s for any t € k*,
z€ 2, 5s€ 8. We can find 7 € 1(k*) 2%, such that M = GA4"?Y We have seen
that Ad(7)d(s) = s for s € S. Thus S C M. Since S C Gy, we have

5 C My :={g € M;Ad(g)(e) = e, Ad(g)(h) = h, Ad(9)(f) = [},

hence S C Mg. Since e is a distinguished nilpotent element of m, we have Mg =
ZY;. Thus we have S C Z9,. By assumption, we have Z9, C S, hence Z3, = S.
Thus ZY, is indeed a maximal torus of (G4NGy)?, as claimed. Similarly we see that
29,/ is a maximal torus of (G, N Gp)°. Since any two maximal tori of (G N Gp)°
are conjugate, we can find gz in (Gg N Gp)? such that Ad(gs) carries Z9; to Z9,..
(It also carries ¢ to ¢.)

Replacing (M, My, m, m,, C, @) by its image under Ad(gs), we see that we can
assume that 29, = Z%,, and ¢ = ¢'.

Assume now that e = 0 so that ¢/ = 0. By the definition of ¢+ = ¢/ we see
that « = ¢/ is identically 1 hence m = my, m’ = mj and G, = G. Since e = 0
is distinguished in m it follows that M is a torus. Hence M = Z9,. Similarly
M' = Z%,,. Since 29, = 29, it follows that M = M’. We see that (a) holds in
this case.

In the remainder of the proof we assume that e # 0 hence ¢’ # 0. Recall that
M = GAIW)AdR)D - ppr = GAACE)) AdGEDD | for some ¢, ¢ in k* and some z, 2’ in
23, = 2Y,,. Since e € m,, we have Ad(.(t)) Ad(z)f(e) = e; since Ad(z) acts as 1
on m, we deduce that t2("e = e and since e # 0, we see that t?> = (~". Similarly,
since e € m; we have Ad(:(t')) Ad(2')0(e) = e and ' = (7.

We show that for any k € Z we have m; C m’. By 1.2(e) we can assume that
k € nZ. Let z € my. We must show that Ad(.(¢')) Ad(z")0(x) = . Since Ad(z’)
acts by 1 on m, it is enough to show that ¢¥#/2#/72 = x or that (¢"t/?)F/ 1z = x.
This follows from t/2 = (.

Thus we have my C m’. Since this holds for any & € Z, we deduce that m C m’.
Interchanging the roles of m,m’ we see that m’ C m hence m = m’. This implies
that M = M’. Since ¢ = ¢/, we see from (c) that m, = m,. From my = m{ we
deduce that My = M]. This completes the proof of (a).

The following result can be extracted from the proof of (a).

(d) If my; =0 (so that e =0), then m = mq is a Cartan subalgebra of go.
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3.7. Let (M, Mg, m,m,,C) € T,. Let x € 1‘?1,, We choose ¢ = (e, h, f) € J™ such
that e = z,h € mg, f € m_,, (see [L4] 3.3]) We can view z as an element of g%
and ¢ as an element of Js(x). We define [, = [¢ as in 2.9. Recall that for N € Z
we have:

Iy = bn/m0n iE2N/n € Z, Iy =0if 2N/ ¢ Z,

where ¢ = 14 € Y. Let = EBNTN C g and let L =¢'c G. We show:

(a) m is a Levi subalgebra of a parabolic subalgebra of 1 which is compatible with
the Z-grading ofi.

We shall prove (a) without the statement of compatibility with the Z-grading;
then the full statement of (a) would follow from 1.6(a).

Assume first that = 0. Then h = 0 hence ¢ is the constant map with image
1. Tt follows that [ = [y = gy and m = mg; moreover: by 3.6(d), m is a Cartan
subalgebra of go. Hence in this case (a) is immediate. In the rest of the proof we
assume that = # 0.

Since 1%,, carries a cuspidal local system, for any N € Z such that 2N/n € Z
we have my = QN/nm. Since my C gy, we have my C EN/ngﬂ hence my C ~[N.
Taking sum over all N € Z such that 2N/n € Z, we get m C [. We can find t, € k*,
z € ZY,, both of finite order, such that m = {y € g; Ad(c(to)) Ad(2)8(y) = y}. Note
that T, = 71"/

By 2.6(c), we can find ¢’ € k* such that [ = {y € g; Ad(¢(¢')~"")8(y)) = y}. Since
m C ~[, we have:

(b) m={yel: Ad(u(to)) Ad(=)0(y) =y} = {y €5 Ad(1(to)) Ad(2) Ad((¢))y =y}

(Note that 2.6(c) is applicable since [, = ﬁfilm/Qﬂ.)

Since z € m,, C 5g, we have Ad( (t))x = t?x for any t. Taking t = t; ' or t = ¢’
we see that t52m = Ad(1(to)) 'z and ¢'?z = Ad(4(¢"))z. Since z € m and z € [ we
have Ad(:(to)) ™'z = 6(x) and Ad(:(¢"))z = O(z). Tt follows that ty2z = ¢'%x so
that (since 2 # 0) we have t5% = ('2.

If N € Z,2N/neZand y € Iy, we have Ad( (toC))y
[ = ®nly we have Ad(u(to¢’))y =y for all y € . Hence (b

(c) m={y € GAd(2)y = y}.

It remains to show that (c) implies (a). Since z is of finite order and z € Z¢,
we can find A € Yzo such that z = A(t1) for some ¢; € k*. (See 3.2(a).)

Let m' = {y € LAd(A(t))y =y Vt € k*}. Note that m’ is a Levi subalgebra
of a parabolic subalgebra q of I. Since A(k*) C Z9, we see that Ad(A(t)) acts as
1 on m for any ¢t hence m C m’. Now Ad(A(#1)) acts as 1 on m’. Since m = {y €
[ Ad(A(t1))y = y} it follows that m’ = m. Thus (a) holds.

= (to¢")*N/1y = 4. Since
) implies:

3.8. Primitive pairs. Let (M, My, m, m*,é') €%, Let xz € t%n. We can view x
as an element of g§'. We set My(z) = Mo N G(z), Go(z) = Go N G(x). We show:

(a) The inclusion My(xz) — Go(z) induces an isomorphism on the groups of
components.

Let ¢ € JM, ~[,~[*,l~/ be as in 3.7. Let Ly = e c L. We have z € f (see
[L4, 4.2(a)]). Let Lo(z) = Lo NG(z). To prove (a) it is enough to prove (i) and (i)
below.
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(i) The inclusion My(x) — Lo(z) induces an isomorphism on the groups of
components.

(i) The inclusion Lo(z) — Go(x) induces an isomorphism on the groups of
components.

Now (i) follows from L4l 11.2] (we use 3.7(a)) and (ii) is a special case of 2.9(c).
This proves (a).

Let O be the Gp-orbit of x in g?“. Let £’ be the irreducible My-equivariant
local system on ‘%n such that CL% = L/[dimm,]|. Let £ be the irreducible Gy-
n

equivariant local system on O which corresponds to £ under (a). We say that
(O, L) € I(gs) is the primitive pair corresponding to (M, My, m,m,,C) € T,; it is
clearly independent of the choice of x, ¢ (we use [L4] 3.3]).

Let £” be the irreducible Eo—equivariant local system on in which corresponds
to £’ under (i). Let £ € D(I,) be as in 0.11. From 1.8(b) we see that:

(b) ind;’;(é) is a nonzero direct sum of shifts of L'"*.
Consider the map (M, My, m,m,,C) + (O, L) (as above) from T, to Z(gs); the
image of this map is denoted by ZP"""(gs). From 3.6(a) and (a) we see that:

(c) This induces a bijection w : T, — TP™"™(gs).

Using the definitions and 1.8(b), we see that:

(d) For § € X, we have ¥(w(§)) = &, where ¥ : I(gs) — X, is as in 3.5.
Combining (c¢) and (d), we have

(e) the restriction of ¥ to IP""™(gs) gives the inverse of w.

From (d) we get:

(f) The map W : I(gs) — £, is surjective.

Another proof of (f) is given in 7.3.

3.9. Now let 1 € Z — {0} be such that n, = J. We define a bijection T}, =%

by (M, My, m,m,,C) — (M, My, m, m(*),é) where m, is the new Z-grading on
m, whose k-component m;) is equal to my,,,, for any k € m1Z and is equal to 0
for any k € Z — mZ. (This is well defined since my, = 0 for any k' € Z — nZ; see
1.2(e).) Here we regard C' as a simple perverse sheaf on m, = m(,,). This restricts
to a bijection T, = %p.» which induces a bijection T, = %,,- This allows us to
identify canonically all the sets T, (for various n1 € Z—{0} such that n, = ) with
a single set T and also all the sets T, ~(for various 71 € Z — {0} such that , =)
with a single set 5. Here T, T are defined purely in terms of § (independently
of the choice of 7).

An examination of the construction of the map ¥ = W, : Z(gs) — £, (see 3.5)
shows that the bijection Zn = Zn , intertwines ¥, and ¥,, . Therefore we have a
well-defined map ¥ : Z(gs) — 5.

4. SPIRAL INDUCTION

In this section we introduce the key tool in studying the block decomposition for
Dg, (g7'"), namely the spiral induction. This is the analogue in the Z/m-graded
setting of the parabolic induction in the ungraded or Z-graded setting.
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4.1. Definition of spiral induction. In addition to n € Z — {0} which has been
fixed in 2.9, in this section we fix ¢ € {1, —1}. We denote by B¢ the set of all data
of the form:
(a) (p*’va()a[a [*7u*)7
where p, is an e-spiral and L, Py, [, [, u, are associated to p, as in 2.5. Let

(p*vLa P07 [7 [*au*) S ;;BE.

Let 7 : p,, — [, be the obvious projection. We have a diagram:
(b) [ < Go X py > E' S g5,

where E' = {(gPy,z) € Go/Py X gs;Ad(g™ 1)z € py}, a(g,z) = n(Ad(g™1)z),
b(g,z) = (gFPo,2), ¢(9FPo,z) = z. Here a is smooth with connected fibers, b is a
principal Py-bundle and ¢ is proper. Now Q(l,) is defined as in 1.2, with H,b
replaced by L,I. If A € Q(l,), then a*A is a Py-equivariant semisimple complex
on Gy X py, hence there is a well-defined semisimple complex A; on E’ such that
b*A; = a*A. We can form the complex

“Indy’ (A) = a1 As.
Since c is proper, this is a semisimple, Gp-equivariant complex on gs.
If I, is a splitting of p., we will sometimes consider ©Indg®(A) with A € Q(I;)

by identifying [, with [, in an obvious way and A with an object in Q([,).
For any A € Q(I,,) we have

(c) D(* Indgf7 (A)=-° Indfji(D(A))[%],

where e is the dimension of a fiber of ¢ minus the dimension of a fiber of b, or
equivalently

e = dim gg + dim p,, — dimuy — (dim p,, — dimu,;) — (dim po — dimug)
= dimug + dim u,,.
Hence, if for A € Q(I,,)) we set
“Ind,. (A) = Ind% (A)[dimug + dims,],
then
795 05
(d) D( Ind, (4)) = Indpn(D(A)).
4.2. Transitivity. We state a transitivity property of induction. In addition to
the datum 4.1(a) we consider a parabolic subalgebra q of [ such that q = ®neczqn

where qy = qNIy. For any N € Z let py be the inverse image of qx under the
obvious map py — I. Then p, is an e-spiral; see 2.8(a). Let

(ﬁ*; IA/a P07iv i*7 ﬂ*) S me
be the datum analogous to 4.1(a) defined by p.. Now Q(in) is defined as in 1.2,

with H, b replaced by L, L If A € Q(1,), then indy (A) € Q(L,) is defined as in 1.3
and we have canonically

(a) “Ind’ (4) = “Indf? (indg’ (A)).

The proof is similar to that of [L2] 4.2]; it is omitted.
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4.3. In the setup of 4.1, assume that A € Q(I,) is a cuspidal perverse sheaf (see

1.2). We have A = £*[dim[,] where £ is an irreducible local system on [, and
Lf € D(1,) is as in 0.11. In this case we can give an alternative description of
“Indf? (LF). Let Py, 7 : py — [ be as in 4.1. Let

ds = {(gPo, 2) € Go/Po x g5: Ad(g™ )z € 7 1(1,))}

be an open smooth irreducible subvariety of E’in 4.1. Let £ be the local system
on gs defined by b'*L = a’*L, where

[, < Go x (771(1)) 2 g,

d'(g,zx) = n(Ad(g~1)2),V (g, 2) = (9P, 2). Let L be the intersection cohomology
complex of E’ with coefficients in £. From the definitions we have a*Lf = b*L*
(a,b as in 4.1). We define ¢ : g5 — gs by ¢'(g, 2) = z. We show:

(a) “Ind? (LY =¢L.

Using the definitions we see that it is enough to show that the restriction of £* to
E’ — g5 is zero. This can be deduced from 1.2(c).

4.4. Let Q;(gs) be the subcategory of D(gs) consisting of complexes which are
direct sums of shifts of simple Gg-equivariant perverse sheaves B on gs with the
following property: there exists a datum (p., L, Py, [, [, 1) as in 4.1(a) and a simple
cuspidal perverse sheaf A in Q([,) such that some shift of B is a direct summand
of “Indy’ (A). We show:

(a) If (p«, L, Po, [, L, uy) € P€ and A’ is a simple (not necessarily cuspidal) per-
verse sheaf in Q(l;), then “Ind}® (A') € Qf (gs).

Using [L4, 7.5] we see that some shift of A’ is a direct summand of ind;’i7 (A) for

some [, q as in 4.2 where A is a simple cuspidal perverse sheaf in Q(A[,,). It follows
that some shift of Ind}’ (4’) is a direct summand of

(b) “Ind¥ (indg’ (A)).

It is then enough to show that the complex (b) belongs to Qf(gs). This follows
from the definitions using the transitivity property 4.2(a).
The functor
“Indg : Q(L,) — Q5 (g5)
(where (p., L, Py, I, L, 1) is as in 4.1(a)) called spiral induction.

Let K5 (g5) be the abelian group generated by symbols (A), one for each isomor-
phism class of objects of Q5 (gs), subject to the relations (A) + (4") = (A @ A')
(a Grothendieck group). Now K (gs) is naturally an A-module by v"(A) = (A[n])
for any n € Z. We shall write A instead of (A) (in Qj(gs)). Clearly, K (gs) is a
free A-module with a finite distinguished basis given by the various simple perverse
sheaves in Qj(gs). Now A, B+ (A: B) ={A,D(B)} € N((v)) (see 0.12) defines
a pairing

() () - K5 (95) x K5 (85) — Z((v)),

which is A-linear in the first argument, A-antilinear in the second argument (for

[ f) and satisfies (b1 : b2) = (bg : by) for all by, by in K5 (gs).
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4.5. In addition to the datum 4.1(a) we consider another datum
(a) (0L, L', P, U, 1, u)) € 9P

such that py C pjy for all N € Z and py = p/y for N € {n, —n}. We then have
wy Cuy forall N € Z and uy = wyy for N € {n,—n}. We also have canonically
[y =y for N € {n, —n} and Py C P}. Let P = Pj/Py. Write pp1Q; = &, Qi[—2q;]
where a; are integers > 0. (Here ppy is as in 0.12.) Let A € Q(I;) = Q(I}). We
show:

(b) Let I =<Indy’(A), I' =° Indﬁf7 (A). We have I = &;I'[—2a;].

We consider the commutative diagram

[n<a—GQ><pn—b>E’—c>g,5

R

[%<Q—GQXP%L>-E’L>Q(5

where the upper horizontal maps are as in 4.1(b), the lower horizontal are the
analogous maps when 4.1(a) is replaced by (a) and h : E' — E’ is given by
(9FPo,z) — (gPj,2). Note that h is a Pj/Py-bundle. We can find a complex A;
(resp. A}) on E’ (resp. E’) such that I = ¢4y, I' = ¢]A}. We have Ay = h*A],
hence

I=cA = C?thl = C?hgh*A/l = C{(A/l ® h!h*QZ) = EBjcfAll[—Zaj} = EBjI/[—Qaj].
This proves (b).

5. STUDY OF A PAIR OF SPIRALS

This section serves as preparation for the next one, which aims to calculate the
Hom space between two spiral inductions.

5.1. In addition to n € Z — {0} which has been fixed in 2.9, in this section we fix
€,€” in {1,—1}. Let

(b L PV ) €, (0 LY, B U U ul) €
We show:

(a) there exists a splitting U. of .. and a splitting U of p" such that, if L} =
o c G and f/g =l ¢ G, then some maximal torus T of Gg is contained in both
Ly and LY.

Let [/ be any splitting of p. and let [ be any splitting of p”; let L} = Nyl
Ly = ¢'d  G. Recall that Pj (resp. Py) is a parabolic subgroup of Gy with Levi
subgroup [~/6 (resp. Eg ); hence there exists a maximal torus 7y of G contained in
both P}, P. Let 'L} (resp. 'LY) be the Levi subgroup of P} (resp. Py) such that
To € 'L} (vesp. To € 'LY). We can find v’ € Upy, u" € Upy such that Ad(u')Ljy =
'Ly, Ad(u")Lg = 'Lg. Now {Ad(u')ly; N € Z} is a splitting of {Ad(u')ply; N €
Z} = p, and {Ad(u")l5;; N € Z} is a splitting of {Ad(u")p%;; N € Z} = p/. Note
that Ad(u')Ljy, Ad(u")L§ contain a maximal torus of Go; (a) is proved.
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5.2. Let (p., L', Py, U, ul) € P, (puy L, Po, I, L, u,) € P. Let A € Q(1,) be a
simple cuspidal perverse sheaf. As in 4.3, we have A = £*[dim [,] where £ is an

irreducible local system on [,,. Let
B =* Indg (L%).

Let 7' : p;, — I, be the obvious map with kernel u;,. We want to study the complex
K =m{(Bly;) € D(I}). As in 4.3, let

. P —_ N
gs = Go ><07T 1([17)7

where 7 : p, — [, is the obvious map; let L be the local system on g5 defined in
terms of £ as in 4.3. As in 4.3, we define ¢’ : g5 — gs by (g, 2) = z. Let

pl = {(gPo, 2) € Go/Po x pl; Ad(g~ )z € w1 (1)}
Note that p% is the closed subvariety c’*lpi7 of §5. The restriction of £ from gs to
p;, is denoted again by L. Now ¢ restricts to a map p;, — p;, whose composition

with 7 : pj, — [ is denoted by o : p; — [;. We have o (gPy,z) — 7'(2). Using

4.3(a) and a proper base change, we see that K = y(L).
We have a partition p;, = Uqgp;  into locally closed subvarieties indexed by the
various (Pj, Py)-double cosets 2 in Gy, where

P = {(9Fo,2) € /Py x psAd(g™1)z € (1)}
Let oq : p;, o — I, be the restriction of . For any © we set

Ko = UQ](;C“";%Q) S 'D([;])

We say that Q is good if for some (or equivalently any) go € €2, the following
condition holds: setting p\y = Ad(go)pn, Wx = Ad(go)un (for N € Z), the obvious
inclusion

(Pv N Ad(go)pn)/(py N Ad(go)un) — Ad(go)pn/ Ad(go)un
is an isomorphism for any N € Z that is, Ad(go)pn = (py NAd(go)pn)+Ad(go)un-
We say that Q is bad if it is not good.

Until the end of 5.4 we fix an Q as above and we choose gy € Q. Let p}, =
Ad(go)pn; then pY is an €’-spiral. It determines a datum (p//, L”, PJ, 1" 1/ u}) €
(Bﬁl/ ]

By the change of variable g = hgo we may identify p; o with
{(hPY, =) € BYPYPY vl Ad(h)z € Ad(go)n (1)}

which is the same as
ol

E={(h(PyNPY),2) € Po/(Pan Fy) x pis Ad(h™h)z € 771 (1)}
(in which 7" : p;7 — [} is the obvious map, with kernel u;)). In these coordinates,
oq Py, q — I, becomes (h(PyN Fy),2) = 7'(2).
We choose a splitting I, of p/, and a splitting I/ of p?/ as in 5.1(a); let Ly, Ly, T
be as in 5.1(a).
Let 4/, " be elements of Yg, q such that p), = E/pﬁf/, = eliﬁf,, p! = E”pﬁfu,
= €T Let ', " in Z-o be such that X' := 'y € Yo, N :==1"p" € Yg,.
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As in 2.6(d) we have A'(k*) C Z% , NV'(k*) C Zg,,. Since 7 is a maximal torus
B 0 0
of L{), we must have Z% C T hence N (k*) C 7. Similarly, since 7 is a maximal
0

torus of LY, we have Zg,, C T hence M'(k*) C T. Since both X (k*),\"(k*) are
0

contained in the torus 7', we must have X (¢)A\"(t") = A’"(t")N' (') for any ¢',¢" in

k*. Hence, if for any k', k" in Z and i € Z/m we set

w8 = {7 € g AdN (t))a = t'¥ 2, AdN' (t"))z = "% 2, V' 1" € k),
then we have g = ®p ki (b k7 9i)-
For any N € Z we have a direct sum decomposition
(a) P el = (I NI @ (wy NIR) @ (Ty Nul) @ (uy Nu).
This follows immediately from the decompositions
PN NPN = Orr ks> Nrrer k> Never (ke O1)
Uy NI = = Nrrer = Nrrrer (oo O,

/ M
Wy NI = Ok k> Nrver ke =Nvrer (k, k' N ),

Oy MUY = D sk =Nrrer s Nevver (ke ON )

Uy NUY = O ke s Nover ks Nrver (ke O -
For N € Z let q’ be the image of p’y N p7; under the obvious map p, — [%;; let
q" = ®nez(qy), a Lie subalgebra of I”. We show:

(b) q” is a parabolic subalgebra of I compatible with the Z-grading of 1.

For N € Z we set §% = I, Nply. Let §’ = ©nezi’, a Lie subalgebra of .
From (a) we see that the obvious isomorphism [ =5 [ carries §” to q”. Hence (b)
follows from (c) below:

(¢) §"” is a parabolic subalgebra of " compatible with the Z-grading of .

We have

El" = @Bk NezZ;k'>Nr'e (k’,Nr”e”gﬂ)~
We define \; € Y7, by Ai(t) = N ()N (t=7¢<") for all t € k*. Then Ad(\(t))
acts on the subspace s nyergn of " as tk,r”_r/r”Ng,; the last exponent of ¢ is > 0
if and only if ' > 7' N¢ which is just the condition that p/ n,»ergn is one of the
summands in the direct sum decomposition of §”. This proves (c).

For N € Z let q’y be the image of p’y Np’; under the obvious map p’y — ly; let
q = ®&nezqy, a Lie subalgebra of ['.

For N € Z we set gy = Iy Np%. Let § = ©nezqly, a Lie subalgebra of I'. The
following result is proved in the same way as (b),(c).

(d) q’ is a parabolic subalgebra of I compatible with the Z-grading of U'; q’ is a
parabolic subalgebra of I compatible with the Z-grading of .

We set 'q” = ©n'd%, 'd’ = @n(dly), where
|E]/]</' = @k’EZ;k’>Nr’e’ (k’,Nr”e"gﬂ)a 'EIEV = 69/<3”€Z;k">N7"’e” (N'r’e’,k"gﬂ)'
The proof of (c) shows also that 'g” is the nilradical of §” and that

®ONez(Nre Nre ON)

is a Levi subalgebra of §”. Similarly, 'q’ is the nilradical of g’ and

Snez(Nre Nre ON)
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is a Levi subalgebra of q”. Thus,
(e) 4',q" have a common Levi subalgebra, namely ®necz(nNr e Ny ON)-

5.3. In this subsection we assume that €2 is bad. Then for some N, IQ(, Np’y is strictly
contained in [%,. Hence g is a proper parabolic subalgebra of I” (see 5.2(c)). We
will show that

(a) Kq = UQ!(‘CH’;,‘Q) =0e€ ’D([;?)

This is equivalent to the following statement:
(b) for any y € [;7, the cohomology groups HJ of the variety

{(M(P§ Py, 2) € Po/(Py N PY) x bz =y € wy Ad(h™ )z € (1)}

with coefficients in the local system defined by L, are zero for all j € Z.

(We have identified f’n, ;, via 7’.) Considering the fibers of the first projection
of the last variety to Pj/(PjN PY), we see that it suffices to show that:

(c) for any h € P} and any y € ~[;7, the cohomology groups HI of the variety

/. —1 S/ "
{zepz—yecu,Ad(h )z el +u}
with coefficients in the local system defined by L, are zero for all j € Z.
(We have used that 7"~ !(I)/) = f%’ +uy.)

o

If z is as in (c), then we have automatically Ad(h~')z € p;; since [)/ +u; C py,

the condition that Ad(h™1)z € f%’ + ) implies Ad(h~")z € p; Np;. By 5.2(a), we
can then write uniquely Ad(h=1)z = v + v/ + v + p, where

"
n

[e] o
The condition that Ad(h™1)z € f%’ + u; can be expressed as v + ' € N[%’ The
condition that z —y € uj is equivalent to Ad(h™')z — Ad(h™ ')y € u), or (if we
define 3 € ~[;7 by Ad(h~Y)yy — ¢ € u,) to v +v" = y'. Note that y',~,v" are
uniquely determined by h,y. Hence the variety in (c) can be identified with

T M/ / roon 1 / "
(e) yeELNL Y €uw NEL V€6, Nuy, i € uy Ny,

o

(v + (u, N N L) X (wy, M),

Under this identification, the local system £ is the pullback of £ (viewed as a local

system on f;;) from the first factor. Now the desired vanishing of cohomology follows
from the vanishing property [L4, 4.4(c)] of £, since in our case §” = ®x (% N p'y)
is a proper parabolic subalgebra of [ with nilradical &y (I} Nu'y).

5.4. In this subsection we assume that €2 is good. Then for any N we have f’l([ Nply =
%, that is, %, C p/y. We also have §” = I". Thus §” is reductive so it is equal to its
Levi subalgebra @ nez(nre, Nr7egn) (see 5.2(e)) which is then equal to [ and is
also a Levi subalgebra of q' (see 5.2(e)). Thus,

(a) I is a Levi subalgebra of §'.

Now Ad(gp) defines an isomorphism [ = [”. Composing this with the inverse
of the obvious isomorphism I’ = [ we obtain an isomorphism of Z-graded Lie
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~ o
algebras [ = [”. Using this, we can transport £ (a local system on [,; see 5.1) to

a local system £” on f%’ Let £ € D(f;,’) be as in 0.11. Then
- " 1
1nda",n (L") € (1)

is defined as in 1.3 (we identify [’ with the reductive quotient of §’; see (a)). We
now state the following result.

(b) We have Kq = indf{’, (L"%)[~2f], where
[ = dimug — dim(ug N pg) + dim(u;, Nwy).
Let Q) = el C L}, a parabolic subgroup of L. Let

= ={(hQp,"2) € Lo/Qp x [y Ad('R™)'z € T + ', }.

Define ¢’ : 2/ — I;, by ¢’("hQ},’z) = 'z. By the argument in [[4, 6.6] (for L’
instead of G) we have

(c) indyy (L) = e £,

where £ is a certain local system on =’ determined by £” and such that A*£” = £
where A : £ — Z’ (2 as in 5.2) is the map induced by the canonical maps P}, — L}
(with kernel Up,) and p;, — f’n (with kernel u; ); £ is the local system on Z considered
in 5.2. We consider the following statement:

(d) A is an affine space bundle with fibers of dimension f.

Assuming that (d) holds, we have

Ko=c'AL =L o AQ = L'[-2f]
and we see that (b) follows from (c). It remains to prove (d).

Let 'h € L}y, 'z € ~[;7 be such that ("hQy, z) € /. Setting h ="hu, z ="'z + 2z, we
see that A1 ("hQ},’z) can be identified with

{(u(Up N PY),2) € Up;/(Up; N PY)) x ufy Ad(w ') Ad(R ) (‘2 + 2) € 1) +ul'}.

It suffices to show that

(e) {(u,2) € Upy x u); Ad(u™ ") Ad('R ) ("2 + 2) € 1)) + )

is isomorphic to Up; x (u, Nwy). If (u,2) are as in (e), we have automatically
Ad(u™") Ad('h™ 1) ("2 4 2) €p;, (since 'z + Z €p), and "hu e Pf). Setting Ad('h™') 2=

a € N[;; +'q, (where a is fixed) and Ad(u~') Ad('h ™)z = Z’ € u), we see that the
variety (e) may be identified with the variety

o

(f) {(u,2') € Up; x uj; Ad(u™")a+ 2" € 1 + (p, Nul))}.
By 5.2(a) we can write uniquely

Adlu™Na+ 2 =y +v+u,
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° .
where v € [7, v € [, Nuy, g € wy Ny, Setting 2 = p — Z we see that (f) can be
identified with the variety of all quintuples (u, 2,v,v,v') in

Upy >y x L7 (0 Mg ) < (wy, N
such that
(g) Ad(u™Na=~+v+ 2.

Since a € f’n, we have Ad(u™")a — a € uj, for u € Up;. Hence in (g) we have
v+v =aand 2 = Ad(u"!)a — a. In particular, v, v are uniquely determined.
Thus, our variety may be identified with Up; x (wjy Nu). This completes the proof
of (d), hence that of (b).

5.5. From the results in 5.3 and 5.4 we can deduce, using the argument in [L4] 8.9]
(based on [L4, 1.4]), the following result.

Proposition 5.6. We have K € Q(I;); moreover, we have (noncanonically) K =
®aKq, where Q runs over good (P, Py)-double cosets in Gy.

6. SPIRAL RESTRICTION

We introduce the spiral restriction functor which is adjoint to the spiral induc-
tion. The main result in this section is Proposition 6.4, which calculates the inner
product {, } (in the sense of 0.12) of two spiral inductions.

6.1. Definition of spiral restriction. In addition to n € Z — {0} which has been
fixed in 2.9, in this section we fix ¢, €’ in {1, —1}. Let (p., L', P}, 1, [, ,u.) € Pc.
Let 7' : pj, — [}, be the obvious map. For any B € D(gs) we set

¢ Resﬁf7 (B) =m(B

We show:

(a) If B € Q5 (g5), then Resﬁi(B) € Q(Ir).

To prove this we can assume that B is in addition a simple perverse sheaf. Then,
using the definition of Q5 (gs), we see that it is enough to prove (a) in the case

where B = ¢’ Indg? (LY, with (p., L, Py, L, u,) € P, LF as in 5.2. In this case,
(a) follows from 5.6.

We thus have a functor ¢ Resy; Q;” (g5) — Q(I},) called spiral restriction.
We have the following result.

Proposition 6.2 ((Adjunction)). Let C' € Q(I;), and let B € Q;N (gs5). For any
7 € Z we have

() d;(1,;C, Resy? (B)) = dyr (g5 Ind? (O), B),
where j' = j 4+ 2dimuy.

The proof is almost a copy of that of [L4l, 9.2]. We omit it.
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For B € D(gs) we set
E/I/{\e/sﬁz (B) =" Resgi (B)[dimu;, — dim ug).
With this notation, the equality (a) can be reformulated without a shift from j to
7’ as follows:

1 1——9
(b) d; (1, €, Res,, (B)) = d;(gs; “Indy, (C), B).

6.3. Let (pl, L', Py, U, u.) € B, (pu, L, Po, L L) € P Let A € Q(I,),
A" e Q(I) be cuspldal perverse sheaves. As in 4.3 we have A L¥[dim [,)],

A" = £'%]dim ;,] where £ (resp. L') is a local system on [ (resp. [ )

We denote by X the set of all g € Gy such that the ¢’ splral {Ad( )pn; N € Z}
and the ¢'-spiral p/, have a common splitting. If g € X there is a unique isomorphism
of Z-graded Lie algebras Ay : [ — I’ such that the compositions

Ad(g)pn Ny = Py = Iy,

Ad(yg )mepNLp —>[N—>[

coincide for any N (the unnamed maps are the obvious imbeddings or projections).
Moreover, A4 is induced by an isomorphism L — L’. Let X’ be the set of all g € X
such that Ay : [, = I, carries £ to the dual of L. For any g € X' we set

ufy + Ad(g)ug . w, + Ad(g)u,
ugp N Ad(g)uo u; N Ad(g)uy

Note that both X and X’ are unions of (P, Py)-double cosets in G and that 7(g)
depends only on the double coset of g. We have the following result.

7(g) = —dim

Proposition 6.4. Let
19 n-——m=e o
=" d;(gs;“ Ind,, (A), " Tnd,, (A))v™7 € N((v)).
JEZ
We have

M= (1-2? ZUT(QO)

where 1 is the dimension of the center of[ and the sum is taken over a set of
representatives go for the (Pj, Py)-double cosets in Gy that are contained in X'. In
particular, if IT # 0, then X' # (.

Using 6.2, we have
=" d;(l); A", Res,, (" Ind,, = dps (U AL K

JEZ JEZ

where s = dimug + dimu,, 4+ dimu;, — dimug + dim [,, and
K = Res)) (" Ind’ (L")
is as in 5.2. Using the description of K in 5.3(a), 5.4(b), 5.6, we see that

() =Y Qg7+ 2,

JjE€EZ g
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where g runs over a set of representatives for the (P, Py)-double cosets in Gy which
are good (see 5.2) and

~ v
Qj(9) = d;(T,; A, indg) (L"),

f(g) = dim(uy/(ug N Ad(g)po) + dim(u;, N Ad(g)uy);

the following notation is used:

[ is a certain splitting of p, [ is a certain splitting of {Ad(g JpniN € Z}, ¢ =
®nezdy (where gy = [NﬂAd(go)pN) is a parabolic subalgebra of I' = @ Iy, whose
with Levi subalgebra [/ = @y[%; A’ is viewed as an object of Q(I’ ,) via the obvious

isomorphism [;7 — I, and L S Q([/n/) corresponds to L£F via the isomorphism

250 Ad(g)py/ Ad(g)uy =T

By the implication (a) = (c) in [L4} 10. 6] we have @;(g) = 0 unless §" = I In
this case, since [ is a Levi subalgebra of §’, we must have I' = [ so that g € X.
Conversely, if g € X, then the (P}, Py)-double coset of g is good. Indeed, let I, be
a splitting of p/, which is also a splitting for {Ad(g)pn; N € Z}. We have

Ad(g)pw = Iy @ Ad(g)un C (ply N Ad(9)pn) + Ad(g)un C Ad(g)pn

and our claim follows. Thus the sum in (a) can be taken over a set of representatives
g for the (P}, Py)-double cosets in Gy that are contained in X and for such g we have
Q;(g) = dj(f;,;A’,ﬁ”ﬁ) where I = 1", L"t € Q(f;;) are as above. Using [L4] 15.1],
we see that in the sum over g in (a) we can take g € X’ and that the contribution
of such g to the sum is (1 — v?)~"v5"2/(9)~4 where d = dim [,. It remains to show
that for g as above we have s — 2f(g) — d = 7(g). It is enough to show that:

(b) ug N Ad(g)po = uy N Ad(g)uo,

(c) dim(Ad(g)ug) = dim ug,.

Now (b),(c) hold since Ad(g)po, i, are parabolic subalgebras of go with nilradi-
cals Ad(g)up, uy and with a common Levi subalgebra. This completes the proof of
the proposition.

by ——

6.5. In the special case where
(pim Llu P67 [/7 Kmu;) = (p*> L7 P07 [7 [*7u*)

and A’ = D(A), the sum Zg v7(9) in Proposition 6.4 is over a nonempty set of g
(we have 1 € X’) hence the sum is nonzero and II in 6.4 is nonzero. In particular,
we see that

(a) “'Indy, (4) # 0.

6.6. The map ¢ from simple perverse sheaves to X,. Let B be a simple
perverse sheaf in Q;" (g5). We associate to B an element of T, (see 3.5) as follows.
We can find, (ps«, L, Po, [, [y, 1) € B’ and A as in 6.3 such that

“'Indy, (A) = Bld) & C,

where d € Z and C € Qf,ﬁ(g(;). Let [, be a splitting of p,. Let [ = @&yly, L =
e' C G, Ly =e" C G and let C be the simple perverse sheaf on L] corresponding
to A under the obvious isomorphism I, = [,. Then (L, Ly, [, [,,C) is an object of
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T, and its Gy-orbit is independent of the choice of splitting, by 2.7(a). Now let
(pl, L/, P}V U u.) € B, A’ be as in 6.3 (with ¢ = ¢’) and assume that

“Indy, (A') = Bld] & ¢,

where d’ € Z and C’ € Qﬁ;l (gs). We choose a splitting [/ of p/, and we associate to
it a system (L', L}, 1., C") just as (L, Lo, I, 1.,C) was defined in terms of [; here
C’ corresponds to A’. Using 4.1(d), we see that

“Ind,, (D(A")) = D(B)[~d] & D(C").

Let IT be as in 6.4 (with A’ replaced by D(A’) and ¢’ = €’). From the definition of
IT in 6.4 we have also

Il = {B[d] & C, D(B)[-d'] & D(C")} = v* ¢ plus an element in N((v)).

(We use 0.12.) In particular we have II # 0 hence X’ in 6.4 is nonempty. It follows
that (L', Lg, I, ), C") and (L, Ly, [, [, C) are in the same Gy-orbit. This proves that
B (L, Lo, L, 1,, é’) associates to B a well-defined element ¢(B) € Z,,.

6.7. For any £ € T, let EQZ (gs5) be the full subcategory of Qf; (g5) whose objects
are direct sums of shifts of simple perverse sheaves B in Qf; (gs5) such that ¢(B) = ¢
(see 6.6); let 5le; (gs5) be the (free) A-submodule of IC;/ (gs) with basis given by the
simple perverse sheaves B in 5Q§; (gs5). Clearly, we have

K5 (85) = ®ee, *K5 (5).

7. THE CATEGORIES Q(gs), Q' (g5)

In this section we consider two categories of perverse sheaves Q(gs), Q'(gs)
defined in terms of spiral induction; see 7.8. The simple objects in Q(gs) are
supported on gg‘“, while those in Q'(gs) have Fourier-Deligne transforms supported
on gg”. We also complete the proof of the main theorem 0.6.

7.1. Let (O,L) € Z(gs). Let A; be the simple perverse sheaf on gs such that
supp(A4;) is the closure O of O in g5 and A;|p = £[dim O].

Choose © € O and ¢ € Js(x); define pf,ff, L%, Pyasin 2.9. Then Q(i?;) is defined

in terms of [2, L% and for any A’ € Q(f?;) we can consider
I(A') == 1 1nd (A') € Q)(gs):

see 4.1. We show:

(a) If A’ € Q(fﬁ), then the support of I(A’) is contained in O.

Let y € gs be in the support of I(A’). We must show that y € O. From the
definition of I(A’), there exists g € G and z € pj such that Ad(g)(z) = y. Since
the support of I(A’) and O are Gy-invariant we may replace y by Ad(g~')y hence
we may assume that y € py. Using 2.9(e), we see that p, is equal to the closure of
the Py-orbit of z in py, which is clearly contained in O. This proves (a).
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o o¢
Recall that = € ~[77 (see 2.9(b)) hence ~[n C O. By 29(c), £, = E\%(p is an
n

o
irreducible ig—equivariant local system on ~[n' Let Eg € D(fﬁ) be as in 0.11 and let
A= ﬁﬁ[dimifﬂ. We show:

(b) I(L})]o is L.

Let E/, be the inverse image of O under ¢ : E' — g5 (where ¢, E’ are as in 4.1
with p, = p?, e = 7). From the definitions we see that it is enough to check that
the map co : Ej, — O (restriction of ¢) is bijective on k-points. Since Gy acts
naturally on both E/, and O compatibly with ¢ and the action on O is transitive, it
suffices to check that ¢! (x) is a single point, namely (Py, ). Let (¢Py,z) € ¢~ (z).
We have g € Go, Ad(g~")z € p}; hence = € Ad(g)py. From 2.9(d) we deduce that
g € Py hence (gFPy,z) = (Po,x). This proves (b).

We show:

(c) I(L%) is isomorphic to ®7_; A;[t;], where t; = —dim O and for any j > 2,
Aj is a simple Go-equivariant perverse sheaf on gs with support contained in 0-0
and t; € Z.

This follows from the fact that I (ﬁg) is a semisimple Go-equivariant perverse
sheaf on gs (the decomposition theorem), taking into account (a),(b).

By 1.5(a) we can find a parabolic subalgebra q of ¢, a Levi subalgebra m of
q (with g, m compatible with the Z-grading of [?) and a cuspidal M, := e™o-
equivariant perverse sheaf C' on m,, such that some shift of A is a direct summand
7
of ind;’l7 (C). From the definition we have
(d) ¥(0,L) = (M, My,m,m,,C) €X

where M = e™; see 3.5.

For any N € Z let px be the inverse image of qx under the obvious map py — Iy.
Then by 2.8(a), p. is an 7j-spiral and m, is a splitting of it, so that, by 4.2(a), we
have

7°

. . i
"Indf? (C) = " Ind? (indy’ (C)).
It follows that some shift of " Indg‘S (A) is a direct summand of 7 Indg‘s (C) hence,

using (c), we see that some shlft of A; is a direct summand of "Indg‘s (C). In
particular we have A; € Q(gs) and ¥(A;) = (M, My, m,m,,C) € g see 6.6
(with e = 7). Comparing with (d) we see that:

(€) ¥(A1) = ¥(O, L).

7.2. Characterization of Q](gs) as orbital sheaves. Let A’ be a semisimple
Gy-equivariant complex on gs. We show:

(a) We have A’ € Qﬁ(g(;) if and only if supp(4’) C gt

We can assume that A’ is a simple perverse sheaf. If supp(A4’) C g#¥, then we
have A’ € Q”(gg) by the arguments in 7.1. Conversely, assume that A’ € QZ(%).
We can find (p., L, Py, [, [,,u,) € P? and A € O([,)) such that some shift of A’ is a
direct summand of B :=" Indg’ (A). To show that supp(4’) C g7 it is enough to
show that supp(B) C g7 or (with ¢, Ay as in 4.1 with e = 7)) that supp(c1 A1) C g
This would follow if we can show that the image of ¢ is contained in gml By the
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definition of ¢ it is enough to show that p, C g7*. This follows from 2.5(d) applied
with N =n.

We now restate 7.1(e) as follows.

(b) Let A’ be a simple perverse sheaf in Q)(gs) and let (O, L) € Z(gs) be such
that supp(A’) = O and A'|p = L[dim O]. Then ¥(A’) = ¥(O,L). (Notation of
3.5 and 6.6 with e =1).)

7.3. We now give another proof of the following statement (see also 3.8(f)):

(a) The map ¥ : I(gs) — X, in 3.5 is surjective.

Let (M, My, m, m,, C) be an element of T,,. We can find an n-spiral p, such that
m, is a splitting of p.. By 6.5(a), we have 771/1\13;]:(0) # 0, that is, there exists a
simple perverse sheaf A’ in QZ(QJ) such that some shift of A’ is a direct summand
of ﬁiﬁ&ﬁ: (C). Tt follows that ¢(A") = (M, My, m, m,, C) hence, by 7.2(b), we have
(0, L) = (M, My, m,m,,C) where (O, L) corresponds to A’ as in 7.2(b). This
proves (a).

7.4. Until the end of 7.7 we assume that p > 0. If E,E’ are finite dimensional
k-vector space with a given perfect bilinear pairing F x E’ — k, then we have the
Fourier-Deligne transform functor ® : D(E) — D(E’) defined in terms of a fixed
nontrivial character F, — Q; as in [L4], 1.9].

7.5. Fourier transform and spiral restriction. Let B € D(gs); we denote by
®4(B) € D(g—s) the Fourier-Deligne transform of B with respect to the perfect
pairing gs X g—s — k defined by ().

Let € € {1,—1}. Let (p., L/, P}, U, w.) € B and let

Ry = Resy) (B) € D(,), Ry =" Res};* (4(B)) € D(L_,).

Then

(a) R_,, is the Fourier-Deligne transform of R, with respect to the perfect pairing
[, x [, = k defined by (,).

The proof is almost the same as that of [L4] 10.2]. We omit it.

7.6. Fourier transform and spiral induction. Let ¢ € {1,—1}. Let
(nh L' Py, U L) €

Let A € D(I;) be a semisimple complex; we denote by ®y(A4) € D(I_,) the
Fourier-Deligne transform of A with respect to the perfect pairing [;] x [ . — k
defined by (,); note that ®(A) is a semisimple complex. Let

I, = e’ﬂﬁﬁg (4) € D(gs),
Iy = “Tndy " (@0(4)) € D(g-s).

s
Then:
(a) I_, is the Fourier-Deligne transform of I,, with respect to the perfect pairing
gs X g—5 — k defined by (,).
The proof is almost the same as that of [L5, A2]. We omit it.
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7.7. Characterization of Q,"(gs) as anti-orbital sheaves. Let B € D(gs) be
a semisimple complex; let B’ = ®4(B) € D(g—_s) be its Fourier-Deligne transform,
as in 7.5. Note that B’ is again a semisimple complex. We show:

(a) We have B € Q;ﬁ(gg) if and only if supp(B’) C g™i.

We can assume that B (and hence also B’) is a simple perverse sheaf.

Assume first that B € Q;"(gs). We can find (p,, L', P;,V, [, u,) € P~ and a

9 Tk Trxk

cuspidal perverse sheaf C'in Q([}) such that some shift of B is a direct summand

of *ﬁfr\laii(C). Using 7.6(a) we see that some shift of B’ is a direct summand of

*ﬁfﬁéﬁzi (C") where ¢’ = @ (C) € D([’_n) (notation of 7.6). By [L4l 10.6], C’ is
a cuspidal perverse sheaf in Q(I_, ). Tt follows that B’ € Q:Z(g,(g). Using 7.2(a)
(with n, d replaced by —n, —§) we deduce that supp(B’) C g"%.

Conversely, assume that B is such that supp(B’) C g"i. Using 7.2(a), we see that
B e Q:Z(g,(;). We can find (p,, L', P},V,l,,u,) € P~ and a cuspidal perverse
sheaf C7 in Q(I”, ) such that some shift of B’ is a direct summand of —ﬁﬂi&ﬁ{i ().
We can find a cuspidal perverse sheaf Cy in Q([}) such that C] = ®¢(C) (we use
again [L4} 10.6]). Using 7.6(a), we see that some shift of ®4(B) is a direct summand
of @E(*ﬁfrﬁﬁf](cl)) hence some shift of B is a direct summand of ’ﬁfﬁas:(Cl) SO

that B € Q,"(gs). This completes the proof of (a).

7.8. The assumption on p in 7.4 is no longer in force. From 7.2(a) we see that
Qil(gs5) (hence also K7(gs)) is independent of 7) as long as n = 6. We shall write
Q(g5), K(gs) instead of Q}(gs), Kj1(g5). From 7.7(a) we see that Q; "(gs) (hence
also K, (gs)) is independent of 7 as long as 7 = 4 (at least when p > 0, but then
the same holds for p = 0 by standard arguments). We shall write Q'(gs), K'(g5)
instead of Q,"(gs), K,,"(gs)-

For £ € T; we write Q(gs), K (gs) instead of Q7 (gs), KJ(gs) and we write
£Q/(gs5),°K’(gs) instead of £Q,"(gs), ¢k, "(gs). The discussion in 3.9 shows that
£Q(gs),*K(gs) and Q' (gs), *K'(gs) are independent of 1 as long as 1 = 4.

7.9. Proof of Theorem 0.6. Let { € T,. Let K € DGQ(g?“). We say that K €
Dg, (gg”l )¢ if any simple perverse sheaf B which appears in a perverse cohomology
sheaf of K satisfies ¢)(B) = &; note that B belongs to Q}l(gs), see 7.2(a); hence
1 (B) is defined as in 6.6.

Now let &,¢ in &, be such that £ # &', Let K € Dg,(g5")e, K’ € Da, (95")e-
We show:

(a) Homp, (gnity (K, K')=0.

We can assume that K = B[n|, K’ = B'[n’] where B, B’ are simple perverse
sheaves in QJ(gs) such that ¢(B) = &,¢(B’) = £ and n,n’ are integers. We see that
it is enough to prove (a) in the case where K = ﬁfﬁ&ﬁf] (A)[n], K’ = ﬁﬁ&ﬁ: (A)[n]
withn,n’ € Z, p,,p., A, A" as in 6.4, and € = €’ = 7, since some shifts of B and B’
appear as direct summands of such K and K’. By 0.12(a), we have an isomorphism

Homp,, (gnit) (K, K') = Dy (g7, Go; K, D(K'))*.

Hence
. g g .——g
(b) dim Homp,, (gnity (K, K') = dn—r (g5"; Tnd,, (4'),"nd,, (D(A))).
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Here we use 4.1(d). Since £ # &', the set X’ defined in 6.4 for the pair (D(A4), A")
is empty. Therefore the right side of (b) is zero by 6.4. Then (a) follows from (b).
We see that Theorem 0.6 holds.

8. MONOMIAL AND QUASI-MONOMIAL OBJECTS

The results in this section are parallel to those in 1.8-1.9. They serve as prepa-
ration for the next section.

8.1. Let € = 1. We denote by R the set of all data of the form
(p*a La P07 [7 [*7 Uy, A)7

where (p., L, Py, [, [, u.) € P (see 4.1) and A is a perverse sheaf in Q([,)) which is
n-semicuspidal (as in 1.8 with H replaced by L).

8.2. An object B € Q(gs) is said to be n-quasi-monomial if B = EIfr\laii (A) for
some (pu, L, Py, [, L, u,, A) € RS if in addition A is taken to be cuspidal, then B is
said to be n-monomial. Using 1.8(b) and the transitivity property 4.2, we see that:

(a) If B € Q(gs) is n-quasi-monomial, then there exists an n-monomial ob-
ject B' € Q(gs) such that B' = Blai] ® Blaz] @ -+ @ Blax| for some sequence
a1,az2,...,a; in Z, k > 1. In particular, in K(gs) we have (B") = (v + --- +
v%)(B).

An object of Q(gs) is said to be n-good if it is a direct sum of shifts of n-quasi-
monomial objects.

Proposition 8.3 (8.3). Let B € Q(gs). There exists n-good objects By, Bs in
Q(gs) such that B ® By = Bs.

We can assume that B is a simple perverse sheaf. We define (O, £) € Z(gs) by the
requirement that supp B is the closure O of O in g5 and B|o = L[dim O]. We prove
the proposition by induction on dim Q. Let z € 0. We associate to x an e-spiral
p. = p¥ as in 2.9; we complete it uniquely to a system (p., L, Py, [, ., u,) € B€. By
7.1(c), there exists A; € Q([;)) such that Indg’ (A1) = B[d] & B', where d € Z and
B’ € Q(g5) has support contained in O — O. We now use 1.9(a) for L, A; instead
of H, A;; applying ¢ Indgfl to the equality in 1.9(a) we obtain

‘Indp’ (A1) @0l @C@ ... 0C; =011 ... Cpy,

where each C’; is an 7-quasi-monomial object with a shift (we have used the tran-
sitivity property 4.2). Thus we have

Bld|@B ®CiaCy&.. ®#C,=Ci 1 ®...0C{ .
Now the induction hypothesis implies that B’ is -good. From this and the previous
equality we see that B is n-good. The proposition is proved.

Corollary 8.4.
(a) The A-module K(gs) is generated by the classes of n-quasi-monomial objects

of Q(gs)-
(b) The Q(v)-vector space Q(v) ®4 K(gs) is generated by the classes of n-
monomial objects of Q(gs).
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(a) follows immediately from 8.3; (b) follows from (a) using 8.2(a).

8.5. We show:
(a) If By, B2 are elements of K(gs) then {B1, B2} € Q(v) (notation of 4.4(c)).
By 8.3, we can assume that B, By are classes of 7-quasi-monomial objects. By
8.2(a) we have f; By = B, foBa = Bj where Bf, B} represent e-monomial objects
and f;, fo are nonzero elements of A. Thus, we can assume that By, By represent
n-monomial objects. In this case the result follows from 6.4.

9. EXAMPLES

In this section we consider examples where G = SL(V) or Sp(V). We assume
that m > 2 and n = 1 hence § = 1. We write “spiral” instead of “l-spiral”’. We
explicitly describe the spirals and the set of blocks &, in both cases, and describe
the map U in the case G = SL(V).

9.1. Spirals for the cyclic quiver. We preserve the notation from 0.3. Thus we
assume that G = SL(V) where V = @;cz/mVi. We have an induced Z/m-grading
on g = sl(V), so that gy is the space of all maps in 0.3(a). In general, we have
gi = EBjEZ/m Hom(‘/jv ij+2)

The datum A € Yg, q is the same as a Q-grading on each V;, i.e., V; = @,eq (Vi)
such that ). > xdim(,V;) = 0. Given such a Q-grading on each V;, the corre-
sponding spiral p. = {pn C gn}nez takes the following form:

py ={9 €sl(V)[(2V)) C @azatn (o Virn), Vj€Z/m,xcQ}
A splitting m, = {my C gn}nez of the spiral p, takes the form
my = {¢ €sl(V)[¢(2V)) CoynVirn, Vji€Z/m,zeQ}.

For such a grading ,V; we may introduce a quiver @, as follows. Let J) be the
finite set of pairs (i,2) € Z/m x Q such that ,V; # 0. Then @) has vertex set Jy
and an edge (i,x) — (i + 1,2+ 1) if both (¢,2) and (¢ + 1,2 + 1) are in Jy. Then
@, is a disjoint union of directed chains (that is, quivers of type A with exactly one
source and exactly one sink). We may identify m; with the representation space of
the quiver @, with vector space ,V; on the vertex (i,z) € Jy.

Let B be the set of chains in @y, and let Jy = Ugep(gJx) be the corre-
sponding decomposition of the vertex set. Let gV := @(; 1)es(2Vi). Then we
have V. = @pep(gV). Let M = e™ My = e™ where m = &ympy. Then
M = S([Igep GL(5V)): Mo = S(I1(;.2)e5, GL(:Vi)). The center Zy; is the sub-
group of M where each factor in GL(gV') is a scalar matrix.

9.2. Admissible systems for the cyclic quiver. Let d be a divisor of n = dim V.
Suppose that the following hold:

(1) Each ,V; has dimension < 1.

(2) Each connected component of the quiver @, is a directed chain containing
exactly d vertices.

In this case, My is a maximal torus of G stabilizing each line , V; for (¢,z) € Jy.
The open Mjy-orbit t?ll C my consists of representations of Q5 where all arrows
are nonzero (hence isomorphisms). The stabilizer of an element in 1%1 under M, is
exactly Zs, which acts by a scalar zg on each chain 8 € B, such that ([[5. 5 z5)d =
1. We see that mo(Zps) = pg. For any primitive character x : pg — Q;‘, we have
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a rank 1 My-equivariant local system C on 11011 on whose stalks Zj; acts via .
This is a cuspidal local system because it is the restriction of the cuspidal local
system on the regular nilpotent orbit of m with central character y. Let C’X be the
cuspidal perverse sheaf on m; corresponding to C). The system (M, My, m, m,, C'X)
is admissible. It is easy to see that any admissible system is of the form we just
described.

Given such a grading A\, we define a function f : B — Z/m such that f(5) =1
where (i,x) is the head (origin) of the chain §. Each vertex (i,z) € Jy lies in
a unique chain S € B whose head is of the form (f(8),z’). Then z — a2’ =y
is an integer between 0 and d — 1 and f(8) +y = i in Z/m. This implies that
dimV; = t{z € Q|(i,x) € Jx} is the same as the number of pairs (8,y) € B x
{0,1,...,d—1} such that f(8)+y = i. Choosing a bijection between {1,2,...,n/d}
and B, the function f may be viewed as a function {1,2,...,n/d} — Z/m satisfying
0.7(b). Changing the bijection amounts to precomposing f with a permutation of
{1,2,...,n/d}. Summarizing the above discussion, we get a canonical bijection
between ¥, and the set of equivalence classes of triples (d, f, x) as in 0.7(a).

9.3. The map VU for the cyclic quiver. We preserve the notation from 9.1. Let
(O,L) € x(ig1). For each element e € O, there exists a decomposition of V' into
Jordan blocks {,W },cp. compatible with the Z/m-grading in the following sense.
Each Jordan block W is a direct sum of finitely many 1-dimensional subspaces
indexed by 0,1,..., i.e., ;)W = (W) ® («W1) @ ... such that

(1) «Wn C Viay4n for some h(a) € Z/m (location of the head of the Jordan
block a);

(2) e maps oWy isomorphically to ,Wy11 whenever N > 0 and Wy 1 # 0.

The datum of {,W}aep, as above is the equivalent to the datum of an element
¢ € Ji(e); see 2.3. From this we may define a quiver ). whose vertex set J.
consists of pairs (o, N) € B. x Z>( such that Wy # 0, and there is no edge
(o, N) = (o, N + 1) if both (o, N), (o, N + 1) are in B, x Z>.

Each vertex (o, N) is labelled with the element h(«) + N € Z/m. The isomor-
phism class of Q. together with the labelling by elements in Z/m is independent of
the choice of e in O and the choice of the Jordan block decomposition. Therefore
we denote this labelled quiver by Qo, with vertex set J» and set of chains Bp.

Let d' = ged{|@|}aen, (here |a| is the number of vertices of the chain «). Then
for any e € O, there is a canonical isomorphism 7o(Gg(€)) = p1q. The local system
L on O corresponds to a character p of ug, which has order d dividing d’ and a
unique factorization

p:pa = pa = Qf
such that x is injective (here the first map pg — g is given by z — zdl/d). Now we
define a new quiver Q[g] by removing certain edges from each chain of Qo such that

each chain of Q[g] has exactly d vertices. Let B be the set of chains of Q[g]; then B
can be identified with the set {1,2,...,n/d}. Define f : {1,2,...,n/d} ¥ B = Z/m
to be the map assigning to each 5 € B the label of its head. This way we get a
triple (d, f, x) as in 0.7(b) whose equivalence class is well-defined.

Proposition 9.4. In the case of cyclic quivers, the map ¥ : Z(g1) — Z, sends
(O, L) to the admissible system in T, which corresponds to the equivalence class of
the triple (d, f, x) defined above under the bijection 0.7(a).
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Let e € O, and let V = @qep, (aW), aW = aWo @ oW1 @ - - be a Jordan block
decomposition, where Wx C Vja)4n for a € Be, N € Z>o. Let L be the Levi
subgroup of a parabolic subgroup of GG such that L stabilizes the decomposition
V = ®aen, (aW). Then [ = £L has a Z-grading induced from the Z-grading on
each of ,W. In particular, [; is the space of representations of the quiver Q.. The
system (L, Lo, [, I,) is the system (L?, LY, 1%,12) attached to some ¢ € Ji(e) as in

2.9. Then e is in the open Lg-orbit [; of [}, which is contained in the regular
nilpotent orbit of [.

Let oL = SL(,W) be the subgroup of L which acts as identity on all blocks
wW for o/ # a. Then .l = £(,L) carries a Z-grading compatible with that on
[. For each interval [a,b] C Zx>o, let W[4 C oW be the direct sum of Wy for
a < N < b. We decompose W into |«|/d parts each of dimension d:

d

(a) oW = &N (Wi 1yaja)-

Let oM C oL be the subgroup stabilizing the decomposition (a). Then the Lie
algebra ,m of M inherits a Z-grading from that of ,[, and the open orbit al%l
carries a local system ,C corresponding to the character x of pq = mo(Z(oM)).
Let ,C, be the cuspidal perverse sheaf on ,m; corresponding to oCy. Define a
parabolic subalgebra ,q C [ to be the stabilizer of the filtration o Wj4|—d,ja|-1] C
QWHM,Q(MO{‘,” C - C W= ocW[O,\a|71]- Then ,q is compatible with the Z-
grading on o[ and 4m is a Levi subalgebra of ,q. The induction

ind* ! (aCy)

restricted to ,[; is isomorphic to L] 0 because the map ¢ in 1.3 (applied to
atl

ol o, om in place of b, p,[) is an isomorphism when restricted to o[1. Therefore

the middle extension of L] o to [; appears as a direct summand of ind* ;11 (aCl).-
atl

Therefore, under the map defined in 1.5(b), the image of (41, L] ° ) is
atl

(ona aMOa oM, oMy, ozcx)-
Let o M C GL(,W) be the stabilizer of the decomposition (a). Let
M=5S(]] M) cL

a€B,
with Lie algebra m C @(,m) and the induced Z-grading from each 4 = £(,M).
The open My-orbit on m; = ®(,my) is 1(1)11 = H(at%l) Let Cy = X(,Cy) on 1%1. Let
C’X be the cuspidal perverse sheaf on m; corresponding to C,. By the compatibility
of the assignment in 1.5(b) with direct products, in the situation H = L, the

pair ([1,£\? ) maps to (M, My, m, m,,Cy). Therefore, (M, My, m,m,,C,) is the
1
admissible system attached to (OL‘C) through the procedure in 2.9. By 9.2, the

admissible system (M, My, m, m,, C,) corresponds to the triple (d, f, x) defined in
9.3 before the statement of this proposition. This finishes the proof.

9.5. The symplectic quiver. Let V' be a finite-dimensional vector space over
k with a nondegenerate symplectic form w. Assume that m in 0.1 is even. Let
Gm = {Jj;j = k/2;k = an odd integer} and let &, be the set of equivalence
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classes for the relation ~ on &,, given by j ~ j/ if j — j/ € mZ. Note that the
involution j — —j of S, induces an involution of &,, denoted again by j — —j.
For any N € Z, the map j — N + j of &,,, onto itself induces a map of &,,, onto
itself which depends only on N and is denoted by j — N + j.
The set G, consists of m elements represented by

{1 3 m—1 m+1

1
= =y S, M — =}
2°2 2 2 2
Consider a grading on V indexed by &,,:
(a) V=@V
J€Gm

such that w(V},Vj/) = 0 unless j' = —j (as elements of &,,). Using the symplectic
form, for j € &,, we may identify V; with the dual of V_j.
We assume that G = Sp(V') and that the Z/m-grading of g = sp(V) is given by

(b) gi ={o csp(V)|¢(V) CViy;, Vj€Gm}, VieZ/m.

In particular, an element ¢ € g; is a collection of maps ¢; : V;_1 — VZ-JF%, 1€ Z/m,

which can be represented by a cyclic quiver

_1
2

_ PpE+1
V.Sl v, RSV
2 2 2
o1
Vi -2 v, I VA

The condition ¢ € sp(V') becomes that
(c) b_i=—¢F, YieZ/m.
Here ¢7 : V77, 1
V_iy 1 under the identifications V' , =
2
pairing. In particular, for i = 0, ¢q : V7% =V - V% can be viewed as a vector
2

— V., is the adjoint of ¢;, which can be viewed as amap V_; 1 —
2
Vﬂ;%, 2= V7i+% using the symplectic

¢0 S VFQ The condition (b) for: =01is equivalent to saying that ¢0 c SymZ(V%)
2

Similarly, we may view ¢z as a vector in Vf?fl, and the condition (c) for i = % is
2

equivalent to saying that ¢ € Symz(V% ).

We call a representation of the quiver above in which V_; =V, and (c) holds a
symplectic representation. In other words, g; is the space of symplectic representa-
tions of the quiver above.

We have Gy = H%SjSmTfl GL(V;), where GL(V;) =2 GL(V_;) acts diagonally on
both V; and V_; = V,,,_; = V*.

J

9.6. Spirals for the symplectic quiver. FEach element \ € Y, q is the same
datum as a Q-grading on each V}, j € G,,, i.e., V; = @req(:V)) such that under
the symplectic form w, w(;Vj,»V-;) = 0 unless © + 2’ = 0. Then _,V_; can be
identified with the dual of ,V; for all (j,x) € &,, x Q. The spiral p, associated to
this grading is

PN = {¢ € 5P(V)|¢(IVJ) C @I’ZIJrN(x’VjJrﬂ)a Vi€ Gpy,x € Q}
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A splitting m, of the spiral p, takes the form
my = {r € sp(V)[¢(zV}) CasnVirn, Vj€E G,z €Q}.

To each such grading, we may attach a quiver @, as we did for the cyclic quiver
(since the symplectic quiver is a special case of a cyclic quiver). There is an in-
volution on @y sending (j,z) € Jx to (—j,—z) € Jx. This involution stabilizes
at most two chains @ and QY of Q. The set of vertices of Q) (possibly empty)
is J§ = {(z,2)|sVs # 0} C Jx. The set of vertices of QY (possibly empty) is
JY = (1’ — %,x)th,% 7§ 0} C Ja.

9.7. Admissible systems for the symplectic quiver. Suppose that the follow-
ing hold:

(1) For each (j,z) € J — (J5 U JY), we have dim,V; = 1.

(2) The chains in @y other than Q) and QX all consist of a single vertex.

(3) Let #J5 = 2d’ for some @’ € Z>o. When a’ > 0, (—a’+ 5, —a’+ 3) is the head
of J{ and (a’ — %,a’ — 3) is the tail. Then dim,V, = a’+ 3 — || for all (z,z) € JJ.
(4) Let $J{ = 2a” for some a” € Zxo. When a” > 0, (—a” — 7L, —a” —|— 1) is
the head of J{ and (a” — ™ o/ — 1) is the tail. Then dim,V, m =a" + 31—z

for all (z — %, z) € Jy.

Under these assumptions, m; = m) &m{, where ml is the space of representations
of the quiver Q4 with dimension vector dim,V, = a’ 4+ 3 — |z| and satisfying
the duality condltlon Yi = —¢; (where ¢; 1V, 1 —> it Vigy) for all i €
{—=a’ +1,...,a’ — 1}. Similarly, m{ is the space of representations of the quiver

N with d1mens10n vector dim Vm,_ = a” + 1 — |2| and satisfying the duality

condltlon v; = —*,. The open My-orbit m1 consists of those representations of
Q' and QY where each arrow has maximal rank (either injective or surjective).

Let V! =@,V and V" = ©z V. Let Vvt = D (j,z) g I, 0Ty (2V}). Then we have
V = V'@ V" @V This decomposition is preserved by M, and M = Sp(V') x
Sp(V") x TT, where T is the maximal torus in Sp(V'1) stabilizing each line ,V; C
V1. The center Zy; is isomorphic to {1} x {£1} x TT under this decomposition.
The stabilizer of a point in 1%1 under My is exactly Zp;. Let C be the rank one
local system on m; on whose stalks mo(Zar) acts nontrivially on both factors of
{#£1}. Then C is cuspidal because it is the restriction of the unique cuspidal local
system on m. Let C be the cuspidal perverse sheaf on m; defined by C. The
system (M, Mg, m, m,, C’) is admissible. Moreover, any admissible system is of this
form. Under Go-conjugacy, the only invariant of an admissible system is given by
the numbers @’ and a”. Since dim V] + dim V" < dim V}, we have the following
inequality for all j € &,,

1 1
dimV; > #{—a’ + 3 <zr<d - §|x =j mod mZ}
(2) 1 1 m
_|_u{_a”_|_§ gxga”—§|x5j+5 mod mZ}.
To summarize, we have a natural bijection
(b) T, {(d',a") € Z>o x Z>q satistying (a) for all j € &,,}.

The map ¥ : Z(g1) — £, for the symplectic quiver as well as other graded Lie
algebras of classical type will be described in a sequel to this paper using the
combinatorics of symbols.
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